东北三省三校2020届高三上学期第一次联考数学(文)试卷(无答案)
东北三省三校2020届高三第一次联合模拟考试-文科数学答案
1 一模文数参考答案二、填空题13.3π14.),1(2e 15.992- 16.),1[+∞三、解答题17.(本小题满分12分)(I )由正弦定理得2sin cos 2sin sin B C A C =++,又由sin sin()sin cos cos sin A B C B C B C =+=+,得2cos sin sin 0B C C +=, ……3分 因为0C π<<,所以sin 0C ≠,所以1cos 2B =-.因为0B π<<,所以23B π=. ……6分(II )因为D 为AC 的中点,所以2BA BC BD +=u u u r u u u r u u u r ,所以22()(2)BA BC BD +=u u u r u u u r u u u r ,又23B π=,所以1222=-+ac c a因为2a =,解方程0822=--c c ,得4c =. ……………………12分18. (本小题满分12分)(1)设B A 1中点为M ,连M C EM 1,1BAA ∆中M 是B A 1中点,E 是AB 的中点,则1//AA EM 且121AA EM =,棱柱中侧棱11//AA CC ,且D 是1CC 的中点,则11//AA DC 且1121AA DC =,所以1//DC EM ,1DC EM =,所以M C DE 1//,又⊄ED 平面11BA C 且⊂1MC 平面11BA C ,所以//DE 平面11BA C …… …… ……4分(2)F 在线段1CC 上,且12FC CF =,棱柱中311==BB CC ,所以2=CF侧面11A ABB 中AB B A //11,且⊂AB 平面ABF ,⊄11B A 平面ABF ,所以//11B A 平面ABF ,11,B A 到平面ABF 的距离相等. …… …… …… …… …… ………… …… ……6分 在平面11B BCC 中作⊥H B 1直线BF 于H ①⊥1BB 平面ABC 得⊥1BB AB ,又BC AB ⊥,所以⊥AB 平面11B BCC ,因为⊂H B 1平面11B BCC ,。
2020年三省三校(辽宁实验、东北师大附中、哈师大附中)一模考试文科数学试卷(含答案解析)
在 1, x0 内,关于 x 的方程 f (x) ln x e=g(x) a 有一个实数解 1.
又 x (x0, ) 时, F (x) 0 , F (x) 单调递增,
且 F (a) ea ln a a 2 a e ea a 2 1 ,令 k(x) ex x2 1(x 1) ,
∵ PG ⊥平面 ABCD , PG 平面 PBG ∴平面 PBG ⊥平面 ABCD ∵平面 PBG 平面 ABCD BG
在平面 ABCD 内,过 D 作 DK ⊥ BG ,交 BG 延长线于 K ,
则 DK ⊥平面 PBG
∴ DK 的长就是点 D 到平面 PBG 的距离
…………………4 分
2a PF1 PF2 2 2.
解得 a 2, c 1, b 1 ,所以椭圆 E 的标准方程为 x2 y2 1. 2
…………............4 分
(Ⅱ)由已知,可设直线 l 方程为 x ty 1, A(x1, y1), B(x2, y2 ).
x ty 1
联立
x
2
y2
3
得 (t2 1) y2 2ty 2 0,
解:(Ⅰ)(方法一):由已知 VP BCG
1 3
SBCG
PG
1 1 BG GC PG 32
8 3
∴ PG 4
…………………2 分
∵ PG ⊥平面 ABCD , BG 平面 ABCD ,∴ PG BG
∴ SPBG
1 2
BG PG
1 2
24
4
∵ AG 1 GD 3
∴ SBDG
3 4
SBCG
32 4
3 2
设点 D 到平面 PBG 的距离为 h ,
∵VDPBG VPBDG
2024届东北三省三校第一次联考数学试题+答案
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212N x x =∈−≤R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
东北三省三校2020年高三第一次联合模拟考试语文试卷
东北三省三校2020年高三第一次联合模拟考试语文试卷(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
《韩非子》如何取法老子周苇风法家代表人物韩非是荀子的学生,因为口吃,不喜言谈。
曾数次上书进谏韩王,却不被采纳。
但他的文章传入秦国后大受欢迎,秦王甚至感叹“嗟乎,寡人得见此人与之游,死不恨矣”。
《史记》中,韩非与老子合传,同传中还有庄子和申不害。
庄子和老子是道家人物,韩非和申不害为法家人物。
司马迁说,韩非“喜刑名法术之学,而其归本于黄老”。
黄老学派形成于战国时期,最初流行于齐国稷下学宫。
它既讲道德又主刑名,既尚无为又崇法治,既以为“法令滋彰,盗贼多有”又强调“道生法”,要求统治者“虚静谨听,以法为符”。
作为儒家学派的一员,荀子曾在稷下学宫三为祭酒,思想难免受到黄老思想的影响。
他清醒地认识到,礼的施行无法完全依靠“克己”来实现。
于是,便提出了礼法并举的思想。
理解了这个学术背景,司马迁说韩非“其归本于黄老”也就不奇怪了。
《韩非子》有《解老》《喻老》两篇,顾名思义是解读《老子》的专著。
从这个角度来看,韩非可以说是早期研究《老子》的专家。
老子思想的核心是道,道是客观自然规律。
韩非接受了老子对道的阐述,承认道决定宇宙万物的演变。
同时,老子认为道具有“独立而不改,周行而不殆”的永恒意义。
对此,韩非则进一步发挥,强调道是变化的,天地也是变化的,人也在不断变化中,整个社会都在变化。
由此,治理社会的方式和方法自然也应该变化。
但是,韩非也非常重视道的稳定性。
道的稳定性在现实中表现为法。
法是依道建立起来的,人人必须遵守,不能随意更改。
《老子》曰:“柔弱胜刚强。
鱼不可脱于渊,国之利器不可以示人”;“以正治国,以奇用兵,以无事取天下”。
这一思想到了申不害和韩非手里,则发展为以权术驾驭群臣,也就是术。
韩非对以进为退、暗藏杀机及权谋的运用,可以说是津津乐道。
《韩非子》就明确提出:“术者,藏之于胸中,以偶众端,而潜御群臣者也。
2020届东北三省三校高三第一次联合模拟考试数学(文)试题(解析版)
2020届东北三省三校高三第一次联合模拟考试数学(文)试题一、单选题1.设{}1,2,3,4,5U =,{}1,2,3A =,{}2,4B =,则U A B =I ð( ) A .{}1 B .{}2 C .{}1,2,3 D .{}1,3【答案】D【解析】先由题意求出{}1,3,5U B =ð,再与集合A 求交集,即可得出结果. 【详解】因为{}1,2,3,4,5U =,{}2,4B =,所以{}1,3,5U B =ð, 又{}1,2,3A =,所以{}1,3=U A B I ð. 故选:D 【点睛】本题主要考查集合的交集与补集的混合运算,熟记交集与补集的定义即可,属于基础题型.2.设,a b 是两条不同的直线,,αβ是两个不同的平面,则//αβ的一个充分条件是( )A .存在两条异面直线,a b ,,,//,//a b a b αββα⊂⊂.B .存在一条直线a ,//,//a a αβ.C .存在一条直线a ,,//β⊂a a a .D .存在两条平行直线,a b ,,,//,//αββ⊂⊂a b a b a . 【答案】A【解析】根据面面平行的判定定理,以及线面,面面位置关系,逐项判断,即可得出结果. 【详解】对于A 选项,如图:,a b 为异面直线,且,,//,//a b a b αββα⊂⊂,在β内过b 上一点作//c a ,则β内有两相交直线平行于α,则有//αβ;故A 正确;对于B 选项,若//,//a a αβ,则a 可能平行于α与β的交线,因此α与β可能平行,也可能相交,故B 错;对于C 选项,若,//β⊂a a a ,则α与β可能平行,也可能相交,故C 错; 对于D 选项,若,,//,//αββ⊂⊂a b a b a ,则α与β可能平行,也可能相交,故D 错. 故选:A 【点睛】本题主要考查探求面面平行的充分条件,熟记面面平行的判定定理,以及线面,面面位置关系即可,属于常考题型.3.已知向量()()()3,2,2,1,4,3a b c ==-= ,若()()a b c a λ+⊥-,则实数λ=( ) A .15B .5C .4D .14【答案】A【解析】先由题意,得到()32,21a b λλλ+=-+,(1,1)-=c a ,再根据向量垂直,即可列出方程求解,得出结果. 【详解】因为()()()3,2,2,1,4,3a b c ==-=, 所以()32,21a b λλλ+=-+,(1,1)-=c a ,又()()a b c a λ+⊥-,所以()()0λ+⋅-=a b c a ,即32210λλ-++=, 解得:15λ=. 故选:A【点睛】本题主要考查由向量垂直求参数,熟记向量数量积的坐标运算即可,属于常考题型. 4.若sin 22a π⎛⎫+=⎪⎝⎭3sin 2a π⎛⎫+= ⎪⎝⎭( ) A .23- B .13- C .13 D .23【答案】C【解析】先由题意,得到cos 23=a ,再根据二倍角公式,以及诱导公式,即可得出结果. 【详解】由sin 22a π⎛⎫+=⎪⎝⎭,得cos 2=a ,221cos 2cos 12123∴=-=⨯-=-⎝⎭a a , 31sin cos 23πα⎛⎫∴+=-= ⎪⎝⎭a .故选:C 【点睛】本题主要考查三角恒等变换给值求值的问题,熟记公式即可,属于常考题型. 5.已知()f x 在R 上连续可导,()f x '为其导函数,且()(0)x x f x e f e '-=+⋅,则()1f =( )A .2eB .12e e+ C .3 D .103【答案】B【解析】先对函数求导,得出1(0)2'=f ,求出1()2-=+xx f x e e ,进而可求出结果. 【详解】由题意,()(0)-''=-⋅xxf x e f e ,所以0(0)(0)1(0)'''=-⋅=-f e f e f , 因此1(0)2'=f ,所以1()2-=+xx f x e e ,故()112=+f e e. 故选:B 【点睛】本题主要考查由导数的方法求参数,以及求函数值的问题,熟记导数的计算公式即可,属于基础题型.6.在各项均为正数的等比数列{}n a 中,若101010112a a =,则111213120202222log log log log a a a a ++++的值为( )A .2 021B .-2021C .1 010D .-1010【答案】D【解析】根据题中数据,以及等比数列的性质,得到122201********* =a a a a a a =⋯=,再由对数的运算法则,得到111213120202222log log log log a a a a ++++112320202log =⋅⋅a a a a ,进而可求出结果.【详解】在各项均为正数的等比数列{a n }中,若101010112a a =,可得122201********* =a a a a a a =⋯=,则111213120202222log log log log a a a a ++++()101011232020122log log 21010a a a a =⋅⋅==-.故选D. 【点睛】本题主要考查等比数列的性质的应用,以及对数的运算,熟记等比数列的性质,以及对数运算法则即可,属于常考题型.7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<- D .()()0.632(3)log 13ff f <-<-【答案】C【解析】根据题意,由函数的奇偶性可得()()33f f -=,()()33log 13log 13f f -=,又由0.63322log 13log 273<<<=,结合函数的单调性分析可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,则()()33f f -=,()()33log 13log 13f f -=,有0.63322log 13log 273<<<=,又由()f x 在()0,∞+上单调递增,则有()()()0.632log 133f f f <-<-,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题. 8.数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究陌数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数2()()21xx f x -=-.的图象大致是( ) A . B .C .D .【答案】D【解析】先由函数解析式,得到22()()()2121----==≠--xx x x f x f x ,推出()f x 不是偶函数,排除AC ,再由特殊值验证,排除B ,即可得出结果. 【详解】因为函数22()()2121-==--x x x x f x ,所以22()()()2121----==≠--xx x x f x f x , 因此函数()f x 不是偶函数,图象不关于y 轴对称,故排除A 、C 选项; 又因为9(3)7=f ,16(4)15=f ,所以(3)(4)f f >,而选项B 在0x >时是递增的,故排除B.故选:D 【点睛】本题主要考查函数图像的识别,熟记函数的基本性质,灵活运用排除法处理即可,属于常考题型.9.已知偶函数()f x 的图象经过点()1,3--,且当0a b ≤<时,不等式()()f b f a b a-<-恒成立,则使得(2)30f x -+<成立的x 的取值范围为( ) A .()3,+∞B .()1,3C .()(),13,-∞⋃+∞D .[]1,3【答案】C【解析】先由题意,得到点()1,3-也在函数图象上,函数()f x 在[)0,+∞上为减函数,将不等式化为(|2|)(1)-<f x f ,根据函数单调性,即可得出结果. 【详解】根据题意,()f x 为偶函数, 且经过点()1,3--,则点()1,3-也在函数图象上, 又当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则函数()f x 在[)0,+∞上为减函数,因为(2)30f x -+<,所以(2)3(|2|)(1)|2|1f x f x f x -<-⇒-<⇒-> 解得1x <或3x >. 故选:C 【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性与单调性的概念即可,属于常考题型.10.ABC ∆的内角A ,B ,C 的对边为a ,b ,c ,若b =ABC ∆的面积为)2224=-+-S a c b ,则a c +的最大值为( ) A .1B .2C .3D .4【答案】D【解析】根据余弦定理,以及题中三角形的面积,得到1sin cos 22ac B ac B =-,求出23B π=,再由(222222cos ()==+-=+-b a c ac B a c ac ,结合基本不等式,即可求出结果. 【详解】由余弦定理可得:2222cos a c b ac B =+-,又()2224=-+-S a c b ,1sin cos 2∴=ac B B ,因此tan B =23B π=. 所以(22222222()32cos ()()()44+==+-=+-+-=+a c b a c ac B a c ac a c a c …,即223()4a c +… 2()16a c ∴+…,即4a c +≤,当且仅当a c =时,等号成立,故a c +的最大值为4.故选:D 【点睛】本题主要考查解三角形,以及基本不等式求最值,熟记余弦定理,三角形面积公式,以及基本不等式即可,属于常考题型.11.如果定义在R 上的函数()f x 满足:对于任意12x x ≠,都有()()()()11221221x f x x f x x f x x f x +<+,则称()f x 为“M 函数”.给出下列函数:①221y x x =-++;②3112x y +⎛⎫= ⎪⎝⎭;③xx y ee -=- ;④ln ,0()0,0x x f x x ⎧≠=⎨=⎩其中为“M 函数”的是( ) A .①② B .②③C .①②③D .②④【答案】B【解析】先根据题中条件,得到函数()f x 是定义在R 上的减函数,逐项判断所给函数单调性,即可得出结果. 【详解】∵对于任意给定的不等实数12x x ,,不等式()()()()11221221x f x x f x x f x x f x +<+恒成立,∴不等式等价为()()()12120x x f x f x --<⎡⎤⎣⎦恒成立,即函数()f x 是定义在R 上的减函数.①2221(1)2y x x x =-++=--+,则函数在定义域上不单调.②函数3112x y +⎛⎫= ⎪⎝⎭是由1,312ty t x ⎛⎫==+ ⎪⎝⎭复合而成,根据同增异减的原则,函数单调递减,满足条件.③根据指数函数单调性可得:x x y e e -=-为减函数,满足条件.④ln ,0()0,0x x f x x ⎧≠=⎨=⎩.当0x >时,函数单调递增,当0x <时,函数单调递减,不满足条件.综上满足“M 函数”的函数为②③, 故选:B 【点睛】本题主要考查函数单调性的判定,熟记函数单调性的定义,以及基本初等函数单调性即可,属于常考题型.二、填空题12.若()y f x =是偶函数,当0x >时,()31x f x =-,则31log 2f ⎛⎫⎪⎝⎭=.______. 【答案】1【解析】根据偶函数的性质,以及题中条件,结合对数运算,可直接得出结果. 【详解】因为0x >时,()31xf x =-,且函数()y f x =是偶函数,所以()()3log 23331log log 2log 23112⎛⎫=-==-= ⎪⎝⎭f f f . 故答案为:1 【点睛】本题主要考查由函数奇偶性求函数值,熟记偶函数性质,以及对数运算法则即可,属于基础题型.13.若关于x 的不等式2250x x a a -++<的解集是()2,3,则a =_______. 【答案】3-或2【解析】先由题意得到关于x 的方程2250x x a a -++=的两根分别是2和3,进而可求出结果. 【详解】因为关于x 的不等式2250x x a a -++<的解集是()2,3, 所以关于x 的方程2250x x a a -++=的两根分别是2和3, 所以有2236a a +=⨯=,解得:3a =-或2a =. 故答案为:3-或2 【点睛】本题主要考查由不等式的解集求参数,熟记三个二次之间关系即可,属于常考题型. 14.设D 为ABC ∆所在平面内一点,4BC CD =,若24AD AB AC λμ=+,则λμ+=__________.【答案】92【解析】先由题意,作出图形,根据平面向量的基本定理,得到1544AD AB AC =-+,再由题意确定λμ,的值,即可得出结果. 【详解】如图所示,由4BC CD =,可知,B 、C 、D 三点在同一 直线上,图形如右:根据题意及图形,可得:1115()4444=+=+=+-=-+AD AC CD AC BC AC AC AB AB AC ,24AD AB AC λμ=+,124544λμ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得: 125λμ⎧=-⎪⎨⎪=⎩,则19522λμ⎛⎫+=-+= ⎪⎝⎭故答案为:92【点睛】本题主要考查由平面向量基本定理求参数,熟记平面向量的基本定理即可,属于常考题型.15.则该圆柱体体积的最大值为_____.【答案】27【解析】找出正四面体中内接圆柱的最大值的临界条件,通过体积公式即可得到答案. 【详解】解:圆柱体体积最大时,圆柱的底面圆心为正四面体的底面中心'O ,圆柱的上底面与棱锥侧面的交点N 在侧面的中线AM 上.∵,∴32BM =,12O M '=,1BO '=,∴AO '=设圆柱的底面半径为r ,高为h ,则102r <<.由三角形相似得:12r =h =,圆柱的体积()2212V r h r r π=-,∵()3212112327r r r r r ++-⎛⎫-≤= ⎪⎝⎭,当且仅当12r r =-即13r =时取等号. ∴圆柱的最大体积为27.故答案为:27. 【点睛】本题主要考查学生的空间想象能力,以及分析问题的能力,基本不等式的运用,难度较大.三、解答题16.已知实数x ,y 满足10220220x y x y x y --⎧⎪-+-⎨⎪+-⎩………,若目标函数()0z ax y a =+>最大值为5,取到最大值时的最优解是唯一的,则a 的取值是( ) A .14B .13C .12D .1【答案】C【解析】先由约束条件作出可行域,化目标函数z ax y =+为y ax z =-+,则y ax z =-+表示斜率为a -的直线,且0a -<,结合图像,以及题中条件,即可得出结果. 【详解】由不等式组10220220x y x y x y --⎧⎪-+-⎨⎪+-⎩………,即为10220220x y x y x y --⎧⎪-+⎨⎪+-⎩………,作可行域如图:目标函数z ax y =+可化为y ax z =-+,因为y ax z =-+表示斜率为a -的直线,且0a -<,由图象可知当y ax z =-+经过点C 时,z 取到最大值,这时满足C 坐标满足22010x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩,C 点坐标为()4,3,代人z ax y =+得到12a =. 故选:C 【点睛】本题主要考查由最优解求参数的问题,通常需作出可行域,根据目标函数的几何意义,结合图像求解,属于常考题型.17.已知命题:[2,1]p x ∀∈--,不等式2a x x<-恒成立;命题q :函数[1,)x ∀∈+∞,2141--x a x…; (1)若命题p 为真,求a 的取值范围;(2)若命题p q ∧是真命题,求实数a 的取值范围. 【答案】(1)1a <-;(2)(),1-∞-.【解析】(1)根据p 为真,得到[2,1]x ∈--时,min2a x x ⎛⎫<- ⎪⎝⎭即可,根据函数单调性,求出2=-y x x的最小值,进而可求出结果; (2)若q 为真命题,根据题意得到2max141x a x ⎛⎫--⎪⎝⎭…,由函数单调性,求出1y xx =-在[1,)+∞上的最大值,进而可求出结果. 【详解】(1) 若p 为真,即[2,1]x ∀∈--,不等式2a x x<-恒成立; 只需[2,1]x ∈--时,min2a x x ⎛⎫<- ⎪⎝⎭即可, 易知:函数2=-y x x 在[2,1]--递减,所以2=-y x x的最小值为1-, 因此1a <-. (2)若q 为真命题,则2max141x a x ⎛⎫-- ⎪⎝⎭…, 易知:1y x x=-在[1,)+∞上单调递减,所以min 0y =; 因此2410a -…,故12-a …或12a …, 因为命题p q ∧是真命题,所以p ,q 均为真命题,故a 满足112a a <-⎧⎪⎨-⎪⎩…或112a a <-⎧⎪⎨≥⎪⎩解得:1a <-,因此实数a 的取值范围是(),1-∞-. 【点睛】本题主要考查由命题的真假求参数,以及由复合命题真假求参数,根据转化与化归的思想即可求解 ,属于常考题型. 18.已知函数2()sin 2cos 1,264x x f x x π⎛⎫=--+∈⎪⎝⎭R(1)求函数()f x 的最小正周期和单调递减区间;(2)求函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值,并求出取得最值时x 的值. 【答案】(1)4π,5114,4()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)最小值为, 3x π=. 【解析】(1)先将函数解析式化简整理,得到()23π⎛⎫=- ⎪⎝⎭x f x ,根据正弦函数的周期与单调区间求解,即可得出结果; (2)由2,33x ππ⎡⎤∈⎢⎥⎣⎦得,0236x ππ⎡⎤-∈-⎢⎥⎣⎦,根据正弦函数的性质,即可得出结果. 【详解】(1)因为2()sin 2cos 1sin cos cos sin cos 26426262x x x x x f x πππ⎛⎫=--+=--⎪⎝⎭3cos 22223x x x π⎛⎫=-=- ⎪⎝⎭所以函数()f x 的最小正周期为2412T ππ==. 由322,2232x k k k πππππ+-+∈Z 剟,得51144,33ππππ++∈k x k k Z 剟 故函数()f x 的单调递减区间为5114,4()33ππππ⎡⎤++∈⎢⎥⎣⎦k k k Z . (2)因为2,,,033236x x ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦, 所以当236x ππ-=-即3x π=时,min ()362f x f ππ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭所以函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值为,此时3x π=. 【点睛】本题主要考查求正弦型函数的周期,单调区间,以及最值,熟记正弦函数的性质即可,属于常考题型.19.已知四棱锥P ABCD -的底面ABCD 为平行四边形,,PD DC AD PC =⊥. (1)求证:AC AP =;(2)若平面APD ⊥平面ABCD ,120ADC ∠=,4AD DC ==,求点B 到平面PAC 的距离.【答案】(1)证明见解析;(2. 【解析】(1)取PC 中点M ,连接AM ,DM ,根据线面垂直的判定定理,得出PC ⊥平面ADM ,进而可得AC AP =;(2)过点P 作PH 垂直AD 延长线于点H ,连接CH ,根据线面垂直的判定定理,证明PH ⊥平面ABCD ,推出⊥PH CH ;设h 为点B 到平面PAC 的距离,根据P ABC B ACP V V --=,结合题中数据,即可求出结果.【详解】(1)取PC 中点M ,连接AM ,DM , ∵PD DC =,且M 为PC 中点,DM PC ∴⊥∴AD PC ⊥,AD DM D =I ,PC ∴⊥平面ADM , AM ⊂平面ADM ,PC AM ∴⊥,∵M 为PC 中点,AC PA ∴=;(2)过点P 作PH 垂直AD 延长线于点H ,连接CH , ∵平面APD ⊥平面ABCD ,平面APD平面ABCD AD =,PH ⊂平面APD ,PH AD ⊥,PH ∴⊥平面ABCD ,CH ⊂Q 平面ABCD , PH CH ∴⊥,∵PD DC =,AD AD =,AC AP =, ∴∆≅∆ADP ADC , ∴120∠=∠=ADC ADP ,∴4===PD AD DC ,==AC APPH CH PC ===设h 为点B 到平面PAC 的距离,由于P ABC B ACP V V --=,可得1133∆∆⋅=⋅ABC ACP S PH S h ,14422∆=⨯⨯⨯=ABC S12ACP S ∆=⨯==h即点B 到平面PAC . 【点睛】本题主要考查证明线段相等,以及求点到平面的距离,熟记线面垂直的判定定理,性质定理,以及等体积法求点到平面的距离即可,属于常考题型.20.已知数列的前n 项和n S 满足2,n n S a n n =-∈N . (1)求数列{}n a 的通项公式;(2)若()2log 1n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1) 21nn a =-;(2)1n nT n =+. 【解析】(1)根据2n n S a n =-,求出11a =;再得到2n ≥时,112(1)n n S a n --=--,两式作差得到数列{}1n a +是首项为2,公比为2的等比数列,进而可得出结果; (2)由(1)的结果,根据裂项相消的方法,即可求出数列的和. 【详解】(1)由题可知2n n S a n =-,① 当1n =时,1112a a +=,得11a =, 当2n ≥时,112(1)n n S a n --=--,②①-②,得121n n a a -=+,所以()1121n n a a -+=+ 所以数列{}1n a +是首项为2,公比为2的等比数列,所以11222n nn a -+=⨯=,故21n n a =-.(2)由(1)知()22log 1log 2nn n b a n =+==,则11111(1)1n n b b n n n n +==-++, 12233411111111111111223341n n n T b b b b b b b b n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋯+=-+-+-+- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭, 所以1111n nT n n =-=++. 【点睛】本题主要考查由递推公式求通项公式,以及数列的求和,熟记等比数列的通项公式,以及裂项相消法求数列的和即可,属于常考题型. 21.已知函数()(2)e 2x f x ax x =+--,其中2a >-. (1)当0a =时,求函数()f x 在[]1,0-上的最大值和最小值; (2)若函数()f x 为R 上的单调函数,求实数a 的取值范围. 【答案】(1)max ()0f x =,min ()ln 21f x =-;(2)21a -<≤-.【解析】(1)由0a =得()22=--x f x e x ,对其求导,得到()21'=-x f x e ,解对应不等式,求出单调区间,进而可求出最值; (2)先由2(1)10f e'-=-<得到函数()f x 不可能在R 上单调递增,由题意,得到()f x 在R 上单调递减,推出()0f x '≤恒成立;令()()(2)1x g x f x ax a e '==++-,用导数的方研究其单调性,进而可求出结果. 【详解】(1)当0a =时,()22=--x f x e x ,所以()21'=-x f x e . 由()0f x '>解得ln 2x >-,由()0f x '<解得ln 2x <-. 故函数()f x 在区间[]1,ln 2--上单减,在区间[]ln 2,0-上单增.min ()(ln 2)ln 21f x f ∴=-=-,2(1)10,(0)0-=-<=f f e,max ()(0)0∴==f x f ; (2) 因为2(1)10f e '-=-<,所以函数()f x 不可能在R 上单调递增.所以,若函数()f x 为R 上单调函数,则必是单调递减函数,即()0f x '≤恒成立. 由(0)10f a '=+…可得1a ≤-,故()0f x '≤恒成立的必要条件为21a -<≤-.令()()(2)1x g x f x ax a e '==++-,则()(22)xg x ax a e '=++.当21a -<≤-时,由()0g x '>,可得22x a ⎛⎫<-+⎪⎝⎭, 由()0g x '<可得22x a ⎛⎫>-+ ⎪⎝⎭,()g x ∴在2,2a ⎛⎫-∞-- ⎪⎝⎭.上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减.故22max2()21a g x g ae a --⎛⎫=--=-- ⎪⎝⎭令22()1a h a ae --=--,下证:当21a -<≤-时,22()10a h a ae --=--…. 即证221aea---…,令22t a --=,其中(]1,0∈-t ,则112t a -=+,则原式等价于证明:当(]1,0∈-t 时,12te t+…. 由(1)的结论知,显然成立.综上,当21a -<≤-时,函数()f x 为R 上的单调函数,且单调递减. 【点睛】本题主要考查求函数最值,以及由函数单调性求参数的问题,灵活运用导数的方法求函数单调性,即可研究其最值等,属于常考题型.22.在直角坐标系xOy 中,曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为()4πθρ=∈R .(1)求1C 的极坐标方程;(2)若直线2C 与曲线1C 相交于M ,N 两点,求MN . 【答案】(1) 22cos 40ρρθ--=;(2)【解析】(1)根据曲线1C 的参数方程消去参数,得到普通方程,再转化为极坐标方程即可;(2)先将直线的极坐标方程化为参数方程,代入()2215x y -+=,根据参数方程下的弦长公式,即可求出结果. 【详解】(1)曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数), 转换为普通方程为: ()2215x y -+=, 转换为极坐标方程为: 22cos 40ρρθ--=.(2)直线2C 的极坐标方程为()4πθρ=∈R .转换为参数方程为: 2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).把直线的参数方程代入22(1)5x y -+=,得到: 240t -=,(1t 和2t 为M ,N 对应的参数),故: 12t t +=124t t ⋅=-,所以12||MN t t =-==【点睛】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及求弦长的问题,熟记公式即可,属于常考题型. 23.已知()|1||1|f x x ax =+++.(1)当1a =-时,求不等式()3f x ≥的解集;(2)若1x ≥时,不等式()2f x x ≥+恒成立,求a 的取值范围. 【答案】(1) 33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)(,2][0,)-∞-⋃+∞. 【解析】(1)先由1a =-得|1||1|3++-≥x x ,分别讨论1x <-,11x -≤<,1x ≥三种情况,即可得出结果;(2)先由题意,得到当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x-…或0a ≥恒成立,进而可求出结果. 【详解】(1)当1a =-时,不等式()3f x ≥可化简为|1||1|3++-≥x x . 当1x <-时,113x x --+-≥,解得32x -…,所以32x -… 当11x -≤<时,113x x ++-≥,无解; 当1x ≥时,113x x ++-≥,解得32x ≥,所以32x ≥; 综上,不等式()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭; (2)当1x ≥时,不等式()2f x x ≥+可化简为11ax +≥. 由不等式的性质得11ax +≤-或11ax +≥, 即2ax ≤-或0ax ≥.当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x-…或0a ≥恒成立; 则2a ≤-或0a ≥.综上,所求a 的取值范围为(,2][0,)-∞-⋃+∞. 【点睛】本题主要考查解含绝对值不等式,以及由不等式恒成立求参数的问题,灵活运用分类讨论法求解即可,属于常考题型.。
东北三省三校(哈尔滨师大附中、东北师大附中)2020年高三第一次联合模拟考试文科数学试题(详细答案)
2020年高三第一次联合模拟考试文科数学第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0322<--=x x x A ,⎭⎬⎫⎩⎨⎧>=11x xB 则=)(B AC R ( ) A.),3()1,(+∞--∞ B.),3[]1,(+∞--∞ C.),3[+∞ D.),1[]1,(+∞--∞ 2.已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为( )A.0=+b aB.0=-b aC.02=-b aD.02=+b a 3.已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是( ) A.若βα⊥,则β∥m B.若βα⊥,则β⊥m C.若β∥m ,则βα∥ D.若β⊥m ,则βα⊥4.大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13=n ,则要想算出结果1,共需要经过的运算步数是( )A.9B.10C.11D.12 5.下列说法中正确的是( )A.若“b a >”是“c a >”的充分条件,则“c b ≥”B.若“b a >”是“c a >”的充分条件,则“c b ≤”C.若“b a >”是“c a >”的充要条件,则“c b >”D.若“b a <”是“c a >”的充要条件,则“c b <”6.已知在边长为3的等边ABC ∆的中,DC BD 21=,则AC AD ⋅=( ) A.6 B.9 C.12 D.6-7.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21F F 、,点A 是椭圆短轴的一个顶点,且87cos 21=∠AF F ,则椭圆的离心率e =( ) A.21 B.23 C.41D.478.已知函数x x x f 2cos 32sin )(+=的图像向右平移)20(πϕϕ<<个单位后,其图像关于y 轴对称,则=ϕ( )A.12π B.6π C.3π D.125π9.如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则异面直线AE 与BF 所成角的余弦值为( )A.31 B.55 C.10103 D.3210.已知双曲线1322=-y x 的左、右焦点分别为21F F 、,点P 在双曲线上,且 12021=∠PF F ,21PF F ∆的面积为( )A.32B.3C.52D.5 11.已知数{}n a 列的通项公式为22+=n a n ,将这个数列中的项摆放成如图所示的数阵,记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前6项和为( )A.125 B.65 C.76 D.73 12.已知)(x f 满足⎪⎩⎪⎨⎧<-≤--=0),2(210,84)(2x x f x x x x f ,若在区间)3,1(-内,关于x 的方程)()(R k k kx x f ∈+=有4个根,则实数k 的取值范围是( )A.410≤<k 或1528-=k B.410≤<k C.15280-≤<k D.410<<k第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.已知向量)1,2sin 2(cos ),2,2sin2(cos -+=-=αααααn m,其中),0(πα∈,若n m⊥,则=α .14.已知函数xx ae e x f -+=)(在]1,0[上不单调,则实数a 的取值范围为 .15.数列{}n a 满足11=a ,),2(2)12(*2N n n S S a n n n ∈≥=-,则n a = .16.已知函数5)(,ln )(23--=+=x x x g x x x a x f ,若对于任意的]2,21[,21∈x x ,都有2)()(21≥-x g x f 成立,则实数a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c a C b +=2cos 2(Ⅰ)求B ;(Ⅱ)若2=a ,D 为AC 的中点,且3=BD ,求c .18.(本小题满分12分)如图,三棱柱ABC C B A -111中,⊥1BB 平面ABC ,BC AB ⊥,2=AB ,1=BC ,31=BB ,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明:DE ∥平面11BA C ;(Ⅱ)F 是线段1CC 上一点,且12FC CF =,求1A 到平面ABF 的距离.19.(本小题满分12分)2020年2月1日0:00时,英国顺利“脱欧”.在此之前,英国“脱欧”这件国际大事被社会各界广泛关注,英国大选之后,曾预计将会在2020年1月31日完成“脱欧”,但是因为之前“脱欧”一直被延时,所以很多人认为并不能如期完成,某媒体随机在人群中抽取了100人做调查,其中40岁以上的55人中有10人认为不能完成,40岁以下的人中认为能完成的占32. (Ⅰ)完成22⨯列联表,并回答能否有90%的把握认为“预测国际大事的准确率与年龄有关”?能完成 不能完成合计 40岁以上 40岁以下 合计(Ⅱ)从上述100人中,采用按年龄分层抽样的方法,抽取20人,从这20人中再选取40岁以下的2人做深度调查,则2人中恰有1人认为英国能够完成“脱欧”的概率为多少?附表:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=20.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线21:-=x l 相切,与定圆⊙:F 41)1(22=+-y x 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点N M 、(MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为11N M 、,直线l 交x 轴于点A ,记11ANN AMN AMM ∆∆∆、、的面积分别为321S S S 、、,且31224S S S =,证明:直线MN 过定点.21.(本小题满分12分) 已知函数)0(2ln )(2>-+-=a xxa x a x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)记函数)(x f 的最小值为)(a g .证明:1)(<a g .(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,参数方程⎩⎨⎧==θθsin cos y x (其中θ为参数)的曲线经过伸缩变换⎩⎨⎧='='yy xx 2:ϕ得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2103)4sin(=+πθρ. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设N M 、分别为曲线C 和曲线D 上的动点,求MN 的最小值.23.[选修4-5:不等式选将] 设函数32)(-++=x x x f (Ⅰ)求不等式9)(>x f 的解集;(Ⅱ)过关于x 的不等式23)(-≤m x f 有解,求实数m 的取值范围.一模文数参考答案一、选择题二、填空题13.3π 14.),1(2e 15.992- 16.),1[+∞三、解答题17.(本小题满分12分)(I )由正弦定理得2sin cos 2sin sin B C A C =++,又由sin sin()sin cos cos sin A B C B C B C =+=+,得2cos sin sin 0B C C +=,……3分因为0C π<<,所以sin 0C ≠,所以1cos 2B =-.因为0B π<<,所以23B π=.……6分(II )因为D 为AC 的中点,所以2BA BC BD +=, 所以22()(2)BA BC BD +=,又23B π=,所以1222=-+ac c a 因为2a =,解方程0822=--c c ,得4c =. ……………………12分18. (本小题满分12分)(1)设B A 1中点为M ,连M C EM 1,1BAA ∆中M 是B A 1中点,E 是AB 的中点,则1//AA EM 且121AA EM =, 棱柱中侧棱11//AA CC ,且D 是1CC 的中点,则11//AA DC 且1121AA DC =,所以1//DC EM ,1DC EM =,所以M C DE 1//,又⊄ED 平面11BA C 且⊂1MC 平面11BA C ,所以//DE 平面11BA C …… …… ……4分(2)F 在线段1CC 上,且12FC CF =,棱柱中311==BB CC ,所以2=CF侧面11A ABB 中AB B A //11,且⊂AB 平面ABF ,⊄11B A 平面ABF ,所以//11B A 平面ABF ,11,B A 到平面ABF的距离相等. …… …… …… …… …… ………… …… ……6分在平面11B BCC 中作⊥H B 1直线BF 于H ①⊥1BB 平面ABC 得⊥1BB AB ,又BC AB ⊥,所以⊥AB 平面11B BCC ,因为⊂H B 1平面11B BCC ,所以⊥AB H B 1②,又①②及B BF AB = ,得⊥H B 1平面ABF , 故线段HB 1长为点11,B A 到平面ABF的距离. …… …… …… …… …… ………… …… …10分BCF Rt ∆中2,1==CF BC ,2π=∠C ,得5=BFH B BF BC BB S FBB 1121211⋅=⋅=∆,得5531=H B …… …… …… …… …… ………… …12分 19. (本小题满分12分) (1)由题意可得列联表:……2分22100(45151030)100 3.0305545752533K ⨯⨯-⨯==≈⨯⨯⨯由附表知:100.0)706.2(2=>K P ,且706.2030.3>,所以有90%的把握认为“预测国际大事的准确率与年龄有关” ………… …… …… …… …… …………6分(II )40岁以上人数为55,,40岁以下为45,比例为11:9,抽取的20人中,40岁以下为9人,其中有6人是认为可以完成的,记为a,b,c,d,e,f ,3人认为不能完成,记为A,B,C , 从这9人中抽取2人共有:(a,b ),(a,c ),(a,d ),(a,e ),(a,f ),(a,A ),(a,B ),(a,C ),(b,c ),(b,d ),(b,e ),(b,f ),(b,A ),(b,B ),(b,C ), (c,d ),(c,e ),(c,f ),(c,A ),(c,B ),(c,C ), (d,e ),(d,f ),(d,A ),(d,B ),(d,C ) (e,f ),(e,A ),(e,B ),(e,C ) (f,A ),(f,B ),(f,C ) (A,B ),(A,C )(B,C )36个基本事件 …… ………… 8分设事件M :从20人中抽取2位40 岁以下的,2人中恰有1人认为应该能够完成“脱欧”. 事件M 共包括:(a,A ),(a,B ),(a,C ),(b,A ),(b,B ),(b,C ),(c,A ),(c,B ),(c,C ),(d,A ),(d,B ),(d,C )(e,A ),(e,B ),(e,C ),(f,A ),(f,B ),(f,C )18个基本事件, …… ………… 10分213618)(==M P 所以从20人中抽取2位40 岁以下的作深度调查,2人中恰有1人认为应该能够完成“脱欧”的概率为21. …… ………… 12分20. (本小题满分12分) (1)设(),P x y ,P 半径为R ,则11,22R x PF R =+=+,所以点P 到直线1x =-的距离与到()1,0F 的距离相等,即1)1(22+=+-x y x 故点P 的轨迹方程C 为24y x = …… … …… …… ……… ……4分 (2)设直线t x my MN -=:t y y m y y t m t mt y xy tx my 4,4),(1604442121222-==++=∆⇒=--⇒⎩⎨⎧=-= ……… ……6分22212221212121212131223111)41816()412()21)(21(4)21(21)21(21y y y y y y y x x x x y y x x S S yx S y x S +++=+++=++=⇒⎪⎪⎩⎪⎪⎨⎧+=+=[]2222318)12()418816(44m t t t m t t S S ++=+++=⇒ ……… ……8分)()12()(16)21(41)21(41)21(212222221222212t m t t m t y y t S y y t S ++=++=-+=⇒-+=……… …10分由31224S S S =得[]22228)12()()12(m t t t m t ++=++,化简为t t 8)12(2=+所以0)12(2=-t 即21=t 所以直线MN 经过⎪⎭⎫ ⎝⎛0,21 ……… …………… …………… …………… ……12分 21. (本小题满分12分) (1)函数()f x 的定义域为()0,+∞,()()()()224322221x a x x x a x a f x x x x -+---'=-+=……2分 令()0f x '=,得x a =;当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>; 所以,()f x 的单调减区间为()0,a ,单调增区间为(),a +∞.……4分(2)由(1)可知,函数()f x 的最小值()()1ln g a f a a a a a==--; 012)(,ln 1)(32<--=''-='aa a g a a a g ,故)(a g '在),0(+∞单调递减,…………6分 又02ln 41)2(,01)1(<-='>='g g ,故存在)2,1(0∈a ,0ln 1)(0200=-='a a a g ,2001ln a a =0)(),,(;0)(),,0(00<'+∞∈>'∈∴a g a a a g a a ,故)(a g 在),0(0a 单调递增,在),(0+∞a 单调递减……………………………………………………8分000200000000max 2111ln )()(a a a a a a a a a a a g a g -=-⋅-=--== 000002000)2)(1(212a a a a a a a a -+=--=--, ……………………10分)2,1(0∈a ,所以0)2)(1(000<-+a a a ,所以1200<-a a ,即1)(max <a g ,所以1)(<a g ……12分22. (本小题满分10分)(1)曲线C 的参数方程为2cos sin x y θθ=⎧⎨=⎩(其中θ为参数), 因此,曲线C 的普通方程为2214x y +=; …………………………2分曲线D sin cos )ρθρθ+,因此,曲线D 的直角坐标方程为0x y +-=. (5)分(2)设(2cos ,sin )M θθ,则||MN 的最小值为M 到直线0x y +-=的距离d 的最小值,d ==当sin()1θϕ+=时,||MN ………………………10分23. (本小题满分10分)(1)()21,25,2321,3x x f x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩,当2x <-时,219x -+>,解得4x <-,所以4x <-; 当23x -≤<时,59>,解得x ∈∅;当3x ≥时,219x ->,解得5x >,所以5x >, 综上所述,不等式()9f x >的解集为{|5x x >或4}x <-. ………………5分(2)2x ++()()230x x +-≤即23x -≤≤时取等) 3251m m ∴-≥⇒≤-或73m ≥……………………………10分。
东北三省三校2020年高三第一次联合模拟考试语文试卷及参考答案
东北三省三校2020年高三第一次联合模拟考试语文试卷(哈尔滨师大附中东北师大附中辽宁省实验中学)注意事项:1.答题前,务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.答题时使用0.5毫米黑色签字笔或碳素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
《韩非子》如何取法老子周苇风法家代表人物韩非是荀子的学生,因为口吃,不喜言谈。
曾数次上书进谏韩王,却不被采纳。
但他的文章传入秦国后大受欢迎,秦王甚至感叹“嗟乎,寡人得见此人与之游,死不恨矣”。
《史记》中,韩非与老子合传,同传中还有庄子和申不害。
庄子和老子是道家人物,韩非和申不害为法家人物。
司马迁说,韩非“喜刑名法术之学,而其归本于黄老”。
黄老学派形成于战国时期,最初流行于齐国稷下学宫。
它既讲道德又主刑名,既尚无为又崇法治,既以为“法令滋彰,盗贼多有”又强调“道生法”,要求统治者“虚静谨听,以法为符”。
作为儒家学派的一员,荀子曾在稷下学宫三为祭酒,思想难免受到黄老思想的影响。
他清醒地认识到,礼的施行无法完全依靠“克己”来实现。
于是,便提出了礼法并举的思想。
理解了这个学术背景,司马迁说韩非“其归本于黄老”也就不奇怪了。
《韩非子》有《解老》《喻老》两篇,顾名思义是解读《老子》的专著。
从这个角度来看,韩非可以说是早期研究《老子》的专家。
老子思想的核心是道,道是客观自然规律。
韩非接受了老子对道的阐述,承认道决定宇宙万物的演变。
同时,老子认为道具有“独立而不改,周行而不殆”的永恒意义。
对此,韩非则进一步发挥,强调道是变化的,天地也是变化的,人也在不断变化中,整个社会都在变化。
由此,治理社会的方式和方法自然也应该变化。
但是,韩非也非常重视道的稳定性。
2020年东北三省三校一模 文科数学 试题卷+参考答案
一模文数参考答案一、选择题 题号1 2 3 4 5 6 7 8 9 10 11 12 答案 B B D A A A C D C B D A二、填空题13.3π 14.),1(2e 15.992− 16.),1[+∞三、解答题17.(本小题满分12分)(I )由正弦定理得2sin cos 2sin sin B C A C =++,又由sin sin()sin cos cos sin A B C B C B C =+=+,得2cos sin sin 0B C C +=,……3分 因为0C π<<,所以sin 0C ≠,所以1cos 2B =−.因为0B π<<,所以23B π=. ……6分 (II )因为D 为AC 的中点,所以2BA BC BD +=uuu r uuu r uuu r ,所以22()(2)BA BC BD +=uuu r uuu r uuu r ,又23B π=,所以1222=−+ac c a 因为2a =,解方程0822=−−c c ,得4c =. ……………………12分18. (本小题满分12分)(1)设B A 1中点为M ,连M C EM 1,1BAA ∆中M 是B A 1中点,E 是AB 的中点,则1//AA EM 且121AA EM =, 棱柱中侧棱11//AA CC ,且D 是1CC 的中点,则11//AA DC 且1121AA DC =, 所以1//DC EM ,1DC EM =,所以M C DE 1//,又⊄ED 平面11BA C 且⊂1MC 平面11BA C ,所以//DE 平面11BA C …… …… ……4分(2)F 在线段1CC 上,且12FC CF =,棱柱中311==BB CC ,所以2=CF侧面11A ABB 中AB B A //11,且⊂AB 平面ABF ,⊄11B A 平面ABF ,所以//11B A 平面ABF ,11,B A 到平面ABF 的距离相等. …… …… …… …… …… ………… …… ……6分 在平面11B BCC 中作⊥H B 1直线BF 于H ①⊥1BB 平面ABC 得⊥1BB AB ,又BC AB ⊥,所以⊥AB 平面11B BCC ,因为⊂H B 1平面11B BCC , 所以⊥AB H B 1②,又①②及B BF AB =I ,得⊥H B 1平面ABF ,故线段H B 1长为点11,B A 到平面ABF 的距离. …… …… …… …… …… ………… …… …10分BCF Rt ∆中2,1==CF BC ,2π=∠C ,得5=BF H B BF BC BB S FBB 1121211⋅=⋅=∆,得5531=H B …… …… …… …… …… ………… …12分 19. (本小题满分12分)(1)由题意可得列联表:能完成 不能完成 合计 40岁以上45 10 55 40岁以下30 15 45 合计 75 25 100……2分22100(45151030)100 3.0305545752533K ××−×==≈××× 由附表知:100.0)706.2(2=>K P ,且706.2030.3>,所以有90%的把握认为“预测国际大事的准确率与年龄有关” ………… …… …… …… …… ………… 6分(II )40岁以上人数为55,,40岁以下为45,比例为11:9,抽取的20人中,40岁以下为9人, 其中有6人是认为可以完成的,记为a,b,c,d,e,f ,3人认为不能完成,记为A,B,C ,从这9人中抽取2人共有:(a,b ),(a,c ),(a,d ),(a,e ),(a,f ),(a,A ),(a,B ),(a,C ),(b,c ),(b,d ),(b,e ),(b,f ),(b,A ),(b,B ),(b,C ),(c,d ),(c,e ),(c,f ),(c,A ),(c,B ),(c,C ),(d,e ),(d,f ),(d,A ),(d,B ),(d,C )(e,f ),(e,A ),(e,B ),(e,C )(f,A ),(f,B ),(f,C )(A,B ),(A,C )(B,C )36个基本事件 …… ………… 8分设事件M :从20人中抽取2位40 岁以下的,2人中恰有1人认为应该能够完成“脱欧”.事件M 共包括:(a,A ),(a,B ),(a,C ),(b,A ),(b,B ),(b,C ),(c,A ),(c,B ),(c,C ),(d,A ),(d,B ),(d,C )(e,A ),(e,B ),(e,C ),(f,A ),(f,B ),(f,C )18个基本事件, …… ………… 10分213618)(==M P 所以从20人中抽取2位40 岁以下的作深度调查,2人中恰有1人认为应该能够完成“脱欧”的概率为21. …… ………… 12分。
东北三省三校(哈师大附中、东北师大附中、辽宁实验中学)2020年高三第一次联合模拟考试理数学 含评分细则
东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0322<−−=x x x A ,⎭⎬⎫⎩⎨⎧>=11x xB 则=)(B AC R ( ) A.),3()1,(+∞−−∞ B.),3[]1,(+∞−−∞ C.),3[+∞ D.),1[]1,(+∞−−∞ 2.已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为( )A.0=+b aB.0=−b aC.02=−b aD.02=+b a 3.已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是( ) A.若βα⊥,则β∥m B.若βα⊥,则β⊥m C.若β∥m ,则βα∥ D.若β⊥m ,则βα⊥4.大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13=n ,则要想算出结果1,共需要经过的运算步数是( )A.9B.10C.11D.125.已知e c e b a πlog ,log ,3ln 3===(注:e 为自然对数的底数),则下列关系正确的是( ) A.c a b << B.a b c << C.a c b << D.c b a <<6.已知在边长为3的等边ABC ∆的中,DC BD 21=,则AC AD ⋅=( ) A.6 B.9 C.12 D.6−7.如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则四面体BEF A −的体积为( )A.31 B.32 C.1 D.34 8.已知函数x x x f 2cos 32sin )(+=的图像向右平移)20(πϕϕ<<个单位后,其图像关于y 轴对称,则=ϕ( )A.12π B.6π C.3π D.125π9.已知椭圆)0(12222>>=+b a b y a x 的右焦点为)0,(c F ,上顶点为),0(b A ,直线ca x 2=上存在一点P 满足0)(=⋅+AP FA FP ,则椭圆的离心率取值范围为( )A.)1,21[B.)1,22[C.)1,215[− D.]22,0( 10.已知定义在R 上的函数)(x f ,满足)1()1(x f x f −=+,当),1[+∞∈x 时⎪⎩⎪⎨⎧+∞∈−∈−−=),3[),21(2)3,1[,21)(x x f x x x f ,则函数)(x f 的图像与函数⎩⎨⎧<−≥=1),2ln(1,ln )(x x x x x g 的图像在区间]7,5[−上所有交点的横坐标之和为( )A.5B.6C.7D.911.已知数{}n a 列的通项公式为22+=n a n ,将这个数列中的项摆放成如图所示的数阵,记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前2020项和为( )A.20201011 B.20202019 C.20212020 D.2021101012.已知双曲线1322=−y x 的左、右焦点分别为21F F 、,点P 在双曲线上,且 12021=∠PF F ,21PF F ∠的平分线交x 轴于点A ,则=PA ( )A.55 B.552 C.553 D.5 第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的 不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 .14.已知函数x x ae e x f −+=)(在]1,0[上不单调,则实数a 的取值范围为 .15.数列{}n a 满足11=a ,),2(2)12(*2N n n S S a n n n ∈≥=−,则n a = .16.已知函数b x a x x f −−−−=13)()(222,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①21−≤a ②2523<<a ③02,1<<−=b a ④249,1−<<−=b a 或0=b ⑤4个极小值点 ⑥1个极小值点 ⑦6个零点 ⑧4个零点三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c a C b +=2cos 2(Ⅰ)求B ;(Ⅱ)若2=a ,D 为AC 的中点,且3=BD ,求c . 18.(本小题满分12分)如图,三棱柱ABC C B A −111中,⊥1BB 平面ABC ,BC AB ⊥,2=AB ,1=BC ,31=BB ,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明:DE ∥平面11BA C ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11A ABB 所成角的正弦值为31,求二面角A BA F −−1的余弦值. 19.(本小题满分12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下: 数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?参考数据如下:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++−=20.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线21:−=x l 相切,与定圆⊙:F 41)1(22=+−y x 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点N M 、(MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为11N M 、,直线l 交x 轴于点A ,记11ANN AMN AMM ∆∆∆、、的面积分别为321S S S 、、,且31224S S S =,证明:直线MN 过定点.21.(本小题满分12分)已知函数)(21-1ln()1()(2R a x ax x x x f ∈−++=).(Ⅰ)设)(x f '为函数)(x f 的导函数,求函数)(x f '的单调区间; (Ⅱ)若函数)(x f 在),0(+∞上有最大值,求实数a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分. 22.[选修4-4:坐标系与参数方程] 在直角坐标系xOy 中,参数方程⎩⎨⎧==θθsin cos y x (其中θ为参数)的曲线经过伸缩变换⎩⎨⎧='='yy xx 2:ϕ得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2103)4sin(=+πθρ. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设N M 、分别为曲线C 和曲线D 上的动点,求MN 的最小值.23.[选修4-5:不等式选将] 设函数32)(−++=x x x f (Ⅰ)求不等式9)(>x f 的解集;(Ⅱ)过关于x 的不等式23)(−≤m x f 有解,求实数m 的取值范围.东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2020年高三第一次联合模拟考试理科数学答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B BDABABDCCDB二、填空题13.14.15. ()()1,12,22123n n a n n n =⎧⎪=⎨−≥⎪−−⎩16. ①⑥、②⑤、③⑦、④⑧均可三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得2sin cos 2sin sin B C A C =++,……………………………….2分 又由sin sin()sin cos cos sin A B C B C B C =+=+,……………………………….4分 得2cos sin sin 0B C C +=,因为0C π<<,所以sin 0C ≠,所以1cos 2B =−.因为0B π<<,所以23B π=.……………………………….6分 (Ⅱ)因为D 为AC 的中点,所以2BA BC BD +=,……………………………….8分 所以22()(2)BA BC BD +=,即2212a c ac ++=,……………………………….10分 因为2a =,解方程2280c c −−=,得4c =.……………………………….12分 18.解析:(I )连结1AB 交1A B 于O ,连结1,EO OC11,,,2OA OB AE EB OE BB ==∴=1//OE BB ,……………………………….1分 又1112DC BB =,1DC //1BB , 1//OE DC ∴,因此,四边形1DEOC 为平行四边形,即1//ED OC ……………………………….2分111,,OC C AB ED C AB ⊂⊄面面DE ∴//平面11C BA ……………………………….5分(II )建立空间直角坐标系B xyz −,如图过F 作1FH BB ⊥,连结AH11,,BB ABC AB ABC AB BB ⊥⊂∴⊥面面 111,,AB BC BC BB AB CBBC ⊥∴⊥面 111111,,AB BAA B BAA B CBBC ⊂∴⊥面面面111,,FH CBBC FH BB ⊂⊥面11111,BAA B CBBC BB =面面11FH BAA B ⊥面, 即FAH ∠为直线AF 与平面11ABB A 所成角,……………………………….7分 记为θ,11sin ,3,3AF AF θ==∴= 在Rt ACF ∆中,222259,2,AC CF AF CF CF ==+=+∴=11(0,2,1),(2,3,0),(0,2,1),(2,3,0),F A BF BA ==设平面1BAC 的法向量(,,)m x y z =,120230m BF y z m BA x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取2,(3,2,4)y m ==−− 平面1BAA 的法向量(0,0,1)n =,……………………………….10分4|cos ,|291m n <>=⋅……………………………….11分 BC1A 1B 1C D OFHxyz因此,二面角1F BA A −−的余弦值……………………………….12分19. 解析:设A ={出现A 症状的人}、B ={出现B 症状的人}、C ={出现C 症状的人}(card 表示有限集合元素个数) 根据数据1可知()()()()1.8,1,2,0.5card A B card A C card B C card A B C ====,所以()()()()()()()card A B C card A card B card C card A B card A C card B C card=++−+++⎡⎤⎣⎦()=8.5+9.3+6.5 1.8120.520−+++=.……………………………….4分得患病总人数为20万人,比例大约为20%.……………………………….6分.……………………………….9分()22100573157 4.001 3.84112888020k ⨯⨯−⨯=≈>⨯⨯⨯.……………………………….11分有95%的把握说明失眠与中风或心脏病存在“强关联” .………………………….12分B20.解析: (Ⅰ)设(),P x y ,P 半径为R ,则11,22R x PF R =+=+,所以点P 到直线1x =−的距离与到()1,0F 的距离相等,故点P 的轨迹方程C 为24y x =.……………………………….4分(Ⅱ)设()()1122,,M x y N x y 、,则11211,,22M y N y ⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭、设直线():0MN x ty n t =+≠代入24y x =中得2440y ty n −−=12124,40y y t y y n +==−<.……………………………….6分 11132211112222S x y S x y =+⋅=+⋅、 131112114S S 22x x y y ⎛⎫⎛⎫∴=++ ⎪⎪⎝⎭⎝⎭()12122212122222211221142211444221242ty n ty n y y t y y n t y y n nnt t n n nt n n⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫=+++++⋅−⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=−++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.……………………………….8分又21211112222S n y y n =+⋅−=+()()22222211116164422S n t n n t n ⎛⎫⎛⎫∴=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭.……………………………….10分2222221311484222S S S nt n t n n ⎛⎫⎛⎫=⇔=+⇔=+ ⎪ ⎪⎝⎭⎝⎭12n ⇒=.…………………….11分∴直线MN 恒过1,02⎛⎫⎪⎝⎭.…………………………….12分21.解析:(Ⅰ)()()ln 1f x x ax '=+−令()()()ln 1h x f x x ax '==+−, ()11h x a x '=−+;.……………………………….1分 1当0a ≤时,()0h x '>,()'f x ∴在()1,−+∞上递增,无减区间()0h x '=.……………………………….3分 2当0a >时,令()1011h x x a '>⇒−<<−, 令()101h x x a'<⇒>− 所以,()'f x 在11,1a ⎛⎫−− ⎪⎝⎭上单调递增,在11,a ⎛⎫−+∞ ⎪⎝⎭上单调递减;.……………………………….5分 (Ⅱ)由(Ⅰ)可知,当0a ≤时,()'f x ∴在()0,+∞上递增,()()''00f x f ∴>=()f x ∴在()0,+∞上递增,无最大值,不合题意;.……………………………….6分 1当1a ≥时,()1101h x a a x '=−<−≤+ ()'f x ∴在()0,+∞上递减,()()''00f x f ∴<=,()f x ∴在()0,+∞上递减,无最大值,不合题意;.……………………………….8分 2当01a <<时,110a−>, 由(Ⅰ)可知()'f x 在10,1a ⎛⎫− ⎪⎝⎭上单调递增,在11,a ⎛⎫−+∞ ⎪⎝⎭上单调递减;.……………………………….9分设()1ln g x x x =−−,则()1x g x x−'=; 令()001g x x '<⇒<<;令()01g x x '>⇒>()g x ∴在()0,1上单调递减,在()1,+∞单调递增;()()10g x g ∴≥=,即ln 1x x ≤−由此,当0x >时,1<ln x <所以,当0x >时,()()12h x ax a x <<+=−.取241t a =−,则11t a >−,且()20h t <−=. 又因为()1100h h a ⎛⎫−>= ⎪⎝⎭,所以由零点存在性定理,存在011,x t a ⎛⎫∈− ⎪⎝⎭,使得()00h x =;.……………………………….11分当()00,x x ∈时,()0h x >,即()0f x '>;当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以,()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,在()0,+∞上有最大值()0f x .综上,01a <<.……………………………….12分在第22、23题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2B ..铅笔..在答题卡上把所选题目对应的题号涂黑。
___等四省名校2020届高三年级上学期第一次大联考数学(文)试卷及答案
___等四省名校2020届高三年级上学期第一次大联考数学(文)试卷及答案2020届高三年级上学期第一次大联考数学(文)试题本试卷分为第I卷(选择题)和第II卷(非选择题)两部分。
考试时间为120分钟,满分为150分。
第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1.设全集为R,集合A={x|log2x<1},则A的取值范围为()A。
(-1,1)B。
(-1,2)C。
(0,1)D。
(0,2)2.已知复数z=(1-i)/(1+i)^2,则z在复平面内对应的点位于()A。
第一象限B。
第二象限C。
第三象限D。
第四象限3.在一项由“一带一路”沿线20国青年参与的评选中,“高铁”、“支付宝”、“共享单车”和“网购”被称作中国“新四大发明”。
曾以古代“四大发明”推动世界进步的中国,正再次以科技创新向世界展示自己的发展理念。
某班假期分为四个社会实践活动小组,分别对“新四大发明”对人们生活的影响进行调查,于开学进行交流报告会,四个小组随机排序,那么“支付宝”小组和“网购”小组不相邻的概率为()A。
1/6B。
1/4C。
1/3D。
1/24.已知数列{an}满足an+2-an+1=an+1-an(n∈N),且a5=10,a7=14,则a2020-a2019=()A。
2B。
1C。
-2D。
-15.若a,b是不同的直线,α,β是不同的平面,则下列四个命题:①若a∥α,b∥β,a⊥b,则α⊥β;②若a∥α,b∥β,a∥b,则α∥β;③若a⊥α,b⊥β,a∥b,则α∥β;④若a∥α,b⊥β,a⊥b,则α∥β。
正确的个数为()A。
0B。
1C。
2D。
36.根据最小二乘法由一组样本点(xi,yi)(其中i=1,2, (300)求得的回归方程是y=bx+a,则下列说法正确的是()A。
至少有一个样本点落在回归直线y=bx+a上B。
若所有样本点都在回归直线y=bx+a上,则变量间的相关系数为1C。
东北三省三校2020届高三数学第一次联合模拟考试试题理(含解析)
东北三省三校2020届高三数学第一次联合模拟考试试题 理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{}|22A x x =-<<,{|B x y ==,则AB =( )A. ()1,2-B. [1,2)-C. ()2,1--D. ()2,3【答案】B 【解析】 【分析】化简集合B ,即可求出AB .【详解】由题意得,()2,2A =-,∵B 中,()()130x x +-≥, ∴[]1,3B =-,∴[1,2)AB =-,故选B.【点睛】本题考查集合间的运算,属于基础题. 2.设p :30x x-<,q :()()20x a x a --+≤,若p 是q 的必要不充分条件,则实数a 的取值范围是( ) A. ()1,0- B. []2,3C. ()2,3D. []1,0-【答案】C 【解析】 【分析】解不等式,求出命题p ,q 成立的解集,把p 是q 的必要不充分条件转化为解集间的集合关系,即可求出实数a 的取值范围. 【详解】由不等式30x x-<,解得03x <<, 由()()20x a x a --+≤得2a x a -≤≤,p 是q 的必要不充分条件,可知203a a ->⎧⎨<⎩,所以23a <<,故实数m 的取值范围是()2,3. 故选C.【点睛】本题考查命题的必要不充分条件,转化为集合间真子集关系,属于基础题3.已知向量()()()3,2,2,1,4,3a b c ==-= ,若()()a b c a λ+⊥-,则实数λ=( ) A.15B. 5C. 4D.14【答案】A 【解析】 【分析】先由题意,得到()32,21a b λλλ+=-+,(1,1)-=c a ,再根据向量垂直,即可列出方程求解,得出结果.【详解】因为()()()3,2,2,1,4,3a b c ==-=, 所以()32,21a b λλλ+=-+,(1,1)-=c a ,又()()a b c a λ+⊥-,所以()()0λ+⋅-=a b c a ,即32210λλ-++=, 解得:15λ=. 故选:A【点睛】本题主要考查由向量垂直求参数,熟记向量数量积的坐标运算即可,属于常考题型. 4.若θ是三角形的一个内角,且4tan 3θ=-,则3sin cos 22ππθθ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A.15B. 15-C. 75D. 75-【答案】C 【解析】 【分析】根据已知条件,求出sin ,cos θθ,再利用诱导公式化简所求式子,即可得出结果. 【详解】∵sin 4tan cos 3θθθ==-,()0,θπ∈,sin 0θ>, cos 0θ<,又∵22sin cos 1θθ+=,∴4sin 5θ=,3cos 5θ=-,37sin cos cos sin 225ππθθθθ⎛⎫⎛⎫-+-=-+= ⎪ ⎪⎝⎭⎝⎭.故选C.【点睛】本题考查同角间的三角函数关系,以及诱导公式,属于基础题.5.曲线()2ln f x x x x =+在点()()1,1f 处的切线与直线10x ay --=平行,则a =( )A.13B.12C. 1D. 2【答案】A 【解析】 【分析】求出()1f ',即为切线的斜率,可求出a . 【详解】因为()2ln f x x x x =+,所以()'2ln 1f x x x =++,因此, 曲线()2ln f x x x x =+在()()1,1f 处的切线斜率为()'1213k f ==+=, 又该切线与直线10x ay --=平行,所以13a=,∴13a =.故选A.【点睛】本题考查导数的几何意义,属于基础题.6.等比数列{}n a 的前n 项和为n S ,公比为q ,若1232a a a ++=,639S S =,则9S =( ) A. 50 B. 100C. 146D. 128【答案】C 【解析】 【分析】根据已知条件,先求出6S ,再应用等比数列前n 项和为n S 的性质,即可求出结果. 【详解】由题意得∵31232S a a a =++=,63918S S ==,∴6318216S S -=-=,根据等比数列的性质可 知,3S ,63S S -,96S S -构成等比数列, 故()()263396S S S S S -=-,∴96128S S -=, 故96128146S S =+=. 故选C.【点睛】本题考查等比数列前n 项和的性质,对等比数列的性质的熟练掌握是解题的关键,属于基础题.7.已知函数())ln f x x =,设()3log 0.1a f =,()0.23b f -=,()1.13c f =,则( ) A. a b c >>B. b a c >>C. c a b >>D.c b a >>【答案】D 【解析】 【分析】先判断()f x 的奇偶性,再证明单调性,判断出,,a b c 对应自变量的大小关系,利用()f x 单调性比,即可得出答案. 【详解】∵())lnf x x =,∴())lnx f x =-,∴()()0f x f x +-=,∴()()f x f x -=-, ∴函数()f x 是奇函数,∴当0x ≥时,易得())lnf x x =为增函数,故()f x 在R 上单调递增,∵3log 0.10<,0.2031-<<, 1.133>, ∴()()()1.10.2333log0.1f f f ->>,∴c b a >>.故选D【点睛】本题考查函数的奇偶性,单调性及单调性的应用,困难在于要想到证明函数奇偶性,属于中档题.8.关于函数()sin f x x x =+,下列说法错误的是( ) A. ()f x 是奇函数 B. ()f x 是周期函数 C. ()f x 有零点 D. ()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 【答案】B 【解析】 【分析】根据奇偶性定义可判断选项A 正确;依据周期性定义,选项B 错误;()00f =,选项C 正确;求()f x ',判断选项D 正确.【详解】()()sin f x x x f x -=--=-, 则()f x 为奇函数,故A 正确;根据周期的定义,可知它一定不是周期函数,故B 错误;因为()00sin00f =+=,()f x 在,22ππ⎛⎫- ⎪⎝⎭上有零点,故C 正确; 由于()'1cos 0f x x =+≥,故()f x 在(),-∞+∞上单调递增,故D 正确. 故选B. 【点睛】本题考查函数的性质,涉及到奇偶性、单调性、周期性、零点,属于基础题. 9.已知偶函数()f x 的图象经过点()1,3--,且当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则使得(2)30f x -+<成立的x 的取值范围为( )A. ()3,+∞B. ()1,3C. ()(),13,-∞⋃+∞D. []1,3【答案】C 【解析】【分析】先由题意,得到点()1,3-也在函数图象上,函数()f x 在[)0,+∞上为减函数,将不等式化为(|2|)(1)-<f x f ,根据函数单调性,即可得出结果.【详解】根据题意,()f x 为偶函数, 且经过点()1,3--,则点()1,3-也在函数图象上, 又当0a b ≤<时,不等式()()f b f a b a-<-恒成立,则函数()f x 在[)0,+∞上为减函数,因为(2)30f x -+<,所以(2)3(|2|)(1)|2|1f x f x f x -<-⇒-<⇒-> 解得1x <或3x >. 故选:C【点睛】本题主要考查由函数单调性与奇偶性解不等式,熟记函数奇偶性与单调性的概念即可,属于常考题型.10.已知实数x ,y 满足不等式组210x y x y y +≤⎧⎪-≥⎨⎪≥⎩,目标函数13y z x +=+的最大值是( )A.23B.49C.59D.13【答案】D 【解析】 【分析】作出可行域,利用目标函数的几何意义,即可求出目标函数最大值.【详解】不等式组210x y x y y +≤⎧⎪-≥⎨⎪≥⎩所表示的平面区域如图所示:13y z x +=+表示过可行域内的点(),x y 与 点()3,1M --的直线的斜率的最大值,由2010x y x y +-=⎧⎨--=⎩,解得31,22A ⎛⎫⎪⎝⎭,这时()()11123332MA k --==--, 故目标函数13y z x +=+的最大值是13.故选D.【点睛】本题考查非线性目标函数最优解,对目标函数的几何意义理解是解题的关键,属于基础题.11.ABC ∆的内角A ,B ,C 的对边为a ,b ,c,若b =ABC ∆的面积为)2224=-+-S a c b ,则a c +的最大值为( ) A. 1B. 2C. 3D. 4【答案】D 【解析】 【分析】根据余弦定理,以及题中三角形的面积,得到1sin cos 2ac B B =,求出23B π=,再由(222222cos ()==+-=+-b a c ac B a c ac ,结合基本不等式,即可求出结果.【详解】由余弦定理可得:2222cos a c b ac B =+-,又)222=+-S a c b ,1sin cos 2∴=ac B B,因此tan B =23B π=.所以(22222222()32cos ()()()44+==+-=+-+-=+a c b a c ac B a c ac a c a c ,即223()(23)4a c +2()16a c ∴+,即4a c +≤,当且仅当a c =时,等号成立,故a c +的最大值为4.故选:D【点睛】本题主要考查解三角形,以及基本不等式求最值,熟记余弦定理,三角形面积公式,以及基本不等式即可,属于常考题型.12.已知函数()27ln ,02,0x x x x f x x x ⎧->⎪=⎨⎪-≤⎩,令函数()()32g x f x x a =--,若函数()g x 有两个不同零点,则实数a 的取值范围是( ) A. 9,16e ⎛⎫⎪⎝⎭B. (),0-∞C. ()9,0,16e ⎛⎫-∞ ⎪⎝⎭D. ()9,0,16e ⎡⎤-∞⎢⎥⎣⎦【答案】C 【解析】 【分析】构造新函数()()22ln ,0332,02x x x x F x f x x x x x ->⎧⎪=-=⎨--≤⎪⎩,问题转化为()y F x =与y a =有两个交点,作出()F x ,利用数学结合思想,即可求得结果.【详解】令()()22ln ,0332,02x x x x F x f x x x x x ->⎧⎪=-=⎨--≤⎪⎩,当0x >时,函数()()'2ln 11ln F x x x =-+=-, 由()'0F x >得1ln 0x ->得ln 1x <,得0x e <<, 由()F'0x <得1ln 0x -<得ln 1x >,得x e >, 当x 值趋向于正无穷大时,y 值也趋向于负无穷大, 即当x e =时,函数()F x 取得极大值,极大值为()2ln 2F e e e e e e e =-=-=,当0x ≤时,()223392416x x x x F ⎛⎫=--=-++ ⎪⎝⎭, 是二次函数,在轴处取得最大值916,作出函数 ()F x 的图象如图:要使()F x a =(a 为常数)有两个不相等的实根, 则0a <或916a e <<,即若函数()g x 有两个不同零点, 实数a 的取值范围是()9,0,16e ⎛⎫-∞ ⎪⎝⎭. 故选C.【点睛】本题考查函数的零点,构造新函数,转化为两个函数的交点,考查数行结合思想,作出函数图像是解题的关键,属于较难题.二、填空题:本题共4小题,每小题5分,共20分.13.若()y f x =是偶函数,当0x >时,()31xf x =-,则31log 2f ⎛⎫⎪⎝⎭=.______. 【答案】1 【解析】 【分析】根据偶函数的性质,以及题中条件,结合对数运算,可直接得出结果.【详解】因为0x >时,()31xf x =-,且函数()y f x =是偶函数,所以()()3log 23331log log 2log 23112⎛⎫=-==-= ⎪⎝⎭f f f . 故答案为:1【点睛】本题主要考查由函数奇偶性求函数值,熟记偶函数性质,以及对数运算法则即可,属于基础题型.14.若关于x 的不等式2250x x a a -++<的解集是()2,3,则a =_______. 【答案】3-或2 【解析】 【分析】先由题意得到关于x 的方程2250x x a a -++=的两根分别是2和3,进而可求出结果. 【详解】因为关于x 的不等式2250x x a a -++<的解集是()2,3, 所以关于x 的方程2250x x a a -++=的两根分别是2和3, 所以有2236a a +=⨯=,解得:3a =-或2a =. 故答案为:3-或2【点睛】本题主要考查由不等式的解集求参数,熟记三个二次之间关系即可,属于常考题型. 15.设D 为ABC ∆所在平面内一点,4BC CD =,若24AD AB AC λμ=+,则λμ+=__________.【答案】92【解析】 【分析】先由题意,作出图形,根据平面向量的基本定理,得到1544AD AB AC =-+,再由题意确定λμ,的值,即可得出结果.【详解】如图所示,由4BC CD =,可知,B 、C 、D 三点在同一 直线上,图形如右:根据题意及图形,可得:1115()4444=+=+=+-=-+AD AC CD AC BC AC AC AB AB AC ,24AD AB AC λμ=+,124544λμ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得: 125λμ⎧=-⎪⎨⎪=⎩,则19522λμ⎛⎫+=-+= ⎪⎝⎭故答案为:92【点睛】本题主要考查由平面向量基本定理求参数,熟记平面向量的基本定理即可,属于常考题型. 16.下列命题中:①已知函数()21y f x =+的定义域为[]0,1,则函数()y f x =的定义域为[]1,3; ②若集合{}2|40A x x kx =++=中只有一个元素,则4k =±; ③函数112y x=-在(),0-∞上是增函数; ④方程()22log 21xx =++的实根的个数是1.所有正确命题的序号是______(请将所有正确命题的序号都填上). 【答案】①②③ 【解析】 【分析】对于①根据复合函数()21y f x =+与函数()y f x =自变量的关系,即可判断为正确; 对于②等价于方程有等根,故0∆=,求出k 的值为正确;对于对于③,可化为反比例函数,根据比例系数,可判断为正确;对于④,作出2xy =,()2log 21y x =++的图象,根据图像判断两函数有两个交点,故不正确.【详解】对于①,因为函数()21y f x =+的定义域 为[]0,1,即01,1213x x ≤≤∴≤+≤,故()y f x =的定义域应该是[]1,3,故①正确; 对于②,2160k ∆=-=,故4k =±,故②正确;对于③,1121122y x x -==--的图象由反比例函数 12y x-=向右平移12个单位,故其单调性与 函数12y x-=单调性相同,故可判定112y x=-在(),0-∞上是增函数,③正确; 对于④,在同一坐标系中作出2xy =,()2log 21y x =++的图象,由图可知有两个交点.故方程的实根的个数为2,故④错误. 故答案为①②③.【点睛】本题考查复合函数的定义域、函数的单调性、集合的元素、方程零点问题,要求全面掌握函数的性质,较为综合.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知命题:[2,1]p x ∀∈--,不等式2a x x<-恒成立;命题q :函数[1,)x ∀∈+∞,2141--x a x;(1)若命题p 为真,求a 的取值范围;(2)若命题p q ∧是真命题,求实数a 的取值范围. 【答案】(1)1a <-;(2)(),1-∞-. 【解析】 【分析】(1)根据p 为真,得到[2,1]x ∈--时,min2a x x ⎛⎫<- ⎪⎝⎭即可,根据函数单调性,求出2=-y xx 的最小值,进而可求出结果;(2)若q 为真命题,根据题意得到2max141x a x⎛⎫-- ⎪⎝⎭,由函数单调性,求出1y x x=-在[1,)+∞上的最大值,进而可求出结果.【详解】(1) 若p 为真,即[2,1]x ∀∈--,不等式2a x x<-恒成立; 只需[2,1]x ∈--时,min2a x x ⎛⎫<- ⎪⎝⎭即可,易知:函数2=-y x x 在[2,1]--递减,所以2=-y x x的最小值为1-, 因此1a <-.(2)若q 为真命题,则2max141x a x⎛⎫-- ⎪⎝⎭,易知:1y x x=-在[1,)+∞上单调递减,所以min 0y =; 因此2410a -,故12-a 或12a ,因为命题p q ∧是真命题,所以p ,q 均为真命题,故a 满足112a a <-⎧⎪⎨-⎪⎩或112a a <-⎧⎪⎨≥⎪⎩解得:1a <-,因此实数a 的取值范围是(),1-∞-.【点睛】本题主要考查由命题的真假求参数,以及由复合命题真假求参数,根据转化与化归的思想即可求解 ,属于常考题型.18.已知函数2()sin 2cos 1,264x x f x x π⎛⎫=--+∈⎪⎝⎭R(1)求函数()f x 的最小正周期和单调递减区间; (2)求函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值,并求出取得最值时x 的值. 【答案】(1)4π,5114,4()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)最小值为, 3x π=. 【解析】 【分析】(1)先将函数解析式化简整理,得到()23π⎛⎫=- ⎪⎝⎭x f x ,根据正弦函数的周期与单调区间求解,即可得出结果; (2)由2,33x ππ⎡⎤∈⎢⎥⎣⎦得,0236x ππ⎡⎤-∈-⎢⎥⎣⎦,根据正弦函数的性质,即可得出结果. 【详解】(1)因为2()sin 2cos 1sin cos cos sin cos 26426262x x x x x f x πππ⎛⎫=--+=-- ⎪⎝⎭3cos 222223x x x π⎛⎫=-=- ⎪⎝⎭所以函数()f x 的最小正周期为2412T ππ==. 由322,2232x k k k πππππ+-+∈Z ,得51144,33ππππ++∈k x k k Z 故函数()f x 的单调递减区间为5114,4()33ππππ⎡⎤++∈⎢⎥⎣⎦k k k Z .(2)因为2,,,033236x x ππππ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,所以当236x ππ-=-即3x π=时,min ()36f x f ππ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭所以函数()f x 在区间2,33ππ⎡⎤⎢⎥⎣⎦上的最小值为,此时3x π=.【点睛】本题主要考查求正弦型函数的周期,单调区间,以及最值,熟记正弦函数的性质即可,属于常考题型.19.已知二次函数()f x 满足()()1f x f x =-,()20f =,且0为函数()()2g x f x =-的零点.(1)求()f x 的解析式;(2)当[]0,1x ∈时,不等式()f x x m <-+恒成立,求实数m 的取值范围. 【答案】(1)()22f x x x =-++ (2)3m >【解析】 【分析】(1)根据已知条件可得()f x 的对称轴方程,结合()20f =,(0)2f =,即可求出()f x ;(2)从不等式中分离m ,不等式恒成立转为m 与函数的最值关系,即可求出结果. 【详解】(1)设()()20f x ax bx c a =++≠,由题意可知,()()1f x f x =-, 得到122b a -=,即得到=-a b , 又因为0是函数()()2g x f x =-的零点, 即0是方程220ax bx c ++-=的根,即满足20c -=,得2c =,又∵()20f =, ∴4204220a b c a b ++=⇒++=,∵4220a b a b =-⎧⎨++=⎩,∴11a b =-⎧⎨=⎩,∴()22f x x x =-++.(2)当[]0,1x ∈时,()f x x m <-+恒成立, 即222m x x >-++恒成立;令()()222213h x x x x =-++=--+,[]0,1x ∈,则()()max 13h x g ==, ∴3m >.【点睛】本题考查用待定系数法求解析式,考查不等式恒成立问题,转化为函数的最值问题,属于中档题题.20.已知数列{}n a 是等差数列,23a =,56a =,数列{}n b 的前n 项和为n S ,且22n n b S -=. (1)求数列{}n a 、{}n b 的通项公式; (2)记21n n n n na c a ab ++=⋅⋅中,求数列{}n c 的前n 项和n T .【答案】(1)1n a n =+,2nn b = (2)()11222n n T n =-⋅+ 【解析】 【分析】对于{}n a 根据已知条件求出公差,即可求得通项;对于{}n b 利用已知前n 项和n S 与通项关系,可求得通项n b ;(2)根据{}n c 的通项公式,用裂项相消法,可求出{}n c 的前n 项和n T .【详解】(1)由已知得11346a d a d +=⎧⎨+=⎩,解得12a =,1d =,所以1n a n =+, 当1n =时,1122b b -=,∴12b =112,22,22n n n n n b S b S --≥-=-=当时,两式相减得12n n b b -=,112,0,2nn n b b b b -=∴≠∴= {}n b ∴以2为首项公比为2的等比数列,2n n b ∴=.(2)由(1)知,所以()()3212n n n c n n +=⋅+⋅+()()1112122n n n c n n -⇒=-⋅+⋅+()()0112231111111112223232424252122n n n T n n -⎛⎫⎛⎫⎛⎫⎛⎫⇒=-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅⋅+⋅+⎝⎭⎝⎭⎝⎭⎝⎭∴()11222n n T n =-⋅+. 【点睛】本题考查等差、等比数列的通项,考查已知前n 项和求通项,以及求数列的前n 项和,属于中档题. 21.已知函数()()()211ln 2ax a f x x x a R =-++-∈. (1)当0a =时,求函数()f x 的最小值; (2)当0a >时,求函数()f x 的单调区间;(3)当0a =时,设函数()()g x xf x =,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使得函数()g x 在[],m n 上的值域为()()22,22k m k n +-+-⎡⎤⎣⎦,求实数k 的最大值.【答案】(1)()min 1f x = (2)答案不唯一,见解析 (3)9ln 410+ 【解析】 【分析】(1)求导,接着单调区间,即可得出最小值;(2)求导,对a 分类讨论,可求出函数()f x 的单调区间;(3)求出()'g x ,通过分析()''g x ,可得到()g x 在1,2⎡⎫+∞⎪⎢⎣⎭增函数,从而有()()()22,()22g m k m g n k n =+-=+-,转化为()()22g x k x =+-在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的正根1,2m n m n ⎛⎫>≥⎪⎝⎭,()22g x k x +=+,转化为()22g x y x +=+与y a =1,2⎡⎫+∞⎪⎢⎣⎭至少有两个交点,即可求出实数k 的最大值.【详解】(1)当0a =时,()()ln 0f x x x x =->, 这时的导数()1'1f x x=-, 令()'0f x =,即110x-=,解得1x =, 令()'0f x >得到1x >, 令()'0f x <得到01x <<,故函数()f x 在()0,1单调递减,在()1,+∞单调递增; 故函数()f x 在1x =时取到最小值, 故()()min 11f x f ==; (2)当0a >时,函数()()211ln 2ax x f x x a -++-= 导数为()()()1111'x ax ax a x f x x--=-++-=-, 若1a =时,()'0f x ≤,()f x 单调递减, 若1a >时,11a<, 当1x >或10x a<<时,()'0f x <, 当11x a<<时,()'0f x >, 即函数()f x 在区间10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递减, 区间1,1a ⎛⎫⎪⎝⎭上单调递增. 若01a <<时,11a>, 当1x a>或01x <<时,()'0f x <,当11x a<<时,()'0f x >, 函数()f x 在区间()0,1,1,a ⎛⎫+∞⎪⎝⎭上单调递减, 在区间11,a ⎛⎫⎪⎝⎭上单调递增. 综上,若1a =时,函数()f x 的减区间为()0,∞+,无增区间, 若1a >时,函数()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,()1,+∞,增区间为1,1a ⎛⎫⎪⎝⎭, 若01a <<时,函数()f x 的减区间为()0,1,1,a ⎛⎫+∞⎪⎝⎭,增区间为1,1a ⎛⎫ ⎪⎝⎭.(3)当0a =时,设函数()()2ln g x xf x x x x ==-. 令()'2ln 1g x x x =--,()()121''20x g x x x x-=-=>, 当12x ≥时,()''0g x ≥,()'g x 为增函数, ()1''ln 202g x g ⎛⎫≥=> ⎪⎝⎭,()g x 为增函数,()g x 在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭上递增,∵()g x 在[],m n 上的值域是()()22,22k m k n +-+-⎡⎤⎣⎦, 所以()()22g x k x =+-在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的正根1,2m n m n ⎛⎫>≥⎪⎝⎭,()22g x k x +=+, 令()2ln 22x x x x F x =-++,求导得,()()2232ln 2'4x x x x F x +--=+, 令()2132ln 42G x x x x x ⎛⎫=+--≥⎪⎝⎭, 则()()()21'221232x x x x x x G x -+⎛⎫=+-=≥ ⎪⎝⎭,所以()G x 在1,2⎡⎫+∞⎪⎢⎣⎭递增,102G ⎛⎫<⎪⎝⎭,()10G =, 当1,12x ⎡⎤∈⎢⎥⎣⎦,()0G x <,∴()F'0x <, 当[)1,x ∈+∞,()0G x >,∴()'0F x >,所以()F x 在1,12⎡⎤⎢⎥⎣⎦上递减,在[)1,+∞上递增,∴()121F k F ⎛<≤⎫⎪⎝⎭,∴9ln 41,10k +⎛⎤∈ ⎥⎝⎦, ∴k 的最大值为9ln 410+. 【点睛】本题考查函数的极值最值、单调性、值域、零点问题,其实质就是应用求导方法研究函数性质,关键是能结合题意构造函数,是一道综合题.(二)选考题:共10分.请考生在第22、23两题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.在直角坐标系xOy 中,曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为()4πθρ=∈R .(1)求1C 的极坐标方程;(2)若直线2C 与曲线1C 相交于M ,N 两点,求MN . 【答案】(1) 22cos 40ρρθ--=;(2)【解析】 【分析】(1)根据曲线1C 的参数方程消去参数,得到普通方程,再转化为极坐标方程即可; (2)先将直线的极坐标方程化为参数方程,代入()2215x y -+=,根据参数方程下的弦长公式,即可求出结果.【详解】(1)曲线1C 的参数方程为: 1(x y ααα⎧=+⎪⎨=⎪⎩为参数), 转换为普通方程为: ()2215x y -+=,转换为极坐标方程为: 22cos 40ρρθ--=. (2)直线2C 的极坐标方程为()4πθρ=∈R .转换为参数方程为: 22x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数). 把直线的参数方程代入22(1)5x y -+=,得到: 240t --=,(1t 和2t 为M ,N 对应的参数),故: 12t t +124t t ⋅=-, 所以12||MN t t =-==【点睛】本题主要考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,以及求弦长的问题,熟记公式即可,属于常考题型.23.已知()|1||1|f x x ax =+++.(1)当1a =-时,求不等式()3f x ≥的解集;(2)若1x ≥时,不等式()2f x x ≥+恒成立,求a 的取值范围.【答案】(1) 33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)(,2][0,)-∞-⋃+∞. 【解析】【分析】(1)先由1a =-得|1||1|3++-≥x x ,分别讨论1x <-,11x -≤<,1x ≥三种情况,即可得出结果;(2)先由题意,得到当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x-或0a ≥恒成立,进而可求出结果.【详解】(1)当1a =-时,不等式()3f x ≥可化简为|1||1|3++-≥x x .当1x <-时,113x x --+-≥,解得32x -,所以32x - 当11x -≤<时,113x x ++-≥,无解;当1x ≥时,113x x ++-≥,解得32x ≥,所以32x ≥; 综上,不等式()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭; (2)当1x ≥时,不等式()2f x x ≥+可化简为11ax +≥.由不等式的性质得11ax +≤-或11ax +≥,即2ax ≤-或0ax ≥. 当1x ≥时,不等式()2f x x ≥+恒成立转化为2a x -或0a ≥恒成立; 则2a ≤-或0a ≥.综上,所求a 的取值范围为(,2][0,)-∞-⋃+∞.【点睛】本题主要考查解含绝对值不等式,以及由不等式恒成立求参数的问题,灵活运用分类讨论法求解即可,属于常考题型.。
三校联考(一)文数-答案
文科数学参考答案·第1页(共10页)2020届“3+3+3”高考备考诊断性联考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案C D C D B C B D C D B B 【解析】1.依题有接受调查的100名学生中有70位看过《我和我的祖国》,故全校学生中约有2300*0.7=1610人看过《我和我的祖国》这部影片,故选C . 2.由2i i z +=,得|2i||i|||||z z +==,,故选D .3.某单位共有老年人120人,中年人360人,青年人n 人,样本中的中年人为6人,则老年人为61202360⨯=, 青年人为636060n n = 2686060n nm m ++=⇒+=,代入选项计算,C 不符合,故选C .4.原不等式等价于|sin ||cos |x x ≥,即正弦线长度长于或等于余弦线长度,故选D . 5.设{}n a 的公差为d ,由24836149a a a a a ++=+10a d =≠,1141419914()1415729()91032a a S d a a S d +⨯===+⨯,故选B .6.由题意可知2cos sin ax x a x y x -'=,故在点(π0)M ,处的切线方程为1(π)ππa y x x -=-=-b +,11a b =⎧⎨=⎩,则,故选C .7.由()f x 为奇函数,得()f x 的图象关于原点对称,排除C ,D ;又当π04x <<时,()0f x >,故选B .文科数学参考答案·第2页(共10页)8.已知1260AB BC ABC ==∠=︒,,,由余弦定理可得2222cos60AC AB BC AB BC =+-︒3=,所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .9.由程序框图得0z =,第一次运行011101011a z n =+==+==+=,,;第二次运行0i i 1i 112b z n =+==+=+=,,;第三次运行,…,故(1111)(i i i)z =-++-+-+- 0=,故选C .10.因为双曲线E 的一条渐近线方程为2y x =,所以2b a =,c e a ===,由OAF△的面积是,221422b c b b a===得所以,,所以1a =,双曲线的实轴长为2,故选D .11.当00x y ==,时,即220x y +≤符合题意,此时0m =,排除A ,D ,由题意可知,以(00),为圆心的圆在不等式24x y x y ⎧+⎪⎨-⎪⎩≤≤所表示的区域内,半径最大的圆22x y m +=应与直线相切,圆心到240x y --=的距离为1d ===,圆心到x y +=为22d ==,由于12d d <,∴符合题意的最大的圆为222165x y +==,故选B . 12.设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,,将直线EF 的方程与圆的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,,得2221(1)204k x kbx b +++-=,由韦达定理得文科数学参考答案·第3页(共10页)122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩所以211221sin()sin cos cos sin 444()x y x y x kx b αβαβαβ+=+=+=+ 2212121222188244()84()11k b kb k x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.由()3a b a -= ,得3a b a a -= ,即4a b = ,故1cos 2||||a ba b a b 〈〉==,,则向量a 与b 的夹角为π3. 14.由n S 的表达式知,{}n a 为等差数列,设公差为d ,则1114d d ++,,成等比数列,故2(1)14d d +=+,即220d d-=,解得0d =或2d =,若01n n d a S n ===,,,与0A ≠矛盾,故32125d a d ==+=,.1522233⨯⨯=. 16.依题意,112||||2PF F F c ==,由椭圆的定义可得2||22PF a c =-,所以21cos PF F ∠=212||2||PF F F=1111224a c c e -⎛⎫=-= ⎪⎝⎭,从而21sin 4PF F ∠=因为离心率23c a =,所以12PF F S =△12 212||||PF F F 21sin PF F ∠=2()24c a c -=,又12PF F S =△,解得24c =,所以2295a b ==,,故椭圆C 的方程为22195x y +=.文科数学参考答案·第4页(共10页)三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分) 解:(1)由已知得(0.110.065)20.5b ++⨯=,故0.075b =.……………………………………………………………………………(3分) 法一:212(0.110.0750.0750.0650.05)a =-⨯++++,0.125a =∴.……………………………………………………………………………(6分) 法二:1()10.50.5P C -=-=,2(0.050.075)0.50.125a a ⨯++==∴,∴.………………………………………………(6分) (2)2(0.0520.07540.12560.1180.075100.06512)⨯⨯+⨯+⨯+⨯+⨯+⨯ 2(0.10.30.750.880.750.78)=⨯+++++2 3.567.12=⨯=,………………………………………………………………………(10分)估计女子的平均身高为163(7.121)169.12+-=(cm).……………………………………………………………………………………(12分)18.(本小题满分12分)解:(1)cos (2)cos 0b C c a B +-=∵,cos cos 2cos b C c B a B +=∴,…………………………………………………………(1分)由正弦定理得sin cos cos sin 2sin cos B C B C A B +=,…………………………………(2分) sin()sin(π)sin 0B C A A +=-=≠, ……………………………………………………(3分)12cos 1cos 2B B ==∴,,………………………………………………………………(5分) (2)ABC ∵△为锐角三角形,13B a ==,,2πππ362A C A +=<<∴,,……………………………………………………………(7分)文科数学参考答案·第5页(共10页)由正弦定理得1sin sin sin b cA B C==, 2πsin πsinsin sin 33sin sin sin sin A B C b c A A A A⎛⎫- ⎪⎝⎭+=+=+∴ …………………………………………(8分)1cos sin cos 1cos )1222sin sin 2sin 2sin 22sin 2A AA A A A A A A ++=+=++=+ ,1cos 1cos 1126ππ222sin 2sin 26b c ⎫⎫++⎪⎪⎝⎭⎝⎭+<+<+∴,……………………………………(11分) 2b c <+<+,即bc +的取值范围是2⎫⎪⎪⎝⎭. ……………………………………………………………………………………(12分)19.(本小题满分12分)解:(1)由已知底面ABCD 为正方形,PD ⊥平面ABCD ,2PD AD ==,得PD ⊥AD ,PD ⊥AB ,AD ⊥AB .………………………………………………………(1分) 又PD AD D = ,∴AB ⊥平面P AD ,∴PA ⊥AB ,∴PA =PB =………………………………………………………………………………………(2分) ∴PAB S =△2PAD S =△,…………………………………………………………(3分) 同理PCB S =△2PCD S =△,4ABCD S =,文科数学参考答案·第6页(共10页)∴8S =+四棱锥表面积,…………………………………………………………………(4分)1833P ABCD ABCD V S PD -== .………………………………………………………………(6分)(2)设内切球的半径为r ,球心为O ,则球心O 到平面P AB ,平面P AD ,平面PCB ,平面PCD ,平面ABCD 的距离均为r , 由P ABCD O PAB O PAD O PCB O PCD O ABCD V V V V V V ------=++++,可得11111113333333ABCD PAB PAD PCB PCD ABCD S PD S r S r S r S r S r S r =++++= △△△△正方形四棱锥表面积,………………………………………………………………………………………(8分)∴2ABCD S PD r S == 正方形四棱锥表面积………………………………………………………(10分)∴24π(24πS r ==-内切球表面积.……………………………………………………………………………………(12分)20.(本小题满分12分)解:(1)21()(1)e x k f x x x =-=---,, 令()e 2(e 2)00x x f x x x x x '=--=-+=⇒=,………………………………………………………………………………………(2分)故(0)()0(0)()0x f x x f x ''∈-∞>∈+∞<,,;,,,………………………………………………………………………………………(3分) ()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,.………………………………………………………………………………………(4分)文科数学参考答案·第7页(共10页)(2)()e 2(e 2)x x f x kx x x k '=-=-,令2()0ln [0ln 2]f x x k'=⇒=∈,,其中[12]k ∈,.……………………………………(5分)令2()ln[12]g x x x x=-∈,,, 211()21102x g x x x ⎛⎫'=--=--< ⎪⎝⎭,……………………………………………………(6分)故()g x 在[12],上单调递减,故2()(1)ln 210lng x g k k=-<⇒<≤,…………………………………………………(7分) 故220ln ()0ln ()0x f x x k f x k k ⎛⎫⎛⎫''∈<∈> ⎪ ⎪⎝⎭⎝⎭,,;,,从而()f x 在20ln k ⎛⎫ ⎪⎝⎭,上单调递减;在2ln k k ⎛⎫⎪⎝⎭,上单调递增,………………………………………………………………………………………(8分) 故在[0]k ,上,函数2max ()max{(0)()}max{(1)e }[12].k f x f f k k k k k k ==---∈,,,,………………………………………………………………………………………(9分) 由于2()(0)(1)e [(1)e 1]k k f k f k k k k k k k -=--+=--+,令()(1)e 1[12]x h x x x x =--+∈,,,……………………………………………………(10分) ()e 10x h x x '=->,对于[12]x ∀∈,恒成立,从而()(1)0h x h =≥,即()(0)f k f ≥,当1k =时等号成立,…………………………………………………(11分) 故2max ()()(1)e k f x f k k k k ==--.……………………………………………………(12分)文科数学参考答案·第8页(共10页)21.(本小题满分12分)(1)证明:依题意有104F ⎛⎫⎪⎝⎭,,直线14l y kx =+:,…………………………………(1分)设1122()()A x y B x y ,,,,直线l 与抛物线E 相交,联立方程214y x y kx ⎧=⎪⎨=+⎪⎩,消去y ,化简得2104x kx --=,………………………………(2分) 所以,121214x x k x x +==-,.…………………………………………………………(3分) 又因为2y x '=,所以直线1l 的斜率112k x =.同理,直线2l 的斜率222k x =,…………………………………………………………(4分) 所以,121241k k x x ==-,………………………………………………………………(5分) 所以,直线12l l ⊥,即90ADB ∠=︒.…………………………………………………(6分) (2)解:由(1)可知,圆Γ是以AB 为直径的圆,设()P x y ,是圆Γ上的一点,则0PA PB =,所以,圆Γ的方程为1212()()()()0x x x x y y y y --+--=,………………………………………………………………………………………(7分) 又因为22212121212121211111444216x x k x x y y kx kx k y y x x +==-+=+++=+==,,,所以,圆Γ的方程可化简为222130216x y kx k y ⎛⎫+--+-= ⎪⎝⎭,………………………………………………………………………………………(8分)联立圆Γ与抛物线E 得2222130216x y kx k y y x ⎧⎛⎫+--+-=⎪ ⎪⎝⎭⎨⎪=⎩,,文科数学参考答案·第9页(共10页)即211042x kx ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,即2213044x kx x kx ⎛⎫⎛⎫--++= ⎪⎪⎝⎭⎝⎭,………………………………………………………………………………………(9分) 若方程2104x kx --=与方程2304x kx ++=有相同的实数根0x , 则20020020010114032404x kx kx x x kx ⎧--=⎪⎪⇒=-⇒+=⎨⎪++=⎪⎩,,矛盾,……………………………………………………………………………………(10分) 所以,方程2104x kx --=与方程2304x kx ++=没有相同的实数根, 所以,圆Γ与抛物线E 有四个不同的交点等价于221030k k k k ⎧+>⎪⇔><⎨->⎪⎩,解:(1)由曲线C 的极坐标方程是6sin ρθ=,得直角坐标方程为226x y y +=, 即22(3)9x y +-=.……………………………………………………………………(3分) (2)把直线l 的参数方程cos 2sin x t y t θθ=⎧⎨=+⎩,,(t 为参数), 代入圆C 的方程得22(cos )(sin 1)9t t θθ+-=,化简得22sin 80t t θ--=.……………………………………………………………………………………(5分)文科数学参考答案·第10页(共10页)设A B ,两点对应的参数分别是12t t ,,则122sin t t θ+=,128t t =-,………………………………………………………………………………(6分)故12||||AB t t =-===…………………………………………………………………………………(8分)得sin 2θ=±,…………………………………………………………………………(9分) 得1k =±.………………………………………………………………………………(10分) 23.(本小题满分10分)【选修4−5:不等式选讲】证明:(1)由柯西不等式,得213411341()622a b c a b c a b c ⎛⎫++=+++++=+ ⎪⎝⎭≥所以1346a b c+++≥………………………………………………………………(5分) (2)由柯西不等式,得222222211()()222c a b c a b a b c c a b ab c a b c ⎛⎫⎛⎫++=++++++= ⎪ ⎪⎝⎭⎝⎭≥,所以2222c a b a b c++≥.………………………………………………………………(10分)。