2019届北京市通州区潞河中学第一学期高三10月月考 数学(理)
2019届高三10月月考数学(理)试卷(含答案)
2019届高三上学期十月知识总结一一理科数学、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的1 •复数z 满足Z 1 -i = 1 i ,则复数z 在复平面内的对应点位于( )A.第一象限B•第二象限 C •第三象限 D •第四象限X —122. 已知集合 A = {x | 0}, B ={ x | y = lg( -x4x 5)},则 A 「(C R B)=()x +2A. (-2,—1]B • [-2,一1]C • (-1,1]D • [-1,1]3. 给出下列四个命题: ① 若A^B ,贝U A 或B ;② -[2 * ,都有 x 2 2x ;12 2③ "a”是函数“ y =cos 2ax -sin 2ax 的最小正周期为 二”的充要条件;2④ “ x^ R, x 02 2 3x )” 的否定是“ R, x 2 2 乞 3x ”;其中真命题的个数是(立,则f (2018)的值为(A. 1A. 1A. 14.已知函数f(x)是定义在 B. 2 C. 3R 上的偶函数,且f (0) = -1,且对任意D .二-f (2-x)成5.如果实数 x - y 1 — 0,x, y,满足条件2x ,y 「2_0,,贝V z =1 x 十0,2x 3y的最大值为(6.在平行四边形A.ABCDKAD=1,. BAD =60 ,E为CD的中点•若AC BE = 1,则AB的长为(D. 22 2 27.已知数列{a .}的前n 项和为S n ,且S n ^2a n ,则使不等式a • a ? V a . :: 86成立的n 的最大值为()9.若将函数f (x ) =sin (2x •「)「、3cos (2x •「)(0”「r )的图象向左平移 1个单位长度,平移4后的图象关于点(一,0)对称,则函数g (x ) =cos (x •::)在[ / ]上的最小值2 2 6、• 3C2cosB 」3sinB =2,则a c 的取值范围是()H n =2n 1,记数列{a n -20}的前n 项和为&,则&最小值为(12.对于函数f x 和g x ,设二三:x f x = 0』,—:xg x =0』,若存在:J ,使得8.两个正实数 x, y 满足A.(-1,4)B.1 4 一 y 21,且不等式x m —3m 有解,则实数m 的取值范围是(x y 4(一①-1) (4, ::) C.(_4,1) D. (_::,0) (3,::)1 A.210.在锐角 ABC 中,角A,B,C 的对边分别为a,b,c ,若凹bA. 3,2'B. C.一2汁3D.11.对于数列{a n },定义H n=a1+2a2川2 an为的{a n }“优值”,现已知某数列的“优值”A. —70C . -64D . -68则称f X 与g x 互为“零点相邻函数” •若函数f x 二 e x4 x - 2 与g x 二 x 2 _ ax _ a 3 互为“零点相邻函数”,则实数a 的取值范围是( A. 2,41 B.汀7C.D.2,3】 二.填空题(本大题共4小题,每题5分.共20 分)13•已知数列Q =1,a n=a n,+3n (n^2,,则数列牯」的通项公式a n= .?■=•T B■“Y R. =•«14. 已知向量|a—b|=|b|, |a—2b冃b|,则向量a,b的夹角为 _____________________________15. 已知关于x的不等式2x -1 mx2 -1 ,若对于xd, •::不等式恒成立,则实数m的取值范围是In x 1 16•已知函数f x是可导函数,其导函数为 f x,且满足xf (x) • f (x),且f (e)=-x e,则不等式f (x +1) - f (e +1) AX—e的解集为 ___________________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在ABC中,角A,B,C的对边分别是a,b,c, C=60; . 2^ . 3b.(1)求角代B的大小;(2)若D为边AC上一点,且a = 4 , BCD的面积为.3,求BD的长.18. (本小题满分12分)已知数列{a n}是公差为正数的等差数列,a2和a5是方程x2-12x • 27 = 0的两个实数根,数列{bJ满足j 1 b n二na n1 -(n-1)a n(1) 求{a n}和{b n}的通项公式;(2)设T n为数列{b n}的前n项和,求T n.2 1 19.(本小题满分12 分)已知向量m = (.3cosx,1) ,n = (si nx,cos x-1),函数f(x)=m・ n -(1)若x 0, , f x 3,求cos2x 的值;IL 4 3(2)在ABC中,角A,B,C对边分别是a, b,c,且满足2bcosA乞2c-■■一3a,当B取最大值时,-3 a 亠ca=1“ABC面积为,求的值.sin A +sin C420.(本小题满分12分)已知各项均不相等的等差数列{耳}的前四项和S4 =14,且a,,a3,a7成等比.(1)求数列{耳}的通项公式;1(2)设T n为数列{ -------- }的前n项和,若’T n _ a n勺对一切n三a n a n ■+N*恒成立,求实数■的最大值.2x —121.(本小题满分12分)已知fx二ax-l nx .x(1)若函数f x在x=2处取得极值,求a的值,并求此时曲线程;(2)讨论f x的单调性•y = f x在1, f 1处的切线方22.(本小题满分12分)已知函数f(x)=xln x, g(x) =£ ax2-bx , (1)当a 0,且a为常数时,若函数h(x^x lg(x) 1对任意的成立,试用a表示出b的取值范围;(2)当 a 时,若f(x V)_2 g(x)对x € [0 ,+s)恒成立,其中a,b・R\ x2 _ 4,总有. 0X1 —X2求a的最小值.理科数学月考题答案1~5 AAAAB 6~10 BBBDB 11~12BD3n+ -713. a n 2兀14.614. m _015. -1,e17. (1 ) 18. (1 )A = 75 , B = 45 (2) BD - 13a n =2n -1,6 二4n-1 3nJ⑵ T n = 5 4n-5 2n.319.(1)6(2) 220.(1)O n =n 1(2)' max = 1611 21. a 二y = x —一2222.(1)由题意,得1 3h(x)二xg(x) x 二㊁ax2-bx x在x・[4,;)上单调递增二h'(x)二ax2-2bx 1 _0 在x [4,::)上恒成立22b乞童-=ax -在x・[4,;)上恒成立x x构造函数F(x) =ax 1 (a 0), x (0,::)x2 .贝V F '(x)二a -吉二ax2Tx x••• F(x)在(0, a)上单调递减,在(a,;)上单调递增a a(i) 当4,即0 :::a :::去时,F(x)在[4,―彳)上单调递减,在(一乩,;)上单调递增a 16 a a•〔F(x) Lin =F(严)=2 a• 2b岂I.F(x) m in,从而 (」:,• a](ii) 当—-4,即a 一±时,F(x)在(4 ,+s )上单调递增a 162b <F (4) =4a 1,从而b (_::,2a Q] 8 分4 8综上,当0 :::a ::: 16 时,b (_::, a] , a 时,b (_::, 2a ;];(2)当b=-|a时,构造函数G(x) =f (x 1) —3g(x) =(x 1)ln(x 1)—*ax2—ax, x [0,::)由题意,有G(x)乞0对x・[0, •::)恒成立T G '(x) =ln(x 1) 1 _ax -a, x 二[0,::)(i) 当a ^0 时,G'(x)=ln(x 1) 1 —a(x 1) 0••• G(x)在[0,;)上单调递增••• G(x) G(0) =0在(0,;)上成立,与题意矛盾.(ii) 当a 0 时,令(x) =G '(x), x [0,二)则:'(x) 斗-a,由于斗(0,1)x +1 x +1①当a _1时,'(X)二丄—a:::0 , (x)在X [0,二)上单调递减x +1•(X)乞(0) =1 —a 乞0,即G'(x)E0在X [0,::)上成立• G(x)在x三[0,亠)上单调递减• G(x)乞G(0)=0在[0,;)上成立,符合题意7伙一(1一1)]②当0 ::a ::1 时,:'(x)a a,x:=[0,;)x +1 x +1•- (x)在x [0, 1 -1)上单调递增,在x ({ -1,=)上单调递减T (0) =1 -a 0•- (x) 0在x [0, 1 -1)成立,即G '(x) 0 在x [0, 1 -1)成立a a• G(x)在x [0,丄一1)上单调递增a• G(x) G(0) =0在x (0,丄-1)上成立,与题意矛盾a综上,a的最小值为1。
通州区2019届高三第一学期期末数学(理)试题及答案
通州区2018-2019学年第一学期高三年级期末考试数学(理科)试卷2019年1月第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1. 设集合{}2430A x x x =-+<,{}230B x x =->,则AB =A.33,2⎛⎫-- ⎪⎝⎭ 错误!未找到引用源。
B. 33,2⎛⎫- ⎪⎝⎭错误!未找到引用源。
C. 31,2⎛⎫ ⎪⎝⎭错误!未找到引用源。
D. 332⎛⎫⎪⎝⎭,错误!未找到引用源。
2. 设向量()3,4=-a ,()0,2=-b ,则与+a b 垂直的向量的坐标可以是A.B. C.D.3.已知()y f x =是定义在R 上的奇函数,且当0x >时,()21xf x =-,则()2f -等于A . 3-B. 114-错误!未找到引用源。
C. 34- 错误!未找到引用源。
D. 3错误!未找到引用源。
4.已知双曲线()222105x y a a -=>错误!未找到引用源。
的右焦点与抛物线212y x =的焦点重合,则a 等于A.1B . 2 C. 3 D. 错误!未找到引用源。
5. 已知x ,y 满足不等式组1,230,,x x y y x ≥⎧⎪-+≥⎨⎪≥⎩则z x y =+的最大值等于A. 1B.2C.3 D . 66. 设(),1,a b ∈+∞,则“错误!未找到引用源。
”是“log 1a b <”的A. 充分而不必要条件B. 必要而不充分条件C . 充分必要条件 D. 既不充分也不必要条件7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为A. 1 B . 2 C. 2 D. 58.设函数()y f x =错误!未找到引用源。
图象上不同两点()11,A x y ,()22,B x y 处的切线的斜率分别是A k ,B k 错误!未找到引用源。
通州区一中2018-2019学年上学期高三数学10月月考试题(1)
通州区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度. 2. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 3. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .364. 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )A .123S S S <<B .123S S S >>C .213S S S <<D .213S S S >> 5. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .26. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)7. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5 B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]8. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2 D .2 59. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能10.双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .11.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-112.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .14.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________. 15.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.16.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .17.已知角α终边上一点为P (﹣1,2),则值等于 .三、解答题18.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.19.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6, (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.20.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.21.对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.若集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω. 如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,所以P 2具有性质Ω.(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B . (Ⅲ)若存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B ,求n 的最大值.22.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.23.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.24.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a 时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.通州区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A 【解析】2. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 3. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,故展开式中含x 3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x 3项的系数之和为20,故选:A .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.4. 【答案】A 【解析】考点:棱锥的结构特征. 5. 【答案】A解析:解:由作出可行域如图,由图可得A (a ,﹣a ),B (a ,a ),由,得a=2.∴A (2,﹣2),化目标函数z=2x ﹣y 为y=2x ﹣z ,∴当y=2x ﹣z 过A 点时,z 最大,等于2×2﹣(﹣2)=6. 故选:A . 6. 【答案】B 【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x+2(a >0且a ≠1)图象一定过点(0,3), 故选B .【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.7. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 8. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 9. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.10.【答案】A 【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A .11.【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 12.【答案】C【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.二、填空题13.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.14.【答案】2a ≥ 【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 15.【答案】D 【解析】16.【答案】【解析】试题分析:因为ABC ∆中,2,60AB BC C ===︒2sin 2A=,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,12ABCS AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abcR等等.17.【答案】 .【解析】解:角α终边上一点为P (﹣1,2), 所以tan α=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.三、解答题18.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.19.【答案】【解析】解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n 项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.20.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111]由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-.(2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 21.【答案】【解析】解:(Ⅰ)∵对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.∴集合P 3,P 5中的元素个数分别为9,23,∵集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω,∴P 3不具有性质Ω.…..证明:(Ⅱ)假设存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .其中E 15={1,2,3,…,15}. 因为1∈E 15,所以1∈A ∪B ,不妨设1∈A .因为1+3=22,所以3∉A ,3∈B .同理6∈A ,10∈B ,15∈A .因为1+15=42,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.22.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.23.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列.∴数列}{n a 的通项公式为nn a 3=.………………5分24.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()111284a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩ ,进而求得:()111284a ⎛⎫∈ ⎪ ⎪⎝⎭,,.。
通州区高中2018-2019学年上学期高三数学10月月考试题(1)
通州区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x2. 已知角的终边经过点()3P x ,()0x <且cos x θ=,则等于( )A .1-B .13- C .3- D .3. 执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .1004. 定义运算,例如.若已知,则=( )A .B .C .D .5. 双曲线E 与椭圆C :x 29+y23=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积为π,则E 的方程为( ) A.x 23-y 23=1 B.x 24-y 22=1 C.x 25-y 2=1 D.x 22-y 24=1 6. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .187. 复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i8. 抛物线y 2=6x 的准线方程是( )A .x=3B .x=﹣3C .x=D .x=﹣9. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 10.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 11.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .12.某几何体的三视图如图所示,则该几何体的表面积为( )A .12π+15B .13π+12C .18π+12D .21π+15二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 15.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足A B =∅,{}|52A B x x =-<≤,求实数a =__________.16.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.三、解答题(本大共6小题,共70分。
2019-2020年北京市通州区潞河中学第一学期高三10月月考 数学(理)
2019-2020年北京市通州区潞河中学第一学期高三10月月考 数学(理)说明:本试卷共三道大题20道小题,共4页,满分150分,考试时间120分钟;考生务必按要求将答案答在答题纸上.在试卷上作答无效.一、选择题(本大题共8道小题,每小题5分,共40分.在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母按规定要求填涂在“答题纸”第1-8题的相应位置上.)1.已知集合,,则=B A ( )A .B .{}0C .D . 2.“12<x ”是“1<x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.已知,则=α2cos ( ) A.1 B.21 C.0 D.21- 4.下列函数是奇函数且在区间上单调递减的是A. B.C. D.()1+-=x x f 5.以角θ的顶点为坐标原点,始边为x 轴的非负半轴,建立平面直角坐标系,角θ终边过点()3,1P ,则=⎪⎭⎫ ⎝⎛-4tan πθ( )A .2-B.2 C .21-D .216.已知平面向量()2,1=a ,()y b ,2-=,且b a ⊥,则=y ( ) A .4-B.4 C .1D .1-{}1,0,1A =-{}21B x x =<{}1,1-{}1,0,1-{}11x x -≤≤sin 2α=(1,+)∞3()f x x =-()f x =1()f x x x=+7.已知等比数列中,143527,a a a a ==,则7a =( ) A.127B.19C.13D.38.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且()c C B b a B A )sin (sin )sin (sin +=-+,则ABC ∆中A ∠为A.π6B.2π3C.π3D.5π69.函数的图象如图所示,在区间上可找到个不同的数,使得()()()nn x x f x x f x x f === 2211,则的取值的集合为A.{}5,4,3,2B.C.D.10.已知函数x x x f cos )(=,现给出如下命题:① 当()3,4--∈x 时,()0>x f ; ② ()f x 在区间()6,5上单调递增; ③ ()f x 在区间(1,3)上有极大值;④ 存在0>M ,使得对任意x ∈R ,都有|()|f x M ≤.二、填空题(共6小题,每小题5分,共30分.)(9)在复平面内,复数21i +对应的点与原点的距离是 . (10)曲线sin y x =在点(3π .(11)设a =20.5,b =0.32,c =log 20.3,则a 、b 、c 的大小关系是 .{}n a(12)在等比数列}{n a 中,a n >0,a 3=4,a 7=64,则数列{n a 2log }的前9项之和为 .(13)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0),作圆O :x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若点E 恰为线段FP 的中点,则双曲线C 的离心率为 .(14)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则a= ;b= ;f (x )的最大值为________. 三、解答题(共6小题,共80分。
2019届高三数学10月月考试题 理 人教版
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三数学10月月考试题 理一、选择题(本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1、已知集合(){}(){}11lg 1,042<+<-==-=x x B x x x A ,则=⋂B A ( )A {}2,0B {}2,0,2-C {}0D {}22、若1sin 3α=,则cos 2α= ( )A 89B 79C 79-D 89- 3、已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+= ( ) A 1- B 1 C21 D 21- 4、ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =A 2πB 3πC 4πD 6π 5、定积分()=-⎰xxde x 12 ( )A e 2B e +2C eD e -26、若函数()()2ln 4,2--==x x x h x x g ,则函数()()()x h x g x f -=的所有零点之和为( )A 0B 2C 4D 8 7、已知πα<<0,51cos sin =+αα,则=α2tan ( ) A. 43-B. 43C. 724D. 724- 8、已知函数()222cos sin 2f x x x =-+,则 ( ) A ()f x 的最小正周期为π,最大值为3 B ()f x 的最小正周期为π,最大值为4 C ()f x 的最小正周期为2π,最大值为3D ()f x 的最小正周期为2π,最大值为49、已知函数()x f 是定义域为R 上的奇函数,且()x f 的图像关于直线1-=x 对称,当10≤≤x 时,()23x x x f -=,则()=2019f ( )A 2-B 2C 0D 310、若函数()xxax x f 4143++=,如果()65=f ,则()=-5f ( ) A 6- B 5- C 4- D 011、若直线b ax y +=与曲线()1ln -=x x f 相切,则=+b a 2ln 2 ( )A 4 B41C 4-D 2- 12、已知()()()x x x g ax x e x f x +-=++=-ln ,2,若对于任意0<x ,不等式()()x g x f ≥恒成立,则实数a 的取值范围是 ( ) A (]e ,∞- B (]1,+∞-e C [)+∞+,2e D (]2,+∞-e二、填空题(本大题共4小题,每小题5分,共20分) 13、求值:020sin 135cos 20cos -=_____________14、已知函数()xe xf x-=1,给出下列命题:①()x f 没有零点;②()x f 在()1,0上单调递增; ③()x f 的图象关于原点对称; ④()x f 没有极值其中正确的命题的序号是_____________ 15、若函数()32232--⎪⎭⎫ ⎝⎛=x ax x f 在R 上的最小值为49,则函数()x f 的单调递减区间为_____16、已知定义域为R 的函数()x f 的导函数为()x f ',且满足()()x f x f 2>',如果e f =⎪⎭⎫ ⎝⎛21,则不等式()2ln x x f <的解集为_________三、解答题(本大题共6小题,共70分) 17、(本小题满分12分)已知命题p :()aa x x f 2122+-=的定义域为R ;命题q :函数()122++=x ax x g 在⎪⎭⎫⎢⎣⎡+∞,21上单调递减;命题r :函数()()a kx x x h -+=2lg 的值域为R . (I )若命题p 是假命题,q 是真命题,求实数a 的取值范围;(II )若“命题q 是假命题”是“命题r 为真命题”的必要不充分条件,求实数k 的取值范围.18、(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b=2. (I )求c ;(II )设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.19、(本小题满分12分)已知∆ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sin A-sin B )=(c-b )(sin C+sinB ).(I )求角C ;(II )若c=7,∆ABC 的面积为233,求△ABC 的周长.20、(本小题满分12分)已知函数f (x )=sin(5π6-2x )-2sin(x -π4)cos(x +3π4).(I )求函数f (x )的最小正周期和单调递增区间;(II )若x ∈[π12,π3],且F (x )=-4λf (x )-cos(4x -π3)的最小值是-32,求实数λ的值.21、(本小题满分12分)设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.(I)求f(x)的单调区间;(II)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22、[选修4-4:坐标系与参数方程](本小题满分10分)在直角坐标系xOy中,曲线C的参数方程为2cos,4sin,xθyθ=⎧⎨=⎩(θ为参数),直线l的参数方程为1cos,2sin,x tαy tα=+⎧⎨=+⎩(t为参数).(I)求C和l的直角坐标方程;(II)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.[选修4-5:不等式选讲](本小题满分10分)设函数()5|||2|f x x a x=-+--.(I)当1a=时,求不等式()0f x≥的解集;(II)若()1f x≤,求a的取值范围.高三年级月考考试数学试题(理科)答案16、选择题:ABDCDC CBABCD二、填空题:13、2- 14、①④ 15、(]1,-∞- 16、 ()e ,0三、解答题 17、23、解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0,得c =-6(舍去)或c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.19、解:(1)由a (sin A-sin B )=(c-b )(sin C+sin B )及正弦定理,得a (a-b )=(c-b )(c+b ),即a 2+b 2-c 2=ab. 所以cos C==,又C ∈(0,π),所以C=.(2)由(1)知a 2+b 2-c 2=ab ,所以(a+b )2-3ab=c 2=7.又S=21ab sin C=43ab=233,所以ab=6,所以(a+b )2=7+3ab=25,即a+b=5.所以△ABC 周长为a+b+c=5+7.20、解(1)∵f (x )=sin5π6-2x -2sin x -π4cos x +3π4=12cos2x +32sin2x+(sin x -cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin2x-π6, ∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2) F (x )=-4λf (x )-cos4x -π3=-4λsin2x -π6-1-2sin 22x -π6=2sin 22x -π6-4λsin2x -π6-1=2sin2x -π6-λ2-1-2λ2.∵x ∈π12,π3,∴0≤2x -π6≤π2,∴0≤sin2x -π6≤1.①当λ<0时,当且仅当sin2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.21、解:(1)由f (x )=(x-1)3-ax-b ,可得f'(x )=3(x-1)2-a.下面分两种情况讨论:(i)当a ≤0时,有f'(x )=3(x-1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞). (ii)当a>0时,令f'(x )=0,解得x=1+33a 或x=1-33a .当x 变化时,f'(x ),f (x )的变化如下-∞,1- 1-,1+ 1+,+∞+所以f (x )的单调递减区间为1-,1+,单调递增区间为-∞,1-,1+,+∞.(2) 证明:因为f (x )存在极值点,所以由(1)知a>0,且x 0≠1.由题意,得f'(x 0)=3(x 0-1)2-a=0,即(x 0-1)2=3a ,进而f (x 0)=(x 0-1)3-ax 0-b=-32a x 0-3a -b.又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b=38a (1-x 0)+2ax 0-3a-b=-32a x 0-3a -b=f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.22、[选修4-4:坐标系与参数方程]解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.无解故舍去.②当直线的斜率存在时,利用中点坐标公式,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.23.[选修4-5:不等式选讲]解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).。
2019年北京通州高三一模数学理科答案.doc
通州区高三年级第一次模拟考试 数学(理科)试卷参考答案及评分标准第一部分(选择题 共40分)第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.三 10.7 11.112.()()21f x x =-(答案不唯一) 13.48 14. ① ③ , (]0-∞,三、解答题:本大题共6小题,共80分.15.解:(Ⅰ)()()22sin cos 2cos 1f x x xx =π-+-2s i n c o s c o s x x x =+sin 2cos 2x x =+………………3分2222x x ⎫=+⎪⎪⎭………………4分 s i n 24x π⎛⎫=+ ⎪⎝⎭, ………………5分 所以最小正周期22T π==π; ………………6分 (Ⅱ)因为,44x ππ⎡⎤∈-⎢⎥⎣⎦, 2019.4所以2,22x ππ⎡⎤∈-⎢⎥⎣⎦,32,444x πππ⎡⎤+∈-⎢⎥⎣⎦. ………………7分所以当244x ππ+=-,即4x π=-时,sin 24x π⎛⎫+ ⎪⎝⎭有最小值2-10分 所以()f x 有最小值1-. ………………11分 因为当,44x ππ⎡⎤∈-⎢⎥⎣⎦时()f x m ≥恒成立, 所以1m ≤-,即m 的取值范围是(]1-∞-,. …………13分16.解:(Ⅰ)设“职工甲和职工乙微信记步数都不低于10000”为事件A . ..........1分从3月1日至3月7日这七天中,3月2日,3月5日,3月7日这三天职工甲和职工乙微信记步数都不低于10000,所以()37P A =; ..........3分 (Ⅱ)X 的所有可能取值为0,1,2, ..........4分()0P X ==712723=C C ,()1P X ==74C 271314=⋅C C ,()2P X ==722724=C C ...........7分 X 的分布列为..........8分()14280127777E X =⨯+⨯+⨯=;..........10分(Ⅲ)3月3日. ..........13分由直方图知,微信记步数落在[20,25],[15,20),[10,15),[5,10),[0,5)(单位:千步)区间内的人数依次为300.15200=⨯人,500.25200=⨯人,600.3200=⨯人,400.2200=⨯人,人.由甲微信记步数排名第68,可知当天甲微信记步数在15000---20000之间,根据折线图知,这只有3月2日、3月3日和3月7日;而由乙微信记步数排名第142,可知当天乙微信记步数在5000---10000之间,根据折200.1200=⨯线图知,这只有3月3日和3月6日. 所以只有3月3日符合要求.17.(Ⅰ)证明:在菱形ABCD 中,因为DE ⊥AB ,所以DE ⊥AE ,DE ⊥EB .所以 . ………………1分 因为 , , 平面 , 平面 ,所以 平面 . ………………3分 因为 平面 ,所以平面 平面 . ………………4分 (Ⅱ)解:由(Ⅰ)知 , , ,如图建立空间直角坐标系E-xyz ,则 ………………5分 E (0,0,0),B (2,0,0), , ,所以,, . ………………6分 设平面 的法向量 ,由 , ,………………7分 得, ,所以, .令 ,则 , .所以 . ………………8分 所以, 又 , ,所以cos ,A E A E A E '⋅'<>==='⋅n n n………………9分所以直线 与平面 . ………………10分 (Ⅲ)由(Ⅱ)可知, , ,设 ,则 ………………11分. ………………12分 因为EF //平面 ,所以, 即 . ………………13分所以,即.所以1DFFA='. ………………14分 18.解:(Ⅰ)由已知,得,所以3c e a ===. ..........3分 又,所以 ..........4分所以椭圆C 的标准方程为,离心率e = ..........5分 (Ⅱ)设.①当直线l 与x 轴垂直时,点A ,B 的坐标分别为(0,(0. 因为()0,m m MA x y =- ,()0m m MB x y =-,()0,0mmMO x y=--,所以(3,3)m m MA MB MO x y ++=--=0.所以0m x =,0m y =,即点M 与原点重合. ..........6分 ②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+. .......... ..........7分由221321x y y kx ⎧+=⎪⎨⎪=+⎩,, 得()2232630k x kx ++-=, .......... ..........8分()22236123272240k k k ∆=++=+>.所以,1224032y y k +=>+. .......... ..........9分因为,,, 所以1212(03,03)0m m MA MB MO x x x y y y ++=++-++-=.a =1c =222a b c =+b =22132x y +=11(,)m m MA x x y y =--22(,)m m MB x x y y =--(0,0)m m MO x y =--所以12123,3m m x x x y y y +=+=.2232m k x k -=+,243032m y k =>+. .......... ..........11分消去k 得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. .......... ..........12分 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端: 2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称. ......... ......... ......14分19.解: (Ⅰ)当0k =时,()221f x x x -==,()3322f x x x -'=-=-. ..........1分 所以()12f '-=, ()11f -=. .........2分所以曲线()y f x =在点()()11f --,处的切线方程为 ()()()()111y f f x ⎡⎤'--=---⎣⎦, .....................................3分即230x y -+=; .....................................4分 (Ⅱ)0k ≠时,(ⅰ)()f x =,定义域为, ..........................5分所以()f x '==. .......... ........ ..............7分 2xe kx{}0|≠x x 422x x e x ke kx kx ⋅-⋅42)2xx kx e kx -⋅(令()0f x '=,得2x k=. .......... ........ ..........8分 ①当0k >时,在()0-∞,和,()0f x '>;在,()0f x '<. 所以()f x 的单调递增区间为()0-∞,和,单调递减区间为;.........9分 ②当0k <时,在,()0f x '>;在和,()0f x '<. 所以()f x 的单调递增区间为,单调递减区间为2k ⎛⎫-∞ ⎪⎝⎭,和()0+∞,;....10分 (ⅱ)由()f x 在区间()01,内单调递减, ①当0k >时,()01,,有,所以; ..........11分 ②当0k <时, ()f x 在递减,符合题意. ..........12分 综上k 的取值范围是()(]002,,-∞. ..........13分20. 解:(Ⅰ)集合()S S T --的所有元素是:248163264,,,,,; ............................2分 (Ⅱ)当首项是1,末项是100时,公差最大为11,即11D =.这样的数列只有1个:1,12,23,34,45,56,67,78,89,100; ............................4分 当选取的10个数是连续自然数时,公差最小为1,即1d =.这样的数列首项可以是12391,,,,中的任何一个,因此共有91个公差为1的等差数列.......... ......... .......6分S假设存在含有10个元素的集合A ,使得S -A 中不含10个元素组成的等差数列.显然每连续10个元素中必有集合A 中的唯一一个元素,即表的每行、每列中必有集合A 中的唯一一个元素.),2(+∞k)2,0(k),2(+∞k)2,0(k)(0,2k),(k 2-∞),(∞+0)(0,2k⊆)2,0(k12≥k20≤<k ),(∞+0记表中第i行第j列的数为(),i j.若第i(1≤i≤9)行中集合A的唯一元素为(i,j),则第i+1行中(i+1,1),(i+1,2),┈(i+1,j)中必有集合A中元素.若第i(1≤i≤9)行的第一个数在集合A中,则此行余下九个数和下一行第一个数可以组成等差数列,与假设矛盾.因此,第一列中集合A的唯一元素只可能在第十行.同理,若第i(1≤i≤8)行的第二个数在集合A中,则此行余下八个数和下一行前两个数可以组成等差数列,与假设矛盾.因此,第二列中集合A的唯一元素只可能在第九行.依此类推,得A={10,19,28,37,46,55,64,73,82,91}.此时,另一条对角线上的十个元素{1,12,23,34,45,56,67,78,89,100}构成等差数列,与假设矛盾.综上,原命题成立............................13分注:解答题学生若有其它解法,请酌情给分.。
通州区一中2018-2019学年上学期高三数学10月月考试题
通州区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .482. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 3. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>04. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+5. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个6. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )A .B .C .D .7. 二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.8. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i9. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]10.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .211.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a12.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象( )A .向左平移3π个单位 B .向左平移6π个单位 C.向右平移3π个单位D .向右平移23π个单位二、填空题13.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________. 14.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 15.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前16项和为 .16.若函数2(1)1f x x +=-,则(2)f = . 17.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题18.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .19.如图,已知椭圆C :+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.20.已知函数322()1f x x ax a x =+--,0a >.(1)当2a =时,求函数()f x 的单调区间;(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.21.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集. (Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a.22.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.ACDPF23.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.24.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名Ⅰ2×295%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌”21附:K2=.通州区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6, ∴∠F 1PF 2=90°,∴△PF 1F 2的面积=.故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.2. 【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 3. 【答案】A【解析】解:∵不等式ax 2+bx+c <0(a ≠0)的解集为R ,∴a <0,且△=b 2﹣4ac <0,综上,不等式ax 2+bx+c <0(a ≠0)的解集为的条件是:a <0且△<0.故选A .4. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.5. 【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.6. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.7. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 8. 【答案】B解析:∵(3+4i )z=25,z===3﹣4i .∴=3+4i . 故选:B .9. 【答案】B【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0,∴f (0)=0, 即f (0)=m=0, 故m=0;故f (x )=x 2+nx ,f (f (x ))=(x 2+nx )(x 2+nx+n )=0, 当n=0时,成立;当n ≠0时,0,﹣n 不是x 2+nx+n=0的根, 故△=n 2﹣4n <0,故0<n <4;综上所述,0≤n+m <4; 故选B .【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.10.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,代入抛物线方程得:|xP |=2,∴S △POF =|0F|•|x P |=.故选:C .11.【答案】C【解析】解:∵ a=ln2<lne 即,b=5=,c=xdx=,∴a ,b ,c 的大小关系为:b <c <a . 故选:C .【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.12.【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移.二、填空题13.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 14.【答案】±.【解析】分析题意得,问题等价于264x ax ++≤只有一解,即220x ax ++≤只有一解,∴280a a ∆=-=⇒=±,故填:±.15.【答案】 546 .【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16) =(1+2+...+8)+(2+22+ (28)=+=36+29﹣2 =546.故答案为:546.【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题.16.【答案】0 【解析】111]考点:函数的解析式.17.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
2019届高三数学10月月考试题 理
2019届高三数学10月月考试题理
考试时间:120分钟试卷总分:150分
本试卷分第I卷和第I I卷两部分
第I卷(选择题)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一
项是符合题
目要求,每小题选出答案后,请把答案
...........。
....填写在答题卡相应位置上
3.
4.
5.
第II卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上
.............。
永春一中高三年10月月考理科数学试卷参考答案(2018.10)
一、选择题:(本大题共12小题,每小题5分,共60分)
12
二、填空题:(本大题共4小题,每小题5分,共20分)
13.114.415.]16.70027π
三、解答题:。
北京通州区2019届高三上学期期末数学理科试卷解析
【答案】D 【解析】 【分析】
2
画出不等式组表示的平面区域,求出平面区域中各顶点的坐标,将各点坐标代入目标函数的解析式,分析 后求得目标函数 z=x+y 的最大值. x≥1 【详解】解:由不等式组x − 2y + 3 ≥ 0表示的平面区域,如图所示的阴影部分; y≥x
三个顶点坐标为 A(1,2) ,B(1,1) ,C(3,3) ; 将三个代入得 z 的值分别为 3,2,6; ∴直线 z=x+y 过点 C(3,3)时,z 取得最大值为 6. 故选:D. 【点睛】本题考查了线性规划的应用问题,常用“角点法”解答,步骤为:①由约束条件画出可行域,② 求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求得最优解. 6.设 a,b ∈ 1, + ∞,则“a > b ”是“loga b < 1”的( A. 充分而不必要条件 C. 充分必要条件 【答案】C 【解析】 【分析】 根据充分条件和必要条件的定义结合对数的运算进行判断即可. 【详解】∵a,b∈(1,+∞) , ∴a>b⇒logab<1, logab<1⇒a>b, ∴a>b 是 logab<1 的充分必要条件, 故选:C. B. 必要而不充分条件 D. 既不充分也不必要条件 )
3
【点睛】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键. 7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为( )
A. 1
B.
2
C. 2
D.
5
【答案】B 【解析】 【分析】 由三视图画出该四棱锥的直观图,结合图形求出此四棱锥的四个侧面中面积最小的侧面面积. 【详解】解:由三视图画出该四棱锥的直观图,如图所示;
在此四棱锥 P﹣ABCD 的四个侧面中,面积最小的侧面是 Rt△PBC, 它的面积为2BC•PB= 2 ×1× 22 + 22 = 2. 故选:B. 【点睛】本题考查了利用几何体的三视图求面积的应用问题,是基础题. kB , 8.设函数 y = fx图象上不同两点 Ax1 ,y1 , Bx2 ,y2 处的切线的斜率分别是kA , 规定φA,B = 的长度)叫做曲线 y = fx在点 A 与点 B 之间的“弯曲度”,给出以下命题:
通州区第一中学2018-2019学年上学期高三数学10月月考试题
= x+b 的距离,∴d= ≤
,
= … =2﹣ ,k2= = ﹣2
当且仅当 b=±2 时,△ABD 的面积最大,最大值为 (Ⅲ)当直线 BD 过椭圆左顶点(﹣ 此时 k1+k2=0,猜想 λ=1 时成立. 证明如下:k1+k2= + =2 +m ,0)时,k1=
=2
﹣2
=0
当 λ=1,k1+k2=0,故当且仅当 λ=1 时满足条件…
座号_____
姓名__________
分数__________
﹣2ax,x∈[1,+∞)是增函数,则实数 a 的取值范围是( ,B=45°,则角 A 等于( C.60° ) D.{1} ) D.30°
B.[1,+∞) C.(﹣∞,1] D.[2,+∞) B.90° B.{﹣1} C.{0,1}
3. 已知△ABC 中,a=1,b=
3 2 C. a b c
1 3
)
【命题意图】 本题考查导数在单调性上的应用、 指数值和对数值比较大小等基础知识, 意在考查基本运算能力. 9. 已知的终边过点 2,3 ,则 tan A.
1 5
7 等于( 4 1 B. 5
) C.-5 D.5
10.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,
第 10 页,共 14 页
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应 用,考查分析问题解决问题的能力. 18.【答案】(1)详见解析;(2)详见解析. 【 解 析 】
试 题解析:证明:(1)连接 A1C ,∵直三棱柱 ABC A1 B1C1 中,四边形 AA1C1C 是矩形, 故点 F 在 A1C 上,且 F 为 A1C 的中点, 在 A1 BC 中,∵ E、F 分别是 A1 B、AC1 的中点,∴ EF // BC . 又 EF 平面 ABC , BC 平面 ABC ,∴ EF // 平面 ABC .
北京市通州区2019届高三上学期期末考试数学理科试题及答案解析
北京市通州区2019届高三上学期期末考试数学理科试题一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.设向量=(﹣3,4),=(0,﹣2),则与+垂直的向量的坐标可以是()A.(3,2)B.(3,﹣2)C.(4,6)D.(4,﹣6)3.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(﹣2)等于()A.3B.﹣3C.﹣D.﹣4.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则a等于()A.1B.2C.35.已知x,y满足不等式组,则z=x+y的最大值等于()A.1B.2C.3D.66.设a,b∈(1,+∞),则“a>b”是“log a b<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为()A.1B.C.2D.8.设函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定(|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:①函数y=sin x图象上两点A与B的横坐标分别为1和﹣1,则φ(A,B)=0;②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;③设A,B是抛物线y=x2上不同的两点,则φ(A,B)≤2;④设A,B是曲线y=e x(e是自然对数的底数)上不同的两点,则φ(A,B)>1.其中真命题的个数为()A.1B.2C.3D.4二、填空题:本大题共6小题,每小题5分,共30分.9.复数z=的共轭复数是.10.设等比数列{a n}的公比q=2,前n项和为S n,则=.11.已知角α的终边与单位圆x2+y2=1的交点为,则sin2α=.12.(x﹣)6的展开式中x2的系数为.(用数字作答)13.直线(t为参数)与曲线(θ为参数)的公共点个数为.14.已知函数若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k 的取值范围是.三、解答题:(本大题共6小题,共80分.)解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,在△ABC中,,AB=4,,点D在AC边上,且.(Ⅰ)求BD的长;(Ⅱ)求△BCD的面积.16.(13分)北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:四惠333344455555四惠东33344455555高碑店3334444555传媒大学333444455双桥33344444管庄3333444八里桥333344通州北苑33333果园3333九棵树333梨园33临河里3土桥四惠四惠东高碑店传媒大学双桥管庄八里桥通州北苑果园九棵树梨园临河里土桥(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为ξ元;乙从土桥站上车,任选另一站下车,记票价为η元.试比较ξ和η的方差Dξ和Dη大小.(结论不需要证明)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,△ABC是边长为2的正三角形,AA1=3,D,E分别为AB,BC的中点.(Ⅰ)求证:CD⊥平面AA1B1B;(Ⅱ)求二面角B﹣AE﹣B1的余弦值;(Ⅲ)在线段B1C1上是否存在一点M,使BM⊥平面AB1E?说明理由.18.(14分)已知椭圆C:+=1(a>b>0)过点A(0,1),且椭圆的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)斜率为1的直线l交椭圆C于M(x1,y1),N(x2,y2)两点,且x1>x2.若直线x=3上存在点P,使得△PMN是以∠PMN为顶角的等腰直角三角形,求直线l的方程.19.(13分)已知函数f(x)=a2lnx﹣ax,其中a>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=x2﹣m,若曲线y=f(x),y=g(x)有公共点P,且在点P处的切线相同,求m的最大值.20.(13分)一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列{p n}的前n项和为S n,等差数列1,3,5,7,…中所有不大于P n的项的和为f(n).(Ⅰ)求p5和f(5);(Ⅱ)判断S n和f(n)的大小,不用证明;(Ⅲ)设Γ=k2(k∈N*),求证:∀n∈N*,∃Γ,使得S n<Γ<S n+1.2018-2019学年北京市通州区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.设向量=(﹣3,4),=(0,﹣2),则与+垂直的向量的坐标可以是()A.(3,2)B.(3,﹣2)C.(4,6)D.(4,﹣6)【分析】可求出,这样只需判断哪个选项的向量与(﹣3,2)的数量积是0即可得出答案.【解答】解:;可看出(4,6)•(﹣3,2)=0;∴.故选:C.【点评】考查向量坐标的加法和数量积运算,以及向量垂直的充要条件.3.已知y=f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x﹣1,则f(﹣2)等于()A.3B.﹣3C.﹣D.﹣【分析】根据题意,由函数的解析式计算可得f(2)的值,又由函数为奇函数,可得f(﹣2)=﹣f(2),即可得答案.【解答】解:根据题意,当x>0时,f(x)=2x﹣1,则f(2)=22﹣1=3,又由函数f(x)为R上的奇函数,则f(﹣2)=﹣f(2)=﹣3;故选:B.【点评】本题考查函数的奇偶性的性质,关键是灵活运用函数的奇偶性的性质.4.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则a等于()A.1B.2C.3【分析】先求出抛物线的焦点坐标,可得出双曲线的半焦距c的值,然后根据a、b、c的关系可求出a的值.【解答】解:抛物线y2=12x的焦点坐标为(3,0),所以,双曲线的焦点坐标为(±3,0),所以,a2+5=32=9,∵a>0,解得a=2,故选:B.【点评】本题考查双曲线的性质,解决本题的关键在于对抛物线性质的理解,属于基础题.5.已知x,y满足不等式组,则z=x+y的最大值等于()A.1B.2C.3D.6【分析】画出不等式组表示的平面区域,求出平面区域中各顶点的坐标,将各点坐标代入目标函数的解析式,分析后求得目标函数z=x+y的最大值.【解答】解:由不等式组表示的平面区域,如图所示的阴影部分;三个顶点坐标为A(1,2),B(1,1),C(3,3);将三个代入得z的值分别为3,2,6;∴直线z=x+y过点C(3,3)时,z取得最大值为6.故选:D.【点评】本题考查了线性规划的应用问题,常用“角点法”解答,步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求得最优解.6.设a,b∈(1,+∞),则“a>b”是“log a b<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合对数的运算进行判断即可.【解答】解:∵a,b∈(1,+∞),∴a>b⇒log a b<1,log a b<1⇒a>b,∴a>b是log a b<1的充分必要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,面积最小的侧面面积为()A.1B.C.2D.【分析】由三视图画出该四棱锥的直观图,结合图形求出此四棱锥的四个侧面中面积最小的侧面面积.【解答】解:由三视图画出该四棱锥的直观图,如图所示;在此四棱锥P﹣ABCD的四个侧面中,面积最小的侧面是Rt△PBC,它的面积为BC•PB=×1×=.故选:B.【点评】本题考查了利用几何体的三视图求面积的应用问题,是基础题.8.设函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定(|AB|为线段AB的长度)叫做曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:①函数y=sin x图象上两点A与B的横坐标分别为1和﹣1,则φ(A,B)=0;②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;③设A,B是抛物线y=x2上不同的两点,则φ(A,B)≤2;④设A,B是曲线y=e x(e是自然对数的底数)上不同的两点,则φ(A,B)>1.其中真命题的个数为()A.1B.2C.3D.4【分析】由新定义,利用导数求出函数y=sin x、y=x2在点A与点B之间的“弯曲度”判断①、③正确;举例说明②是正确的;求出曲线y=e x上不同两点A(x1,y1),B(x2,y2)之间的“弯曲度”,判断④错误.【解答】解:对于①,由y=sin x,得y′=cos x,则k A=cos1,k B=cos(﹣1)=cos1,则|k A﹣k B|=0,即φ(A,B)=0,①正确;对于②,如y=1时,y′=0,则φ(A,B)=0,②正确;对于③,抛物线y=x2的导数为y′=2x,y A=x A2,y B=x B2,∴y A﹣y B=x A2﹣x B2=(x A﹣x B)(x A+x B),则φ(A,B)===≤2,③正确;对于④,由y=e x,得y′=e x,φ(A,B)=,由不同两点A(x1,y1),B(x2,y2),可得φ(A,B)<=1,∴④错误;综上所述,正确的命题序号是①②③.故选:C.【点评】本题考查了命题真假的判断与应用问题,也考查了新定义的函数应用问题,解题的关键是对题意的理解.二、填空题:本大题共6小题,每小题5分,共30分.9.复数z=的共轭复数是.【分析】先由复数代数形式的除法运算化简复数,再由共轭复数的定义可得答案.【解答】解:z====﹣,∴复数z=的共轭复数是,故答案为:.【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题.10.设等比数列{a n}的公比q=2,前n项和为S n,则=15.【分析】由等比数列的通项公式和求和公式,代入要求的式子化简可得.【解答】解:====15.故答案是:15.【点评】本题考查等比数列的通项公式和求和公式,属基础题.11.已知角α的终边与单位圆x2+y2=1的交点为,则sin2α=.【分析】由任意角的三角函数的定义有,sinα=,由平方关系sin2α+cos2α=1,有:cosα=±,由二倍角公式有sin2α=2sinαcosα=±,得解【解答】解:由三角函数的定义有:sinα=,由sin2α+cos2α=1,得:cosα=±,由二倍角公式得:sin2α=2sinαcosα=±,故答案为:.【点评】本题考查了任意角的三角函数的定义及二倍角公式,属简单题12.(x﹣)6的展开式中x2的系数为15.(用数字作答)【分析】在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.【解答】解:(x﹣)6的展开式的通项公式为T r+1=•(﹣1)r•x6﹣2r,令6﹣2r=2,求得r=2,故展开式中x2的系数为=15,故答案为:15.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.13.直线(t为参数)与曲线(θ为参数)的公共点个数为1.【分析】化简参数方程为直角坐标方程,然后判断曲线交点个数.【解答】解:直线(t为参数)的直角坐标方程为:y=x;与曲线(θ为参数)的直角坐标方程:(x﹣2)2+y2=1.圆的圆心(2,0)到直线y=x的距离为:=1;所以直线与圆相切,有1个交点.故选:1.【点评】本题考查直线的参数方程,圆的参数方程的求法,考查计算能力.14.已知函数若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k 的取值范围是(0,3)∪{﹣}.【分析】作出f(x)的函数图象,由直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0,由△=0,解得k值,求出过(1,1)与(0,﹣2)两点的直线的斜率k,数形结合即可得到实数k的取值范围.【解答】解:作出y=f(x)与y=kx﹣2的函数图象如图所示:直线y=kx﹣2过(0,﹣2),联立,得x2﹣kx+2=0.由△=k2﹣8=0,得k=.又过(1,1)与(0,﹣2)两点的直线的斜率k=3.有图可知,若关于x的方程f(x)=kx﹣2有且只有一个实数根,则实数k的取值范围为(0,3)∪{﹣}.故答案为:(0,3)∪{﹣}.【点评】本题考查了方程解的个数与函数图象的关系,考查了数形结合的解题思想方法,属于中档题.三、解答题:(本大题共6小题,共80分.)解答应写出文字说明,演算步骤或证明过程.15.(13分)如图,在△ABC中,,AB=4,,点D在AC边上,且.(Ⅰ)求BD的长;(Ⅱ)求△BCD的面积.【分析】(1)运用正弦定理可解决此问题;(2)运用余弦定理和三角形的面积可解决此问题.【解答】解:(Ⅰ)在△ABD中,因为,所以.由正弦定理得.(Ⅱ)因为∠ADB+∠CDB=π,所以.所以.在△BCD中,由余弦定理BC2=BD2+CD2﹣2BD•CD•cos∠CDB,得,解得CD=4或CD=﹣2(舍).所以△BCD的面积=.【点评】本题考查正弦定理和余弦定理的应用.16.(13分)北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:四惠333344455555四惠东33344455555高碑店3334444555传媒大学333444455双桥33344444管庄3333444八里桥333344通州北苑33333果园3333九棵树333梨园33临河里3土桥四惠四惠东高碑店传媒大学双桥管庄八里桥通州北苑果园九棵树梨园临河里土桥(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为ξ元;乙从土桥站上车,任选另一站下车,记票价为η元.试比较ξ和η的方差Dξ和Dη大小.(结论不需要证明)【分析】(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为=78个,事件A中基本事件数为78﹣15=63.由此能求出两站间票价不足5元的概率.(Ⅱ)记甲乙花费金额分别为a元,b元.X的所有可能取值为6,7,8,9,10,分别求出相应的概率,由此能求出X的分布列.(Ⅲ)Dξ=Dη.【解答】解:(Ⅰ)记两站间票价不足5元为事件A,在13座车站中任选两个不同的车站,基本事件总数为=78个,事件A中基本事件数为78﹣15=63.所以两站间票价不足5元的概率.(3分)(Ⅱ)记甲乙花费金额分别为a元,b元.X的所有可能取值为6,7,8,9,10.(4分),,(6分),(7分),(8分).(9分)所以X的分布列为X678910P…(10分)(Ⅲ)Dξ=Dη.(13分)【点评】本题考查概率、离散型随机变量的分布列、方差的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是中档题.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,△ABC是边长为2的正三角形,AA1=3,D,E分别为AB,BC的中点.(Ⅰ)求证:CD⊥平面AA1B1B;(Ⅱ)求二面角B﹣AE﹣B1的余弦值;(Ⅲ)在线段B1C1上是否存在一点M,使BM⊥平面AB1E?说明理由.【分析】(Ⅰ)推导出AA1⊥CD,CD⊥AB,由此能证明CD⊥平面AA1B1B.(Ⅱ)取A1B1中点F,连结DF,如图空间直角坐标系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.(Ⅲ)假设线段B1C1上存在点M,使BM⊥平面AB1E.则∃λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在线段B1C1上不存在点M,使BM⊥平面AB1E.【解答】证明:(Ⅰ)在三棱柱ABC﹣A1B1C1中,因为CD⊂平面ABC,所以AA1⊥CD.又△ABC为等边三角形,D为AB的中点,所以CD⊥AB.……(2分)因为AB∩AA1=A,所以CD⊥平面AA1B1B;…………(3分)解:(Ⅱ)取A1B1中点F,连结DF,因为D,F分别为AB,A1B1的中点,所以DF⊥AB.由(Ⅰ)知CD⊥AB,CD⊥DF,如图建立空间直角坐标系D﹣xyz.…………(4分)由题意得A(1,0,0),B(﹣1,0,0),,A1(1,3,0),B1(﹣1,3,0),,D(0,0,0),,,.………………………………………设平面AB1E法向量n1=(x1,y1,z1),则,即,令x1=1,则,.即=(1,,).…………(6分)平面BAE法向量.………………………(7分)因为=2,,||=,所以cos<,>==.………………………………(8分)由题意知二面角B﹣AE﹣B1为锐角,所以二面角B﹣AE﹣B1的余弦值为.………………(9分)解:(Ⅲ)在线段B1C1上不存在点M,使BM⊥平面AB1E.理由如下.假设线段B1C1上存在点M,使BM⊥平面AB1E.则∃λ∈[0,1],使得.因为,所以.……………………………………(10分)又,所以.…………………………(11分)由(Ⅱ)可知,平面AB1法向量=(1,,),BM⊥平面AB1E,当且仅当∥,即∃μ∈R,使得==().……………………………(12分)所以,解得.……………………(13分)这与λ∈[0,1]矛盾.所以在线段B1C1上不存在点M,使BM⊥平面AB1E.……………………(14分)【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查满足线面垂直的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查学生的计算能力,是中档题.18.(14分)已知椭圆C:+=1(a>b>0)过点A(0,1),且椭圆的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)斜率为1的直线l交椭圆C于M(x1,y1),N(x2,y2)两点,且x1>x2.若直线x=3上存在点P,使得△PMN是以∠PMN为顶角的等腰直角三角形,求直线l的方程.【分析】(Ⅰ)由椭圆C:+=1(a>b>0)过点A(0,1),且椭圆的离心率为,列方程组求出a,b,由此能求出椭圆C的方程.(Ⅱ)设直线l的方程为y=x+m,P(3,y P),由,得4x2+6mx+3m2﹣3=0,利用根的判别式、韦达定理、中点坐标公式,结合已知条件能求出直线l的方程.【解答】解:(Ⅰ)因为椭圆C:+=1(a>b>0)过点A(0,1),且椭圆的离心率为.所以由题意得…………………………………………(3分)解得a2=3.所以椭圆C的方程为+y2=1.…………………………………………(4分)(Ⅱ)设直线l的方程为y=x+m,P(3,y P),………………………………由,得4x2+6mx+3m2﹣3=0.………………………………(7分)令△=36m2﹣48m2+48>0,得﹣2<m<2.………………………………(8分),.…………………………………………(9分)因为△PMN是以∠PMN为顶角的等腰直角三角形,所以NP平行于x轴.…………………………………………(10分)过M做NP的垂线,则垂足Q为线段NP的中点.设点Q的坐标为(x Q,y Q),则.………………………(12分)由方程组,解得m2+2m+1=0,解得m=﹣1.……………(13分)而m=﹣1∈(﹣2,2),所以直线l的方程为y=x﹣1.………………………………………………(14分)【点评】本题考查椭圆方程、直线方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、中点坐标公式等基础知识,考查运算求解能力、推理论证能力,是中档题.19.(13分)已知函数f(x)=a2lnx﹣ax,其中a>0.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=x2﹣m,若曲线y=f(x),y=g(x)有公共点P,且在点P处的切线相同,求m的最大值.【分析】(Ⅰ)求出原函数的导函数,得到导函数的零点,由导函数的零点对函数定义域分段,再由导函数在不同区间段内的符号可得原函数的单调性;(Ⅱ)设点P的横坐标为x0(x0>0),由题意得,得到(a >0).设,利用导数求其最大值得答案.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞).(a>0).令f'(x)=0,得x=a.当x∈(0,a)时,f′(x)>0;当x∈(a,+∞)时,f′(x)<0.∴f(x)的单调递增区间为(0,a),单调递减区间为(a,+∞);(Ⅱ)设点P的横坐标为x0(x0>0),则,.∵,g'(x)=2x,∴,g'(x0)=2x0.由题意得由②得或x0=﹣a(舍).把代入①,可得(a>0).设,则.令h'(t)=0,得.当时,h'(t)>0,h(t)单调递增;当时,h'(t)<0,h(t)单调递减.∴h(t)在(0,+∞)上的最大值为,即m的最大值为.【点评】本题考查利用导数研究函数的单调性,考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想方法,考查计算能力,是中档题.20.(13分)一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列{p n}的前n项和为S n,等差数列1,3,5,7,…中所有不大于P n的项的和为f(n).(Ⅰ)求p5和f(5);(Ⅱ)判断S n和f(n)的大小,不用证明;(Ⅲ)设Γ=k2(k∈N*),求证:∀n∈N*,∃Γ,使得S n<Γ<S n+1.【分析】(Ⅰ)由题意直接求得p5和f(5);(Ⅱ)分别取n=1,2,3,4,5.求得S n和f(n),比较大小得结论;(Ⅲ)取值验证n≤4时,命题成立.当n≥5时,设k是使得k2≤S n成立的最大自然数,只需证(k+1)2<S n+1.可得=1+3+5+…+(2k﹣1),f(n)=1+3+5+…+p n,结合(Ⅱ)可知,北京市通州区2019届高三上学期期末考试数学理科试题及答案解析当n≥5时,S n<f(n),得到p n>2k﹣1,从而p n+1>2k+1.进一步得到.【解答】解:(Ⅰ)p5=11,f(5)=1+3+5+7+9+11=36;(Ⅱ)当n=1时,S1=2,f(1)=1,S1>f(1);当n=2时,S2=2+3=5,f(2)=1+3=4,S2>f(2);当n=3时,S3=2+3+5=10,f(3)=1+3+5=9,S3>f(3);当n=4时,S4=2+3+5+7=17,f(4)=1+3+5+7=16,S4>f(4).∴当n≤4时,S n>f(n).当n=5时,S5=2+3+5+7+11=28,f(5)=1+3+5+7+9+11=36,S5<f(5).不难看出,当n≥5时,S n<f(n);证明:(Ⅲ)∵S1=2,S2=5,S3=10,S4=17,S5=28,∴当n=1时,Γ=22,使得S1<Γ<S2;当n=2时,Γ=32,使得S2<Γ<S3;当n=3时,Γ=42,使得S3<Γ<S4;当n=4时,Γ=52,使得S4<Γ<S5∴n≤4时,命题成立.当n≥5时,设k是使得k2≤S n成立的最大自然数,只需证(k+1)2<S n+1.∵=1+3+5+…+(2k﹣1),f(n)=1+3+5+…+p n,由(Ⅱ)可知,当n≥5时,S n<f(n),∴p n>2k﹣1,从而p n+1>2k+1.∴,即.综上可知,命题成立.【点评】本题考查数列递推式,考查了数列的函数特性,考查逻辑思维能力与推理运算能力,是中档题.21。
度高三理科10月月考数学试题
2019-2019学年度高三理科10月月考数学试题数学作为高三高考的重要学科,对于学好其它课程也起着至关重要的作用,查字典数学网整理了高三理科10月月考数学试题,其中包括函数、集合知识点课后练习题,希望大家能够合理的使用!第Ⅰ卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设P={x︱x4},Q={x︱ 4},则( )(A) (B) (C) (D)2.已知x ,令则a,b,c的大小关系为A.a3.已知实数x,y满足,则下列关系式恒成立的是( )A. B. )C. D.4.函数f(x)= 在(-1,1)上零点的个数为()A.1B.2C.0D.不能确定5.下列四个命题中,真命题的个数有( )①若,则是成立的充分必要条件;②命题使得的否定是均有③命题若,则或的否命题是若 2,则④函数在区间(1,2)上有且仅有一个零点.A. 1个B. 2个C. 3个D. 4个6.已知则下列函数的图象错误的是 ( )7.定义在R上的函数满足 ( )A.1B.C.-1D.8.如果函数的图象关于点 (1,2)对称,那么( )A. -2, 4B. 2, -4C. -2, -4D. 2, 49.下列四个图中,函数的图象可能是10. 若则是A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分与不必要条件第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分。
将答案填写在题中的横线上。
11.若函数y=f(x)的定义域是[0,2],函数g(x)=f(2x)x-1的定义域为_______.12.已知集合A={a,b, 2},B={2,b2,2a},且AB=AB,则a=_______.13.已知函数f(x)=x2+mx-1,若对于任意x[m,m+1],都有f(x)0成立,则实数m的取值范围是________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x的最小值是__________.15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)A.(不等式选做题)若不等式对一切非零实数恒成立,则实数的取值范围是 .B. (几何证明选做题) 如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线,过A作直线的垂线AD,D 为垂足,AD与圆O交于点E,则线段AE的长为 .C. (极坐标系与参数方程选做题) 在平面直角坐标系中,已知圆 ( 为参数)和直线( 为参数),则直线截圆C所得弦长为 .三.解答题:本大题共6小题,共75分。
【最新】北京市通州区2019届高三第一学期期中考试数学(理)(答案).doc
通州区2018-2019学年第一学期高三年级期中考试数学(理科)试卷参考答案及评分标准第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案ABDCBACB第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.i10.1322log 52e11.220x y 12.113.1f xx14.0,1三、15.解:(Ⅰ)图略; 3分函数f x 的单调增区间为1,0和1,;6分(Ⅱ)设0x,则0x . 7分因为函数f x 是定义在R 上的偶函数,且当0x时,22f xxx ,所以222fx. 10分所以222,2,xx f xx x x,.13分16.解:(Ⅰ)由21cos sin cos2222x x xf x,得11121cos sin cos 22224f xxxx.3分所以f x的最小正周期为2,最大值为22,最小值为22; 6分(Ⅱ)由(Ⅰ)知,232cos 2410f,所以3cos 45.7分所以si28分cos2410分212cos412分18712525.13分17.解:(Ⅰ)在ABC 中,,由正弦定理sinsi na b A B ,得si n b A a B. 2分由3sin cos b Aa B ,得3sin cos 3b Aa B .所以3s i 3BB . 4分因为0B,所以sin 0B,因而cos 0B .所以sin 3tan cos 3B B B,所以6B. 6分(Ⅱ)由正弦定理得sin sin a c AC,而sin 3sin C A ,所以3c a①9分由余弦定理22cos b a c ac B ,得2292cos6acac ,即2239acac②12分把①代入②得3a ,33c .13分18.解:(Ⅰ)因为函数f x 图象的对称轴为2a x, 1分所以当02a ,即0a时,2m a x12g af xf aa ;3分当2a ,即a 时,2max12g a f x faa . 5分所以222,2,a a g aaa a6分(Ⅱ)假设存在符合题意的实数,m n ,则由(Ⅰ)可知,当a R 时,2,g a . 8分所以若,a m n ,有5,5ga m n ,则0mn . 9分所以22g aa a ,且为单调递增函数. 11分所以2222g m gn12分所以22m n13分19.(Ⅰ)解:函数f x的定义域为0,. 1分因为11x f xxxx,2分所以在0,1内,0f x ,f x 单调递增;在1,内,0f x,f x 单调递减.所以函数f x 在1x 处取得唯一的极大值,即f x 的最大值1ln11f a .因为函数f x的最大值为3,3分所以ln113a ,解得4a . 4分(Ⅱ)因为当1,x时,3122f x k xf x a k x 恒成立,所以3ln 112x xak xax,所以ln 13x x k x ,即ln 130x x k x . 5分令ln 13g x x x k x ,则ln 2g xx k . 6分因为2k,所以0g x.所以g x 在1,单调递增. 7分所以1g x g 12k ,所以120k,所以12k.即实数k的取值范围是1,22;8分(Ⅲ)由(Ⅰ)可知:10,1x ,21,x .所以210,x . 9分因为1x ,2x 是函数f x 的两个零点,所以120f x f x . 10分因为122211f x f f x f x x 222211ln ln x x x x 22212ln x x x . 11分令12ln h xxx x,则22222121211x xx h xxx xx.所以在1,,0h x ,h x 单调递减.所以10h xh .所以1210fx fx ,即121fx f x . 13分由(Ⅰ)知,f x 在0,1单调递增,所以121x x ,所以121x x . 14分20.解:(Ⅰ)根据题意,数列n a 满足21nn S a ,当1n 时,111a S . 1分当2n时, 11nnna S S ,122nnn a a a ,即12n n a a . 2分所以数列n a 是首项为1,公比为2的等比数列. 3分所以12n na ,n N ; 4分又由已知22log nn b a ,得122l o g 21n nb n. 5分(Ⅱ)依题意得1111122n n nn nb nc n a ,nN . 6分因为11112122nn n nc c n n 11121102222n n n n n ,7分所以当1n 时,n c 取得最大值12c . 8分因为221n c xx 对于一切的正整数n 恒成立,所以2221xx . 9分解得1x 或3x ,所以实数x 的取值范围是13x xx或;10分(Ⅲ)假设存在,,,,,m n k a a a m n k m n kN,使,,m n k a a a 成等差数列,则2nmk a a a ,即1112222n m k . 11分两边同时除以12m ,得1212n m k m①. 12分因为12n m 为偶数,12k m为奇数,这与①矛盾. 13分所以不存在,,,,,m n k a a a m nk m n k N,使,,m n k a a a 成等差数列. 14分注:解答题学生若有其它解法,请酌情给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届北京市通州区潞河中学第一学期高三10月月考数学(理)★祝你考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6、本科目考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第一部分 (选择题 共50分)一 选择题(共10小题,每小题5分,共50分)1.已知集合{}1,0,1A =-,{}21B x x =<,则=B A ( )A .{}1,1-B .{}0C .{}1,0,1-D .{}11x x -≤≤ 答案:B2.“12<x”是“1<x ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A3.已知sin 2α=,则=α2cos ( ) A.1 B.21 C.0 D.21- 答案:C4.下列函数是奇函数且在区间(1,+)∞上单调递减的是A.3()f x x =-B.()f x =C.1()f x x x=+ D.()1+-=x x f 【答案】A5.以角θ的顶点为坐标原点,始边为x 轴的非负半轴,建立平面直角坐标系,角θ终边过点()3,1P ,则=⎪⎭⎫ ⎝⎛-4tan πθ( )A .2-B.2 C .21-D .21【答案】D6.已知平面向量()2,1=a ,()y b ,2-=,且b a ⊥,则=y( )A .4-B.4 C .1D .1- 【答案】C7.已知等比数列中,143527,a a a a ==,则7a =( ) 答案:A A .127 B .19C .13D .38.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,且()c C B b a B A )sin (sin )sin (sin +=-+,则ABC ∆中A ∠为A.π6B.2π3 C.π3D.5π6答案B 9.函数的图象如图所示,在区间上可找到个不同的数{}n a,使得()()()nn x x f x x f x x f === 2211,则的取值的集合为A.{}5,4,3,2B.C. D.【答案】B10.已知函数x x x f cos )(=,现给出如下命题:① 当()3,4--∈x 时,()0>x f ; ② ()f x 在区间()6,5上单调递增; ③ ()f x 在区间(1,3)上有极大值;④ 存在0>M ,使得对任意x ∈R ,都有|()|f x M ≤. 其中真命题的序号是(A )①② (B )②③(C )②④ (D )③④答案:A第二部分二 填空题(共6小题,每小题5分,共30分.请将答案写在答题纸上) 11.在△中,,,△的面积为,则=b ____.【答案】112.已知{}n a 是等差数列,n S 为其前n 项和,若2,6751=+=a a a ,则=6S .ABC 3a =ABC【答案】2113.等差数列{}n a 的公差为2,且521,,a a a 成等比数列,那么1a = . 【答案】114.将函数π()sin()3f x x =+的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()sin()g x x ωϕ=+的图象,则=ϕ答案:3π 15. 已知Rt ABC ∆,2==AC AB ,点E 是AB 边上的动点,则AC CE ⋅的值为 ;CB CE ⋅的最大值为 .【答案】4- ; 816.若集合{}{}4,3,2,1,,,=d c b a ,且下列四个关系:①2=a ,②2≠b ,③3=c ,④4≠d有且只有一个是正确的,请写出满足上述条件的一个有序数组()d c b a ,,, ,符合条件的全部有序数组()d c b a ,,,的个数是 答案:()()()()())3,1,2,4,1,4,2,3),4,2,1,3(,4,2,3,1,3,4,2,1(4,3,2,1,6三 解答题(共5小题,每题14分,共70分) 17.已知数列{}n a 的前n 项和n n a S -=1.(I )证明{}n a 是等比数列,并求其通项公式;(II )若数列{}n b 满足n n a b 2log 10+= ,求使数列{}n b 的前n 项和取最大值时的n 的值.答案:(1)nn a ⎪⎭⎫⎝⎛=21;(2)9=n 或10解:(1)1=n 时,1111a S a -==,所以211=a ,2≥n 时,1111--+--=-=n n n n n a a S S a ,所以211=-n n a a , 所以数列{}n a 是以21为首项,21为公比的等比数列,nna ⎪⎭⎫⎝⎛=21 (2)n a b nn n -=⎪⎭⎫⎝⎛+=+=1021log 10log 1022⎩⎨⎧≤+-=≥-=+0)1(100101n b n b n n 时,数列{}n b 的前n 项和取最大值,所以9=n 或1018.某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)求函数()f x 的解析式; (Ⅱ)求()x f 的单调递增区间。
【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)解:(1)由题意得:5=A ,23652πππ=-=T ,所以ωππ2==T ,所以2=ω 又3π时五点中的第二点,所以232πϕπ=+⋅,所以6πϕ-=,所以π()5sin(2)6f x x =- (2)令Zk k x k ∈+≤-≤+-,226222πππππ,解得Zk k x k ∈+≤≤+-,36ππππ所以()x f 的单调递增区间为Zk k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ19.在ABC ∆中,23,6,43===∠AC AB BAC π,点D 在BC 边上,AD BD =,(1)求AD 的长; (2)求ACD ∆的面积.【解析】(1)如图,设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,由余弦定理得2222232cos (32)62326cos1836(36)904a b c bc BAC π=+-∠=+-⨯⨯⨯=+--= 所以310a =.又由正弦定理得sin 310sin 10310b BAC B a ∠===. 由题设知04B π<<,所以21310cos 1sin 11010B B =-=-=. 在ABD ∆中,由正弦定理得sin 6sin 310sin(2)2sin cos cos AB B B AD B B B Bπ⋅====-.(2)552101022101032243sin sin =⋅+⋅=⎪⎭⎫⎝⎛-=∠B DAC π, 则ACD ∆的面积6552231021=⋅⋅⋅=S20.已知函数()x x e x f x+=sin .(Ⅰ)求曲线()x f y =在点()()0,0f 处的切线方程;(Ⅱ)求函数()x f 在区间⎥⎦⎤⎢⎣⎡-0,2π上的最大值和最小值. 解:(Ⅰ)因为()x x e x f x+=sin ,所以()1cos sin ++='x e x e x f xx,所以()20='=f k .又因为()00=f ,所以曲线()y f x =在点(0,(0))f 处的切线方程为x y 2=. (Ⅱ)令()1cos sin ++=x e x e x h xx,则()x e x e x e x e x e x h x x x x x cos 2sin cos cos sin =-++='. 当⎥⎦⎤⎢⎣⎡-0,2π时,()0≥'x h , 所以()h x 在区间⎥⎦⎤⎢⎣⎡-0,2π上单调递增. 所以对任意⎥⎦⎤⎢⎣⎡-∈0,2πx 有()0111222>-=+-=⎪⎭⎫ ⎝⎛-≥-πππe e h x h , 即()0>'x f .所以函数()f x 在区间⎥⎦⎤⎢⎣⎡-0,2π上单调递增.因此()f x 在区间⎥⎦⎤⎢⎣⎡-0,2π上的最大值为()00=f ,最小值为222πππ--=⎪⎭⎫ ⎝⎛--e f .21.已知函数.(Ⅰ)函数在1=x 处取得极小值,求a 的取值范围; (Ⅱ)当时,讨论函数的零点个数. 解:(Ⅰ)函数的定义域为.,. 若0≤a ,()1,0∈x 时,()0<'x f ,()+∞∈,1x 时,()0>'x f , 所以函数在1=x 处取得极小值;若10<<a ,()1,a x ∈时,()0<'x f ,()+∞∈,1x 时,()0>'x f , 所以函数在1=x 处取得极小值;若1≥a ,()1,0∈x 时,()0>'x f ,所以函1=x 不是的极小值点, 综上,a 的取值范围是()1,∞-(Ⅱ),. (1)当时,时,,为减函数;时,,为增函数.所以在时取得最小值. (ⅰ)当时,,由于,令,,则在上有一个零点;(ⅱ)当时,即时,有一个零点;(ⅲ)当时,即时,无零点.2()ln (1),2x f x a x a x a =+-+∈R ()f x 1a ≤()f x ()f x {}0x x >(1)()()x x a f x x--'=0x >()f x ()f x ()f x (1)()()x x a f x x--'=0x >0a ≤(0,1)x ∈()0f x '<()f x (1,)x ∈+∞()0f x '>()f x ()f x 1x =1(1)2f a =--0a =2()2x f x x =-0x >()0f x 2x ()f x (0,)+∞12a =-(1)0f =()f x 12a <-(1)0f >()f x(ⅳ)当时,即时,由于(从右侧趋近0)时,;时,, 所以有两个零点. (2)当时,时,,为增函数;时,,为减函数; 时,,为增函数.所以在处取极大值,在处取极小值..当时,,即在时,.而在时为增函数,且时,, 所以此时有一个零点.(3)当时,在上恒成立,所以为增函数.且(从右侧趋近0)时,;时,. 所以有一个零点.综上所述,或时有一个零点;时,无零点;有两个零点.102a -<<(1)0f <0x →()f x →+∞x →+∞()f x →+∞()f x 01a <<(0,)x a ∈()0f x '>()f x (,1)x a ∈()0f x '<()f x (1,)x ∈+∞()0f x '>()f x ()f x x a =()f x 1x =21()ln (1)2f a a a a a a =+-+21ln 2a a a a =--01a <<()0f a <(0,1)x ∈()0f x <()f x (1,)x ∈+∞x →+∞()f x →+∞()f x 1a =2(1)()0x f x x -'=≥()0,+∞()f x 0x →()f x →-∞x →+∞()f x →+∞()f x 01a ≤≤12a =-()f x 12a <-()f x 102a -<<()f x。