高2020届高2017级创新设计高考总复习数学人教A版第三章 第2节 第1课时
高2020届高2017级创新设计高考总复习数学人教A版课件第七章 第2节
7
知识衍化体验
考点聚集突破
2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F 分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为( )
A.30°
B.45°
C.60°
D.90°
解析 连接B1D1,D1C,则B1D1∥EF,故∠D1B1C为所求的角. 又B1D1=B1C=D1C,∴∠D1B1C=60°. 答案 C
@《创新设计》
第2节 空间点、直线、平面的位置关系
考试要求 1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上, 抽象出空间点、直线、平面的位置关系的定义;2.了解四个公理和一个定理.
1
知识衍化体验
考点聚集突破
@《创新设计》
1.平面的基本性质
知识梳理
(1)公理1:如果一条直线上的___两__点__在一个平面内,那么这条直线在此平面内. (2)公理2:过___不__在__同__一__条__直__线__上_的三点,有且只有一个平面. (3)公理3:如果两个不重合的平面有____一__个_公共点,那么它们有突破
基础自测
@《创新设计》
1.判断下列结论正误(在括号内打“√”或“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( ) (2)两两相交的三条直线最多可以确定三个平面.( ) (3)如果两个平面有三个公共点,则这两个平面重合.( ) (4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.( )
@《创新设计》
8
知识衍化体验
考点聚集突破
@《创新设计》
3.(必修2P45例2改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边
高2020届高2017级创新设计高考总复习数学人教A版第六章 第3节
第3节 平面向量的数量积及其应用考试要求 1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表达式,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;5.会用向量的方法解决某些简单的平面几何问题.知 识 梳 理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos__θ的乘积.2.平面向量数量积的性质及其坐标表示 设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律).[微点提醒]1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.答案 (1)× (2)√ (3)√ (4)×2.(必修4P108A10改编)设a ,b 是非零向量.“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件. 答案 A3.(必修4P108A2改编)在圆O 中,长度为2的弦AB 不经过圆心,则AO →·AB →的值为________.解析 设向量AO →,AB →的夹角为θ,则AO →·AB →=|AO →||AB →|·cos θ=|AO →|cos θ·|AB→|=12|AB →|·|AB→|=12×(2)2=1. 答案 14.(2018·全国Ⅱ卷)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4B.3C.2D.0解析 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3. 答案 B5.(2018·上海嘉定区调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A.13+6 2 B.2 5 C.30D.34解析 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34. 答案 D6.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.解析 由题意得a +b =(m -1,3),因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 7考点一 平面向量数量积的运算【例1】 (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A.0B.4C.-92D.-172(2)(2018·天津卷)在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM→的值为( )A.-15B.-9C.-6D.0解析 (1)由题意得2k -1-4k =0,解得k =-12, 即m =⎝ ⎛⎭⎪⎫-2,-12, 所以m ·n =-2×4+⎝ ⎛⎭⎪⎫-12×1=-172.(2)连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON→-OM →), ∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6. 答案 (1)D (2)C规律方法 1.数量积公式a ·b =|a ||b |cos θ在解题中的运用,解题过程具有一定的技巧性,需要借助向量加、减法的运算及其几何意义进行适当变形;也可建立平面直角坐标系,借助数量积的坐标运算公式a ·b =x 1x 2+y 1y 2求解,较为简捷、明了. 2.在分析两向量的夹角时,必须使两个向量的起点重合,如果起点不重合,可通过“平移”实现.【训练1】 (1)在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC →等于( ) A.16B.12C.8D.-4(2)(2019·皖南八校三模)已知|a |=|b |=1,向量a 与b 的夹角为45°,则(a +2b )·a =________.解析 (1)以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3).设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,∴t =83,即E ⎝ ⎛⎭⎪⎫0,83,AE →·BC →=⎝ ⎛⎭⎪⎫-4,83·(0,6)=16.(2)因为|a |=|b |=1,向量a 与b 的夹角为45°,所以(a +2b )·a =a 2+2a ·b =|a |2+2|a |·|b |cos 45°=1+ 2. 答案 (1)A (2)1+ 2考点二 平面向量数量积的应用 多维探究角度1 平面向量的垂直【例2-1】 (1)(2018·北京卷)设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.(2)(2019·宜昌二模)已知△ABC 中,∠A =120°,且AB =3,AC =4,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为( ) A.2215B.103C.6D.127解析 (1)a =(1,0),b =(-1,m ),∴a 2=1,a ·b =-1, 由a ⊥(m a -b )得a ·(m a -b )=0,即m a 2-a ·b =0. ∴m -(-1)=0,∴m =-1. (2)因为AP→=λAB →+AC →,且AP →⊥BC →, 所以有AP →·BC →=(λAB →+AC →)·(AC →-AB →)=λAB →·AC →-λAB →2+AC →2-AB →·AC →=(λ-1)AB →·AC→-λAB →2+AC →2=0, 整理可得(λ-1)×3×4×cos 120°-9λ+16=0, 解得λ=2215. 答案 (1)-1 (2)A规律方法 1.当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算.2.数量积的运算a ·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .角度2 平面向量的模【例2-2】 (1)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.(2)(2019·杭州调研)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 解析 (1)由α⊥(α-2β)得α·(α-2β)=α2-2α·β=0, 所以α·β=12,所以(2α+β)2=4α2+β2+4α·β=4×12+22+4×12=10, 所以|2α+β|=10.(2)建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ).所以P A →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ), 所以|P A →+3PB →|=25+(3b -4y )2(0≤y ≤b ), 所以当y =34b 时,|P A →+3PB →|取得最小值5. 答案 (1)10 (2)5规律方法 1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解. 角度3 平面向量的夹角【例2-3】 (1)(2019·衡水中学调研)已知非零向量a ,b 满足|a +b |=|a -b |=233|a |,则向量a +b 与a -b 的夹角为________.(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)将|a +b |=|a -b |两边平方,得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,∴a ·b =0. 将|a +b |=233|a |两边平方,得a 2+b 2+2a ·b =43a 2,∴b 2=13a 2.设a +b 与a -b 的夹角为θ,∴cos θ=(a +b )·(a -b )|a +b |·|a -b |=a 2-b 2233|a |·233|a |=23a 243a2=12.又∵θ∈[0,π],∴θ=π3.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.答案 (1)π3 (2)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3规律方法 1.研究向量的夹角应注意“共起点”;两个非零共线向量的夹角可能是0或π;注意向量夹角的取值范围是[0,π];若题目给出向量的坐标表示,可直接套用公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解. 2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. 【训练2】 (1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________.(2)(一题多解)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(3)(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 解析 (1)由a ⊥b ,得a ·b =0, 又a =(-2,3),b =(3,m ), ∴-6+3m =0,则m =2.(2)法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2 =22+4×2×1×cos 60°+4×12=12=2 3. 法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC→|.又∠AOB =60°,所以|a +2b |=2 3. (3)由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2. 所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33.答案 (1)2 (2)23 (3)33 考点三 平面向量与三角函数【例3】 (2019·潍坊摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B , 则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7舍去,故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.规律方法 平面向量与三角函数的综合问题的解题思路:(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 【训练3】 (2019·石家庄模拟)已知A ,B ,C 分别为△ABC 的三边a ,b ,c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n =sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.解 (1)由已知得m ·n =sin A cos B +cos A sin B =sin(A +B ), 因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C , 所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,所以cos C =12. 又0<C <π,所以C =π3.(2)由已知及正弦定理得2c =a +b . 因为CA →·(AB →-AC →)=CA →·CB →=18, 所以ab cos C =18,所以ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab 所以c 2=4c 2-3×36, 所以c 2=36,所以c =6.[思维升华]1.计算向量数量积的三种方法定义、坐标运算、数量积的几何意义,要灵活运用,与图形有关的不要忽略数量积几何意义的应用. 2.求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [易错防范]数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.数量积运算不满足结合律,(a ·b )·c 不一定等于a ·(b ·c ).数学运算、数学建模——平面向量与三角形的“四心”1.数学运算是指在明晰运算的基础上,依据运算法则解决数学问题的素养.通过学习平面向量与三角形的“四心”,学生能进一步发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.2.数学建模要求在熟悉的情境中,发现问题并转化为数学问题,能够在关联的情境中,经历数学建模的过程,理解数学建模的意义.本系列通过学习平面向量与三角形的“四心”模型,能够培养学生用模型的思想解决相关问题. 设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA→+bOB →+cOC →=0. 类型1 平面向量与三角形的“重心”【例1】 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心 B.△ABC 的垂心 C.△ABC 的重心D.AB 边的中点解析 取AB 的中点D ,则2OD→=OA →+OB →, ∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →, 而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 答案 C类型2 平面向量与三角形的“内心”问题【例2】 在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B.1463C.4 3D.6 2解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 答案 B类型3 平面向量与三角形的“垂心”问题【例3】 已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B + AC →|AC →|cos C ,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心B.垂心C.外心D.内心解析 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B + AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B + AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC→⊥AP →,所以点P 在BC 的高线上, 即动点P 的轨迹一定通过△ABC 的垂心. 答案 B类型4 平面向量与三角形的“外心”问题【例4】 已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝ ⎛⎭⎪⎫45,35B.⎝ ⎛⎭⎪⎫35,45C.⎝ ⎛⎭⎪⎫-45,35D.⎝ ⎛⎭⎪⎫-35,45 解析 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC→,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝ ⎛⎭⎪⎫12-x AB →2-yAC →·AB →=0,① 由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB →=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①、②得⎩⎨⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.答案 A基础巩固题组 (建议用时:40分钟)一、选择题1.已知向量a =(m -1,1),b =(m ,-2),则“m =2”是“a ⊥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 当m =2时,a =(1,1),b =(2,-2), 所以a ·b =(1,1)·(2,-2)=2-2=0, 所以a ⊥b ,充分性成立;当a ⊥b 时,a ·b =(m -1,1)·(m ,-2)=m (m -1)-2=0,解得m=2或m=-1,必要性不成立.所以“m=2”是“a⊥b”的充分不必要条件.答案 A2.(2019·北京通州区二模)已知非零向量a,b的夹角为60°,且|b|=1,|2a-b|=1,则|a|=()A.12 B.1 C. 2 D.2解析由题意得a·b=|a|×1×12=|a|2,又|2a-b|=1,∴|2a-b|2=4a2-4a·b+b2=4|a|2-2|a|+1=1, 即4|a|2-2|a|=0,又|a|≠0,解得|a|=1 2.答案 A3.(2019·石家庄二模)若两个非零向量a,b满足|a+b|=|a-b|=2|b|,则向量a+b与a 的夹角为()A.π3 B.2π3 C.5π6 D.π6解析设|b|=1,则|a+b|=|a-b|=2.由|a+b|=|a-b|,得a·b=0,故以a、b为邻边的平行四边形是矩形,且|a|=3, 设向量a+b与a的夹角为θ,则cos θ=a·(a+b)|a|·|a+b|=a2+a·b|a|·|a+b|=|a||a+b|=32,又0≤θ≤π,所以θ=π6.答案 D4.如图,在等腰梯形ABCD中,AB=4,BC=CD=2,若E,F分别是边BC,AB上的点,且满足BEBC=AFAB=λ,则当AE→·DF→=0时,λ的值所在的区间是()A.⎝ ⎛⎭⎪⎫18,14B.⎝ ⎛⎭⎪⎫14,38 C.⎝ ⎛⎭⎪⎫38,12D.⎝ ⎛⎭⎪⎫12,58 解析 在等腰梯形ABCD 中,AB =4,BC =CD =2, 可得〈AD →,BC →〉=60°,所以〈AB →,AD →〉=60°,〈AB →,BC →〉=120°, 所以AB →·AD→=4×2×12=4, AB →·BC →=4×2×⎝ ⎛⎭⎪⎫-12=-4,AD →·BC →=2×2×12=2,又BE BC =AF AB =λ,所以BE →=λBC →,AF →=λAB →, 则AE→=AB →+BE →=AB →+λBC →, DF→=AF →-AD →=λAB →-AD →, 所以AE →·DF →=(AB →+λBC →)·(λAB →-AD →) =λAB →2-AB →·AD →+λ2AB →·BC →-λAD →·BC →=0, 即2λ2-7λ+2=0,解得λ=7+334(舍去)或λ=7-334∈⎝ ⎛⎭⎪⎫14,38.答案 B5.(2017·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A.I 1<I 2<I 3B.I 1<I 3<I 2C.I 3<I 1<I 2D.I 2<I 1<I 3解析 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角,根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA→=|OB →||CA →|·cos ∠AOB <0,∴I 1<I 2,同理I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,∴OB <BG =GD <OD ,而OA <AF =FC <OC ,∴|OA →||OB →|<|OC →||OD →|, 而cos ∠AOB =cos ∠COD <0,∴OA →·OB →>OC →·OD →,即I 1>I 3.∴I 3<I 1<I 2. 答案 C 二、填空题6.(2019·杭州二模)在△ABC 中,三个顶点的坐标分别为A (3,t ),B (t ,-1),C (-3,-1),若△ABC 是以B 为直角顶点的直角三角形,则t =________. 解析 由已知,得BA →·BC →=0, 则(3-t ,t +1)·(-3-t ,0)=0,∴(3-t )(-3-t )=0,解得t =3或t =-3, 当t =-3时,点B 与点C 重合,舍去.故t =3. 答案 37.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a ,b 夹角θ的余弦值为________. 解析 |a |=|a +2b |,两边平方得,|a |2=|a |2+4|b |2+4a ·b =|a |2+4|b |2+4|a ||b |·cos θ. 又|a |=3|b |,所以0=4|b |2+12|b |2cos θ,得cos θ=-13. 答案 -138.(2019·佛山二模)在Rt △ABC 中,∠B =90°,BC =2,AB =1,D 为BC 的中点,E 在斜边AC 上,若AE →=2EC →,则DE →·AC→=________. 解析 如图,以B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y 轴,建立平面直角坐标系,则B (0,0),A (1,0),C (0,2),所以AC→=(-1,2).因为D 为BC 的中点,所以D (0,1), 因为AE→=2EC →,所以E ⎝ ⎛⎭⎪⎫13,43, 所以DE →=⎝ ⎛⎭⎪⎫13,13, 所以DE →·AC →=⎝ ⎛⎭⎪⎫13,13·(-1,2)=-13+23=13. 答案 13 三、解答题9.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.解 (1)由题设知AB→=(3,5),AC →=(-1,1), 则AB→+AC →=(2,6),AB →-AC →=(4,4). 所以|AB→+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线的长分别为42,210. (2)由题设知:OC →=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115.10.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )(0≤θ≤π2). (1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC→.解 (1)由题设知AB →=(n -8,t ), ∵AB→⊥a ,∴8-n +2t =0. 又∵5|OA→|=|AB →|,∴5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, ∴OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),∵AC→与a 共线,∴t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ =-2k (sin θ-4k )2+32k . ∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k . 由32k=4,得k =8, 此时θ=π6,OC →=(4,8), ∴OA →·OC →=(8,0)·(4,8)=32.能力提升题组 (建议用时:20分钟)11.在△ABC 中,∠C =90°,AB =6,点P 满足CP =2,则P A →·PB →的最大值为( ) A.9B.16C.18D.25解析 ∵∠C =90°,AB =6,∴CA →·CB→=0,∴|CA →+CB →|=|CA →-CB →|=|BA →|=6, ∴P A →·PB →=(PC →+CA →)·(PC →+CB →)=PC →2+PC →·(CA →+CB →)+CA →·CB → =PC →·(CA→+CB →)+4, ∴当PC →与CA →+CB →方向相同时,PC →·(CA→+CB →)取得最大值2×6=12,∴P A →·PB →的最大值为16. 答案 B12.(2018·浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( ) A.3-1 B.3+1 C.2D.2- 3解析 设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA→|-|CB →|=3-1.答案 A13.(2019·安徽师大附中二模)在△ABC 中,AB =2AC =6,BA →·BC →=BA →2,点P 是△ABC所在平面内一点,则当P A →2+PB →2+PC →2取得最小值时,AP →·BC →=________. 解析 ∵BA →·BC →=|BA →|·|BC →|·cos B =|BA →|2, ∴|BC →|·cos B =|BA →|=6, ∴CA→⊥AB →,即A =π2, 以A 为坐标原点建立如图所示的坐标系,则B (6,0),C (0,3),设P (x ,y ),则P A →2+PB →2+PC →2=x 2+y 2+(x -6)2+y 2+x 2+(y -3)2=3x 2-12x +3y 2-6y +45=3[(x -2)2+(y -1)2+10]∴当x =2,y =1时,P A →2+PB →2+PC →2取得最小值, 此时AP →·BC →=(2,1)·(-6,3)=-9. 答案 -914.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →. (1)求角B 的大小;(2)若|BA→-BC →|=6,求△ABC 面积的最大值. 解 (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0, 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA→-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2). 故△ABC 的面积S =12ac sin B ≤3(2+1)2,因此△ABC 的面积的最大值为32+32.新高考创新预测15.(新定义题型)对任意两个非零的平面向量α和β,定义α⊗β=|α||β|cos θ,其中θ为α和β的夹角.若两个非零的平面向量a 和b 满足:①|a |≥|b |;②a 和b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4;③a ⊗b 和b ⊗a 的值都在集合{x |x =n 2,n ∈N }中,则a ⊗b 的值为________. 解析 a ⊗b =|a ||b |cos θ=n 2,b ⊗a =|b ||a |cos θ=m 2,m ,n ∈N .由a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,知cos 2θ=mn 4∈⎝ ⎛⎭⎪⎫12,1,故mn =3,m ,n ∈N .因为|a |≥|b |,所以0<b ⊗a =m 2<1,所以m =1,n =3,所以a ⊗b =32.答案 32。
高2020届高2017级高三理科数学一轮复习创新思维课件3章
第一节任意角和弧度制及任意角的三角函数[基础梳理]1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按逆时针方向旋转形成的角;②负角:按顺时针方向旋转形成的角;③零角:如果一条射线没有作任何旋转,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z}.2.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角.(2)角α的弧度数公式:|α|l r.(3)角度与弧度的换算:360°=2π rad,1°=π180rad,1 rad=(180π)°≈57°18′.(4)扇形的弧长及面积公式: 弧长公式:l=α·r.面积公式:S=12l·r=12α·r2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=yx(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线、余弦线和正切线.4.终边相同的角的三角函数sin(α+k·2π)=sin__α,cos(α+k·2π)=cos__α,tan(α+k·2π)=tan__α(其中k∈Z),即终边相同的角的同一三角函数的值相等.1.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.3.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=yr,cos α=xr,tan α=y x.4.四种角的终边关系(1)β,α终边相同⇔β=α+2kπ,k∈Z.(2)β,α终边关于x轴对称⇔β=-α+2kπ,k∈Z.(3)β,α终边关于y轴对称⇔β=π-α+2kπ,k∈Z.(4)β,α终边关于原点对称⇔β=π+α+2kπ,k∈Z.[四基自测]1.(教材改编)单位圆中,200°的圆心角所对的弧长为()A.10πB.9πC.9π10 D.10π9【参考答案】:D2.(教材改编)若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【参考答案】:C3.(教材改编)下列与9π4的终边相同的角的表达式中正确的是()A.2kπ-45°(k∈Z)B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)【参考答案】:C4.(教材精编)一条弦的长等于半径,这条弦所对的圆心角大小为________弧度.【参考答案】:π35.已知角α的终边过点(-4,3),则cos α+sin α=________.【参考答案】:-1 5考点一终边相同的角及象限角◄考基础——练透[例1] (1)已知sin α>0,cos α<0,则12α所在的象限是( ) A.第一象限 B.第三象限 C.第一或第三象限D.第二或第四象限解析:因为sin α>0,cos α<0,所以α为第二象限角,即π2+2k π<α<π+2k π,k ∈Z ,则π4+k π<12α<π2+k π,k ∈Z .当k 为偶数时,12α为第一象限角;当k 为奇数时,12α为第三象限角,故选C. 【参考答案】:C(2)(2019·福州模拟)与-2 010°终边相同的最小正角是________. 解析:因为-2 010°=(-6)×360°+150°,所以150°与-2 010°终边相同,又终边相同的两个角相差360°的整数倍,所以在0°~360°中只有150°与-2 010°终边相同,故与-2 010°终边相同的最小正角是150°.【参考答案】:150°1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间.(3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合. 2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.[拓展]求θn 或nθ(n ∈N *)所在象限的方法 (1)将θ的范围用不等式(含有k )表示.(2)两边同除以n 或乘以n .(3)对k 进行讨论,得到θn 或nθ(n ∈N *)所在的象限.提醒:注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ∈Z )表示终边落在角α的终边所在直线上的角.1.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:因为θ是第三象限角,所以π+2k π<θ<3π2+2k π(k ∈Z ),故π2+k π<θ2<3π4+k π(k ∈Z ),当k =2n (n ∈Z )时,π2+2n π<θ2<3π4+2n π(n ∈Z ),θ2是第二象限角,当k =2n +1时,3π2+2n π<θ2<7π4+2n π(n ∈Z ),θ2是第四象限角,又⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,即cos θ2<0,因此θ2是第二象限角. 【参考答案】:B2.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,n ∈Z ,此时α的终边和π4≤α≤π2的终边一样,当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4<α<π+π2的终边一样. 【参考答案】:C考点二 扇形弧长、面积公式的应用◄考基础——练透[例2] (1)(2019·合肥模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,则这块田的面积为( )A.120平方步B.240平方步C.360平方步D.480平方步解析:由题意可得:S =12×8×30=120(平方步). 【参考答案】:A(2)(2019·太原模拟)已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A.2 B.sin 2 C.2sin 1D.2 sin 1解析:如图:∠AOB =2弧度,过O 点作OC ⊥AB 于C ,并延长OC 交弧AB 于D .则∠AOD =∠BOD =1弧度,且AC =12AB =1,在Rt △AOC 中,AO =AC sin ∠AOC=1sin 1,即r =1sin 1,从而弧AB 的长为l =α·r =2sin 1. 【参考答案】:C应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.1.(2019·成都模拟)若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆的半径为R,则圆内接正方形的边长为2R,因此该圆心角的弧度数是α=lR=2RR= 2.【参考答案】: 22.已知扇形的圆心角是α,半径是r,弧长为l.(1)若α=100°,r=2,求扇形的面积;(2)若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的弧度数.解析:(1)因为α=100°=100×π180=5π9,所以S扇形=12l·r=12αr2=12×5π9×4=109π.(2)由题意知,l+2r=20,即l=20-2r,故S扇=12l·r=12(20-2r)·r=-(r-5)2+25,当r=5时,S的最大值为25,此时α=lr=2.考点三三角函数的定义◄考能力——知法角度1 用三角函数的定义求值[例3] (1)(2019·大同模拟)已知角α的终边经过点P (-x ,-6),且cos α=-513,则x 的值为________.解析:∵cos α=-x (-x )2+(-6)2=-x x 2+36=-513, ∴⎩⎪⎨⎪⎧x >0,x 2x 2+36=25169,解得x =52.【参考答案】:52(2)已知角α的终边在直线y =-3x 上,则10sin α+3cos α的值为________. 解析:设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |. 当k >0时,r =10k , ∴sin α=-3k 10k =-310,1cos α=10k k =10,∴10sin α+3cos α=-310+310=0; 当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k =-10,∴10sin α+3cos α=310-310=0. 【参考答案】:0已知角α的终边求三角函数值,其关键点为: (1)已知角α终边上点P 的坐标 ①求P 到原点的距离. ②利用三角函数定义求解. (2)已知角α终边所在的直线方程①根据象限位置,设出α的终边上点P 的坐标. ②利用三角函数定义求解.角度2 三角函数值符号的判断[例4] (1)(2019·怀化模拟)sin 2·cos 3·tan 4的值( ) A.小于0 B.大于0 C.等于0D.不存在解析:∵π2<2<3<π<4<32π. ∴sin 2>0,cos 3<0,tan 4>0. ∴sin 2·cos 3·tan 4<0. 【参考答案】:A(2)已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 解析:由题意可得⎩⎨⎧cos α<0,tan α<0,则⎩⎨⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.【参考答案】:B判断三角函数值符号的关键点(1)确定α的终边所在的象限位置.(2)根据α终边上P 的坐标符号:正弦值与纵坐标同号,余弦值与横坐标同号;横纵坐标同号,正切值为正;异号正切值为负.角度3 利用三角函数线比较大小,解不等式[例5] (1)(2019·石家庄模拟)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( ) A.sin α<tan α<cos α B.cos α<sin α<tan α C.sin α<cos α<tan αD.tan α<sin α<cos α解析:如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可得,AT >OM >MP ,故有sin α<cos α<tan α.【参考答案】:C(2)(2018·高考北京卷)在平面直角坐标系中AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析:由题知四段弧是单位圆上的第一、二、三象限的弧, 在AB ︵上,tan α>sin α,不满足; 在CD ︵上,tan α>sin α,不满足;在EF ︵上,sin α>0,cos α<0,tan α<0,且cos α>tan α,满足; 在GH ︵上,tan α>0,sin α<0,cos α<0,不满足. 【参考答案】:C利用函数线解决三角不等式,比较三角函数值,其关键是正确作出三角函数线: (1)找出角α的终边与单位圆的交点P .(2)作x 轴的垂线,过单位圆与x 轴的上半轴的交点作圆的切线. (3)找出所用的三角函数线.(注意方向)1.角θ的顶点与原点重合,始边与x 轴非负半轴重合,终边在直线y =2x 上,则tan 2θ=( ) A.2 B.-4 C.-34D.-43解析:设P (a ,2a )是角θ终边上任意一点(a ≠0),由任意角三角函数定义知tan θ=yx =2a a =2,故tan 2θ=2tan θ1-tan 2 θ=-43. 【参考答案】:D2.若cos α>0且tan α<0,则α是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角解析:由cos α>0,得α的终边在第一或第四象限或x 轴非负半轴上,又由tan α<0,得α的终边在第二或第四象限,所以α是第四象限角. 【参考答案】:D 3.y =sin x -32的定义域为________.解析:∵sin x ≥32,作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角x 的终边的范围,故满足条件的角x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z .【参考答案】:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π3≤x ≤2k π+2π3,k ∈Z数学建模、数学运算——扇形问题中的核心素养[例] 在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图所示两种方案,既要充分利用废料,又要切割时间最短,问哪一种方案最优?解析:因为△AOB 是顶角为120°、腰长为2的等腰三角形, 所以A =B =30°=π6,AM =BN =1,AD =2,所以方案一中扇形的弧长=2×π6=π3;方案二中扇形的弧长=1×2π3=2π3; 方案一中扇形的面积=12×2×2×π6=π3,方案二中扇形的面积=12×1×1×2π3=π3.由此可见:两种方案中利用废料面积相等,方案一中切割时间短.因此方案一最优.课时规范练A组基础对点练1.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是()A.1B.2C.3D.4解析:第二象限角不一定大于第一象限角,如361°是第一象限角,100°是第二象限角,而361°>100°,故①错误;三角形内角可以是直角,直角既不是第一象限角也不是第二象限角,故②错误;角的大小只与旋转量与旋转方向有关,而与扇形半径大小无关,故③正确;若sin α=sin β,则α与β的终边有可能相同,也有可能关于y轴对称,故④错误;若cos θ<0,则θ不一定是第二或第三象限角,θ的终边有可能落在x轴的非正半轴上,故⑤错误.【参考答案】:A2.某人从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是()A.30°B.-30°C.60°D.-60°解析:因为分针是按顺时针方向旋转的,故分针走过的角是负角,又分针旋转了10分钟,故分针走过的角是-60°. 【参考答案】:D3.(2019·福州模拟)已知α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α=( )A. 3B.±3C.33D.±33解析:由题意得|OP |=1,即x 2+34=1,故x =±12,因此tan α=32±12=±3.【参考答案】:B4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A.2 B.4 C.6D.8解析:设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12lr =12r 2α=12r 2×4,求得r =1,l =αr =4,所以所求扇形的周长为2r +l =6. 【参考答案】:C5.已知点P ⎝ ⎛⎭⎪⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π4解析:sin 3π4=22,cos 3π4=-22,P 在第四象限角平分线上. 【参考答案】:D6.已知一圆弧的弧长等于它所在圆的内接正三角形的边长,则这段圆弧所对圆心角的弧度数为( ) A.π3 B.2π3 C. 3D.2解析:设等边三角形边长为a ,圆的半径为R ,由正弦定理得2R =asin π3,a =3R ,故α=l R =aR = 3.故选C. 【参考答案】:C7.已知扇形的圆心角为60°,其弧长为2π,则此扇形的面积为__________. 解析:设此扇形的半径为r ,由题意得π3r =2π,所以r =6,所以此扇形的面积为12×2π×6=6π. 【参考答案】:6π8.(2019·无锡调研)已知角α的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.解析:根据三角函数定义可知tan α=-35=-6x ,解得x =10. 【参考答案】:109.满足cos α≤-12的角α的集合为________. 解析:作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .【参考答案】:⎩⎨⎧⎭⎬⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 10.(2019·鄂州模拟)已知tan θ<0,且角θ终边上一点为(-1,y ),且cos θ=-12,则y =________.解析:因为cos θ=-12<0,tan θ<0,所以θ为第二象限角,则y >0.所以由-11+y 2=-12,得y = 3. 【参考答案】: 3B 组 能力提升练11.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( ) A.1 B.-1 C.3D.-3解析:因为α=2k π-π5(k ∈Z )是第四象限角,所以θ也是第四象限角,故sin θ<0,cos θ>0,tan θ<0,因此y =sin θ-sin θ+cos θcos θ+tan θ-tan θ=-1. 【参考答案】:B12.已知锐角α的终边过点P (1+sin 50°,cos 50°),则锐角α=( ) A.80° B.70° C.10°D.20°解析:由三角函数的定义得tan α=y x =cos 50°1+sin 50°=sin 40°1+cos 40°=2sin 20°cos 20°2cos 220°=sin 20°cos 20°=tan 20°,所以锐角α=20°,故选D. 【参考答案】:D 13.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2×180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4×180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆N C.N ⊆M D.M ∩N =∅解析:由于M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k2×180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k4×180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N . 【参考答案】:B14.在直角坐标系中,P 点的坐标为⎝ ⎛⎭⎪⎫35,45,Q 是第三象限内一点,|OQ |=1且∠POQ =3π4,则Q 点的横坐标为( )A.-7210B.-325C.-7212D.-8213 解析:设∠xOP =α,则cos α=35,sin α=45,则x Q =cos ⎝ ⎛⎭⎪⎫α+3π4=35×⎝ ⎛⎭⎪⎫-22-45×22=-7210.【参考答案】:A15.若两个圆心角相同的扇形的面积之比为1∶4,则这两个扇形的周长之比为__________.解析:设两个扇形的圆心角的弧度数为α,半径分别为r ,R (其中r <R ),则12αr 212αR 2=14,所以r ∶R =1∶2,两个扇形的周长之比为2r +αr2R +αR =1∶2.【参考答案】:1∶216.若角α是第三象限角,则α2在第__________象限. 解析:因为2k π+π<α<2k π+3π2(k ∈Z ), 所以k π+π2<α2<k π+34π(k ∈Z ).当k =2n (n ∈Z )时,2n π+π2<α2<2n π+34π,α2是第二象限角, 当k =2n +1(n ∈Z )时,2n π+3π2<α2<2n π+74π,α2是第四象限角, 综上知,当α是第三象限角时,α2是第二或第四象限角. 【参考答案】:二或第四第二节 同角三角函数的基本关系及诱导公式[基础梳理]1.同角三角函数的基本关系式 (1)平方关系:sin 2x +cos 2x =1. (2)商数关系:sin xcos x =tan__x . 2.三角函数的诱导公式1.“一个口诀”诱导公式可简记为:奇变偶不变,符号看象限.“奇”与“偶”指的是k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限. 2.两个注意(1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 3.两个推广tan(π2-α)=cos αsin α,tan(π2+α)=-cos αsin α.[四基自测]1.(教材改编)已知sin α=55,π2≤α≤π,则tan α=( ) A.-2 B.2 C.12D.-12【参考答案】:D2.(教材改编)sin 2 10°cos 120°的值为( ) A.14 B.-34C.-32D.34 【参考答案】:A 3.sin 2 490°=________. 【参考答案】:-124.(教材改编)cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是________.【参考答案】: 25.化简1-cos 22θcos 2θtan 2θ=________. 【参考答案】:sin 2θ考点一 同角三角函数关系的应用◄考基础——练透[例1] (1)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为( )A.23B.-23C.13D.-13解析:因为(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ·cos θ=1+2sin θcos θ=169,所以2sin θcos θ=79,则(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θ·cos θ=1-2sin θcos θ=29.又因为θ∈⎝ ⎛⎭⎪⎫0,π4,所以sin θ<cos θ,即sin θ-cos θ<0,所以sin θ-cos θ=-23. 【参考答案】:B(2)sin 21°+sin 22°+…+sin 289°=________.解析:因为sin 1°=cos 89°,所以sin 21°+sin 289°=cos 289°+sin 289°=1,同理sin 22°+sin 288°=1,…,sin 244°+sin 246°=1,而sin 245°=12,故原式=44+12=4412. 【参考答案】:4412(3)已知tan α=-43,求2sin 2α+sin αcos α-3cos 2α的值. 解析:∵sin 2α+cos 2α=1,cos α≠0,∴原式=2sin 2α+sin αcos α-3cos 2αsin 2α+cos 2α=2tan 2α+tan α-3tan 2α+1=2×⎝ ⎛⎭⎪⎫-432+⎝ ⎛⎭⎪⎫-43-31+⎝ ⎛⎭⎪⎫-432=-725.同角三角函数基本关系式的应用技巧1.已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin α=( )A.-1-k 2B.1-k 2C.±1-k 2D.1+k 2解析:由cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,可知k <0,设角α终边上一点P (k ,y )(y >0),OP=1,所以k 2+y 2=1,得y =1-k 2,由三角函数定义可知sin α=1-k 2. 【参考答案】:B 2.已知tan α=2,求sin α-4cos α5sin α+2cos α的值.解析:原式=tan α-45tan α+2=2-45×2+2=-16.考点二 诱导公式的应用◄考基础——练透[例2] (1)已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝ ⎛⎭⎪⎫α-2π3=________.解析:因为sin ⎝ ⎛⎭⎪⎫α-2π3=-sin ⎝ ⎛⎭⎪⎫2π3-α=-sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+α=-sin ⎝ ⎛⎭⎪⎫π3+α=-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-23.【参考答案】:-23(2)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0).①化简f (α);②若α=-23π6,求f (α)的值. 解析:①f (α)=(-2sin α)·(-cos α)-(-cos α)1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2 α+sin α=cos α(2sin α+1)sin α(2sin α+1)=cos αsin α=1tan α. ②当α=-23π6时,f (α)=f (-23π6)= 1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-4π+π6=1tan π6=133= 3.1.应用诱导公式时,注意: (1)明确函数名是变,还是不变; (2)明确函数值符号是正还是负; (3)明确是否直接用公式;(4)明确各公式的应用顺序,合理转化角度: 一般的:任意角的三角函数――――→负化正正角的三角函数――――→大化小0°~360°角的三角函数――――→小化锐锐角的三角函数2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.若本例(1)中条件不变,求sin ⎝ ⎛⎭⎪⎫43π+α的值.解析:sin ⎝ ⎛⎭⎪⎫43π+α=sin ⎣⎢⎡⎦⎥⎤32π-⎝ ⎛⎭⎪⎫π6-α =-cos ⎝ ⎛⎭⎪⎫π6-α=-23.考点三 同角关系的诱导公式的综合应用◄考能力——知法角度1 以化为“同名”函数为主线[例3] (1)已知tan α=2,则cos(π+α)·cos ⎝ ⎛⎭⎪⎫π2+α的值为________.解析:依题意得cos(π+α)cos ⎝ ⎛⎭⎪⎫π2+α=cos αsin α=cos αsin αcos 2α+sin 2α=tan α1+tan 2α=25.【参考答案】:25(2)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,求cos ⎝ ⎛⎭⎪⎫α-π4值.解析:由题意得⎩⎪⎨⎪⎧sin αcos α=2sin 2α+cos 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2. ∴sin α=25,cos α=15.∴cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=22×⎝ ⎛⎭⎪⎫25+15=31010.此类题,主要是沟通已知与所求函数名之间的联系,进行转化,正弦↔余弦,切↔弦.角度2 以化为“同角”函数为主线[例4] (1)已知f (α)=sin (π-α)cos (2π-α)cos (-π-α)tan α,则f ⎝ ⎛⎭⎪⎫-31π3的值为( )A.12 B.-13 C.-12 D.13解析:∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3 =-cos ⎝ ⎛⎭⎪⎫10π+π3=-cos π3=-12. 【参考答案】:C(2)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=__________.解析:因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=-cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫θ-π4=-cos ⎝ ⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-43. 【参考答案】:-43此类题主要沟通已知角与所求角间的联系:用已知角表示所求角.如⎝ ⎛⎭⎪⎫2π3-α+⎝ ⎛⎭⎪⎫π3+α=π,⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2,用⎝ ⎛⎭⎪⎫π3+α搭“桥”,沟通了⎝ ⎛⎭⎪⎫2π3-α与⎝ ⎛⎭⎪⎫π6-α之间的关系.为此可以从已知向所求靠拢或从所求向已知靠拢.1.已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=-33,则cos ⎝ ⎛⎭⎪⎫π6-α=( )A.-223B.223C.-13D.13解析:由sin ⎝ ⎛⎭⎪⎫α+π6+cos α=-33,展开化简可得sin ⎝ ⎛⎭⎪⎫α+π3=-13,所以cos ⎝ ⎛⎭⎪⎫π6-α =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫α+π3=-13.故选C. 【参考答案】:C2.已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是__________. 解析:由sin α+2cos α=0得tan α=-2. ∴2sin αcos α-cos 2α =2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=2×(-2)-1(-2)2+1=-55=-1.【参考答案】:-1数学运算、引角换元——同角关系式运用中的学科素养 平方关系:sin 2 α+cos 2α=1可以作为三角换元的依据: 如x 2+y 2=1,可设⎩⎨⎧x =cos αy =sin α,x 2+y 2=r 2,可设⎩⎨⎧x =r cos αy =r sin α,(x -a )2+(y -b )2=r 2,可设⎩⎨⎧x =a +r cos αy =b +r sin α,故当涉及问题有x 2+y 2时,可考虑引角换元的方法,体现了数学转化思想的应用和数学运算的学科素养.[例1] 实数x ,y 满足4x 2-5xy +4y 2=5,S =x 2+y 2.求1S max+1Smin的值.解析:设⎩⎨⎧x =S cos αy =S sin α,∴4S -5S sin αcos α=5,∴S =108-5 sin 2α.∵-1≤sin 2α≤1,∴1013≤S ≤103, ∴1Smax+1Smin=310+1310=1610=85.点评: 由S =x 2+y 2联想到cos 2 α+sin 2 α=1,进行三角换元.进一步将条件转化为与S 的关系.[例2] 椭圆x 216+y 24=1上有两点P 、Q ,O 为原点.连结OP 、OQ ,k OP ·k OQ =-14,(1)求证:|OP |2+|OQ |2为定值; (2)求线段PQ 中点M 的轨迹方程.解析:(1)证明: 由x 216+y 24=1,设⎩⎨⎧x =4cos θ,y =2sin θ,P (4cos θ1,2sin θ1),Q (4cos θ2,2sin θ2),则k OP ·k OQ =2sin θ14cos θ1·2sin θ24cos θ2=-14,整理得:cos θ1cos θ2+sin θ1 sin θ2=0, 即cos(θ1-θ2)=0.∴|OP |2+|OQ |2=16cos 2 θ1+4sin 2 θ1+16cos 2θ2+4sin 2θ2=8+12(cos 2θ1+cos 2θ2)=20+6(cos 2θ1+cos 2θ2)=20+12cos(θ1+θ2)cos(θ1-θ2)=20, 即|OP |2+|OQ |2等于定值20.(2)由中点坐标公式得到线段PQ 的中点M 的坐标为⎩⎨⎧x M =2(cos θ1+cos θ2),y M =sin θ1+sin θ2,所以有(x2)2+y 2=2+2(cos θ1cos θ2+sin θ1 sin θ2)=2,即所求线段PQ 的中点M 的轨迹方程为x 28+y 22=1.点评:由椭圆方程联想到cos 2 α+sin 2α=1,进行三角换元.引入角度θ1、θ2,得出P 、Q 两点坐标,从而将问题转化为三角函数计算,同时结合“平方关系”,得出中点轨迹方程.课时规范练A 组 基础对点练1.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A.3 B.-3 C.1D.-1解析:因为α是第三象限角,故sin α<0,cos α<0,所以原式=cos α|cos α|+2sin α|sin α|=-1-2=-3. 【参考答案】:B2.α是第四象限角,tan α=-512,则sin α=( ) A.15 B.-15 C.513 D.-513解析:因为tan α=-512, 所以sin αcos α=-512, 所以cos α=-125 sin α,代入sin 2α+cos 2α=1得sin α=±513, 又α是第四象限角,所以sin α=-513. 【参考答案】:D3.已知cos 29°=a ,则sin 241°·tan 151°的值是( ) A.1+a 2 B.1-a 2 C.-1+a 2 D.-1-a 2解析:sin 241°·tan 151°=sin(270°-29°)·tan(180°-29°) =(-cos 29°)·(-tan 29°) =sin 29°=1-a 2. 【参考答案】:B4.若sin θcos θ=12,则tan θ+cos θsin θ的值是( ) A.-2 B.2 C.±2D.12 解析:tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2. 【参考答案】:B5.若α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,则cos(-α)=( )A.-45B.45C.35D.-35解析:因为α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,所以cos α=45,则cos(-α)=cos α=45.【参考答案】:B6.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( ) A.-π6 B.-π3 C.π6D.π3解析:∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ=3.∵|θ|<π2,∴θ=π3. 【参考答案】:D7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=__________. 解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.【参考答案】:-438.化简:cos (α-π)sin (π-α)·sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝ ⎛⎭⎪⎫3π2-α=__________. 解析:cos (α-π)sin (π-α)·sin ⎝ ⎛⎭⎪⎫α-π2·cos ⎝ ⎛⎭⎪⎫3π2-α=-cos αsin α·(-cos α)·(-sin α)=-cos 2α. 【参考答案】:-cos 2α9.若角θ满足2cos ⎝ ⎛⎭⎪⎫π2-θ+cos θ2sin (π+θ)-3cos (π-θ)=3,则tan θ的值为__________.解析:由2cos ⎝ ⎛⎭⎪⎫π2-θ+cos θ2sin (π+θ)-3cos (π-θ)=3,得2sin θ+cos θ-2sin θ+3cos θ=3,等式左边分子分母同时除以cos θ,得2tan θ+1-2tan θ+3=3,解得tan θ=1.【参考答案】:110.设α是第三象限角,tan α=512,则cos(π-α)=________. 解析:因为α为第三象限角,tan α=512,所以cos α=-1213,所以cos(π-α)=-cos α=1213. 【参考答案】:1213B 组 能力提升练11.已知sin α-cos α=2,α∈(0,π),则sin 2α=( ) A.-1 B.-22 C.22D.1解析:∵sin α-cos α=2,∴(sin α-cos α)2=1 -2sin αcos α=2,∴2sin α·cos α=-1,∴sin 2α=-1.故选A. 【参考答案】:A12.已知函数f (x )=a sin(πx +α)+b c os(πx +β),且f (4)=3,则f (2 019)的值为( ) A.-1 B.1 C.3D.-3解析:因为f (4)=3,所以a sin α+b cos β=3,故f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-(a sin α+b cos β)=-3. 【参考答案】:D13.已知锐角θ满足sin ⎝ ⎛⎭⎪⎫θ2+π6=23,则cos ⎝ ⎛⎭⎪⎫θ+5π6的值为( ) A.-19 B.459C.-459D.19解析:因为sin ⎝ ⎛⎭⎪⎫θ2+π6=23,由θ∈⎝ ⎛⎭⎪⎫0,π2,可得θ2+π6∈⎝ ⎛⎭⎪⎫π6,5π12,所以cos ⎝ ⎛⎭⎪⎫θ2+π6=53,则sin ⎝ ⎛⎭⎪⎫θ+π3=459,所以cos ⎝ ⎛⎭⎪⎫θ+5π6=cos ⎝ ⎛⎭⎪⎫π2+θ+π3=-sin ⎝ ⎛⎭⎪⎫θ+π3=-459.故选C.【参考答案】:C14.(2019·江西赣中南五校联考)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 015π2-2α的值为( )A.45B.-45C.2D.-12解析:由题意可得tan α=2,所以cos ⎝ ⎛⎭⎪⎫2 015π2-2α=-sin 2α=-2sin αcos αsin 2α+cos 2α=-2tan αtan 2α+1=-45.故选B. 【参考答案】:B15.已知角A 为△ABC 的内角,且sin A +cos A =15,则tan A 的值为__________. 解析:∵sin A +cos A =15,①①式两边平方得1+2sin A cos A =125,∴sin A cos A =-1225,则(sin A -cos A )2=1-2sin A cos A =1+2425=4925,∵角A 为△ABC 的内角,∴sin A >0,又sin A cos A =-1225<0,∴cos A <0,∴sin A -cos A >0,则sin A -cos A =75.②由①②可得sin A =45,cos A =-35, ∴tan A =sin Acos A =45-35=-43.【参考答案】:-43第三节三角函数的图象与性质[基础梳理]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,()π,-1,⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z ) 3.周期函数(1)周期函数:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1.一个易混点正切函数y =tan x 的单调性只能说:在(k π-π2,k π+π2)上k ∈Z 为增函数,不能说为:在定义域上为增函数. 2.一个易错点求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误.3.三角函数的对称与周期的关系(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期. (2)正切曲线相邻两对称中心之间的距离是半周期. 4.关于周期的两个结论函数y =|sin x |,y =|cos x |,y =|tan x |的周期为π,函数y =sin|x |,不是周期函数,y =tan |x |不是周期函数.[四基自测]1.(教材改编)函数y =12sin x ,x ∈[-π,π]的单调性是( ) A.在[-π,0]上是增函数,在[0,π]上是减函数B.在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C.在[0,π]上是增函数,在[-π,0]上是减函数D.在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数【参考答案】:B2.(教材改编)函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z 【参考答案】:D3.(2017·高考全国卷Ⅱ)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【参考答案】:C4.(2018·高考全国卷Ⅰ改编)函数f (x )=2sin x +sin 2x 的最小值为________. 【参考答案】:-15.cos 23°,sin 68°,cos 97°从小到大的顺序是________. 【参考答案】:cos 97°<cos 23°<sin 68°考点一 有关三角函数的定义域、值域、最值问题◄考能力——知法角度1 单调性法求有关三角函数的定义域、值域(最值)[例1] (1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( )A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332 D.⎣⎢⎡⎦⎥⎤-332,3 解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.【参考答案】:B (2)函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .【参考答案】:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z (3)(2018·高考北京卷)已知函数f (x )=sin 2 x +3sin x cos x . ①f (x )的最小正周期;②若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值.解析:①f (x )=sin 2 x +3sin x cos x =12-12cos 2x +32sin 2x=sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以f (x )的最小正周期为T =2π2=π.②由①知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12.由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使得f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32. 即sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1.所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.单调性法求三角函数最值主要是利用三角函数在相应区间上的单调性求解最值.破解此类题的关键点为:(1)化简,即利用三角恒等变换将三角函数转化成y =A sin(ωx +φ)+b (A >0,ω>0)的形式.形如y =a sin x +b cos x +c ,可通过引入辅助角φ⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2,将其转化为y =a 2+b 2sin(x +φ)+c . (2)定单调性,即判断三角函数y =A sin(ωx +φ)+b 在指定区间上的单调性. (3)求解,即根据三角函数在指定区间上的单调性求出最值.角度2 换元法求三角函数的最值(值域)[例2] (2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解析:f (x )=1-cos 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈ [0,1],所以当cos x =32时,函数取得最大值1.【参考答案】:1换元法求三角函数的最值常把三角函数中的某一部分看作一个整体并用新元去替代,从而将三角函数的最值问题转化为简单多项式函数的最值问题.破解此类题的关键点:(1)化简,利用同角三角函数的基本关系、诱导公式及三角恒等变换将三角函数转化成关于sin x 或cos x 的多项式的形式.(2)换元,根据多项式的特点,令t =sin x 或t =cos x ,进而将三角函数转化为关于t 的函数.形如y =a sin 2x +b sin x +c ,可设t =sin x ,将其转化为二次函数y =at 2+bt +c (t ∈[-1,1]);形如y =a sin x cos x +b (sin x ±cos x )+c ,可设t =sin x ±cos x ,则t 2=1±2sin x cos x ,即sin x cos x =±12(t 2-1),将其转化为二次函数y =±12a (t 2-1)+bt +c (t ∈[-2,2]).换元时一定要注意新元的取值范围.(3)求解,根据关于t 的函数的特点,利用适当的方法求出函数的最值.1.(2018·高考全国卷Ⅰ)已知函数ƒ(x)=2cos2x-sin2x+2,则()A.ƒ(x)的最小正周期为π,最大值为3B.ƒ(x)的最小正周期为π,最大值为4C.ƒ(x)的最小正周期为2π,最大值为3D.ƒ(x)的最小正周期为2π,最大值为4解析:∵ƒ(x)=2cos2x-sin2x+2=1+cos 2x-1-cos 2x2+2=32cos 2x+52,∴ƒ(x)的最小正周期为π,最大值为4. 故选B.【参考答案】:B2.(2017·高考全国卷Ⅲ)函数f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6的最大值为()A.65 B.1 C.35 D.15解析:∵f(x)=15sin⎝⎛⎭⎪⎫x+π3+cos⎝⎛⎭⎪⎫x-π6=15⎝⎛⎭⎪⎫12sin x+32cos x+32cos x+12sin x=35sin x+335cos x=35×2sin⎝⎛⎭⎪⎫x+π3=65sin⎝⎛⎭⎪⎫x+π3,∴f(x)的最大值为65.故选A.【参考答案】:A考点二三角函数的性质及应用◄考素养——懂理角度1三角函数的单调性[例3] (1)(2019·佛山模拟)已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的一个单调递减区间是( )A.⎝ ⎛⎭⎪⎫π6,2π3B.⎝ ⎛⎭⎪⎫π3,5π6C.⎝ ⎛⎭⎪⎫π2,πD.⎝ ⎛⎭⎪⎫2π3,π 解析:因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,所以2×π3+φ=2k π+π2,解得φ=2k π-π6,k ∈Z ,不妨取φ =-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,令2k π+π2<2x -π6<2k π+3π2,k ∈Z ,可得k π+π3<x <k π+5π6,k ∈Z ,所以函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫k π+π3,k π+5π6,k ∈Z ,结合选项可知当k =0时,函数的一个单调递减区间为⎝ ⎛⎭⎪⎫π3,5π6. 【参考答案】:B(2)(2018·高考全国卷Ⅱ)若ƒ(x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4D.π解析:ƒ(x )=cos x -sin x=-2⎝⎛⎭⎪⎫sin x ·22-cos x ·22=-2sin ⎝ ⎛⎭⎪⎫x -π4,当x ∈⎣⎢⎡⎦⎥⎤-π4,34π,即x -π4∈⎣⎢⎡⎦⎥⎤-π2,π2时,y =sin ⎝ ⎛⎭⎪⎫x -π4单调递增,y =-2sin ⎝ ⎛⎭⎪⎫x -π4单调递减.∵函数ƒ(x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎢⎡⎦⎥⎤-π4,34π,∴0<a ≤π4,∴a 的最大值为π4. 故选A. 【参考答案】:A(3)已知ω>0,函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递增,则ω的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,74 C.⎣⎢⎡⎦⎥⎤34,94 D.⎣⎢⎡⎦⎥⎤32,74 解析:函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,k ∈Z ,ωπ+π4≤2k π,k ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z ,得k =1, 所以ω∈⎣⎢⎡⎦⎥⎤32,74.【参考答案】:D1.求三角函数单调区间的方法2.已知三角函数的单调区间求参数的取值范围的三种方法角度2 三角函数的奇偶性、对称性、周期性[例4] (1)(2018·高考全国卷Ⅲ)函数ƒ(x )=tan x1+tan 2x的最小正周期为( )A.π4 B.π2 C.πD.2π解析:由已知得ƒ(x )=tan x 1+tan 2x=sin x cos x 1+(sin x cos x )2=sin x cos x cos 2x +sin 2x cos 2x =sin x ·cos x =12sin 2x ,所以ƒ(x )的最小正周期为T =2π2=π. 故选C. 【参考答案】:C(2)(2019·银川模拟)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π),满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3 C.5π6D.2π3解析:因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ是偶函数,所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6. 【参考答案】:C三角函数的奇偶性、对称性和周期性问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.故形如y =A sin(ωx +φ)成为奇函数,则φ=k π(k ∈Z );成为偶函数,则φ=k π+π2(k ∈Z ).y =A cos(ωx +φ)成为奇函数,则φ=k π+π2(k ∈Z );成为偶函数,则φ=k π(k ∈Z ). (2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.提醒:对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.1.下列函数中,最小正周期为π的奇函数是( ) A.y =sin ⎝ ⎛⎭⎪⎫2x +π2 B.y =cos ⎝ ⎛⎭⎪⎫2x +π2C.y =sin 2x +cos 2x。
高2020届高2017级理科创新设计高考数学总复习配套课件教材高考审题答题(三)数列热点问题
4
三年真题考情
审题答题指引
@《创新设计》
【教材拓展】 (2019·郑州模拟)已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2). (1)求证:{an+1+2an}是等比数列; (2)求数列{an}的通项公式. (1)证明 因为an+1=an+6an-1(n≥2), 所以an+1+2an=3an+6an-1=3(an+2an-1)(n≥2). 因为a1=5,a2=5, 所以a2+2a1=15, 所以an+2an-1≠0(n≥2), 所以数列{an+1+2an}是以15为首项,3为比的等比数列.
12
三年真题考情
审题答题指引
@《创新设计》
【尝试训练】 (2017·全国Ⅱ卷)已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项 和为Tn,a1=-1,b1=1,a2+b2=2. (1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3. 解 设{an}的公差为d,{bn}的公比为q,则an=-1+(n-1)·d,bn=qn-1. 由a2+b2=2得d+q=3.① (1)由a3+b3=5得2d+q2=6.② 联立①和②解得dq= =30,(舍去),dq= =12, . 因此{bn}的通项公式为 bn=2n-1.
5
三年真题考情
审题答题指引
(2)解 由(1)得an+1+2an=15×3n-1=5×3n, 则an+1=-2an+5×3n, 所以an+1-3n+1=-2(an-3n). 又因为a1-3=2,所以an-3n≠0, 所以{an-3n}是以2为首项,-2为公比的等比数列. 所以an-3n=2×(-2)n-1, 故an=2×(-2)n-1+3n.
@《创新设计》
1
三年真题考情
高2020届高2017级高考数学创新设计总复习课件目录(数学人教A理)
目录
CONTENTS
@《创新设计》
第2节 二元一次不等式(组)与简单的线性规划 问题
第3节 基本不等式及其应用
10
第八章 立体几何与空间向量
目录
CONTENTS
@《创新设计》
11
第1节 空间几何体的结构、三视图和直观图 第2节 空间几何体的表面积和体积 第3节 空间点、直线、平面之间的位置关系 第4节 直线、平面平行的判定及其性质 第5节 直线、平面垂直的判定及其性质
目录
CONTENTS
@《创新设计》
第6节 空间向量及空间位置关系 第7节 立体几何中的向量方法
第1课时 利用空间向量求空间角 第2课时 利用空间向量解决有关空间角的开放
问题 教材高考·审题答题(四) 立体几何热点问题
12
目录
CONTENTS
@《创新设计》
13
第九章 平面解析几何
第1节 直线的方程 第2节 两直线的位置关系 第3节 圆的方程 第4节 直线与圆、圆与圆的位置关系 第5节 椭圆
第1课时 椭圆及简单几何性质 第2课时 直线与椭圆的位置关系
目录
CONTENTS
@《创新设计》
14
第6节 双曲线 第7节 抛物线 第8节 曲线与方程 第9节 圆锥曲线的综合问题
第1课时 最值、范围、证明问题 第2课时 定点、定值、探索性问题 教材高考·审题答题(五) 解析几何热点问题
第十章 统计与统计案例 第1节 随机抽样
18
目录
CONTENTS
@《创新设计》
19
第十三章 选考部分 第1节 坐标系与参数方程 第1课时 坐标系 第2课时 参数方程 第2节 不等式选讲 第1课时 绝对值不等式 第2课时 不等式的证明
目录数学人教A新高考.pptx
13
主题四 概率与统计 第九章 统计
目录
CONTENTS
第1节 获取数据的基本途径及抽样方法 第2节 用样本估计总体及统计图表
@《创新设计》
第3节 变量间的相关关系与统计案例
14
第十章 计数原理、概率、随机变量及其分布
《创新设计》2020版 高考总复习
(人教A版 新高考)
数学
1
目录
CONTENTS
@《创新设计》
主题一 预备知识
第一章 预备知识
第1节 第2节 第3节
集合 常用逻辑用语 相等关系与不等关系
第1课时 等式与不等式的性质
第2课时 基本不等式及其应用 第4节 从函数的观点看一元二次方程和一元二
次不等式
2
目录
11
目录
CONTENTS
@《创新设计》
12
第八章 平面解析几何
第1节 直线的方程 第2节 两直线的位置关系 第3节 圆与方程 第4节 直线与圆、圆与圆的位置关系 第5节 椭圆
第1课时 椭圆及简单几何性质 第2课时 直线与椭圆
目录
CONTENTS曲线的综合问题
@《创新设计》
第4节 直线、平面垂直的判定及性质 第5节 空间直角坐标系与空间向量
10
目录
CONTENTS
@《创新设计》
第6节 空间向量的应用 第1课时 利用空间向量证明平行与垂直 第2课时 利用空间向量求夹角和距离(距离供 选用) 第3课时 利用空间向量解决有关空间角的开放 问题
教材高考·审题答题(四) 立体几何热点问题
5
高2020届高2017级理科创新设计高考数学总复习配套课件学案第一章第1节集合
第1节集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)含有n个元素的集合有2n个真子集.()【试题解析】:(1)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y=x2+1上的点集.(2)错误.当x=1时,不满足集合中元素的互异性.(4)错误.含有n个元素的集合有2n-1个真子集.【参考答案】:(1)×(2)×(3)√(4)×2.(必修1P12A5改编)若集合P={x∈N|x≤ 2 019},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P【试题解析】:因为a=22不是自然数,而集合P是不大于 2 019的自然数构成的集合,所以a∉P,只有D正确.【参考答案】:D3.(必修1P12B1改编)已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.【试题解析】:由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个). 【参考答案】:644.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【试题解析】:法一A={x|x2-x-2>0}={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.法二因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2}.【参考答案】:B5.(2019·南昌模拟)已知集合P={x|x2≤1},M={a}.若P∪M=P,则实数a的取值范围为()A.[-1,1]B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)【试题解析】:∵P={x|-1≤x≤1},且P∪M=P,∴M⊆P,∴a∈P,因此-1≤a≤1.【参考答案】:A6.(2017·全国Ⅲ卷改编)已知集合A={(x,y)|x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B中元素的个数为________.【试题解析】:集合A表示圆心在原点的单位圆上所有点的集合,集合B表示直线y=x上所有点的集合,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B 中有2个元素.【参考答案】:2考点一 集合的基本概念【例1】 (1)(2019·湖北四地七校联考)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M(2)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31【试题解析】:(1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .(2)具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 【参考答案】:(1)D (2)B【规律方法】:1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.【训练1】 (1)(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A.9B.8C.5D.4(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________. 【试题解析】:(1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)由题意得⎩⎨⎧(2-a )2<1,(3-a )2≥1,解得⎩⎨⎧1<a <3,a ≤2或a ≥4.所以1<a ≤2.【参考答案】:(1)A (2)(1,2] 考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.ABB.BAC.A ⊆BD.B =A(2)(2019·郑州调研)已知集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________. 【试题解析】:(1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此BA .(2)A ={x |x 2-5x -14≤0}={x |-2≤x ≤7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 【参考答案】:(1)B (2)(-∞,4]【规律方法】:1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(2018·唐山模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则()A.MNB.NMC.M =ND.M ∪N =R(2)若将本例(2)的集合A 改为A ={x |x 2-5x -14>0}.其它条件不变,则m 的取值范围是________.【试题解析】:(1)集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1={x |x >1或x <0},所以M =N .(2)A ={x |x 2-5x -14>0}={x |x <-2或x >7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎨⎧m +1<2m -1,m +1≥7或⎩⎨⎧m +1<2m -1,2m -1≤-2. 解之得m ≥6.综上可知,实数m 的取值范围是(-∞,2]∪[6,+∞). 【参考答案】:(1)C (2)(-∞,2]∪[6,+∞) 考点三 集合的运算 多维探究角度1 集合的基本运算【例3-1】 (1)(2017·全国Ⅰ卷)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A.A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32B.A ∩B =∅C.A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 D.A ∪B =R(2)(2018·天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A.{x |0<x ≤1} B.{x |0<x <1} C.{x |1≤x <2}D.{x |0<x <2}【试题解析】:(1)因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}. (2)因为B ={x |x ≥1},所以∁R B ={x |x <1},因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1}.【参考答案】:(1)A (2)B 角度2 抽象集合的运算【例3-2】 设U 为全集,A ,B 是其两个子集,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【试题解析】:由图可知,若“存在集合C,使得A⊆C,B⊆∁U C”,则一定有“A∩B=∅”;反过来,若“A∩B=∅”,则一定能找到集合C,使A⊆C且B⊆∁U C.【参考答案】:C【规律方法】:1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.注意数形结合思想的应用.(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.【训练3】(1)(2019·延安模拟)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}(2)(2019·新乡模拟)已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=()A.0B.1C.2D.1或2【试题解析】:(1)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}. (2)易知A=[0,1],因为A∩B只有一个元素,所以a-1=1,解得a=2.【参考答案】:(1)D(2)C[思维升华]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:30分钟)一、选择题1.(2018·全国Ⅲ卷)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}【试题解析】:由题意知,A={x|x≥1},则A∩B={1,2}.【参考答案】:C2.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【试题解析】:因为A={1,2,3},B={4,5},又M={x|x=a+b,a∈A,b∈B},∴M={5,6,7,8},即M中有4个元素.【参考答案】:B3.(2019·佛山质检)已知全集U={0,1,2,3,4},若A={0,2,3},B={2,3,4},则(∁U A)∩(∁U B)=()A.∅B.{1}C.{0,2}D.{1,4}【试题解析】:因为全集U={0,1,2,3,4},A={0,2,3},B={2,3,4},所以∁U A={1,4},∁U B ={0,1},因此(∁U A)∩(∁U B)={1}.【参考答案】:B4.(2018·石家庄质检)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}【试题解析】:易求∁R A={x|x≤-1或x>2},∁R B={x|x≥0},∴(∁R A)∩B={x|x≤-1},A项不正确.A∩B={x|-1<x<0},B项正确,检验C、D错误.【参考答案】:B5.已知集合A={x∈N|x2-2x-8≤0},B={x|2x≥8},则集合A∩B的子集的个数为()A.1B.2C.3D.4【试题解析】:因为A={x∈N|x2-2x-8≤0}={0,1,2,3,4},B={x|x≥3},所以A∩B ={3,4},所以集合A∩B的子集个数为4.【参考答案】:D6.(2019·豫北名校联考)已知集合M={x|y=x-1},N={x|y=log2(2-x)},则∁R(M∩N)=()A.[1,2)B.(-∞,1)∪[2,+∞)C.[0,1]D.(-∞,0)∪[2,+∞)【试题解析】:由题意可得M={x|x≥1},N={x|x<2},∴M∩N={x|1≤x<2},∴∁R (M∩N)={x|x<1或x≥2}.【参考答案】:B7.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( ) A.0B.1C.2D.3【试题解析】:由⎩⎨⎧x +y =1,x -y =3,得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}. 【参考答案】:C8.(一题多解)(2018·中原名校联考)已知集合A ={x |y =lg (x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( ) A.(0,1] B.[1,+∞) C.(0,1)D.(1,+∞)【试题解析】:法一 由题意知,A ={x |y =lg (x -x 2)}={x |x -x 2>0}={x |0<x <1},B ={x |x 2-cx <0,c >0}={x |0<x <c }.由A ⊆B ,画出数轴,如图所示,得c ≥1.法二 A ={x |y =lg (x -x 2)={x |x -x 2>0}={x |0<x <1},结合选项,取c =1,得B ={x |0<x <1},则A ⊆B 成立,可排除C 、D;取c =2,得B ={x |0<x <2},则A ⊆B 成立,排除A.【参考答案】:B 二、填空题9.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =________.【试题解析】:易知S ={x |x ≤2或x ≥3}, ∴∁R S ={x |2<x <3},因此(∁R S )∩T ={x |2<x <3}. 【参考答案】:{x |2<x <3}10.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________. 【试题解析】:由A ∩B ={1}知,1∈B ,又a 2+3≥3,则a =1.11.(2019·福州质检)已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.【试题解析】:∵A ={1,3,4,7},B ={x |x =2k +1,k ∈A },∴B ={3,7,9,15},∴A ∪B ={1,3,4,7,9,15},∴集合A ∪B 中元素的个数为6.【参考答案】:612.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.【试题解析】:由题意知,B ={x |y =lg[x (x +1)]}={x |x (x +1)>0}={x |x <-1或x >0},则A -B ={x |-1≤x <0}.【参考答案】:{x |-1≤x <0}能力提升题组(建议用时:10分钟)13.(2018·河南百校联盟联考)若集合A ={x |y =lg (3x -x 2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A ,则A ∩(∁R B )等于( )A.(0,2]B.(2,3)C.(3,5)D.(-2,-1) 【试题解析】:由3x -x 2>0,得0<x <3,则A =(0,3),∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A =(2,5), 则∁R B =(-∞,2]∪[5,+∞),故A ∩(∁R B )=(0,2].【参考答案】:A14.已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)【试题解析】:集合A ={x |y =4-x 2}={x |-2≤x ≤2},因A ∪B =A ,则B ⊆A ,又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1.15.(2019·皖南八校联考改编)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数是________.【试题解析】:由⎩⎨⎧x 2=4y ,y =x 得⎩⎨⎧x =0,y =0或⎩⎨⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B 的真子集个数为22-1=3.【参考答案】:316.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln (1-x )},则图中阴影部分所表示的集合是________.【试题解析】:易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.【参考答案】:[1,2)。
高2020届高2017级高考数学总复习人教版学案课件教材高考审题答题四
@《创新设计》
因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平 面PBD,OP⊂平面PBD,所以MC∥平面PBD.
13
三年真题考情
审题答题指引
@《创新设计》
探究提高 1.探索条件的常用方法: (1)先猜后证,即先观察与尝试给出条件再证明; (2)先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性; (3)把几何问题转化为代数问题,探索命题成立的条件. 2.探索结论的常用方法: 首先假设结论成立,然后在这个假设下进行推理论证,如果通过推理得到了合理的结 论就肯定假设,如果得到了矛盾的结果就否定假设. 提醒 开放问题把假设当作已知条件进行推理论证,会起到事半功倍之效.
@《创新设计》
1
三年真题考情
审题答题指引
@《创新设计》
核心热点
真题印证
平行关系的证明与体 2017·Ⅱ,18;2016·Ⅲ,19;2017·浙
积或距离的计算
江,19;2016·四川,17
核心素养 直观想象,逻辑推
理,数学运算
垂直关系的证明与体 2018·Ⅰ,18;2018·Ⅱ,19;2017·Ⅰ,18;2017· 直观想象,逻辑推
14
三年真题考情
审题答题指引
@《创新设计》
【尝试训练】 如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AC⊥BC,E在线段B1C1 上,B1E=3EC1,AC=BC=CC1=4.
(1)求证:BC⊥AC1; (2)(一题多解)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1?若存在,请指出点 F的位置,并给出证明;若不存在,请说明理由.
8
三年真题考情
审题答题指引
高2020届高2017级高考数学总复习人教版学案课件教材高考审题答题五
1
三年真题考情
审题答题指引
@《创新设计》
核心热点
真题印证
核心素养
直线与椭圆的位置关系 2018·Ⅲ,20;2017·Ⅱ,20
数学运算、逻辑推理
2018·Ⅰ,20;2017·Ⅰ,20;2016·Ⅲ,20
直线与抛物线的位置关系
数学运算、逻辑推理
;2016·Ⅰ,20;2018·Ⅱ,20
最值与范围问题
6
三年真题考情
审题答题指引
解 (1)设椭圆的焦距为 2c,由已知有ac22=59, 又由a2=b2+c2,可得2a=3b. 由已知可得,|FB|=a,|AB|= 2b,
由|FB|·|AB|=6 2,
可得ab=6,从而a=3,b=2. 所以,椭圆的方程为x92+y42=1. (2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2). 由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2. 又因为|AQ|=sin∠y2OAB,而∠OAB=π4,故|AQ|= 2y2.
3
三年真题考情
审题答题指引
@《创新设计》
【教材拓展】 设抛物线 y2=2px(p>0)的焦点为 F,准线为 l,过抛物线上一点 A 作 l 的 垂线,垂足为 B,设 C72p,0,AF 与 BC 相交于点 E,若|CF|=2|AF|,且△ACE 的面
积为 3 2,则 p 的值为________. 解析 易知抛物线的焦点 F 的坐标为p2,0, 又|CF|=2|AF|且|CF|=72p-p2=3p, ∴|AB|=|AF|=32p,可得 A(p, 2p). 易知△AEB∽△FEC,∴||FAEE||=||FACB||=12,
9
三年真题考情
【创新设计,名师课件】(人教A版,理科)高三数学第一轮细致复习课件第三章 三角函数、解三角形 3
Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦
续表
三角函数线 有向线段 MP 为正弦线 有向线段 OM 为余弦线 有向线段 AT 为正切线
辨析感悟
1.对角的概念的认识 (1)小于90°的角是锐角. (2)锐角是第一象限角,反之亦然. (3)将表的分针拨快5分钟,则分针转过的角度是30°. (×) (×) (×)
(7)(2011· 新课标全国卷改编)已知角 θ 的顶点与原点重合, 始 5 边与 x 轴的正半轴重合, 终边在直线 y=2x 上, 则 cos θ= . 5 (×)
[感悟· 提升] 1.一个区别 “小于 90° 的角”、“锐角”、“第一象限的
角”的区别如下: 小于
π π 90° 的角的范围:-∞,2,锐角的范围:0,2,第
A.第一象限 C.第三象限
B.第二象限 D.第四象限
θ 解析 由 θ 是第三象限角,知2为第二或第四象限角,
∵cos
θ θ θ θ =-cos ,∴cos ≤0,知 为第二象限角. 2 2 2 2
答案 B
考点二 三角函数定义的应用 2 【例 2】 已知角 θ 的终边经过点 P(- 3, m)(m≠0)且 sin θ= 4 m,试判断角 θ 所在的象限,并求 cos θ 和 tan θ 的值.
答案 (1)C (2)A
规律方法 熟记各个三角函数在每个象限内的符号是判断的关
键,对于已知三角函数式符号判断角所在象限,可先根据三角 函数式的符号确定各三角函数值的符号,再判断角所在象限.
【训练 1】 设 θ
是第三象限角,且cos
θ θ θ =-cos ,则 是 2 2 2 ( ).
按旋转方向不同分为 正角、负角 、零角 (2)分类 按终边位置不同分为 象限角 和轴线角.
2020版创新设计高考总复习高三理科数学人教A版第三章第2节第2课时
第2课时利用导数研究函数的极值、最值考点一利用导数解决函数的极值问题多维探究角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)解析由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.【参考答案】D规律方法由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.角度2已知函数求极值【例1-2】(2019·哈尔滨模拟)已知函数f(x)=ln x-ax(a∈R).(1)当a=12时,求f(x)的极值;(2)讨论函数f(x)在定义域内极值点的个数.解(1)当a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞)且f′(x)=1x-12=2-x2x,令f′(x)=0,得x=2,于是当x变化时,f′(x),f(x)的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点. 角度3 已知函数的极(最)值求参数的取值 【例1-3】 已知函数f (x )=ln x .(1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0),所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1,则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 【参考答案】A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x . 若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ; 令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求. 故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032, 当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增, ∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤: (1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.【训练3】 (2017·全国Ⅰ卷)如图,圆形纸片的圆心为O ,半径为5 cm,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.解析 由题意,连接OD ,交BC 与点G ,由题意,OD ⊥BC ,设OG =x ,则BC =23x ,DG =5-x ,三棱锥的高 h =DG 2-OG 2=25-10x +x 2-x 2=25-10x , S △ABC =12·(23x )2·sin 60°=33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5, 令f (x )=25x 4-10x 5,x ∈⎝ ⎛⎭⎪⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )=0得x =2,当x ∈(0,2)时,f ′(x )>0,f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫2,52时,f ′(x )<0,f (x )单调递减, 故当x =2时,f (x )取得最大值80, 则V ≤3×80=415.∴体积最大值为415 cm3.【参考答案】415[思维升华]1.求函数的极值、最值,通常转化为对函数的单调性的分析讨论,所以,研究函数的单调性、极值、最值归根结底都是对函数单调性的研究.2.研究函数的性质借助数形结合的方法有助于问题的解决.函数的单调性常借助导函数的图象分析导数的正负;函数的极值常借助导函数的图象分析导函数的变号零点;函数的最值常借助原函数图象来分析最值点.3.解函数的优化问题关键是从实际问题中抽象出函数关系,并求出函数的最值. [易错防范]1.求函数的极值、函数的优化问题易忽视函数的定义域.2.已知极值点求参数时,由极值点处导数为0求出参数后,易忽视对极值点两侧导数异号的检验.3.由极值、最值求参数时,易忽视参数应满足的前提范围(如定义域),导致出现了增解.基础巩固题组(建议用时:40分钟)一、选择题1.函数y=f(x)导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值解析 由函数y =f (x )导函数的图象可知,f (x )的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f (x )在x =-1,5取得极小值,在x =3取得极大值,故选项C 错误. 【参考答案】C2.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则( ) A.a <-1 B.a >-1 C.a >-1eD.a <-1e解析 因为y =e x +ax ,所以y ′=e x +a . 又函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, 当x >0时,-e x <-1,所以a =-e x <-1. 【参考答案】A3.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A.11或18 B.11 C.18D.17或18解析 ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,又f ′(x )=3x 2+2ax +b ,∴⎩⎨⎧1+a +b +a 2=10,3+2a +b =0,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.而当⎩⎨⎧a =-3,b =3时,函数在x =1处无极值,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18. 【参考答案】C4.函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A.0B.1C.2D.无数解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x ,由于x >0,g (x )=6x 2-2x +1的Δ=-20<0, 所以g (x )>0恒成立,故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点. 【参考答案】A5.(2019·安庆二模)已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( ) A.2e -1B.-1eC.1D.2ln 2解析 由题意知,f ′(x )=2e f ′(e )x-1e , ∴f ′(e)=2f ′(e)-1e ,则f ′(e)=1e .因此f ′(x )=2x -1e ,令f ′(x )=0,得x =2e. ∴f (x ) 在(0,2e)上单调递增,在(2e,+∞)上单调递减. ∴f (x )在x =2e 处取极大值f (2e)=2ln(2e)-2=2ln 2. 【参考答案】D 二、填空题6.函数f (x )=x e -x ,x ∈[0,4]的最大值是________. 解析 f ′(x )=e -x -x ·e -x =e -x (1-x ), 令f ′(x )=0,得x =1.又f (0)=0,f (4)=4e 4,f (1)=e -1=1e , ∴f (1)=1e 为最大值. 【参考答案】1e7.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值是________.解析 f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4.f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 【参考答案】-48.若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是________.解析 函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝ ⎛⎭⎪⎫12,3内有根,由f ′(x )=0有2个不相等的实根,得a <-2或a >2.由f ′(x )=0在⎝ ⎛⎭⎪⎫12,3内有根,得a =x +1x 在⎝ ⎛⎭⎪⎫12,3内有解,又x +1x ∈⎣⎢⎡⎭⎪⎫2,103,所以2≤a <103. 综上,a 的取值范围是⎝ ⎛⎭⎪⎫2,103. 【参考答案】⎝ ⎛⎭⎪⎫2,103 三、解答题9.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值. 解 (1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=a x -2bx ,∵函数f (x )在x =1处与直线y =-12相切, ∴⎩⎪⎨⎪⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e ≤x <1,令f ′(x )<0,得1<x ≤e,∴f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增;在(1,e]上单调递减, ∴f (x )max =f (1)=-12.10.(2018·天津卷选编)设函数f (x )=(x -t 1)(x -t 2)(x -t 3),其中t 1,t 2,t 3∈R ,且t 1,t 2,t 3是公差为d 的等差数列.(1)若t 2=0,d =1,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若d=3,求f(x)的极值.解(1)由已知,得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3,或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f(x)的极大值为f(t2-3)=(-3)3-9×(-3)=63;函数f(x)的极小值为f(t2+3)=(3)3-9×3=-6 3.能力提升题组(建议用时:20分钟)11.(2019·郑州质检)若函数y=f(x)存在n-1(n∈N*)个极值点,则称y=f(x)为n折函数,例如f(x)=x2为2折函数.已知函数f(x)=(x+1)e x-x(x+2)2,则f(x)为() A.2折函数 B.3折函数C.4折函数D.5折函数解析f′(x)=(x+2)e x-(x+2)(3x+2)=(x+2)(e x-3x-2),令f′(x)=0,得x=-2或e x=3x+2.易知x=-2是f(x)的一个极值点,又e x=3x+2,结合函数图象,y=e x与y=3x+2有两个交点.又e-2≠3(-2)+2=-4.∴函数y=f(x)有3个极值点,则f(x)为4折函数.【参考答案】C12.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 【参考答案】⎣⎢⎡⎭⎪⎫1,32 13.传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm.解析 设神针原来的长度为a cm,t 秒时神针的体积为V (t ) cm 3,则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8,所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.【参考答案】414.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0).(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.解 (1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞).所以g ′(x )=1x -2a =1-2ax x .又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. ∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0. 所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
高2020届高2017级高考数学总复习人教版学案第七章 第1节
第1节 不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知 识 梳 理1.实数的大小顺序与运算性质的关系 (1)a >b ⇔a -b >0; (2)a =b ⇔a -b =0; (3)a <b ⇔a -b <0.2.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1); (6)可开方:a >b >0n ∈N ,n ≥2). 3.三个“二次”间的关系[微点提醒]1.有关分数的性质(1)若a>b>0,m>0,则ba<b+ma+m;ba>b-ma-m(b-m>0).(2)若ab>0,且a>b⇔1a< 1 b.2.对于不等式ax2+bx+c>0,求解时不要忘记a=0时的情形.3.当Δ<0时,不等式ax2+bx+c>0(a≠0)的解集为R还是∅,要注意区别.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为R.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根,则不等式ax2+bx+c>0(a<0)的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.答案(1)×(2)√(3)×(4)×2.(必修5P74例1改编)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.a c >b dD.a c <b d解析 因为c <d <0,所以0>1c >1d ,两边同乘-1,得-1d >-1c >0,又a >b >0,故由不等式的性质可知-ad >-b c >0.两边同乘-1,得a d <bc . 答案 B3.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B=( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C4.(2018·衡阳联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >abD.a 2>ab >b 2解析 c =0时,A 项不成立;1a -1b =b -aab >0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,选项C 错.由a <b <0,∴a 2>ab >b 2.D 正确. 答案 D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________. 解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1. ∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1. 答案 ⎩⎨⎧⎭⎬⎫x |x >32或x <-16.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎨⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b<1ab ;②|a |+b >0;③a -1a >b-1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0, ∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln (-1)2=0,ln b 2=ln (-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b<0,1ab >0.故有1a +b<1ab ,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0, 所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.答案 (1)A (2)C 角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ),即4a -2b =(m +n )a +(n -m )b . 于是得⎩⎨⎧m +n =4,n -m =-2,解得⎩⎨⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10. 法二 由⎩⎨⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.法三 由⎩⎨⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件. (2)依题意可得4<1b <8,又1<a <3,所以4<ab <24. 答案 (1)A (2)(4,24)考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________. (2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0.于是不等式f (x )>x 等价于⎩⎨⎧x >0,x 2-2x >x 或⎩⎨⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0, 所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎨⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.答案 (1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0. ①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意;当2a <-1,即-2<a <0时,解得2a ≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] (2)(2019·清远一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0,解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 答案 (1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2] 解析 当a -2=0,即a =2时,-4<0恒成立; 当a -2≠0,即a ≠2时,则有⎩⎨⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0, 解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 答案 D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________. 解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值. 2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) (2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎨⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1. 综上,k 的取值范围是[0,1].(2)由于x ∈⎝ ⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立, 则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12时恒成立, 令g (x )=x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12, 易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数. ∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.答案 (1)A (2)C[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.[易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组(建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( )A.f (x )=g (x )B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( )A.2x >2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x >2y ⇔x >y ,所以“2x >2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y ”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.答案 A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫0,12. 答案 A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( )A.-1m <-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m >⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A,C,D 不成立.只有B 项成立(事实上2-1<2-1).答案 B5.已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ),∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1).答案 D二、填空题6.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________. 解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 答案 ⎝ ⎛⎭⎪⎫a ,1a 7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.答案 (-1,1)8.(2019·阳春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎨⎧f (-1)≤0,f (1)≤0⇒⎩⎨⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 答案 (-∞,-2]三、解答题9.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3. 故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x . 因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2. 所以y =f (x )=40(10-x )(25+4x ),定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260,化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2. 能力提升题组(建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b <12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b <1,B 错误;因为0<a <b ,所以a b +b a >2a b ·b a =2,所以2a b +b a >22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( )A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎨⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎨⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 答案 ⎝ ⎛⎭⎪⎫-32,232 14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围. 解 因为函数f (x )是偶函数,故函数图象关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增. 所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立,从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立,设h (x )=3x 2-2ax -a 2,则有⎩⎨⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
高2020届高2017级高考数学创新设计总复习课件第十三章第1节第1课时坐标系
第1节 坐标系与参数方程第1课时 坐标系最新考纲 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.知 识 梳 理1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角. (2)极坐标与直角坐标的互化设M 为平面上的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面的关系式成立:⎩⎨⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0), 这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程[微点提醒] 关于极坐标系1.极坐标系的四要素:①极点;②极轴;③长度单位;④角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.极坐标与直角坐标的重要区别:多值性.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )【试题解析】(1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标θ=π(ρ≥0)表示的曲线是一条射线. 【参考答案】(1)× (2)√ (3)√ (4)×2.(选修4-4P15习题T3改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 【试题解析】∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2. 【参考答案】A3.(选修4-4P15T4改编)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2 B.⎝ ⎛⎭⎪⎫1,-π2 C.(1,0)D.(1,π)【试题解析】法一 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.法二 由ρ=-2sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π2,知圆心的极坐标为⎝ ⎛⎭⎪⎫1,-π2,故选B.【参考答案】B4.(2015·湖南卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.【试题解析】由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1. 【参考答案】x 2+(y -1)2=15.(2014·广东卷)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.【试题解析】将2ρcos 2 θ=sin θ两边同乘以ρ,得2(ρcos θ)2=ρsin θ,化为直角坐标方程为2x 2=y ①,C 2:ρcos θ=1化为直角坐标方程为x =1②,联立①②可解得⎩⎨⎧x =1,y =2,所以曲线C 1与C 2交点的直角坐标为(1,2). 【参考答案】(1,2)6.(2014·陕西卷)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin(θ-π6)=1的距离是________.【试题解析】将极坐标⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为(3,1).极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π6=1转化为直角坐标方程为x -3y +2=0,则点(3,1)到直线x -3y +2=0的距离d =|3-3×1+2|1+(-3)2=1.【参考答案】1考点一 平面直角坐标系中的伸缩变换易错警示【例1】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1.解伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 则⎩⎨⎧x =2x ′,y =3y ′.(1)若5x +2y =0,则5(2x ′)+2(3y ′)=0,所以5x +2y =0经过伸缩变换后的方程为5x ′+3y ′=0,为一条直线. (2)若x 2+y 2=1,则(2x ′)2+(3y ′)2=1,则x 2+y 2=1经过伸缩变换后的方程为4x ′2+9y ′2=1,为椭圆. 【规律方法】伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.易错警示 应用伸缩变换时,要分清变换前的点坐标(x ,y )与变换后的点坐标(x ′,y ′). 【训练1】 在同一坐标系中,求将曲线y =12sin 3x 变为曲线y =sin x 的伸缩变换公式.解 将曲线y =12sin 3x ①经过伸缩变换变为y =sin x ,即y ′=sin x ′②, 设伸缩变换公式是⎩⎨⎧x ′=λx ,y ′=μy (λ>0,μ>0),把伸缩变换关系式代入②式得:μy =sin λx 与①式的系数对应相等得到⎩⎨⎧μ=2,λ=3,所以,变换公式为⎩⎨⎧x ′=3x ,y ′=2y .考点二 极坐标与直角坐标的互化【例2】 (2019·德阳诊断)已知极坐标系的极点为平面直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),直线l 过点(-1,0),且斜率为12,射线OM 的极坐标方程为θ=3π4.(1)求曲线C 和直线l 的极坐标方程;(2)已知射线OM 与曲线C 的交点为O ,P ,与直线l 的交点为Q ,则线段PQ 的长. 解 (1)∵曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),∴曲线C 的普通方程为(x +1)2+(y -1)2=2,将x =ρcos θ,y =ρsin θ代入整理得ρ+2cos θ-2sin θ=0, 即曲线C 的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ-π4.∵直线l 过点(-1,0),且斜率为12,∴直线l 的方程为y =12(x +1),∴直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0. (2)当θ=3π4时,|OP |=22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,|OQ |=12×22+22=23, 故线段PQ 的长为22-23=523.【规律方法】1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.【训练2】 (1)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上,求a 的值及直线的直角坐标方程.(2)把曲线C 1:x 2+y 2-8x -10y +16=0化为极坐标方程. 解 (1)∵点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上, ∴a =2cos ⎝ ⎛⎭⎪⎫π4-π4=2,所以直线的方程可化为ρcos θ+ρsin θ=2, 从而直线的直角坐标方程为x +y -2=0. (2)将⎩⎨⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0,所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 考点三 曲线极坐标方程的应用【例3-1】 (2019·太原二模)点P 是曲线C 1:(x -2)2+y 2=4上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中点,将点P 逆时针旋转90°得到点Q ,设点Q 的轨迹为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=π3(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,定点M (2,0),求△MAB 的面积. 解 (1)由曲线C 1的直角坐标方程(x -2)2+y 2=4可得曲线C 1的极坐标方程为ρ=4cos θ.设Q (ρ,θ),则P ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=4cos ⎝ ⎛⎭⎪⎫θ-π2=4sin θ.所以曲线C 2的极坐标方程为ρ=4sin θ. (2)M 到射线θ=π3(ρ>0)的距离d =2sin π3=3, |AB |=ρB -ρA =4⎝ ⎛⎭⎪⎫sin π3-cos π3=2(3-1),所以S △MAB =12|AB |×d =12×2(3-1)×3=3- 3.【例3-2】 (2017·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)设点M 为曲线C 1上的动点,点P 在线段OM 上,且|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α, 于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫2α-π3-32≤2+ 3. 当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.【规律方法】求线段的长度有两种方法.方法一,先将极坐标系下点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后求线段的长度.方法二,直接在极坐标系下求解,设A (ρ1,θ1),B (ρ2,θ2),则|AB |=ρ21+ρ22-2ρ1ρ2cos (θ2-θ1);如果直线过极点且与另一曲线相交,求交点之间的距离时,求出曲线的极坐标方程和直线的极坐标方程及交点的极坐标,则|ρ1-ρ2|即为所求.【训练3】 (1)在极坐标系中,求直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.(2)(2019·衡阳二模)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A ,B 为C 上两点,且OA ⊥OB ,设射线OA :θ=α,其中0<α<π2. (ⅰ)求曲线C 的极坐标方程; (ⅱ)求|OA |·|OB |的最小值.解 (1)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长 l =2r 2-d 2=242-22=4 3. 故所求弦长为4 3.(2)(ⅰ)将曲线C 的参数方程⎩⎨⎧x =2cos φ,y =sin φ(φ为参数)化为普通坐标方程为x 22+y2=1.因为x =ρcos θ,y =ρsin θ,所以曲线C 的极坐标方程为ρ2=21+sin 2 θ.(ⅱ)根据题意:射线OB 的极坐标方程为θ=α+π2或θ=α-π2, 所以|OA |=21+sin 2 α,|OB |=21+sin 2⎝ ⎛⎭⎪⎫α±π2=21+cos 2 α,所以|OA |·|OB |=21+sin 2 α·21+cos 2 α=4(1+sin 2α)(1+cos 2 α)≥21+sin 2 α+1+cos 2 α2=43. 当且仅当sin 2 α=cos 2 α,即α=π4时,|OA |·|OB |取得最小值为43.[思维升华]1.曲线的极坐标方程化成直角坐标方程:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤: (1)运用ρ=x 2+y 2,tan θ=yx (x ≠0);(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置). [易错防范]1.确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一.当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.3.进行极坐标方程与直角坐标方程互化时,应注意两点: (1)注意ρ,θ的取值范围及其影响.(2)重视方程的变形及公式的正用、逆用、变形使用.基础巩固题组 (建议用时:60分钟)1.求双曲线C :x 2-y 264=1经过φ:⎩⎨⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′), 由上述可知,得⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1, 得x ′29-4y ′264=1,化简得x ′29-y ′216=1, 即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求.2.(2018·武汉模拟)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为:x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22, 即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎨⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎨⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝ ⎛⎭⎪⎫1,π2. 3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ. (1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y ,∴ρ=21-sin θ化为ρ-ρsin θ=2,得ρ2=(2+ρsin θ)2, ∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ),根据题意21-sin θ0=3·21-sin(θ0+π), 解得θ0=π6或θ0=5π6,直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2019·安阳二模)在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.(1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线OP :θ=π6与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 (1)因为x =ρcos θ,y =ρsin θ,直线l :x +3y =53,所以直线l 的极坐标方程为ρcos θ+3ρsin θ=53,化简得2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,即为直线l 的极坐标方程. 由ρ=4sin θ,得ρ2=4ρsin θ,所以x 2+y 2=4y ,即x 2+(y -2)2=4,即为圆C 的直角坐标方程.(2)由题意得ρA =4sin π6=2,ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5, 所以|AB |=|ρA -ρB |=3.5.(2019·福州四校期末联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 1和曲线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,则C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0,由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎪⎨⎪⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2,则ρ1+ρ2=23+2,ρ1ρ2=7,∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27.6.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ).(1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.解 (1)∵⎩⎨⎧x =2cos φ,y =sin φ,∴x 22+y 2=1,由⎩⎨⎧x =ρcos θ,y =ρsin θ, 得曲线C 1的极坐标方程为ρ2=21+sin 2 θ; ∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ=2sin θ.(2)设A ,B 对应的极径分别为ρ1,ρ2,则由(1)得|OA |2=ρ21=21+sin 2α,|OB |2=ρ22=4sin 2 α, ∴|OA |2+|OB |2=21+sin 2α+4sin 2 α=21+sin 2 α+4(1+sin 2α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2α+4(1+sin 2α)<9, ∴|OA |2+|OB |2的取值范围为(2,5).能力提升题组(建议用时:20分钟)7.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3+2cos α,y =1+2sin α(α为参数).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)过原点O 的直线l 1,l 2分别与曲线C 交于除原点外的A ,B 两点,若∠AOB =π3,求△AOB 的面积的最大值.解 (1)曲线C 的普通方程为(x -3)2+(y -1)2=4,即x 2+y 2-23x -2y =0,所以,曲线C 的极坐标方程为ρ2-23ρcos θ-2ρsin θ=0,即ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3. (2)不妨设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π3,θ∈⎝ ⎛⎭⎪⎫-π2,π2. 则ρ1=4sin ⎝ ⎛⎭⎪⎫θ+π3,ρ2=4sin ⎝ ⎛⎭⎪⎫θ+2π3, △AOB 的面积S =12|OA |·|OB |sin π3=12ρ1ρ2sin π3=43sin ⎝ ⎛⎭⎪⎫θ+π3sin ⎝ ⎛⎭⎪⎫θ+2π3 =23cos 2θ+3≤3 3.所以,当θ=0时,△AOB 的面积取最大值3 3.8.(2018·厦门外国语中学模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2 θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)与曲线C 1,C 2的交点分别为A ,B (A ,B 异于原点),当斜率k ∈(1,3]时,求|OA |·|OB |的取值范围.解 (1)曲线C 1的直角坐标方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,将⎩⎨⎧x =ρcos θ,y =ρsin θ代入并化简得曲线C 1的极坐标方程为ρ=2cos θ.由ρcos 2 θ=sin θ两边同时乘ρ,得ρ2cos 2θ=ρsin θ,结合⎩⎨⎧x =ρcos θ,y =ρsin θ得曲线C 2的直角坐标方程为x 2=y .(2)设射线l :y =kx (x ≥0)的倾斜角为φ,则射线的极坐标方程为θ=φ,且k =tan φ∈(1,3].联立⎩⎨⎧ρ=2cos θ,θ=φ,得|OA |=ρA =2cos φ,联立⎩⎨⎧ρcos 2 θ=sin θ,θ=φ,得|OB |=ρB =sin φcos 2 φ, 所以|OA |·|OB |=ρA ·ρB =2cos φ·sin φcos 2 φ=2tan φ=2k ∈(2,23],即|OA |·|OB |的取值范围是(2,23].。
2017高中同步创新课堂数学优化方案人教A版必修3课件:第三章3.1 3.1.1
1.判断下列各题.(对的打“√”,错的打“×”) (1)随机事件 A 的概率是频率的稳定值,频率是概率的近似 值.( √ ) (2)任意事件 A 发生的概率 P(A)总满足 0<P(A)<1.( × ) (3)若事件 A 的概率趋近于 0,即 P(A)→0,则事件 A 是不可能 事件.( × ) 解析:根据频率与概率的关系,(1)正确;必然事件的概率是 1, 不可能事件的概率是 0,(2)不正确;当 P(A)→0,事件 A 发生 的可能性很小,(3)不正确.
第十页,编辑于星期六:二十点 三十四分。
探究点一 事件类型的判断 指出下列事件是必然事件、不可能事件,还是随机事件. (1)2012 年奥运会在英国伦敦举行; (2)甲同学今年已经上高一,三年后他被北大自主招生录取; (3)A 地区在“十三五”规划期间会有 6 条高速公路通车; (4)在标准大气压下且温度低于 0 ℃时,冰融化. [解] (1)是必然事件,因事件已经发生. (2)(3)是随机事件,其事件的结果在各自的条件下不确定. (4)是不可能事件,在本条件下,事件不会发生.
事件,叫做相对于条件S的随机事件
第四页,编辑于星期六:二十点 三十四分。
2.频数与频率
在相同的条件 S 下重复 n 次试验,观察某一事件 A 是否出现,
称 n 次试验中事件 A 称事件 A 出现的比例
出fn(现A)的=次__n数_nA__n_A为为事事件件AA出出现现的的__频_频____率数 _____.,
3.(1)一个口袋内装有大小相等的 1 个白球和已 编有 1,2,3 不同号码的 3 个黑球,从中摸出 2 个球,问: ①共有多少种不同结果? ②摸出 2 个黑球有多少种不同的结果? (2)某人做试验“从一个装有标号为 1,2,3,4 的小球的盒子 中,无放回地取小球两次,每次取一个,构成有序数对(x,y), x 为第一次取到的小球上的数字,y 为第二次取到的小球上的数 字”.求这个试验结果的种数.
2020版创新设计高考总复习高三文科数学人教A版教材高考审题答题五
教材链接高考——求曲线方程及直线与圆锥曲线[教材探究](选修1-1P42习题A5(1)(2))求适合下列条件的椭圆的标准方程: (1)过点P (-22,0),Q (0,5);(2)长轴长是短轴长的3倍,且经过点P (3,0).[试题评析] 1.问题涉及解析几何中最重要的一类题目:求曲线的方程,解决的方法都是利用椭圆的几何性质.2.对于(1)给出的两点并不是普通的两点,而是长轴和短轴的端点,这就告诉我们要仔细观察、借助图形求解问题,(2)中条件给出a ,b 的值,但要讨论焦点的位置才能写出椭圆方程.【教材拓展】 设抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析 易知抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,又|CF |=2|AF |且|CF |=⎪⎪⎪⎪⎪⎪72p -p 2=3p ,∴|AB |=|AF |=32p , 可得A (p ,2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6. 【参考答案】 6探究提高 1.解答本题的关键有两个:(1)利用抛物线的定义求出点A 的坐标, (2)根据△AEB ∽△FEC 求出线段比,进而得到面积比并利用条件“S △ACE =32”求解.2.对于解析几何问题,除了利用曲线的定义、方程进行运算外,还应恰当地利用平面几何的知识,能起到简化运算的作用.【链接高考】 (2018·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B ,已知椭圆的离心率为53,点A 的坐标为(b ,0),且|FB |·|AB |=6 2. (1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin ∠AOQ (O 为原点),求k 的值.解 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59, 又由a 2=b 2+c 2,可得2a =3b . 由已知可得,|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0, 故|PQ |sin ∠AOQ =y 1-y 2. 又因为|AQ |=y 2sin ∠OAB,而∠OAB =π4,故|AQ |=2y 2.由|AQ ||PQ |=524sin ∠AOQ ,可得5y 1=9y 2.由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y 24=1,消去x ,可得y 1=6k9k 2+4. 易知直线AB 的方程为x +y -2=0,由方程组⎩⎨⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1.代入5y 1=9y 2,可得5(k +1)=39k 2+4, 将等式两边平方,整理得56k 2-50k +11=0, 解得k =12或k =1128. 所以,k 的值为12或1128.教你如何审题——圆锥曲线中的证明问题【例题】 (2018·全国Ⅰ卷)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . [审题路线][自主解答](1)解 当l 与x 轴垂直时,l 的方程为x =2,代入抛物线方程y 2=2x ,可得M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明 当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN . 当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0. 由⎩⎨⎧y =k (x -2),y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k ,y 1y 2=-4. 直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=⎝ ⎛⎭⎪⎫y 222y 1+y 212y 2+2(y 1+y 2)(x 1+2)(x 2+2)=(y 1+y 2)⎝ ⎛⎭⎪⎫y 1y 22+2(x 1+2)(x 2+2)=0,所以直线BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .探究提高 (1)解决本题的关键是分析图形,把图形中“角相等”关系转化为相关直线的斜率之和为零,类似的还有圆过定点问题,转化为在该点的圆周角为直角,进而转化为斜率之积为-1;线段长度的比问题转化为线段端点的纵坐标或横坐标之比;(2)解决此类问题,一般方法是“设而不求”,通过“设参、用参、消参”的推理及运算,借助几何直观,达到证明的目的.【尝试训练】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点P ⎝ ⎛⎭⎪⎫1,32,F 为其右焦点.(1)求椭圆C 的方程;(2)设过点A (4,0)的直线l 与椭圆相交于M ,N 两点(点M 在A ,N 两点之间),是否存在直线l 使△AMF 与△MFN 的面积相等?若存在,试求直线l 的方程;若不存在,请说明理由.解 (1)因为c a =12,所以a =2c ,b =3c , 设椭圆方程x 24c 2+y 23c 2=1,又点P ⎝ ⎛⎭⎪⎫1,32在椭圆上,所以14c 2+34c 2=1,解得c 2=1,a 2=4,b 2=3, 所以椭圆方程为x 24+y 23=1.(2)易知直线l 的斜率存在,设l 的方程为y =k (x -4),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0,由题意知Δ=(32k 2)2-4(3+4k 2)(64k 2-12)>0, 解得-12<k <12. 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=32k 23+4k 2,①x 1x 2=64k 2-123+4k 2.②因为△AMF 与△MFN 的面积相等, 所以|AM |=|MN |,所以2x 1=x 2+4.③ 由①③消去x 2得x 1=4+16k 23+4k 2,④将x 2=2x 1-4代入②,得x 1(2x 1-4)=64k 2-123+4k 2⑤将④代入到⑤式,整理化简得36k 2=5. ∴k =±56,经检验满足题设,故直线l 的方程为y =56(x -4)或y =-56(x -4). 满分答题示范——圆锥曲线中的定点、定值问题【例题】 (12分)(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值. [规范解答][高考状元满分心得]❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分. 如第(1)问中联立直线方程和抛物线方程,对直线斜率取值的讨论.❷得关键分:解题过程中不可忽视关键点,有则给分,无则没分.如第(1)问中求抛物线的方程,第(2)问中求点M 和N 的纵坐标.❸得计算分:解题过程中计算准确是满分的根本保证.如第(2)中用y M ,y N 表示λ,μ,计算1λ+1μ的值.[构建模板]【规范训练】 (2019·昆明质检)设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .已知以F 为圆心、4为半径的圆与l 交于A ,B 两点,E 是该圆与抛物线C 的一个交点,∠EAB =90°. (1)求p 的值;(2)已知点P 的纵坐标为-1且在抛物线C 上,Q ,R 是抛物线C 上异于点P 的另外两点,且直线PQ 和直线PR 的斜率之和为-1,试问直线QR 是否经过一定点,若是,求出定点的坐标;若不是,请说明理由.解 (1)由题意及抛物线的定义,有|AF |=|EF |=|AE |=4, 所以△AEF 是边长为4的正三角形. 设准线l 与x 轴交于点D ,则|DF |=p =12|AE |=12×4=2.所以p =2.(2)设直线QR 的方程为x =my +t ,点Q (x 1,y 1),R (x 2,y 2). 由⎩⎨⎧x =my +t ,y 2=4x得y 2-4my -4t =0,则y 1+y 2=4m ,y 1y 2=-4t ,Δ=16m 2+16t >0. 又因为点P 在抛物线C 上,则 k PQ =y P -y 1x P -x 1=y P -y 1y 2P 4-y 214=4y P +y 1=4y 1-1. 同理可得k PR =4y 2-1.因为k PQ +k PR =-1,所以4y 1-1+4y 2-1=4(y 1+y 2)-8y 1y 2-(y 1+y 2)+1=16m -8-4t -4m +1=-1,解得t =3m -74.由⎩⎪⎨⎪⎧Δ=16m 2+16t >0,t =3m -74,14≠m ×(-1)+t ,解得m ∈⎝ ⎛⎭⎪⎫-∞,-72∪⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 所以直线QR 的方程为x =m (y +3)-74,故直线QR 过定点⎝ ⎛⎭⎪⎫-74,-3.1.已知椭圆P 的中心O 在坐标原点,焦点在x 轴上,且经过点A (0,23),离心率为12. (1)求椭圆P 的方程;(2)是否存在过点E (0,-4)的直线l 交椭圆P 于点R ,T ,且满足OR →·OT→=167?若存在,求直线l 的方程;若不存在,请说明理由. 解 (1)设椭圆P 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得b =23,e =c a =12, ∴a =2c ,b 2=a 2-c 2=3c 2, ∴c =2,a =4,∴椭圆P 的方程为x 216+y 212=1.(2)假设存在满足题意的直线l ,易知当直线l 的斜率不存在时,OR →·OT→<0,不满足题意.故可设直线l 的方程为y =kx -4,R (x 1,y 1),T (x 2,y 2). ∵OR →·OT →=167,∴x 1x 2+y 1y 2=167. 由⎩⎪⎨⎪⎧y =kx -4,x 216+y 212=1得(3+4k 2)x 2-32kx +16=0,由Δ>0得(-32k )2-64(3+4k 2)>0,解得k 2>14.① ∴x 1+x 2=32k 3+4k 2,x 1x 2=163+4k 2,∴y 1y 2=(kx 1-4)(kx 2-4)=k 2x 1x 2-4k (x 1+x 2)+16, 故x 1x 2+y 1y 2=163+4k 2+16k 23+4k 2-128k 23+4k 2+16=167, 解得k 2=1.② 由①②解得k =±1,∴直线l 的方程为y =±x -4.故存在直线l :x +y +4=0或x -y -4=0满足题意.2. (2019·惠州调研)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)(一题多解)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线的方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时, 不妨取y 1=22,y 2=-2 2. 因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2), 由⎩⎨⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2,由⎩⎨⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 存在.理由如下: 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝ ⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a故所截弦长为 2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.3.(2019·郑州质检)已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12.问:在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ?若存在,请求出定点Q 的坐标;若不存在,请说明理由. 解 (1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2. 取F ′(-1,0),连接F ′P ,则|F ′P |+|FP |=2(|OS |+|SF |)=4.所以点P 的轨迹是以F ′,F 为焦点、长轴长为4的椭圆,其中,a =2,c =1,所以b 2=a 2-c 2=4-1=3.所以曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q .设Q (0,m ),当直线的斜率存在时直线MN 的方程为y=kx +12,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12.消去y 并整理,得(3+4k 2)x 2+4kx -11=0.由题意知Δ>0,∴x 1+x 2=-4k 3+4k 2,x 1x 2=-113+4k 2. 由∠MQO =∠NQO ,得直线MQ 与直线NQ 的斜率之和为0,∴y 1-m x 1+y 2-m x 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0, ∴2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知直线MN 的斜率不存在时,定点Q (0,6)也符合题意.∴存在符合题意的定点Q ,且定点Q 的坐标为(0,6).综上,存在定点(0,6)使得∠MQO =∠NQO .4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎪⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当该直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM→=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎪⎫1,22在椭圆C 上,所以2a =|AF 1|+|AF 2|=22,则a =2,b 2=a 2-c 2=1. 故椭圆C 的方程为x 22+y 2=1.(2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,M (x 1,y 1),N (x 2,y 2),P ⎝ ⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x 得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0,故y 0=y 1+y 22=t9,且-3<t <3.由PM →=NQ →得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.又-3<t <3,所以-73<y 4<-1, 与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.因此椭圆C 上不存在这样的点Q .5.(2019·合肥质检)在平面直角坐标系中,O 为坐标原点,圆O 交x 轴于点F 1,F 2,交y轴于点B 1,B 2,以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E ,恰好经过点⎝⎛⎭⎪⎫1,22. (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 的面积的最大值. 解 (1)由题意,得椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,则b =c ,∴a 2=b 2+c 2=2b 2,∴椭圆E 的标准方程为x 22b 2+y 2b 2=1.∵椭圆E 经过点⎝⎛⎭⎪⎫1,22,∴12b 2+12b 2=1,解得b 2=1. ∴椭圆E 的标准方程为x 22+y 2=1.(2)∵点(-2,0)在椭圆E 外,∴直线l 的斜率存在.设直线l 的斜率为k ,则直线l :y =k (x +2).设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +2),x 22+y 2=1消去y ,得(1+2k 2)x 2+8k 2x +8k 2-2=0. ∴x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k 2, Δ=64k 4-4(1+2k 2)(8k 2-2)>0,解得0≤k 2<12.∴|MN |=1+k 2|x 1-x 2|=21+k 22-4k 2(1+2k 2)2. ∵点F 2(1,0)到直线l 的距离d =3|k |1+k 2, ∴△F 2MN 的面积为S =12|MN |·d =3k 2(2-4k 2)(1+2k 2)2. 令1+2k 2=t ,t ∈[1,2),得k 2=t -12. ∴S =3(t -1)(2-t )t 2=3-t 2+3t -2t 2=3-1+3t -2t 2=3-2⎝ ⎛⎭⎪⎫1t -342+18. 当1t =34,即t =43⎝ ⎛⎭⎪⎫43∈[1,2)时,S 有最大值,S max =324,此时k =±66. ∴△F 2MN 的面积的最大值是324.6.已知圆C :x 2+y 2-2x -4y +m =0,直线l 过点(2,1).(1)若m =1,直线l 交圆C 于M ,N 两点,且|MN |=22,求直线l 的方程;(2)若直线l 的倾斜角为45°,且与圆C 交于A ,B 两点,是否存在实数m ,使得以AB 为直径的圆过原点O ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)当m =1时,圆C :x 2+y 2-2x -4y +1=0,可转化为(x -1)2+(y -2)2=4,所以圆C 的圆心为C (1,2),半径为2.若直线l 的斜率不存在,易求出|MN |=23,显然不符合题意.故可设直线l 的斜率为k ,则直线l 的方程为y -1=k (x -2),即kx -y -2k +1=0. 由题意知,圆心C (1,2)到直线l 的距离为22-(2)2=2, 即|k -2-2k +1|k 2+1=2, 所以k =1,故直线l 的方程为x -y -1=0.(2)因为直线l 过点(2,1)且倾斜角为45°,所以直线l 的方程为y -1=(x -2)tan 45°,即x -y -1=0.圆C :x 2+y 2-2x -4y +m =0,可化为(x -1)2+(y -2)2=5-m ,所以圆心C (1,2),半径r =5-m (m <5).假设存在实数m ,使得以AB 为直径的圆过原点O ,则OA ⊥OB ,设A (x 1,y 1),B (x 2,y 2),则OA →·OB →=0,所以x 1x 2+y 1y 2=0, 由⎩⎨⎧x 2+y 2-2x -4y +m =0,x -y -1=0得2x 2-8x +5+m =0. 所以Δ=64-8(m +5)=24-8m >0,即m <3,又m <5,故m <3,由根与系数的关系得x 1+x 2=4,x 1x 2=m +52.所以y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=m +52-3=m -12,所以x 1x 2+y 1y 2=m +52+m -12=m +2=0,所以m =-2(满足m <3),故存在实数m ,使得以AB 为直径的圆过原点O ,且m =-2.。
高2020届高2017级理科创新设计高考数学总复习配套课件学案第二章第1节函数及其表示
第1节 函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知 识 梳 理1.函数与映射的概念2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[微点提醒]1.函数是特殊的映射,是定义在非空数集上的映射.2.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.()(2)对于函数f:A→B,其值域是集合B.()(3)f(x)=x-3+2-x是一个函数.()(4)若两个函数的定义域与值域相同,则这两个函数相等.()【试题解析】:(1)错误.函数y=1的定义域为R,而y=x0的定义域为{x|x≠0},其定义域不同,故不是同一函数.(2)错误.值域C⊆B,不一定有C=B.(3)错误.f(x)=x-3+2-x中x不存在.(4)错误.若两个函数的定义域、对应法则均对应相同时,才是相等函数.【参考答案】:(1)×(2)×(3)×(4)×2.(必修1P25B2改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N ={y|0≤y≤2},则函数y=f(x)的图象可能是()【试题解析】:A中函数定义域不是[-2,2];C中图象不表示函数;D中函数值域不是[0,2].【参考答案】:B3.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A.y =(x +1)2B.y =3x 3+1 C.y =x 2x +1D.y =x 2+1【试题解析】:对于A,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B,定义域和对应法则分别对应相同,是相等函数;对于C,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域x ∈R 不同,不是相等函数;对于D,定义域相同,但对应法则不同,不是相等函数. 【参考答案】:B4.(2019·珠海期中)已知f (x 5)=lg x ,则f (2)=( ) A.15lg 2B.12lg 5C.13lg 2 D.12lg 3【试题解析】:令x 5=2,则x =215,∴f (2)=lg 215=15lg 2.【参考答案】:A5.(2019·河南、河北两省重点高中联考)函数f (x )=4-4x +ln (x +4)的定义域为________.【试题解析】:要使f (x )有意义,则⎩⎨⎧4-4x≥0,x +4>0,解得-4<x ≤1.【参考答案】:(-4,1]6.(2018·福州调研)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【试题解析】:由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 【参考答案】:-2考点一 求函数的定义域【例1】 (1)(2019·湘潭模拟)函数y =1-x 2+log 2(tan x -1)的定义域为________.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________. 【试题解析】:(1)要使函数y =1-x 2+log 2(tan x -1)有意义,则1-x 2≥0,tan x -1>0,且x ≠k π+π2(k ∈Z ). ∴-1≤x ≤1且π4+k π<x <k π+π2,k ∈Z , 可得π4<x ≤1.则函数的定义域为⎝ ⎛⎦⎥⎤π4,1.(2)因为y =f (x )的定义域为[0,2],所以要使g (x )有意义应满足⎩⎨⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域是[0,1).【参考答案】:(1)⎝ ⎛⎦⎥⎤π4,1 (2)[0,1)【规律方法】:1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.2.求抽象函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.【训练1】 (1)(2019·深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( )A.(-9,+∞)B.(-9,1)C.[-9,+∞)D.[-9,1)【试题解析】:(1)要使函数有意义,则⎩⎨⎧-x 2-x +2≥0,ln x ≠0,解得⎩⎨⎧-2≤x ≤1,x >0且x ≠1.∴函数的定义域是(0,1).(2)易知f [f (x )]=f [lg (1-x )]=lg[1-lg (1-x )], 则⎩⎨⎧1-x >0,1-lg (1-x )>0,解得-9<x <1. 故f [f (x )]的定义域为(-9,1). 【参考答案】:(1)C (2)B 考点二 求函数的解析式【例2】 (1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.【试题解析】:(1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=2ax +a +b =x -1, 所以⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)在f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x 换成x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,解得f (x )=23x +13.【参考答案】:(1)lg 2x -1(x >1) (2)12x 2-32x +2 (3)23x +13【规律方法】:求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)(2018·成都检测)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________.(2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 【试题解析】:(1)易知f [f (x )]=a (ax -b )-b =a 2x -ab -b , ∴a 2x -ab -b =4x -3(a >0),因此⎩⎨⎧a 2=4,ab +b =3,解得⎩⎨⎧a =2,b =1.所以f (x )=2x -1,则f (2)=3. (2)因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 由①②解得f (x )=3x . 【参考答案】:(1)3 (2)3x 考点三 分段函数 多维探究角度1 分段函数求值【例3-1】 (2018·江苏卷)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f [f (15)]的值为________.【试题解析】:因为函数f (x )满足f (x +4)=f (x )(x ∈R ),所以函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (15)=f (-1)=12, 因此f [f (15)]=f ⎝ ⎛⎭⎪⎫12=cos π4=22.【参考答案】:22 角度2 分段函数与方程、不等式问题【例3-2】 (1)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=4,则b =( )A.1B.78C.34D.12(2)(2017·全国Ⅲ卷)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.【试题解析】:(1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32时,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4,解得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b =4,解得b =12.(2)当x ≤0时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=(x +1)+⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +32>1,解得-14<x ≤0,当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +⎝ ⎛⎭⎪⎫x -12+1,原不等式化为2x +x +12>1,该不等式恒成立, 当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12,又x >12时,2x +2x -12>212+20=1+2>1恒成立, 综上可知,不等式的解集为⎝ ⎛⎭⎪⎫-14,+∞.【参考答案】:(1)D (2)⎝ ⎛⎭⎪⎫-14,+∞【规律方法】:1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( ) A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.【试题解析】:(1)由题意知f (1)=12+2=3, 因此f [f (1)]=f (3)=3+13-2=4. (2)当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎨⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.【参考答案】:(1)C (2)⎣⎢⎡⎭⎪⎫0,12[思维升华]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解. [易错防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.基础巩固题组 (建议用时:35分钟)一、选择题1.函数f (x )=2x -1+1x -2的定义域为( ) A.[0,2)B.(2,+∞)C.[0,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)【试题解析】:由题意知⎩⎨⎧2x-1≥0,x -2≠0,得⎩⎨⎧x ≥0,x ≠2,所以函数的定义域为[0,2)∪(2,+∞). 【参考答案】:C2.(2019·郑州调研)如图是张大爷晨练时离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【试题解析】:由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 【参考答案】:D3.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A.y =x B.y =lg x C.y =2xD.y =1x【试题解析】:函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A,C;y =lg x 的值域为R ,排除B;D 中y =1x的定义域、值域均为(0,+∞). 【参考答案】:D4.设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12【试题解析】:根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1, ∴f (log 212)=2(log 212)-1=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 【参考答案】:C5.(2019·西安联考)已知函数f (x )=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( ) A.(-∞,-1) B.(-1,2] C.[-1,2]D.[2,5]【试题解析】:f (x )=-x 2+4x =-(x -2)2+4.当x =2时,f (2)=4.由f (x )=-x 2+4x =-5,得x =5或x =-1.∴要使f (x )在[m ,5]上的值域是[-5,4],则-1≤m ≤2.【参考答案】:C6.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A.y =⎣⎢⎡⎦⎥⎤x 10 B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410 D.y =⎣⎢⎡⎦⎥⎤x +510 【试题解析】:代表人数与该班人数的关系是除以10的余数大于6,即大于等于7时要增加一名,故y =⎣⎢⎡⎦⎥⎤x +310. 【参考答案】:B7.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( ) A.2 B.4 C.6 D.8【试题解析】:由已知得0<a <1,则f (a )=a ,f (a +1)=2a ,所以a =2a ,解得a =14或a =0(舍去),所以f ⎝ ⎛⎭⎪⎫1a =f (4)=2(4-1)=6. 【参考答案】:C8.(2019·上饶质检)已知函数f (x )=⎩⎨⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A.(1,+∞)B.(2,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-2)∪(2,+∞)【试题解析】:当a =0时,显然不成立.当a >0时,不等式a [f (a )-f (-a )]>0等价于a 2-2a >0,解得a >2.当a <0时,不等式a [f (a )-f (-a )]>0等价于-a 2-2a <0,解得a <-2. 综上所述,实数a 的取值范围为(-∞,-2)∪(2,+∞).【参考答案】:D二、填空题9.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________. 【试题解析】:要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎨⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].【参考答案】:(0,1]10.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫1x +1x f (-x )=2x (x ≠0),则f (-2)=________. 【试题解析】:令x =2,可得f ⎝ ⎛⎭⎪⎫12+12f (-2)=4,① 令x =-12,可得f (-2)-2f ⎝ ⎛⎭⎪⎫12=-1② 联立①②解得f (-2)=72.【参考答案】:7211.下列四个结论中,正确的命题序号是________.①f (x )=|x |x 与g (x )=⎩⎨⎧1,x ≥0,-1,x <0,表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=0. 【试题解析】:对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g(x )=⎩⎨⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f(x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域和对应关系均分别对应相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (0)=1. 【参考答案】:②③12.设函数f (x )=⎩⎨⎧2x ,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________. 【试题解析】:由题意知,若x ≤0,则2x =12,解得x =-1;若x >0,则|log 2x |=12,解得x =212或x =2-12. 故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 【参考答案】:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 能力提升题组(建议用时:15分钟)13.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数:①y =x -1x ;②y =ln 1-x 1+x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A.①②B.①③C.②③D.①【试题解析】:对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f (x )=ln 1-x 1+x ,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x ). 所以满足“倒负”变换的函数是①③.【参考答案】:B14.(2019·河南八市联考)设函数f (x )=⎩⎨⎧-x +λ,x <1(λ∈R ),2x ,x ≥1,若对任意的a ∈R 都有f [f (a )]=2f (a )成立,则λ的取值范围是( )A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2) 【试题解析】:当a ≥1时,2a ≥2.∴f [f (a )]=f (2a )=22a=2f (a )恒成立.当a <1时,f [f (a )]=f (-a +λ)=2f (a )=2λ-a∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).【参考答案】:C15.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 【试题解析】:根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 【参考答案】:f (x )=-log 2 x16.已知函数f (x )=⎩⎨⎧2e x -1,x <1,x 3+x ,x ≥1,则f [f (x )]<2的解集是________.【试题解析】:当x≥1时,f(x)=x3+x≥2,则f[f(x)]<2解集为∅. 当x<1时,f(x)=2e x-1<2.所以f[f(x)]<2等价于f(x)<1,则2e x-1<1,得x<1-ln 2.故f[f(x)]<2的解集为(-∞,1-ln 2).【参考答案】:(-∞,1-ln 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节导数在研究函数中的应用考试要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系;能利用导数研究函数的单调性;对于多项式函数,能求不超过三次的多项式函数的单调区间;2.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;3.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值;体会导数与单调性、极值、最大(小)值的关系.知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[微点提醒]1.函数f(x)在区间(a,b)上递增,则f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.答案(1)×(2)√(3)×(4)×(5)√2.(选修2-2P32A4 改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.4解析由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.(选修2-2P32A5(4)改编)函数f(x)=2x-x ln x的极值是()A.1e B.2e C.e D.e2解析因为f′(x)=2-(ln x+1)=1-ln x,令f′(x)=0,所以x=e,当f′(x)>0时,解得0<x<e;当f′(x)<0时,解得x>e,所以x=e时,f(x)取到极大值,f(x)极大值=f(e)=e.答案 C4.(2019·青岛月考)函数f(x)=cos x-x在(0,π)上的单调性是()A.先增后减B.先减后增C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案 D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y =f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案 D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析 函数f (x )=x (x -c )2的导数为f ′(x )=3x 2-4cx +c 2, 由题意知,在x =2处的导数值为12-8c +c 2=0,解得c =2或6,又函数f (x )=x (x -c )2在x =2处有极小值,故导数在x =2处左侧为负,右侧为正,而当e =6时,f (x )=x (x -6)2在x =2处有极大值,故c =2. 答案 C第1课时 导数与函数的单调性考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增D.在⎝ ⎛⎭⎪⎫0,1e 上递减(2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e . (2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 考点三 函数单调性的简单应用 多维探究角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减. 由F (x )<1e 2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞). 答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12 解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.答案 (1)B (2)B[思维升华]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意函数f (x )的定义域.2.含参函数的单调性要注意分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性求参数可以利用给定的已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决. [易错防范]1.求单调区间应遵循定义域优先的原则.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.4.可导函数f(x)在(a,b)上是增(减)函数的充要条件是:对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都不恒为零.基础巩固题组(建议用时:40分钟)一、选择题1.函数y=f(x)的图象如图所示,则y=f′(x)的图象可能是()解析由函数f(x)的图象可知,f(x)在(-∞,0)上单调递增,f(x)在(0,+∞)上单调递减,所以在(-∞,0)上,f′(x)>0;在(0,+∞)上,f′(x)<0,选项D满足.答案 D2.函数f(x)=x·e x-e x+1的单调递增区间是()A.(-∞,e)B.(1,e)C.(e,+∞)D.(e-1,+∞)解析由f(x)=x·e x-e x+1,得f′(x)=(x+1-e)·e x,令f′(x)>0,解得x>e-1,所以函数f(x)的单调递增区间是(e-1,+∞).答案 D3.(2019·青岛二中调研)若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是()A.k≤-3或-1≤k≤1或k≥3B.不存在这样的实数kC.-2<k<2D.-3<k<-1或1<k<3解析由f(x)=x3-12x,得f′(x)=3x2-12,令f′(x)=0,解得x=-2或x=2,只要f′(x)=0的解有一个在区间(k-1,k+1)内,函数f(x)在区间(k-1,k+1)上就不单调,则k-1<-2<k+1或k-1<2<k+1,解得-3<k<-1或1<k<3.答案 D4.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0, 故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D5.(2019·济宁一中模拟)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F′(x)=f′(x)-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 答案 (-2,2)7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点.需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞). 答案 (-3,0)∪(0,+∞)8.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案 ⎝ ⎛⎭⎪⎫-19,+∞三、解答题9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32(x >0). 则f ′(x )=x 2-4x -54x 2. 令f ′(x )=0,且x >0,∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).10.(2019·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1. 当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0.能力提升题组 (建议用时:20分钟)11.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D不正确. 答案 A12.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e,+∞) B.(0,e) C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数, 所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0. 所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D13.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,1314.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x,当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.新高考创新预测15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________. 解析 由函数f (x )的图象过点(-1,-6),得m -n =-3.①由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 所以g(x)=f′(x)+6x=3x2+(2m+6)x+n.因为g(x)的图象关于y轴对称,所以-2m+62×3=0,所以m=-3,代入①得n=0,所以f′(x)=3x2-6x=3x(x-2). 由f′(x)<0,得0<x<2,所以f(x)的单调递减区间是(0,2).答案-3(0,2)。