新切换磁通电机

合集下载

新型轴向磁场磁通切换型永磁电机磁场三维有限元分析

新型轴向磁场磁通切换型永磁电机磁场三维有限元分析
s u tr a r s n e . O e r tr s n w c e ew e wo o tr sao s b t r t r n e a e t t cu e w s p e e td r n oo a d ih d b t e n t u e ttr , oh a mau e a d p r n n m
A s at oe ail e u —wt ig pr a e t g e A F P b t c:A nvl x l f xs i hn em nn n t( F S M)mahn i obysl n r a f dl i c ma c iewt d u l— i t h ae
B sdo redm ni a f i l n ehd ( E ,ten a g e cf l f 2 1 一oe k ae nt e i e t n nt e me t to F M) h ol dma t e o 1/ 0p l 2 W h ol i e e m o n ii d a
o t i e . , e a ay i r s l a u d t n fr t e d s n o i r tt p c i e b a n d nl n s e u t l y a f n a i e i ft sp o oy e ma h n . l s s o o o h g h
AF PM c i e wa n l z d f r e e l c to FS ma h n s a ay e o x mp i ai n, a h n o a n d t e d srb to fma e c fed i i f nd t e bti e h iti u in o g t l s n i i
限于 当时 的材料 和 工 艺 水 平 ,盘 式 永 磁 电机 未 能 得

新型五相磁通切换永磁电机容错控制研究

新型五相磁通切换永磁电机容错控制研究
r e l u c t a nc e t o r qu e; c o s i mu l a t i o n
0 引 言
永 磁元 刷 电机具 有 高功 率 密度 、高效 率 等优 点 , 在 工农 业生 产 、军 事 装 备 等 领 域 中得 到 了广 泛 的关 注_ 1 J 。近年来 ,随着 现 代 电力 电子 技 术 的 发 展 ,多
G A O Y a j u n ,Z HA 0 We n x i a n g ,L I U G u o h a i ,Y A N G J u n q i n ,C H E N Q i a n ( J i a n g s u U n i v e r s i t y ,Z h e n i f a n g J i a n g s u 2 1 2 0 1 3 ,C h i n a )
f a u l t — t o l e r a n t c o n t r o l s t r a t e g y wa s p r o p o s e d,i n wh i c h t h e r e l u c t a n c e t o r q u e wa s c o n s i d e r e d.A c o — s i mu l a t i o n
t i v e n e s s o f t he p r o p o s e d c o nt r o l s t r a t e g y.Co mp a r e d t he c o n v e n t i o na l o n e,t he p r o p o s e d f a u l t — t o l e r a n t c o n t r o l s t r a t e g y c a n i mp r o v e t h e t o r q ue p e r f o r ma n c e u n d e r t h e f a u l t y c o n d i t i o n.

磁通切换电机研究现状与展望

磁通切换电机研究现状与展望

Pr s ntAs cs a d Pr s c fFl wic ng M a h ne e e pe t n o pe to ux S thi ci s
XU Z —a g, X E S a j n eg n I h o u
( . c o lo 1 S h o fElcrnc Ifr to e to i no mai n& Elcrc E gn ei g, a g h u Isi t fT c n lg Ch n z o 1 0 2; e t n ie rn Ch n z o n tue o e h oo y, a g h u 2 3 0 i t
固耐 用 , 合 宽转速 范 围运行 等诸 多特 点 , 适 而且每 相 电枢 绕 组 匝链 的磁 链 为双 极性 , 因此 反 电动 势
常数和 输 出转矩 高于磁 链 为单 极性 的 电机 , 有 广泛 的工 业应 用前景 。 文章 分别 阐述 了 电励磁 、 具 永
磁 和 混合励 磁切 换 电机 的基 本 原理 、 工作 特性 、 电机设 计 和 分析 方 法 , 对磁 通 切 换 电机 研 究 现状 针
c to sc mp r d wih t t — o a l i ka e m a h n s n i a e wo k n rn i l o h h e ai n o a e t he mo o p l fux l r n g c i e .I t s p p r, r i g p i cp e f t e t r e h
磁 通 切 换 电机 研 究 现 状 与 展 望
许 泽 刚 谢 少 军 '
( .常州工学院电子信息与电气工程学 院, 1 江苏 常州 2 30 10 2;2 .南京航空航天大学航空电源重点实验室 , 江苏 南京 20 1 ) 10 6

新型两相磁通切换型永磁电动机调速系统建模与仿真研究

新型两相磁通切换型永磁电动机调速系统建模与仿真研究
了将永 磁 体 置 于 定 子 的 新 型 定 子 永 磁 型 电机 ,主
永磁体又无绕组 等。近期 的研究 表 明,这 两种 电 机都具有高功率 密度 、高效率等 优点 引。然 而 , FP 由于其永磁体直接面对气隙,电枢反应磁通 SM 与永磁 磁 通 串 连 ,因 此 该 电 机 抗 去 磁 能 力 不 强 ,
( ol eo lc ia E g er g o te s U i r t,N nig 1 0 6es y aj 0 9 ,C ia e E r n n v i n2
ABS TRACT : I h s p p r a smu ain su y o o e p a efu -wic ig p r n n g e tr n ti a e , i l to t d n a n v l2- h s x s th n ma e tma n tmoo l e
传统 永 磁 电机 都 将 永 磁 体 置 于 转 子 。为 了
注和研 究 。这 两 种 新 型 永 磁 无 刷 电机 在结 构 上 有 共 同点 ,比如 定 、转 子 都 为 双 凸极 结 构 ,皆 采 用 定 子 集 中绕 组 ,永 磁 体 都 置 于 定 子 ,转 子 上 既 无
防止高速运行 时磁 钢受 到离 心力 的影 响而甩 落 , 在转 子上 都 装 有 不 锈 钢 或 非 金 属 纤 维 材 料 制 成 的 固定装置。但这样会 引起散 热 困难 ,而温升会 最 终导致 永 磁 体 发 生 不 可 逆 退 磁 ,限 制 电机 出 力 , 减小 功率 密 度 等 J 。针 对 上 述 缺 点 ,近 年 来 出 现
维普资讯
新型两相磁通切换 型永磁 电动机调速 系统建模与仿真研究


程 明 花

轴向磁场磁通切换型永磁电机矢量控制

轴向磁场磁通切换型永磁电机矢量控制

2 1 0 0 9 6 )
要: 轴 向磁 场磁 通切换 型永磁 ( A F F S P M) 电机是 一种新 型结构 的定子 永磁 型双凸极 电机。分析 了
A F F S P M 电 机 结构 和工 作 原 理 , 确定 了矢 量 控 制 系统 方 案 , 给 出 了采 用 无 刷 直 流 控 制 方 式 起 动 时 寻 找转 子零 点
w i t h p e r ma n e n t ma g e n t i n s t a t o r .T h e s t r u c t u r e a n d p r i n c i p l e o f AF F S P M mo t o r we r e a n a l y z e d , a n d r o t o r f i e l d o r i e n t e d
Ve c t o r Co n t r o l o f Ax i a l Fi e l d Fl u x- S wi t c hi n g Pe r ma n e nt Ma g ne t Mo t o r
P E I Z h a o g a n g. L I N Mi n g y a o。 Z HA O J i l o n g, HA N Z h e n, XU Da
1 2 /1 0 一 p o l e AF F S P M mo t o r a s a p r o t o t y p e ,t h e s t a r t i n g — u p e x p e r i me n t b a s e d o n t h e b us r h l e s s D C mo t o r c o n t r o l mo d e w a s d o n e,a n d t h e s p e e d — r e g u l a t i o n c h a r a c t e r i s t i c s u n d e r t h e n o — l o a d a n d l o a d we r e i n v e s t i g a t e d .T h e r e s u h s s h o we d t h a t t h e v e c t o r c o n t r o l s y s t e m o f t h e AF F S P M mo t o r h a d t h e g o o d s t a ti r n g a n d s p e e d r e g u l a t i o n p e f r o ma r n c e, a s w e l l a s

12槽10极磁通切换型永磁同步电机设计与分析

12槽10极磁通切换型永磁同步电机设计与分析

证 ,实验结果与有限元仿真结果一致,验证了上述方法的正确性。
关 键 词 :磁通切换;永磁同步电机;转矩特性;齿槽转矩
中 图 分 类 号 :TM341;TM351 A 文 献 标 志 码 :
: ( ) 文 章 编 号 1004-7018 2016 07-0030-04
Design and Analysis of 12 Slots/10 Poles Flux Switching Permanent Magnet Synchronous Machine ZHOU Cheng-hu1, KONG Wan-qi1, HUANG Ming-ming1

计 型 永 磁 型 PMSM主 要 存 在 散 热 困 难 和 离 心 力 过 大
与 分
问题,前者使得电机温升容易过高,导致电机容易发

收 稿 日 期 :2 0 1 5 - 0 7 - 1 3
30
基金项目:国家自然科学基金项目(61403123) ; 河南省教育厅 科学技术研究重点项目(14A510010)
型 人们重视。传 统 PMSM多 采 用 转 子永磁式结构,为

磁 满足不同应用场合需要,转子型永磁同步电机结构
同 较为灵活多样,依 据 永 磁 体 位 置 不 同 PMSM通常可

电 分为表贴式、Halbach式 和 内 嵌 式 二 种 结 构 ,不同转
机 子 结 构 能 使 得 PMSM电 磁 性 能 不 尽 相 同 。但转子
(1. Henan Institute Engineering, Zhengzhou 451191,China;
2. Henan University of Animal Husbandry and Economy, Zhengzhou 450044,China)

交替极永磁电机

交替极永磁电机

交替极永磁电机交替极永磁电机是一种新型的永磁同步电机,它能够将传统永磁同步电机的优点发扬光大,并在一些重要的性能指标上得到进一步提升。

接下来,我们将从定义、结构、工作原理、应用等方面详细阐述这种电机的相关知识。

一、定义交替极永磁电机又称为交替极同步电机,是一种以永磁体作为旋转部件,通过反转磁场和定子绕组之间的电磁相互作用来转动电机的同步电动机。

交替极永磁电机是一种较新的磁悬浮同步电动机,具有小型、高效、低噪、低振动等特点。

二、结构交替极永磁电机与传统永磁同步电机结构类似,但其转子部分的磁极数量是奇数,一般为三个。

定子绕组与传统电机相同,同样具有三相。

这样,定子绕组中产生的磁场与旋转磁场之间的作用力发生变化,产生了自我启动和自恢复的特性。

三、工作原理交替极永磁电机的转子部分有三个磁极,在电机运行时,称为“S1、S2、S3”,这三个磁极的边缘分别为N/S N/S N/S,这是一个正常的永磁铁磁场,三个磁极的中心分别为N/N’/M,这里的“M”是一种特殊的磁场结构,叫做交替磁场,与定子绕组相互作用形成旋转力矩。

当定子绕组上通入三相电流时,由于磁通的瞬时旋转电流引起的磁场相互作用,即定子绕组中的磁场与转子磁场之间的作用力发生变化,从而引起电机阻力磁极磁场的反转和转子磁场的移动。

因此,发生了自我启动和自恢复的特性。

四、应用交替极永磁电机广泛应用于低功率电机领域,如家电、电动汽车、风力发电等。

其优点是能够提高输出功率、降低过热度、节省耗电量等。

与此同时,还具有高效能、低噪声、轻量化等优势,得到了广泛的应用。

总之,交替极永磁电机是一种颇具潜力的电机类型,随着科技的不断进步,其在各个领域的应用前景也将不断拓展。

新型永磁磁通切换电动机的电磁性能及温度分析

新型永磁磁通切换电动机的电磁性能及温度分析

电机 在 额 定 转 速 7 5 0 r / m i n下 运 行 , 电 机 的空 载特性 如 下 。 由 图 6的 电机 空 载 磁 链 波 形 可 以看
出, 电机 的磁 链 为双极 性正 弦 分布 , 与一 般 的双 凸极 永 磁 电机 的单极 性分 布不 同 。 图 7为 电机空 载反 电
W A N G P 打 曙, Q U A N L i , Z HUX i a o — y O n g ( J i a n g s u U n i v e r s i t y , Z h e n j i a n g 2 1 2 0 1 3 ,C h i n a )
Ab s t r a c t : A n e w s t r u c t u r e o f s w i t c h e d l f u x p e r ma n e n t ma g n e t mo t o r wa s p r e s e n t e d a n d t h e mo t o r ' s e l e c t r o ma g n e t i c p e r — f o r ma n e e a n d t h e t e mp e r a t u r e d i s t r i b u t i o n o f d i f f e r e n t p a r t s w e r e a n a l y s e d .F i r s t ,t h e s t uc r t u r e a n d o p e r a t i n g p r i n c i p l e o f
图 1 电 机 结 构 图
布波形 。永 磁磁 密 峰 值 接 近 1 . 7 T, 电枢 电 流 1 0 A
1 . 2磁通 切换 的原 理

新型轴径向混合磁通永磁电机

新型轴径向混合磁通永磁电机
研究方法
采用理论分析、数值模拟和实验研究相结合的方法,对电机的结构、电磁性能、热性能等 进行详细研究。
设计主要步骤与方法
电机结构设计
电磁设计
根据电机的使用环境和性能要求,设计电机 的结构,包括定子、转子、冷却系统等部分 。
根据设计目标,计算电机的电磁参数,如气 隙磁通密度、电负荷、磁负荷等,并分析电 机的电磁性能。
太阳能发电
在太阳能发电领域,新型轴径向混合磁通永磁电机的轻量化和高效性特点可以降的太阳能电池板结构,从而拓宽了其应用范围。
感谢您的观看
THANKS
意义
新型轴径向混合磁通永磁电机能够实现轴向和径向磁 通的同时作用,具有更高的磁通密度和更高的转矩密 度,从而具有更高的效率和更好的节能效果。同时, 该电机的结构简单、成本低、易于控制,能够广泛应 用于各种领域,如工业、交通、航空航天等。因此, 研究新型轴径向混合磁通永磁电机对于推动电机技术 的发展、促进节能减排、实现可持续发展具有重要意 义。
电机改进的策略与措施
策略
在保持电机性能稳定的前提下,通过对电机的结构、材料、工艺等方面的改进,实现电机的轻量化、 小型化和高效化。
措施
采用高强度、轻质的材料,优化电机结构,减少电机的体积和重量,提高电机的效率和功率密度。
电机优化与改进的结果与分析
结果
通过优化和改进,新型轴径向混合磁通永磁电机的性能得到了显著提升,电机的效率、功率密度和可靠性得到 了提高,同时电机的体积和成本得到了降低。
热设计
性能测试
考虑电机的发热问题,进行热分析,设计合 理的冷却系统,保证电机在高温环境下稳定 运行。
制作样机,进行性能测试,包括空载试验、 负载试验、效率试验等,验证电机的性能是 否达到设计要求。

关于轴向磁通电机的标准

关于轴向磁通电机的标准

关于轴向磁通电机的标准轴向磁通电机是一种特殊的电机类型,其工作原理是通过轴向磁通的变化来产生转矩。

以下是关于轴向磁通电机的一些常见标准:1. 额定功率:轴向磁通电机的额定功率是指电机能够持续输出的功率。

通常以千瓦(kW)为单位表示。

2. 额定电压:轴向磁通电机的额定电压是指电机在额定工作条件下所需的电压。

通常以伏特(V)为单位表示。

3. 额定转速:轴向磁通电机的额定转速是指电机在额定工作条件下的旋转速度。

通常以转/分钟(rpm)为单位表示。

4. 额定效率:轴向磁通电机的额定效率是指电机在额定工作条件下的能量转换效率。

通常以百分比形式表示。

5. 额定电流:轴向磁通电机的额定电流是指电机在额定工作条件下所需的电流。

通常以安培(A)为单位表示。

6. 额定转矩:轴向磁通电机的额定转矩是指电机在额定工作条件下能够输出的最大转矩。

通常以牛顿米(Nm)为单位表示。

7. 绝缘等级:轴向磁通电机的绝缘等级是指电机绝缘系统的能力来抵抗电压应力和温度应力。

通常以国际电工委员会(IEC)的标准来表示,如F级、H级等。

8. 保护等级:轴向磁通电机的保护等级是指电机外壳的防护能力,以保护电机免受灰尘、水分和其他外部物质的侵入。

通常以国际电工委员会(IEC)的标准来表示,如IP54、IP65等。

9. 冷却方式:轴向磁通电机的冷却方式是指电机如何散热以保持正常运行温度。

常见的冷却方式包括自然冷却(IC01)、风冷却(IC06)和水冷却(IC81W)等。

以上是一些关于轴向磁通电机的常见标准,具体的标准和参数可能会根据不同的电机型号和制造商而有所差异。

在选择和使用轴向磁通电机时,应根据具体的应用需求和技术要求来确定适合的标准和参数。

可调磁通电机系统及其关键技术发展

可调磁通电机系统及其关键技术发展

可调磁通电机系统及其关键技术发展The development of variable-flux motor systems and their key technologies is crucial in the field of electric motors. 可调磁通电机系统及其关键技术的发展对电动机领域至关重要。

This type of motor system offers unique advantages in terms of efficiency, control, and cost-effectiveness. 这种类型的电机系统在效率、控制和成本效益方面具有独特的优势。

By adjusting the magnetic flux of the motor, it is possible to optimize performance under various operating conditions. 通过调节电机的磁通量,可以在各种工况下优化性能。

This flexibility allows for improved energy efficiency and performance across a range of applications. 这种灵活性可实现在多种应用领域中提高能效和性能。

One key aspect of the development of variable-flux motor systems is the advancement of magnet materials. 可调磁通电机系统发展的一个关键方面是磁铁材料的进步。

High-performance magnets are essential for achieving the desired flux levels and efficiency in these systems. 高性能磁铁对于在这些系统中实现所需的磁通量水平和效率至关重要。

混合励磁轴向磁场磁通切换型永磁电机静态特性

混合励磁轴向磁场磁通切换型永磁电机静态特性

混合励磁轴向磁场磁通切换型永磁电机静态特性徐妲;林明耀;付兴贺;郝立;张蔚;赵纪龙【摘要】提出一种混合励磁轴向磁场磁通切换永磁电机,以一台12/11极电机为例分析电机的结构特点和工作原理.基于三维有限元方法研究该电机静态特性,对空载永磁磁场和气隙磁通密度进行分析,研究永磁磁链、反电动势、定位力矩及绕组电感等电磁特性,分析不同励磁电流下的气隙磁场分布和调磁特性.结果表明:该种电机的磁链和反电动.势均为双极性的正弦分布,适于无刷交流运行场合;通过调节励磁电流,线圈匝链磁通变化明显,调磁效果较好.【期刊名称】《电工技术学报》【年(卷),期】2015(030)002【总页数】6页(P58-63)【关键词】混合励磁;轴向磁场;磁通切换;静态特性【作者】徐妲;林明耀;付兴贺;郝立;张蔚;赵纪龙【作者单位】东南大学电气工程学院南京210096;江苏省智能电网技术与装备重点实验室镇江212009;东南大学电气工程学院南京210096;江苏省智能电网技术与装备重点实验室镇江212009;东南大学电气工程学院南京210096;江苏省智能电网技术与装备重点实验室镇江212009;东南大学电气工程学院南京210096;江苏省智能电网技术与装备重点实验室镇江212009;东南大学电气工程学院南京210096;东南大学电气工程学院南京210096;江苏省智能电网技术与装备重点实验室镇江212009【正文语种】中文【中图分类】TM3511 引言永磁电机由永磁体产生磁场,无励磁损耗,效率高且工作稳定可靠,但磁场调节困难。

混合励磁电机是一种磁通可控型永磁电机,兼具永磁电机效率高和电励磁电机气隙磁场平滑可调的优点,特别适合于恒功率调速驱动和恒压发电等领域的应用,在工业应用领域具有广阔的应用前景[1,2]。

近年来,国内外学者提出并研究了多种混合励磁电机结构,包括磁极分割式[3,4]、爪极式[5,6]、组合转子式[7]、并列结构式[8,9]、转子磁分路式[10]、永磁-感应子式[11]等。

双定子轴向磁通电机

双定子轴向磁通电机

双定子轴向磁通电机
双定子轴向磁通电机是一种新型的电机,它具有双定子结构,可以实现高转矩、高效率和低噪声等特点。

双定子轴向磁通电机的两个定子分别设置在转子两侧,通过定子和转子之间的磁场相互作用来实现转子的旋转。

这种电机结构可以提高电机的磁路利用率,减少磁场漏磁,从而提高电机的效率和输出功率。

此外,双定子轴向磁通电机还可以实现多级结构,进一步提高电机的输出功率和效率。

同时,它还可以通过变频器等调节器件来实现精确的转速控制和转矩控制,适用于各种工业自动化设备和机械设备。

总的来说,双定子轴向磁通电机具有结构简单、高效率、低噪声、高转矩等优点,是未来电机发展的一种方向。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Characteristic Investigations of a New Three-Phase Flux-Switching Permanent Magnet Machine by FEM Simulations and ExperimentalVerificationAnyuan Chen, Njål Rotevatn, Robert Nilssen and Arne NysveenDepartment of Electrical Power EngineeringNorwegian University of Science and Technology, Trondheim, NorwayAbstract — In this paper a new flux-switching permanent magnet (FSPM) machine with 12 stator poles and 14 rotor poles is investigated, and compared to a machine with the same stator but 10 rotor poles. Two prototypes are studied by both finite element method (FEM) analysis and experimental measurements. The results show that the 12/14 pole prototype can provide about 7-12% higher torque, the torque ripple reduces from 8.5% to 5.1% and its synchronous inductance is also 15% higher. After optimization, the FEM simulation results show the 12/14 pole machine could provide 19% higher torque than the 12/10 pole machine and the torque ripple is further reduced to 2.3%.Index Terms--Flux-switching PM machine, FEM analysis, optimization, experimental measurements.I.I NTRODUCTIONFlux-switching permanent magnet (FSPM) machines have PMs on the stator combined with doubly salient stator and rotor structure. They integrate the advantage of a conventional PM machine and a switched reluctance machine of having both high torque density and high reliability and are therefore preferable for the applications with harsh conditions. This type of machine has been presented in several papers [1]-[9], particularly the FSPM machine with 12 stator poles and 10 rotor poles, which has an essentially symmetrical and sinusoidal three-phase back EMF as well as relatively small torque ripple [2][4][6]. The detailed machine construction and operation principle have been presented in [7]-[9]. Here a new FSPM machine with 12 stator poles and 14 rotor poles mentioned in [3] is studied and compared to a 12/10 pole one. Their back EMF, electromagnetic torque and torque ripple are investigated by FEM analysis for two initially designed machines, of which all the values of stator tooth width, magnet thickness, slot opening, rotor tooth width and stator iron back thickness are the same and equal to one fourth of the stator pole pitch τs. To verify the results, an optimized 12/10 pole machine prototype presented in [11] and a newly built 12/14 pole machine prototype are tested. The experimental results are compared with the FEM results. At last, the 12/14 pole machine is optimized by FEM analysis to improve its output torque.II.M ACHINE C ONSTRUCTIONFig. 1 shows the two initially designed FSPM machines with an outer diameter of 100 mm and an inner diameter of 50 mm. Both machines have exactly the same physical construction and winding arrangement except their rotor pole numbers. It should be noted that the positions of phase b and c in the 14-pole machine have interchanged compared to those in the 10-pole machine as can be seen from Fig. 1. In the FSPM machines each phase consists of four coils and each coil is concentrated around two stator teeth with a magnet inset in between as shown in Fig. 2, where only coil A1 and the stator teeth, magnets and rotor teeth around it are presented. At this position the resultant flux coupling each coil of phase a is zero. Due to the symmetrical constructions of these two machines, for each phase the flux in the corresponding coils 1 and 2 are respectively the same as in coils 3 and 4.(a) (b)Fig. 1. (a) 12/10 pole (b) 12/14 pole machines.Fig. 2 Coil A1 at the zero flux positionIII. FEM ANALYSIS AND C OMPARISONThe flux variation in the coils with respect to the rotor position has been investigated by FEM simulations and shown in Fig. 3, where the flux in coil A1, A2 and their sum flux in one period of τr of the 12/14 pole machine have been presented. It is can be seen that the sum of the flux in A1 and A2 is essentially sinusoidal, and can be expressed as12max ()()cos()A A r m t t p t ωΦ+Φ=Φ (1) where Фmax is the peak value of the sum flux in coil A1, ФA 1, and A2, ФA 2, ωm is the mechanical angular speed, P r is the number of the rotor pole.The induced phase EMF can be evaluated bymax (cos())()2s r m n d p t e t dt ωΦ=− (2) where n s is the number of turn in one phase.Rotor position [mechanical degree]F l u x (m W b )Fig. 3 Flux in coil A1, A2 and A1+A2As can be seen from Fig. 3 by moving the rotor a displacement of τr /4 from the zero flux position shown in Fig. 1 and Fig. 2, the total flux in A1 and A2 reaches its maximum value Фmax . It is also observed that at this position the fluxes in coil A1 and A2 are the same, ФA 1(max) = ФA 2(max), since the corresponding rotor toothpositions with respect to the coils A1 and A2 are thesame, but at the opposite side of their correspondingmagnets whose magnetization directions are also oppositeas shown in Fig. 4. Fig. 5 depicts the flux distribution in coil A1 in a plain form. At this position the effective flux ФA 1(max) coupling coils A1 for producing torque can be evaluated by (3).(a) (b)Fig. 4 Flux distribution at the maximum flux position of coil A(a) 12/10 pole machine (b) 12/14pole machine.Fig. 5 Flux distribution in winding A1 when the total flux of A1 and A2is maximum shown in Fig. 4. 1(max)12A e e Φ=Φ+Φ (3) where Ф1e and Ф2e are respectively the effective flux produced by magnets PM 1 and PM 2 (see Fig. 5) to contribute the torque production.Eq. (3) can be re-written as1(max)A st t k W LB σΦ= (4)where W st is the stator tooth width, L is the machine active axial length, B t is the flux density in the top of stator tooth P 2, k σ is the leakage factor to represent the leakage flux Ф2l back to the rotor via P 3 at the maximum flux position. k σ is always less than unity.Assuming that all the coils of each phase are connected in series, substituting (1), (3) and (4) into (2) yields()sin()s r m st t r m e t k n p W LB p t σωω= (5) The torque expression of the FSPM machine is derived as follows: Assuming the induced phase voltage is in phase of the phase current, the electromagnetic torque produced by an electrical machine can be calculated by/ph ph m T mE I ηω=. (6)where m is the phase number, η is the machine efficiency, E ph is the rms value of the induced phase voltage and can be expressed as (7) from (5). I ph is the rms value of the phase current and determined by (8).ph s r m st t E k n p W LB σω= (7)/2ph o s I D S mn πλ= (8)where λ is the ratio of the machine inner- and outer-stator diameters, D o is the machine outer-stator diameter, S is the electrical loading.Substituting (7) and (8) into (6) yields4r o st t T k P D SW LB σπλη=(9) A 2A 1 Ф1lA 1 Ф2lIt is clearly shown from (7) and (9) that the machine back EMF and output torque are proportional to P r . In case of keeping other parameters in (9) unchanged, the 12/14 pole machine would provide 40% higher back EMF and torque than the 12/10 pole machine, but actually the values of k σ and B t of the 12/14 pole machine will decrease due to the shorter rotor pole pitch leading to the increased flux leakage Ф1l and Ф2l between the stator and rotor as shown in Fig. 4, where the total flux coupling all the coils of phase a is maximum. So the increments of the torque and back EMF of the 12/14 pole machine will be less than 40% as shown in Fig. 6 and Fig. 7, where the back EMFs and the output torques from FEM analysis have respectively been presented for the two machines shown in Fig. 1. Both machines provide sinusoidal and symmetrical back EMFs for three phases. The back EMFs and output toque of the 12/14 pole machine are about 30% higher and its torque ripple is much less compared to the 12/10 pole machine.x 10-3Time [s]N o r m a l i z e d b a c k E M FFig. 6. Back EMF at no load condition.Rotor positin [mechanical degree]N o r m a l i z e d e l e c t r o m a g n e t i c t o r q u eFig. 7. Output torque.IV. P ROTOTYPE M ACHINESTo verify the results, a 12/10 pole machine prototype presented in [11] is employed. The 12/10 pole machine has been optimized according to the research presented in [1] and [4] to improve its output torque by increasing the rotor width 46% of the original one and reducing the stator back-iron thickness to 70% of the stator tooth width. Table 1 lists the machine parameters. It should be noted the stator tooth width was chosen to be slightly wider than the magnet thickness to decrease the iron saturation in the stator teeth. In order to easily assemble the machine, a stator iron bridge with the thickness of 1.5mm was added between each U-shape stator core as shown in Fig. 8. The FEM simulations show the bridges just slightly decreases the machine output torque, 1.1%, caused by the leakage flux through the highly saturated iron bridges.A 12/14 pole machine prototype is built in the laboratory based on the 12/10 pole machine by simply replacing a 14 pole rotor instead of the 10 pole one, keeping the rotor tooth width unchanged.Fig. 8 3D view of the 12/10 pole prototype.Table 1 PROTOTYPE PARAMETERSPhase number 3 Number of stator pole 12 Number of rotor pole 10 and 14 Outer stator diameter 210 mm Inner stator diameter 130 mm Airgap length 1 mm Active axial length 50mm Number of turns per pole 174 Magnet remanence 1.16T Magnet relative permeability 1.05 Rated phase current (rms) 3.4A Rated speed 400rpm Rotor tooth width top/bottom 13/18 mm Stator back iron width 6.3mm Stator tooth width 8.9mm Magnet width 8mm Rotor tooth height 18.3mm Stator iron bridge 1.5mm(a) (b)Fig. 9 Machine prototype (a) stator (b) rotors.V. S IMULATIONS AND M EASUREMENTSFig. 9 shows the machine prototypes in the laboratory. The characteristics of these two prototypes are firstly investigated by 2D FEM simulations and then compared with experimental measurements. For the discussed machines having a relatively small axial length, the influence of end effect that is not included in the 2D FFM simulations is significant and can decrease the flux linkage, the phase back EMF and the output torque by ~10% according to the research presented in [1]. In order to take the end effect into account, afterwards all the values of the back-EMF and the output torque from 2DIron bridgeFEM simulations presented in this paper have been corrected by multiplying 0.9.Fig. 10 and Fig. 11 respectively show the induced back EMFs at no-load condition by the FEM calculations and experimental measurements for the 12/10 pole and 12/14 pole machines. As can be seen that both machines have essentially sinusoidal back EMF waveforms and they are symmetrical for three phases. Their total harmonic distortions (THD) are investigated by Fourier analysis and are respectively less than 1.5% and 1.2%. It is also observed that the induced back EMF of the 12/14 pole machine is only ~10% higher than that of the 12/10 pole machine. The reason is that the performance of the 12/10 pole machine can be improved with relatively high saturation in the stator teeth and the increased rotor teeth width, but not for the 12/14 pole machine because of its rotor pole pitch less than its stator pole pitch leading to a large amount of leakage flux coming back from the neighbor teeth as shown in Fig. 17. This is proven later by FEM simulations in the section of optimization of 12/14 pole machine.Rotor position (electrical deg)P h a s e b a c k e m f (V )Fig. 10 Induced phase back EMF of 12/10 pole machine.Rotor position (electrical deg)P h a s e b a c k e m f (V )Fig. 11 Induced phase back EMF of 12/14 pole machine.Fig. 12 presents the output torques of both machines at the rated current of 3.4A by FEM calculations. Their average torques are shown in Fig. 13 and compared with the measured values. The results show that the average torque of the 12/14 pole machine is 7~12% higher than that of the 12/10 pole machine. The peak to peak torque ripple in percentage of the 12/14 pole machine, 5.1%, is also less than that of 12/10 pole machine, 8.5%, as can be observed from Fig. 12.Rotor position in mech. degreeO u t p u t t o r q u e (N m )Fig. 12 Output torque from FEM calculations.Machine typeA v e r a g e o u t p u t t o r q u e (N m )Fig. 13 Average output torque at the rated current.Fig. 14 depicts the cogging torque of these two machines by FEM calculations. And the result shows that the peak cogging torques are respectively 1.2 Nm and 1.1 Nm for the 12/10 and 12/14 pole machines, but the measured peak cogging torque is about 1.6 Nm for both machines. The reason is because the stator has become elliptic during the machine assembly, and the airgap in vertical direction of the machine cross-section become ~0.8mm, whilst in horizontal direction it is ~1.2 mm. Fortunately, due to the high saturation in the stator teeth, the uneven airgap does not significantly influence the flux distribution in the airgap, so the measured back EMFs of three phases are almost the same shown in Fig. 10 and Fig. 11, the differences of their peak values are less than 1.5%.Rotor position in mech. degreeC o g g i n g t o r q u e (N m )Fig. 14 Cogging torque of 12/10 and 12/14 pole FSPM machine.Fig. 15 and Fig. 16 respectively present d- and q-axis inductances of the two machines from both the FEM simulations and measurements. Due to the larger iron area along the rotor circumference determined by the product of the rotor number and rotor tooth width, the measured inductance of the 12/14 pole machine is about 15% higher than that of the 12/10 pole machine.Rotor position in mech. degreeP h a s e i n d u c t a n c e L d a n d L q (m H )Fig. 15 Phase inductance of 12/10 pole machine.Rotor position in mech. degreeP h a s e i n d u c t a n c e L d a n d L q (m H )Fig. 16 Phase inductance of 12/14 pole machine.Both machine efficiencies are also measured at the rated speed and the rated current, and they are almost the same of 84%. The 12/14 pole machine does not have a higher efficiency as expected even it provides higher torque with the same copper loss. This is because its iron loss approximated from (10) [10] have increased more than 40% due to the 40% higher electrical frequency and the increased iron volume in the rotor, whilst its torque increment is only ~10%.230.078(100)10Fe Fe Fe P Wf f B G −=+ (10)where W is the specific loss factor in W/kg, G Fe is the weight of the iron part, while B Fe is the peak flux density in the corresponding iron part, f is the electrical frequency.VI. O PTIMIZATION OF 12/14 P OLE M ACHINE The performance of the 12/14 pole machine can be improved by optimization. As can be seen from Fig. 17, at the maximum resultant flux position of each phase (here phase a ) the flux leakage is high due to the high flux saturation, 2.1T, in the stator tooth top and the relatively small space between the adjacent rotor teeth.Fig. 17 Flux distribution in the 12/14 pole prototype machine at themaximum resultant flux position of coil A .The flux saturation can be reduced by decreasing the magnet thickness. On the other hand, the total magnetic flux produced by the magnets also decreases along with a reduction of the magnet thickness. So there is an optimal magnet thickness providing the highest torque. Fig. 18 shows the output torques with respect to different magnet thicknesses. Their average torques and peak to peaktorque ripples have also been presented in Fig. 19. It is shown that with 7mm magnet thickness the machine provides the highest average output torque of 35.3 Nm, whilst with 6mm magnet thickness the machine has the lowest torque ripple of 2.4%. It should be noted that during the optimization procedure, the stator slots, phase winding and phase current are kept unchanged, so the copper loss is the same as before the optimizations.Rotor position in mech. degreeO u t p u t t o r q u e (N m )Fig. 18 Output torque with different magnet widthsO u t p u t t o r q u e (N m )Magnet thickness (mm)T o r q u e r i p p l e i n p e r c e n t a g e (%)Fig. 19 Average torque and torque ripple (peak to peak).By reducing the rotor tooth width to increase the space between the adjacent rotor teeth can further reduce the flux leakage. Meanwhile the flux saturation in the rotor teeth will also increase along with a decrease of the rotor tooth width. So there is an optimal rotor width providing the highest torque. The output torques with varied rotor tooth widths are illustrated in Fig. 20 while the magnet thickness is fixed to 7mm. Their average torques and torque ripples are provided in Fig. 21. It is observed that with 11mm rotor tooth width the machine has both a high output torque of 38.3 Nm and a small torque ripple of 2.3%. Compared to the 10/12 pole machine, the output torque is ~19% higher and the torque ripple is also further reduced.Rotor position in mech. degreeO u t p u t t o r q u e (N m )Fig. 20 Output torque with different rotor widths (fixed 7mm magnet).A 1Leakage fluxO u t p u t t o r q u e (N m )Rotor tooth width (mm)T o r q u e r i p p l e i n p e r c e n t a g e (%)Fig. 21 Average torque and torque ripple in Fig. 20.VII.C ONCLUSIONIn this paper a new 12/14 pole FSPM machine has been investigated by both FEM analysis and experimental measurements. Compared to the 12/10 pole machine, the results show that the 12/14 pole machine has the following characteristics:The 12/14 pole machine also has a symmetrically sinusoidal three-phase back EMF as shown in Fig. 6 and Fig. 11, and the frequency is 40% higher.With the same copper loss, the 12/14 pole machine can provide higher output torque. The FEM simulations and the experimental measurements show the original 12/14 pole machine prototype can provide 7~12% higher torque compared to the optimized 12/10 pole one, and the FEM simulations show the optimized 12/14 pole machine could provide ~19% higher torque.Less toque ripple is achieved. The FEM simulation results show that the 12/14 pole prototype has decreased the torque ripple to 5.1%, whilst 8.5% for the 12/10 pole one. The torque ripple can be further reduced to 2.3% after optimization.Better filed-weakening capability because of the higher synchronous inductance. Due to the larger iron area along the rotor circumference, the 12/14 pole machine has higher inductance. This is proved by both FEM simulations and the measurements of the prototypes.Higher efficiency is expected for low speed applications where the copper loss is the dominant loss in machines.References[1] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A.Pride, “Analysis of electromagnetic performance of flux-switching permanent magnet machines by non-linear adaptive lumped parameter magnetic circuit model,” IEEE Transactions on Magnetics, Vol.41, No.11, pp.4277-4287, November 2005.[2] Zhang, Z. Chen and M. Cheng, “Design and comparison of anovel stator interior permanent magnet generator for direct-drive wind turbines”, IET Renewable Power Generation, December, 2007, Vol.1 pp 203-210.[3] J. T. Chen, Z. Q. Zhu, A. S. Thomas and D. Howe, “Optimalcombination of stator and rotor pole numbers in flux-Switching PM brushless AC machines”, the proceeding of ICEMS 2008, Vol. 44 pp 4659 – 4667.[4] Z.Q. Zhu, Y. Pang, J. T. Chen, Z. P. Xia, D. Howe, “Influence ofdesign parameters on output torque of flux-switch permanent magnet machines”, IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China.[5] W. Z. Fei and J. X. Shen, “Comparative study and optimal designof PM switching flux motors”. UPEC’06, 6-8 Sept. 2006, Vol.2 pp 695-699.[6] Emmanuel Hoang, Michel Lecrivain, Mohamed Gabsi, “A newstructure of a switching flux synchronous polyphased machine with hybrid excitation”, the proceeding of Power electronics and applications, 2007 European conference, pp 1-8.[7] Wei Hua, Ming Cheng, Z. Q. Zhu and D. Howe, “Design of flux-switching permanent magnet machine considering the limitation of inverter and flux –weakening capability”. IEEE 2006, pp 2403-2410.[8] Jiangzhong Zhang, Ming Cheng and Zhe Chen, “Optimal designof stator interior permanent magnet machine with minimized cogging torque for wind power application”, Energy Conversion and management 49, 2008, pp 2100-2105.[9] Wei Hua, Ming Cheng, Z. Q. Zhu and David Howe, “Analysis andoptimization of back EMF waveform of a flux-switching permanent magnet motor”, IEEE Transactions on Energy Conversion, VOL. 23, NO. 3, September 2008, pp 727-733.[10] Chandur Sadarangani, “Electrical machines”, ISBN 91-7170-627-5, KTH Högskoletryckeriet, Stockholm, Sweden.[11] Njål Rotevatn, “Design and testing of flux switched permanentmagnet machines”, Master thesis, Jul. 2009, Norwegian University of Science and Technology, Trondheim, Norway.。

相关文档
最新文档