弹性力学总结
弹性力学知识点总结
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学 总结
弹性力学总结弹性力学是研究物体在外力作用下的变形和应力的科学。
它是力学的一个分支,广泛应用于工程领域中的结构设计和材料力学等方面。
在本文中,我将对弹性力学进行总结,从基本概念到应用和发展趋势等方面进行阐述。
弹性力学的基本概念可以追溯到17世纪,当时有很多科学家开始研究物体的变形和力的关系。
罗伯特·胡克被公认为弹性力学的奠基人,他提出了著名的胡克定律,即物体的变形与受力成正比。
根据胡克定律,当外力作用在一个物体上时,它将引起物体的变形,而变形与外力之间存在线性关系。
在弹性力学中,常用的变形参数有拉伸、压缩、剪切和弯曲等。
通过测量这些变形参数,可以得到物体的应力分布。
应力是物体内部的力和单位面积之比,它反映了物体受力的程度。
根据应力的不同分布规律,可以确定物体的受力状态,从而进行结构设计和材料力学分析。
弹性力学的应用广泛,特别是在工程领域中。
在建筑设计中,弹性力学可以用于确定结构的强度和稳定性,从而确保结构的安全性。
在机械工程中,弹性力学可以用于设计和分析弹性元件,如弹簧和悬挂系统等。
此外,弹性力学还可以应用于材料研究、地质学和天体物理学等领域。
近年来,随着科学技术的发展,弹性力学也取得了一系列的进展。
例如,弹性力学在纳米材料研究中的应用日益广泛。
由于纳米材料具有特殊的力学性能,如尺寸效应和表面效应等,弹性力学理论需要进行适应性调整,以准确描述纳米材料的力学行为。
此外,基于弹性力学的模拟方法也在逐渐发展。
通过数值模拟和计算机仿真,可以更全面地研究物体的变形和应力分布。
这为结构设计和材料力学提供了更多的参考依据。
总之,弹性力学是研究物体变形和应力分布的重要科学,它在工程领域中有着广泛的应用。
通过研究物体的变形和应力分布,可以确保结构和材料的安全性和性能。
随着科学技术的进步,弹性力学也在不断发展,适应越来越复杂的材料和结构需求。
弹性力学的研究将有助于推动科技进步和实现更安全和可靠的工程设计。
弹性力学总结
弹性力学总结第一章绪论一、弹性力学的内容:弹性力学的研究对象、内容和范围。
二、弹性力学的基本量1、外力(1)体力(2)面力2、内力——应力3、应变4、位移以上基本量要求掌握其定义、表达式、分量的符号、正负号规定、量纲。
三、弹性力学中的基本假定1、连续性2、完全弹性3、均匀性4、各向同性以上是对材料性质的假定,凡符合以上四个假定的物体,称为理想弹性体。
5、小变形假定(对物体的变形状态所作的假定)要求掌握各假定的内容和意义(在建立弹性力学基本方程时的作用)。
习题举例:1、弹性力学,是固体力学的一个分支,它的任务是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的(),从而解决各类工程中所提出的强度、刚度和稳定问题。
A.应力、应变和位移;B.弯矩、扭矩和剪力;C.内力、挠度和变形;D.弯矩、应力和挠度。
2、在弹性力学中,作用于物体的外力分为()。
A.体力和应力;B.应力和面力;C.体力和面力;D.应力和应变。
3、重力和惯性力为(C )。
A .应力;B .面力;C .体力;D .应变。
4、分布在物体体积内的力称为( C )。
A .应力;B .面力;C .体力;D .应变。
5、物体在体内某一点所受体力的集度的表达式及体力分量的量纲为( A )。
A .0lim V F f V∆→∆=∆,-2-2L MT ; B .0lim S F f S ∆→∆=∆,-1-2L MT ; C .0lim A F p A ∆→∆=∆,-1-2L MT ; D .0lim V F f V ∆→∆=∆,-1-2L MT 。
6、弹性力学研究中,在作数学推导时可方便地运用连续和极限的概念,是利用了( )假定。
A .完全弹性;B .连续性;C .均匀性;D .各向同性。
7、( A )四个假设是对物体的材料性质采用的基本假设,凡是符合这四个假设的物体,就称为理想弹性体。
A .完全弹性,连续性,均匀性和各向同性;B .完全弹性,连续性,均匀性和小变形;C .连续性,均匀性,各向同性和小变形;D .完全弹性,连续性,小变形和各向同性。
弹性力学知识点总结
一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学基础知识归纳
一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。
7.什么是差分法?写出基本差分公式?差分法是把基本方程和边界条件近似地看改用差分方程(代数方程)来表示。
弹性力学 总结
弹性力学总结弹性力学概述弹性力学是研究物体在受力作用下的变形和恢复行为的物理学分支。
它主要研究物体在力的作用下如何发生形变,并在去除外力后如何回复到原来的状态。
弹性力学在工程、材料科学和地震学等领域都有广泛的应用。
弹性力学的基本原理弹性力学的基本原理主要包括胡克定律和变形的描述。
胡克定律胡克定律是弹性力学研究的基石之一,它描述了弹性物质的应力和应变之间的关系。
根据胡克定律,弹性物体在小应变范围内,应力与应变成正比。
公式表示为:σ = Eε其中,σ代表应力,E代表弹性模量,ε代表应变。
胡克定律适用于各向同性的线性弹性材料。
变形的描述弹性变形通常分为线弹性和非线性弹性两种情况。
线弹性是指应力与应变之间成线性关系的弹性变形,而非线性弹性则是指应力与应变之间存在非线性关系的弹性变形。
在弹性力学中,常用的变形描述方法有拉伸、压缩、剪切和扭转等。
这些变形可以通过位移场、应变场和应力场来描述。
弹性体的应力分析弹性体在受力作用下会发生应力分布。
根据应力的分布规律,可以得出一些重要结论。
平面应力和轴对称应力问题在平面应力问题中,物体受力平面上只有两个应力分量,另一个应力分量为零。
这种情况下,可以根据累积概率法或复数变量法求解。
轴对称应力问题是较为常见的一类问题,这类问题的特点是应力场只与径向位置有关。
通过解析方法或数值方法,可以得到轴对称弹性体的应力分布。
弹性体的本构关系弹性体的本构关系以描述应力和应变之间的关系。
弹性体的本构关系可以是线性的或非线性的。
常见的线性弹性体本构关系有:胡克弹性体、准胡克弹性体和线弹性体。
这些本构关系常用于弹性力学计算中,可以通过试验数据或材料参数得到。
非线性弹性体的本构关系较为复杂,常用的描述方法有牛顿-拉普森方程和本构方程等。
弹性力学应用弹性力学在各个领域都有广泛的应用。
以下是几个常见领域:工程领域在工程领域中,弹性力学主要用于材料的强度计算、结构的稳定性分析和振动问题的研究。
通过弹性力学的理论,工程师可以预测材料在受力下的变形和破坏情况,并设计出更加安全和可靠的结构。
弹性力学简答部分(纯粹个人总结)
1.什么是弹性力学弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。
2.弹性力学的基本假定(1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
(2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
完全弹性分为线性弹性和非线性弹性材料弹性常数不随应力或应变的变化而改变(3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。
(4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。
(5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
3.概念:体力:分布在物体体积内的力,如重力和惯性力。
面力:分布在物体表面上的力,如流体压力和接触力。
内力:外界因素作用下,物体内部各个部分之间的相互作用力应力:分布在物体内部任意点上的力,实质上是面力的一种应变:是描述物体受力后发生变形的相对概念的力学量位移:物体内任一点位置的移动平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。
(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。
平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。
(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。
设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。
4.圣维南原理(用积分的方式表示)见例题圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
5.逆解法、半逆解法逆解法:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程的φ(x,y)的形式;(2)然后利用应力分量计算式,求出(具有待定系数);(3)再利用应力边界条件式,来考察这些应力函数φ(x,y)对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)可以求解什么问题。
弹性力学基础知识点复习
弹性力学基础知识点复习固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。
当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。
弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。
连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。
这里主要使用数学中的几何方程和位移边界条件等方面的知识。
弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。
弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。
①变形连续规律弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。
如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。
反映变形连续规律的数学方程有两类:几何方程和位移边界条件。
几何方程反映应变和位移的联系,它的力学含义是,应变完全由连续的位移所引起,。
弹性力学 知识要点
弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。
外力分为体积力和面积力。
体力是分布在物体体积内的力,重力和惯性力。
体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。
内力,即物体本身不同部分之间相互作用的力。
凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。
连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。
完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。
均匀性,整个物体时统一材料组成。
各向同性,物体的弹性在所有各个方向都相同。
求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。
解释在物体内同一点,不同截面上的应力是不同的。
应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。
切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。
负面上沿坐标轴负方向为正,沿正方向为负。
材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。
试述弹性力学平面应力问题与平面应变问题的主要特征及区别。
平面应力问题:几何形状,等厚度薄板。
外力约束,平行于版面且不沿厚度变化。
平面应变问题:几何形状,横断面不沿长度变化,均匀分布。
外力约束,平行于横截面并不沿长度变化。
平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。
在推导平衡微分方程时我们主要用了连续性假定。
几何方程表示的是形变分量与位移分量之间的关系式。
试根据几何方程分析,应变分量与位移分量之间的关系,并解释原因。
当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。
在推导几何方程主要用了小变形假定。
大学弹力力学知识点总结
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
弹性力学知识要点
弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。
外力分为体积力和面积力。
体力是分布在物体体积内的力,重力和惯性力。
体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。
内力,即物体本身不同部分之间相互作用的力。
凡是符合连续性、完全弹性、均匀性_____________________________ 各向同性等假定的物体称之为理想弹性体。
连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。
完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。
均匀性,整个物体时统一材料组成。
各向同性,物体的弹性在所有各个方向都相同。
求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。
解释在物体内同一点,不同截面上的应力是不同的。
应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。
切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。
负面上沿坐标轴负方向为正,沿正方向为负。
材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。
试述弹性力学平面应力问题与平面应变问题的主要特征及区别。
平面应力问题:几何形状,等厚度薄板。
外力约束,平行于版面且不沿厚度变化。
平面应变问题:几何形状,横断面不沿长度变化,均匀分布。
外力约束,平行于横截面并不沿长度变化。
平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。
在推导平衡微分方程时我们主要用了连续性假定。
几何方程表示的是形变分量与位移—分量之间的关系式。
试根据几何方程分析,应变分量与位移分量之间的关系,并解释原因。
当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。
弹性力学总结
通过圣维南原理的使用,可以将一些难以处理的边界条件
转化为基本方程所能够满足的边界条件,使得弹性力学问题得 到解答。
应用的注意事项:
1、取代原力系的必须是静力等效力系:主失量和主矩相等。 2、应用时不能讨论局部应力场。
弹性力学问题的提出
极坐标中的基本方程和边界条件
(1)平衡微分方程
1 f 0 2 1 f 0
(2)几何方程
(4-9)
u
u 1 u u u 1 u
(4-13)
弹性力学问题的提出
(3)物理方程(平面应力问题)
1 ( ) E 1 ( ) E 2(1 ) E
xБайду номын сангаас
0, 0,
o
a ( )
a
r
rd cos ( ) r rd sin 0 rd sin ( ) r rd cos 0
y
a ( )
a
r
M
0, ( ) r rd r M 0
习题课
A cos 2 B sin 2 C D
(3)求应力分量一般表达式:将上式代入(4-15),得 应力分量为:
1 1 2 1 2 2 4 A cos 2 4 B sin 2 2 2 0 1 1 ( ) 2 2 A sin 2 2 B cos 2 C
2 2
0
2
(4-14)
弹性力学知识点
一﹑概念1.弹性力学,也称弹性理论,是固体力学学科的一个分支。
2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、断裂力学、复合材料力学。
3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。
.4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛5.弹性力学基本方法:差分法、变分法、有限元法、实验法.6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。
8.几何方程反映的是形变分量与位移分量之间的关系。
9.物理方程反映的是应力分量与形变分量之间的关系。
10.平衡微分方程反映的是应力分量与体力分量之间的关系。
11当物体的位移分量完全确定时,形变分量即完全确定。
反之,当形变分量完全确定时,位移分量却不能完全确定。
12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。
它可以分为位移边界条件、应力边界条件和混合边界条件。
13.圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。
14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生显著的应力,而远处的应力可以不计。
这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。
15.求解平面问题的两种基本方法:位移法、应力法。
16.弹性力学的基本原理:解的唯一性原理﹑解的叠加原理﹑圣维南原理。
会推导两种平衡微分方程17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数(2)由式(2-24),根据应力函数求得应力分量(3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。
弹性力学知识点
弹性力学─研究弹性体由于受外力、边界约束或温度改变等原因而发生的应力、形变和位移 弹性力学─研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁 结构等量纲—基本物理单位是基本物理量的度量单位,例如长短、体积、质量、时间等等之单位。
这些单位反映物理现象。
物理现象或物理量的度量,叫做“量纲”。
体力─(定义)作用于物体体积内的力。
表示)以单位体积内所受的力来量度fx,fy,fz量纲 (符号)坐标正向为正。
面力─(定义)作用于物体表面上的力。
(表示)以单位面积所受的力来量度应力─截面上某一点处,单位截面面积上的内力值。
(符号)应力成对出现,坐标面上的应力以正面正向,负面负向为正。
形变 ─ 形状的改变。
以通过一点的沿坐标正向微分线段的正应变ε和切应变γ来表示。
位移—一点位置的移动,记号为u,v,w 量纲为L ,以坐标正向为正。
弹性力学5个基本假定(1)连续性 ─ 假定物体是连续的。
(2)完全弹性 ─ 假定物体是, a.完全弹性—外力取消,变形恢复,无残余变形。
b.线性弹性—应力与应变成正比。
即应力与应变关系可用胡克定律表示(物理线性)。
(3)均匀性 ─ 假定物体由同种材料组成(4)各向同性 ─ 假定物体各向同性(5)小变形假定 ─ 假定位移和形变为很小弹力的主要解法:解析法,变分法,差分法,有限单元法,实验方法例1 考虑两端固定的一维杆件。
图(a),只受重力作用,fx=0,fy=ρg 。
试用位移法求解。
解:为了简化,设位移按位移求解,位移应满足式(b ),(c ),(d )。
代入式(b ),第一式自然满足,第二式成为 1 解出y=0,l,属于边界条件,代入ν,(ν)y=0=0,故B=0。
(ν)y=l =0,故A=ρgl/2E.代入ν,并求出形变和应力,得到1的三式,在y=l/2处,σy=0. .22--T ML。
弹性力学基础知识
整理课件
29
静力(面力)边界条件
➢ 静力边界条件:结构在边界上所受的面力与应力分量之间 的关系 。
➢ 由于物体表面受到表面力,如压力和接触力等的作用, 设
单位面积上的面力分量为Fsx、Fsy和Fsz ,物体外表面法线n 的方向余弦为l,m,n。参考应力矢量与应力分量的关系,
可得
整理课件
19
微分体的应力分量和应变分量
整理课件
20
位移
弹性体变形实际上是弹性体内质点的位置变化,质点位置 的改变称为位移(displacement)。位移可分解为x、y、z 三个坐标轴上的投影,称为位移分量。沿坐标轴正方向的 位移分量为正,反之为负。
位移的矩阵表示为
弹性体发生变形时,各质点的位移不一定相同,因此位移 也是x、y、z的函数。
σy
应力
应力分量
符号规定: 图示单元体面的法线为y,称为y面,应力分量垂直于单元 体面的应力称为正应力。 正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴 的方向。
平行于单元体面的应力称为切应力,用τyx 、τyz表示,其
第一下标y表示所在的平面,第二下标x、y分别表示沿坐
标轴的方向。如图示的τyx、τyz
整理课件
14
应力
其中一部分对另一部分的作用,表现为内力,它们是分布在 截面上分布力的合力。
取截面的一部分,它的面积为ΔA,
ΔQ
作用于其上的内力为ΔQ,
ΔA
平均集度为ΔQ/ΔA,其极限
S lim Q A
为物体在该截面上ΔA点的应力。
整理课件
15
应力
通常将应力沿垂直于截面和平行于截面两个方向分解为
整理课件
弹性力学复习第一~四章总结
最大最小切应力在与主应力成450的斜面上。
§2-3
平衡微分方程
平面问题的基本方程
x yx fx 0 x y
y y xy x
一、平面应力问题的基本方程
fy 0
运用基本假定: 几何方程
平面应力物理方程也可表示为:
E x ( x y ) 2 1
E y ( y x ) 2 1
xy
E xy 2(1 )
二、平面应变问题的基本方程
平面应变与平面应力问题的平衡微分方程和几何 方程完全相同 。 作代换
E E , 2 1 1
正负号。
§2-7
圣维南原理及其应用
圣维南原理:如果把物体一小部分边界上的面 力,变换为分布不同但静力等效的面力(主矢 量相同,对于同一点的主矩也相同),那么, 近处的应力分布将有显著的改变,但远处所受 的影响可以不计。 利用圣维南原理,可为简化边界上的应力 条件提供极大的方便
圣维南原理的应用
fy
§2-2
平面问题中一点的应力状态
一 、任一面上的正应力σn和切应力分量τn
二、P点的主应力
若某一面上的τn =0, 该面为应力主 面,σn= σ即为主应力,该斜面的法线方向 即为P点的一个应力主向。
得:
过P点任意两个相互垂直的面上的正应力 之和始终保持不变,等于两个主应力之和。
三、主应力的方向
第1章
关键概念
绪 论
正面,负面,面力,体力,应力、应变、弹性、弹性体、均 匀性假设、连续性假设、各向同性假设、线弹性假设,小变 形条件
本章重点
1、弹性力学研究的内容 2、弹性力学的基本量 3、弹性力学的基本假设 4、各个基本假定在建立弹性力学基本方程时的用途
弹性力学知识点总结
弹性力学知识点总结弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。
在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。
1. 弹性模量弹性模量是衡量固体物体抵抗形变的能力的物理量。
根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。
其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产生的形变程度。
2. 胡克定律胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范围内的力学行为。
根据胡克定律,应变与应力成正比。
即ε = σ/E,其中E为杨氏模量。
3. 杨氏模量杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积上受到的拉力与单位长度的伸长量之比。
杨氏模量的定义为:E =F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL为拉伸后的长度增量,L0为原始长度。
4. 泊松比泊松比是衡量固体材料体积收缩性的物理量。
泊松比定义为物体在一轴方向上受力引起的形变量与垂直方向上的形变量之比。
公式表示为:μ = -εlateral/εaxial。
5. 应力-应变关系弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。
对于弹性材料,应力与应变成线性关系,即应力和应变成比例。
6. 弹性极限弹性极限是指固体材料可以弹性变形的最大程度。
超过弹性极限后,材料将会发生塑性变形。
7. 弹性势能弹性势能是指物体在形变后能够恢复到初始状态的能力。
弹性势能可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的能量。
8. 弹性波传播弹性波是在固体中传播的一种机械波。
根据介质的不同,弹性波可以分为纵波和横波。
9. 斯内尔定律斯内尔定律描述了弹性力学体系中应力与应变之间的关系。
根据斯内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。
10. 压力容器设计弹性力学在压力容器设计中起着重要作用。
根据弹性力学的原理,可以计算压力容器在不同压力下的变形情况,从而设计出满足安全要求的容器结构。
弹性力学学习心得范本
弹性力学学习心得范本通过这次学习弹性力学,我对固体力学和材料力学有了更深入的了解和认识。
弹性力学是研究固体变形和应力分布的学科,具有广泛的应用领域和重要的理论价值。
以下是我在学习过程中的心得体会。
首先,深入理解弹性力学的基本概念和原理是非常重要的。
在学习弹性力学的过程中,我通过分析和推导弹性体的应力-应变关系等基本公式,掌握了弹性力学基本概念和原理。
这有助于我理解和解决弹性体的变形和应力分布问题。
其次,掌握弹性体的力学性能和性质是弹性力学学习的重点。
弹性体的力学特性可以通过应力-应变曲线等力学性能来描述。
在学习中,我深入了解了应力-应变曲线的构成和性质,以及弹性模量、剪切模量和泊松比等重要的力学性能参数。
同时,我也学习了弹性体的各种力学特性,如杨氏模量、屈服强度和硬度等。
这些知识对于分析材料性能和应用具有重要的意义。
第三,学习和应用弹性力学的方法和技巧是提高学习效果和解决实际问题的关键。
在学习过程中,我通过课堂讲解、实验演示和数值计算等多种方法学习和掌握弹性力学的基本理论和方法。
我也了解了一些经典问题的解决方法,如悬臂梁的计算、圆盘的变形分析和杆件的应力计算等。
这些方法和技巧对于发展弹性力学理论和解决实际问题有着重要的意义。
第四,实践和应用是深化理解和巩固知识的有效途径。
在学习弹性力学过程中,我通过实验和实例分析等实践活动,加深了对弹性力学理论和实际应用的理解。
例如,我通过拉伸试验和弯曲试验等实验,观察和分析了材料的应力-应变行为和破坏机理。
另外,我还通过实例分析弹性体的变形和应力分布,结合实际问题进行计算和解决。
这使我对弹性力学的理论和应用有了更深入的理解和认识。
最后,深化对弹性力学的学习需要坚持不懈的努力和持续的实践。
学习弹性力学是一个长期的过程,需要不断学习和实践,加深对理论的理解和应用的掌握。
因此,在学习弹性力学过程中,我将继续不断提高自己的理论水平和实践能力,力争成为一名优秀的弹性力学专业人才。
弹性力学公式总结
弹性力学公式总结弹性力学是研究物体在受力后的形变与应变关系的力学分支。
在弹性力学中,常使用一些公式来描述物体的力学性质。
下面是一些弹性力学中常用的公式:1. 应变(strain)公式:应变是物体在受力后发生的形变相对于初始状态的比例。
应变可以分为线性应变和剪切应变两种类型。
线性应变公式:ε=ΔL/L其中,ε表示线性应变,ΔL表示长度变化,L表示初始长度。
剪切应变公式:γ=Δθ其中,γ表示剪切应变,Δθ表示切变角度的变化。
2. 应力(stress)公式:应力是物体表面上的内力,是由外力作用于物体上的单位面积所产生的力。
法向应力公式:σ=F/A其中,σ表示法向应力,F表示受力,A表示作用面积。
切向应力公式:τ=F/A其中,τ表示切向应力,F表示受力,A表示作用面积。
3.长度变形公式:受力作用下,物体的长度会发生变化,有两种类型:拉伸和压缩。
拉伸变形公式:ΔL=FL/AE其中,ΔL表示长度变化,F表示受力,L表示初始长度,A表示截面积,E表示弹性模量。
压缩变形公式:ΔL=-FL/AE4.钢材弹性模量公式:钢材弹性模量是衡量材料抵抗外力而形变的能力指标。
E=σ/ε其中,E表示弹性模量,σ表示法向应力,ε表示线性应变。
5.线性弹性体系恢复力公式:恢复力是物体受到外力作用后恢复到初始状态所产生的力。
F=kΔx其中,F表示恢复力,k表示弹性系数,Δx表示位移。
6.钢丝绳伸长公式:钢丝绳在受拉伸力作用下会发生伸长。
ΔL=FL/EA其中,ΔL表示伸长长度,F表示受力,L表示初始长度,A表示截面积,E表示钢丝绳的弹性模量。
7.矩形梁弯曲公式:在作用力下,矩形梁会发生弯曲。
M = -EI(d^2y / dx^2)其中,M表示弯曲力矩,E表示杨氏模量,I表示截面惯性矩,y表示梁的纵轴位移,x表示位置。
这些公式是弹性力学中的一些基本公式,用于描述物体在受力后的形变与应变关系,以及恢复力、弯曲等力学性质。
掌握这些公式对于深入理解和研究弹性力学具有重要意义。
弹性力学基本概念总结
弹性力学基本概念总结弹性力学是研究物体在受力作用下产生的变形与应力分布规律的科学。
在弹性力学中,存在一些基本的概念,这些概念对于理解物体的弹性变形和力学响应非常重要。
本文将对弹性力学中的一些基本概念进行总结。
一、应力和应变1. 应力应力是单位面积上的力,用符号σ表示。
在弹性力学中,常用的应力有拉伸应力、压缩应力和剪切应力。
拉伸应力表示物体在拉伸力作用下的应力,压缩应力表示物体在压缩力作用下的应力,剪切应力表示物体在层叠力作用下的应力。
2. 应变应变是物体在受力作用下发生的变形程度,用符号ε表示。
与应力类似,应变也有拉伸应变、压缩应变和剪切应变。
拉伸应变表示物体在拉伸力作用下的应变,压缩应变表示物体在压缩力作用下的应变,剪切应变表示物体在层叠力作用下的应变。
二、胡克定律胡克定律是弹性力学的基础定律之一,它描述了弹性固体的线弹性响应。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:σ = Eε其中,σ为应力,E为杨氏模量,ε为应变。
胡克定律表明,线弹性材料的应力与应变成正比。
三、杨氏模量和剪切模量1. 杨氏模量杨氏模量是衡量材料抵抗拉伸应力的能力的物理量。
它表示了单位应力下的应变程度。
杨氏模量用符号E表示,单位是帕斯卡(Pa)。
杨氏模量越大,材料越具有抵抗拉伸应力的能力。
2. 剪切模量剪切模量是衡量材料抵抗剪切应力的能力的物理量。
它表示了单位剪切应力下的剪切应变程度。
剪切模量用符号G表示,单位也是帕斯卡(Pa)。
剪切模量越大,材料越具有抵抗剪切应力的能力。
四、弹性极限和屈服点1. 弹性极限弹性极限是材料在弹性变形过程中能够承受的最大应力。
当应力超过弹性极限时,材料将发生剧烈的塑性变形或破裂。
2. 屈服点屈服点是材料在受力过程中的一个关键点。
在屈服点之前,材料仅发生弹性变形,应力与应变成正比。
而在屈服点之后,材料开始发生塑性变形,应变增加的同时应力逐渐减小。
五、弹性体和弹性力学模型1. 弹性体弹性体是指在受力作用下产生弹性变形,但在去除外力后可以恢复原状的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学关于应力变分法问题一、起源及发展1687年,Newton在《自然哲学的数学原理》中提出第一个变分问题一一定轴转动阻力最小的旋转曲面形状问题;1696年,Bernoulli提出了著名的最速降线问题;到18世纪,经过Euler, Lagrange等人的努力,逐渐形成变分法。
古典变分法的基本容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。
现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。
讨论对应泛函临界点的存在性及其个数的基本方法是Morse理论与极小极论(Minimax Theory) <>变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。
由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但"变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。
以下,就应力变分法进行讨论。
二、定义及应用(1)、应力变分方程设有任一弹性体,在外力的作用下处于平衡。
命円为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。
现在,假想体力和应变边界条件上给定的面力不变而应力分量发生了微小的改变茨%,即所谓虚应力或应力的变分,使应力分量成为5j+叫假定他们只满足平衡微分方程和应力边界条件。
既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。
即(a)在位移给定的边界上,应力分量的变分必然伴随着面力分量的变分根据应力边界条件的要求,应力分量的变分在边界上必须满足㈣+〃%+,% =3几 mda s +ndT xz +/Jr n . = >zzJcr. + Idt^ + mdr^ = 3f z a 则应变余能的变分应为 6V C = J J J 5 v c dxdydz, = Jf J (色-^cr v + …+2- + • • Jdxdydz,。
将上式代入,得SV C = JUG® + …+ 7V Q 兀 + ・・ Jcbafyd 乙。
再将几何方程代入,得SV c — Ilf[ — &7丫 + ・• • + (―— + —)^r v . + - • -]dxdydzo ex cy cz9r根据分部积分和奧一高公式,对上式右边进行处理:.1 ? d(J x dxdydz = U lud<y x dS - g (Sbjdxdydz,exex最后可得 5 匕=f J[“(/5v + 恥 j + 加r J + …]dS -\ \ 込 + 二+ — 5 g) + …]〃xdydz 。
ex oy cz 再将(a)、(b)代入,即得 6-av(b)^V=U {u8f x + v3f y + w3f z)dS°这就是所谓应力变分方程,有的文献把它叫做卡斯蒂利亚诺变分方程。
最小余能原理:北("兀+诂兀+加兀)dS=O。
上式也可以改写为:世 _ J i(uf x + v7y + wf z)dS ] = Oo(2)、应力变分法由推到出的应力变分方程,使其满足平衡方程和应力边界条件,但其中包含若干待定系数,然后根据应力变分方程解决这些系数,应力分量一般可设为:b%Jo+工九(bj (C)m tn其中观是互不依赖的m个系数,(%)“是满足平衡微分方程和应力边界条件的设定函数,(qj,”是满足“没有体力和面力作用时的平衡微分方程和应力边界条件”的设定函数。
这样,不论系数A m如何取值,(爲丄总能满足平衡微分方程和应力边界条件。
注意:应力的变分只是由系数Am的变分来实现。
如果在弹性体的每一部分边界上,不是面力被给定,便是位移等于零,则应力变分方程得也=0 ,即:仝丄=o (d)込应变余能匕是%的二次函数,因而方程(d)将是Am的一次方程。
这样的方程共有m个,恰好可以用来求解系数,Am从而由表达式(c)求得应力分量。
如果在某一部分边界上,位移是给定的,但并不等于零,则在这一部分边界上须直接应用变分方程(11-18),即我.=J f x +v5/s 4-wdf.)dSo在这里,u, V、\v是已知的,积分只包括该部分边界,面力的变分与应力的变分两者之间的关系即:5/、= u^a- + n 3r y , +"春 >J/. = 11&6 + l&J + mdTo带入方程的右边积分后,将得岀如下的结果:+ 诂兀 + W 万 JdS = £ B 加m其中Bm 是常数,另一方面,我们有:因而得:这将仍然是九的一次方程而且总共有m 个,仍然可以用来求解系数 从而由表达式(C )求得应力。
(3)、应力函数方法由于应力分量的数量有点多,确定起来较为困难,通常用应力函数方法。
在平面应力问题中,如果体力分量为常数,则存在应力函数。
将应力函数设 为:①二①0 +工九①加’m其中每为互不依赖的m 个系数。
这样就只需使①()给出的应力分量满足实 际的应力边界条件,并使①川给岀的应力分量满足无面力时的应力边界条件。
在平面应力问题中,有=T v : =T :x =0 ,而且b*、b v 、和不随坐标Z 而变。
在Z 方向取一个单位厚度,则用应力分量表示的应变余能表达式为 K =袒 J +cr v 2- + 2(1 + //)r n .2Wyo2匕(加=12…)对于平面应变问题,[(1 一”)(b, + b;) - 2〃bs + 2 叮}dxdy.如果所考虑的弹性体是单连体,体力为常量,应力分量£、5.应当与<1 y -V“无关,可以取“二0,于是平面应力情况下的表达式和平面应力情况下的表达式都简化为K=^-f J(b「+ 町 + 2 叮)dxdy.即得用应力函数表示应变余能的表达式K需川(21-加+(竽-小+2(竽)2畑。
2E 0- ax cxoy在应力边界问题中,因为面力不能有变分,旳=0。
应为应力分量以及应变余能的变分是通过系数Am的变分来实现的,所以上式归结为将将应力函数表达式代入,即得川(云丁 _/>)=(尹)+(=_/』)丁(尹)+ 內。
九dy dx % dx 6?①d6’①2 ----------- (——)]dxdy = ^dxdy dA m dxdy= 12 …)可以用来决定系数A叫从而确定应力函数°,再由应力函数°求得应力分量。
由于是近似解,应力分量不能精确满足相容条件,由应力分量求得的应变分量也不能精确满足变形协调条件,不能根据几何方程求得位移分量。
应力函数法的要点是要找到满足全部边界条件的应力函数,二这种函数一般任然难以找到,尤其在边界不规整的情况下。
所以应力方法的应用在这一点上受到极大的限制。
(4)、典型例题:例1:设有宽度为2a,高度为b的矩形薄板,左右两边和下边被固定约束,2上边的位移被给定为"=o v = -/Z(l-4).不计体力。
试求薄版的位移分量和a~应力分量。
解:取坐标系底部为x轴,对称轴为y轴,则该问题是一个轴对称问题一一及约束情况,几何形状以及所受的外来因素都对称于某个坐标轴。
本题中,对称轴显然是y轴。
这样,位移u,v关于y轴对称。
首先考察位移u:薄板左右两边:= 0 (说明u中含有(x2-a2)项或(a2 -x2)项)薄板下边:(")冋=0 (说明u中含有(y-O)项)薄板上边:(“)心=0 (说明u中含有(y-b)项或(b-y)项)所以u所以表达成:u =Ai(a2-x2)y(b-y)(这里m=l,即取一个系数州)由此可得u,v的表达式为:w = A l(l-—)—(1--)cf a a a►V =_7(I_4)2+B1(I-4)2(I-Z)cr b CT b bW = °可以满足位移边界条件:(叽o =0(V).v=O = 09(5=0cT由于U是X的奇函数,V是X的偶函数, 对称条件满足。
此外,由(i)得:"]=( 疋y y2 万一护万一訐vl=(l_M-p) cr b少du at/ r- f 由瓦引心血丽訂几吨du dA{= -c h ab^ = -q2abEab2(1-v2)(2Aj + 2vB[) = -q l abEab2(1 — /)(2Bj + 2vA,) = -q2abyE E直杆弯曲的应变能为,在不考虑剪切效应时下面用最小势能原理来确定参数,(2a 2 +6«3) dx-F(a 2l3 +a y C) 由最小势能原理三、总结与思考所谓弹性力学的变分解法就是基于力学能量原理求解弹性力学的变分方法, 这种方法从其本质而言,是要把原来在给定的边界条件下求解的微分方程组的问 题变为泛函求极值的问题,而在求问题的近似解时,泛函的极值问题又可变成函 数的极值问題,因而最终把问題归结为求解线性代数方程组。
变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用原理在 量子力学的应用中。
变分法提供了有限元方法的数学基础,它是求解边界值问题 的强力工具。
它们也在材料学中研究材料平衡量使用。
而在纯数学中的例子有, 黎曼在调和函数中使用狄力克雷原理。
应力变分法在力学领域同样拥有很髙的地位,这正说明了力学在学术界的重 要地位,通过应力变分法地学习,许多难题将更容易得到解答,所以,在以后的 学习生活中,我们将不会停止对力学的探究和学习,相信力学对我们的影响将是 巨大的。
参考文献:【1】弹性力学第四版徐芝纶髙等教育【2】弹性力学复习解题指导致 王俊民 同济大学[3] 弹性力学理论概要与典型题解王光钦西南交通大学[4] 弹性力学容精要与典型题解章军水利水电6禺 4(2f/2 + 6a 3)clx- FL: = 0 6& ■ 12(2f/2+66/3)Jx-FZ?=0E,。