2019年高考数学总复习:抽样检验与概率

合集下载

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。

2019版高考数学一轮复习第九章概率与统计第9讲随机抽样配套课件理

2019版高考数学一轮复习第九章概率与统计第9讲随机抽样配套课件理

解析:由差异明显的几部分构成时,一般采用分层抽样, 显然根据学段分层抽样比较科学.
考点 1 简单随机抽样 例 1:(1)(2016 年福建龙岩模拟)某班有 34 名同学,座位号 记为 01,02,…,34,用下列的随机数表选取 5 组数作为参加青 年志愿者活动的 5 名同学的座位号.选取方法是从随机数表第 1 行的第 6 列和第 7 列数字开始,由左到右依次选取两个数字,
3.分层抽样
(1)定义:在抽样时,将总体分成互不交叉的层,然后按照 一定的比例,从各层独立地抽取一定数量的个体,将各层取出
的个体合在一起作为样本,这种抽样方法叫做分层抽样;
(2)分层抽样的应用范围:当总体是由差异明显的几个部分 组成时,往往选用分层抽样.
1.在简单随机抽样中,某一个个体被抽到的可能性( C ) A.与第几次抽样有关,第一次抽到的可能性最大 B.与第几次抽样有关,第一次抽到的可能性最小 C.与第几次抽样无关,每一次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本有关
1.简单随机抽样 (1)定义:设一个总体含有 N 个个体,从中逐个不放回地抽
取 n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个
体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
抽签法 和随机数法. (2)最常用的简单随机抽样的方法:________
2.系统抽样的步骤 假设要从容量为 N 的总体中抽取容量为 n 的样本.
200 名居民的阅读时间进行统计分析.样本容量为 200,每个居
民的阅读时间就是一个个体,5000 名居民的阅读时间的全体是 总体.
3.对一个容量为 N 的总体抽取容量为 n 的样本,当选取简
单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时, 总体中每个个体被抽中的概率分别为 p1,p2,p3,则( D )

高中数学概率与统计抽样方法解析

高中数学概率与统计抽样方法解析

高中数学概率与统计抽样方法解析概率与统计是数学中的重要分支,其研究对象包括随机现象、随机变量和概率分布等。

而抽样方法则是在统计学中常用的一种数据收集方法。

本文将探讨高中数学中的概率与统计,重点关注抽样方法的应用和解析。

一、概率与统计基础知识回顾概率是描述事物发生程度的数学工具,可用于预测随机事件的可能性。

统计则是通过对数据进行收集、处理和分析来得到关于总体特征的信息。

在高中数学教学中,我们通常首先学习基本概率原理,如事件、样本空间、概率的计算等。

二、抽样方法的基本原理抽样方法是从总体中选择一部分样本进行研究和数据收集的方法。

其目的是通过对样本的分析来推断总体的特征。

常见的抽样方法包括简单随机抽样、分层抽样、整群抽样等。

在实际应用中,我们需要根据具体问题选择适合的抽样方法。

三、简单随机抽样简单随机抽样是指从总体中随机选择一定数量的样本,使每个样本被选中的概率相等。

这种抽样方法简单、方便,适用于总体规模较小且不存在明显分层的情况。

使用简单随机抽样时,我们可以使用随机数表或随机数发生器来进行样本选择。

四、分层抽样分层抽样是将总体按某种特征划分为若干个层次,然后从每个层次中抽取样本。

这种抽样方法能够保证每个层次的特征在样本中得到充分体现,适用于总体存在明显的分层特征的情况。

使用分层抽样时,我们需要根据总体的特征确定各个层次的大小和样本数量。

五、系统抽样系统抽样是指按照事先规定的一定间隔从总体中选择样本。

常见的系统抽样方法包括等距抽样和等比抽样。

这种抽样方法简便且适用范围广,尤其适用于总体无明显规律但数量较大的情况。

当使用系统抽样时,我们需要确定抽样间隔和起始样本的选择方式。

六、抽样方法的应用举例在实际应用中,概率与统计的抽样方法被广泛运用于各个领域。

例如,在社会调查中,通过抽取一定数量的样本,我们可以了解到人们对某一问题的看法和态度;在医学研究中,通过对患者进行抽样观察,可以推断某种疾病的发病率和病情特征等。

高中数学知识点总结概率与统计中的抽样与统计推断

高中数学知识点总结概率与统计中的抽样与统计推断

高中数学知识点总结概率与统计中的抽样与统计推断高中数学知识点总结:概率与统计中的抽样与统计推断概率与统计是高中数学课程中非常重要的一个部分,其中的抽样与统计推断是指根据样本数据对总体进行统计推断的方法。

本文将对概率与统计中的抽样和统计推断的相关知识点进行总结。

一、抽样方法在统计学中,要对总体进行推断,首先需要获取一定数量的样本数据。

以下是常见的抽样方法:1. 简单随机抽样简单随机抽样是指从总体中随机选择若干个样本,使每个样本有相等的机会被选中。

简单随机抽样是最基本、最常用的抽样方法。

2. 系统抽样系统抽样是指按照一定的规律从总体中选择样本。

例如,我们可以每隔一定间距选取一个样本,或者以周期性的方式进行抽样。

3. 分层抽样分层抽样是指将总体分成若干层,然后在每一层中进行简单随机抽样或其他抽样方法。

这种抽样方法可以保证样本的代表性,尤其适用于总体具有明显特征的情况。

4. 整群抽样整群抽样是指将总体分成若干群,然后随机选择若干个群作为样本,对选中的群内所有个体进行观察。

这种抽样方法适用于总体内部的个体具有相似特征的情况。

二、抽样误差在进行抽样调查时,样本结果与总体参数之间存在一定的差距,这就是抽样误差。

以下是常见的抽样误差:1. 随机误差随机误差是指由于随机抽样所引起的误差,它是抽样误差的主要来源。

随机误差是由于样本的随机性所导致的,可以通过增加样本容量来减小。

2. 非抽样误差非抽样误差是指由于抽样过程以外的因素所引起的误差。

例如,在抽样过程中出现了操作失误、调查问卷有瑕疵等情况,都会导致非抽样误差。

三、统计推断方法统计推断是基于样本数据对总体进行推断和估计的方法。

以下是常见的统计推断方法:1. 置信区间置信区间是指对总体参数的一个区间估计。

通过样本数据计算得到的区间,可以给出总体参数估计的范围。

置信区间的宽度与样本容量、置信水平等因素有关。

2. 假设检验假设检验是用于判断总体参数假设是否成立的方法。

高中数学知识点总结概率与统计的抽样方法

高中数学知识点总结概率与统计的抽样方法

高中数学知识点总结概率与统计的抽样方法在概率与统计学中,抽样方法是一种收集数据并进行分析的重要手段。

通过抽样,我们可以从总体中选择一部分样本,以此来了解和推断整体的特征和规律。

本文将对高中数学中与概率与统计相关的抽样方法进行总结。

一、简单随机抽样(Simple Random Sampling)简单随机抽样是指从总体中以随机的方式抽取样本,使得各个样本具有相同的机会被抽到,且各个样本之间是相互独立的。

简单随机抽样通常采用以下几种方式实施:1. 纸箱抽样法:将总体中的每个个体写在纸片上,放入一个装有纸片的纸箱中,然后用手在纸箱中摇晃,最后从中抽取所需的样本。

2. 随机数表法:通过使用随机数表,将总体中的个体与表中的随机数对应,然后按照表中的数值顺序抽取样本。

简单随机抽样的特点是简单易行,并且能够较好地反映总体的特征。

但是在总体较大时,抽样工作会比较繁琐,且可能出现样本偏差的情况。

二、系统抽样(Systematic Sampling)系统抽样是按照一定的规则从总体中抽取样本,通常是从第一个个体开始,每隔一定的间隔抽取一个样本,直到达到所需样本数量为止。

系统抽样的具体步骤如下:1. 确定总体大小 N 和所需样本数量 n。

2. 计算步长 k = N/n。

3. 随机确定一个起始值 r,保证 r 小于 k。

4. 以步长为间隔,从第 r 个个体开始进行抽样。

系统抽样相对于简单随机抽样而言,其抽样过程相对简单且精确。

但是需要注意,若总体的顺序具有某种规律或周期性,可能会导致样本的偏差。

三、整群抽样(Cluster Sampling)整群抽样是将总体划分为若干个互不重叠的群组,然后从中随机选择一部分群组作为样本,进行数据收集和分析。

整群抽样的步骤如下:1. 将总体划分为若干个群组,确保群组之间的相似度较高,群组内的差异较小。

2. 使用随机抽样技术,从划分好的群组中随机选择一定数量的群组作为样本。

3. 对所选的群组进行全员调查,或者从每个群组中再进行其他抽样方法的抽样。

版高考数学一轮总复习概率统计中的抽样与估计计算

版高考数学一轮总复习概率统计中的抽样与估计计算

版高考数学一轮总复习概率统计中的抽样与估计计算高考数学一轮总复习概率统计中的抽样与估计计算概率统计是高考数学中的重要部分,其中抽样与估计计算是一个核心概念。

在这篇文章中,我们将详细探讨抽样与估计计算的方法和应用。

一、抽样方法在统计学中,抽样是指从总体中选取一部分个体进行测量或调查的方法。

常用的抽样方法包括随机抽样、分层抽样和系统抽样。

1. 随机抽样随机抽样是指从总体中按照一定的概率分布随机选取样本的方法。

它的特点是每个个体都有相同的概率被选入样本,从而保证样本的代表性和可靠性。

2. 分层抽样分层抽样是将总体按照某种特征分成若干层,然后从每一层中随机选取样本。

这种方法可以保证每一层都有代表性的样本,从而提高估计的准确性。

3. 系统抽样系统抽样是指按照一定的规则,从总体中选取样本。

例如,从总体中每隔一定的间隔选取一个个体作为样本,这样就能保证样本的随机性和均匀性。

二、估计计算方法抽样得到的样本是我们对总体的一个估计。

估计计算是根据样本数据,推断总体参数的方法。

常用的估计计算方法有点估计和区间估计。

1. 点估计点估计是根据样本数据,用一个确定的数值来估计总体参数。

常见的点估计方法有样本均值、样本方差和样本比例。

例如,根据样本均值估计总体均值。

2. 区间估计区间估计是指根据样本数据,给出一个范围,来估计总体参数落在该范围内的概率。

常见的区间估计方法有正态分布的置信区间和二项分布的置信区间。

例如,根据正态分布的置信区间估计总体均值。

三、应用举例下面通过一个具体的例子来说明抽样与估计计算的应用。

假设我们想要估计某个城市的失业率。

我们可以采用随机抽样的方法,在整个城市的居民中随机选取一部分进行调查。

得到的样本数据可以用来计算样本的失业率。

假设我们得到的样本数据中有1000个人,其中有200人失业。

那么,我们可以用样本的失业率来估计总体的失业率。

样本的失业率为200/1000=0.2,即20%。

通过区间估计,我们可以得到总体失业率落在一定范围内的概率。

突破2019年高考+数学总复习+第十章算法初步抽样概率统计——备考基础查清+热点命题悟通(学生版)

突破2019年高考+数学总复习+第十章算法初步抽样概率统计——备考基础查清+热点命题悟通(学生版)

第十章算法初步、抽样、统计、概率案例高考分值比例17分左右,算法初步即为程序框图简单,高考必拿5分,统计概率,题型简单固定高考易拿分。

但是概率中的几何概型以及抽样中线性回归直线方程、2*2列联表计算量较大,需要花费时间计算,高考难易难度基础偏中等。

本教案主要内容:备考基础查清+热点命题悟通。

下面内容是必记知识点+必明易错点+必会方法目录:第十章算法初步、抽样、统计、概率案例第一节算法与程序框图-------------------------------------------------2页第二节随机抽样-------------------------------------------------------9页第三节用样本估计总体------------------------------------------------14页第四节变量间的相关关系、统计案例-------------------------------------20页第十章算法初步、统计、统计案例第一节算法与程序框图1.算法与程序框图(1)算法的定义:算法是指按照一定规则解决某一类问题的明确和有限的步骤.(2)程序框图:①程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.②程序框图通常由程序框和流程线组成.③基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.(3)三种基本逻辑结构:(1)输入、输出、赋值语句的格式与功能:①IF-THEN格式:②IF-THEN-ELSE格式:(3)循环语句的格式及框图:①UNTIL语句:②WHILE语句:1.易混淆处理框与输入框,处理框主要是赋值、计算,而输入框只是表示一个算法输入的信息.2.易忽视循环结构中必有条件结构,其作用是控制循环进程,避免进入“死循环”,是循环结构必不可少的一部分.3.易混淆当型循环与直到型循环.直到型循环是“先循环,后判断,条件满足时终止循环”;而当型循环则是“先判断,后循环,条件满足时执行循环”;两者的判断框内的条件表述在解决同一问题时是不同的,它们恰好相反.[试一试]1.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.5B.9C.14 D.412.如图是一个算法流程图,则输出的k的值是________识别程序框图运行和完善程序框图的步骤识别运行程序框图和完善程序框图是高考的热点.解答这一类问题,第一,要明确程序框图的顺序结构、条件结构和循环结构;第二,要识别运行程序框图,理解框图所解决的实际问题;第三,按照题目的要求完成解答.对程序框图的考查常与数列和函数等知识相结合,进一步强化框图问题的实际背景.[练一练]1.(2014·深圳调研)若执行图中的框图,输入N=13,则输出的数等于________.2.运行如图所示的程序框图,若输出的结果是62,则判断框中整数M的值是________.算法的基本结构1.(2013·执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]2.(2013·安徽高考)如图所示,程序框图(算法流程图)的输出结果为()A.34 B.16C.1112D.25243.(2013·南昌模拟)若如下框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是( )A .k =9?B .k ≤8?C .k <8?D .k >8?[类题通法]1.解决程序框图问题要注意几个常用变量:(1)计数变量:用来记录某个事件发生的次数,如i =i +1. (2)累加变量:用来计算数据之和,如S =S +i . (3)累乘变量:用来计算数据之积,如p =p ×i .2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.算法的交汇性问题算法是高考热点内容之一,算法的交汇性问题是新课标高考的一大亮点,归纳起来常见的命题角度有:(1)与统计的交汇问题; (2)与函数的交汇问题; (3)与概率的交汇问题. 角度一 与统计的交汇问题1.(2013·荆州模拟)图(1)是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A1,A2,…,A14.图(2)是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.7 B.8C.9 D.10角度二与函数的交汇问题2.(2014·北京海淀模拟)执行如图所示的程序框图,输出的k值是()A.4 B.5C.6 D.7角度三与概率的交汇问题3.(2013·洛阳统考)执行如图所示的程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为()A.14B.13C.23D.34[类题通法]解决算法的交汇性问题的方法(1)读懂程序框图、明确交汇知识; (2)根据给出问题与程序框图处理问题; (3)注意框图中结构的判断.基本算法语句[典例] 下面程序运行的结果为( )n =10S =100DOS =S -nn =n -1LOOP UNTIL S<=70PRINT n ENDA .4B .5C .6D .7[类题通法]1.输入语句、输出语句和赋值语句基本对应于算法的顺序结构.2.在循环语句中也可以嵌套条件语句,甚至是循环语句,此时需要注意嵌套格式,这些语句需要保证算法的完整性,否则就会造成程序无法执行.[针对训练]运行下面的程序时,WHILE 循环语句的执行次数是( )N =0WHILE N<20 N =N +1N =N*NWEND PRINT N ENDA .3B .4C .15D .19第二节随机抽样1.简单随机抽样(1)抽取方式:逐个不放回抽取; (2)每个个体被抽到的概率相等; (3)常用方法:抽签法和随机数法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.3.分层抽样中,易忽视每层抽取的个体的比例是相同的,即样本容量n总体个数N .[试一试]1.下列抽取样本的方式是简单随机抽样的有( ) ①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,今从中选取10支进行检验.在抽样操作时,从中任意拿出一支检测后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本. A .0个 B .1个 C .2个 D .3个2.用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( )A .7B .5C .4D .33.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取一个容量为若干户的样本,若从高收入家庭中抽取了25户,则低收入家庭被抽取的户数为________.1.系统抽样的步骤(1)先将总体的N 个个体编号;(2)确定分段间隔k (k ∈N *),对编号进行分段.当N n (n 是样本容量)是整数时,取k =Nn ;(3)在第1段用简单随机抽样确定第1个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加上k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.2.分层抽样的步骤(1)分层:按某种特征将总体分成若干部分;(2)按比例确定每层抽取个体的个数;(3)各层分别按简单随机抽样或系统抽样的方法抽取个体;(4)综合每层抽样,组成样本.[练一练]1.(2014·中山模拟)为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,472.(2013·广州调研)某市A,B,C,D四所中学报名参加某高校今年自主招生的学生人数如下表所示:所中学的学生当中随机抽取50名参加问卷调查,则A,B,C,D四所中学,抽取学生数分别是多少名()A.10,20,15,5 B.15,20,10,5C.10,15,20,5 D.3,4,2,1简单随机抽样1.(2014·乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是() A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法2.(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08 C .02 D .01[类题通法]抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.系统抽样[典例] (2013·名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解:[类题通法]1.当总体容量较大,样本容量也较大时,可用系统抽样法.2.在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.[针对训练]从2 007名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2 007人中剔除7人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率( )A .不全相等B .均不相等C .都相等,且为502 007D .都相等,且为140分层抽样[典例]趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法(2)(2014·抚顺模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是() A.4 B.5C.6 D.7[类题通法]进行分层抽样时的注意事项(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.[针对训练]某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份,则在D单位抽取的问卷是________份.第三节用样本估计总体1.频率分布直方图(1)作频率分布直方图的步骤:①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线:①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.2.茎叶图用茎叶图表示数据有两个突出的优点:一是统计图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以随时记录,方便记录与表示.3.样本的数字特征1.易把直方图与条形图混淆:两者的区别在于条形图是离散随机变量,纵坐标刻度为频数或频率,直方图是连续随机变量,连续随机变量在某一点上是没有频率的.2.易忽视频率分布直方图中纵轴表示的应为频率组距.3.在绘制茎叶图时,易遗漏重复出现的数据,重复出现的数据要重复记录,同时不要混淆茎叶图中茎与叶的含义.[试一试]1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的株数大约是()A .3 000B .6 000C .7 000D .8 0002.某同学进入高三后,4次月考的数学成绩的茎叶图如图.则该同学数学成绩的方差是 ( )A .125B .5 5C .45D .3 5利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.[练一练]11 4 s12 6 8 13215 5 5 7 8 1613351.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( )A .161B .162C .163D .1642.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是________.频率分布直方图1.(2014·在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.252.(2013·辽宁高考)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .603.(2013·湖北高考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.17 1 2(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.[类题通法]在频率分布直方图中,小矩形的高等于每一组的频率/组距,每个小矩形的面积等于这一组的频率,所有小矩形的面积之和为1.茎叶图[典例] (2013·以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )甲组 乙组 9 0 9 X 2 1 5 y 8 7424A .2,5B .5,5C .5,8D .8,8在本例条件下:(1)求乙组数据的中位数、众数; (2)求乙组数据的方差.[类题通法]茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐.[针对训练](2013·合肥模拟)一次数学测验后,从甲、乙两班各抽取9名同学的成绩进行统计分析,绘成茎叶图如图所示.据此估计两个班成绩的中位数的差的绝对值为()A.8C.4 D.2样本数字特征[典例](单位:环),结果如下:[类题通法]1.用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,需先计算数据的平均数,分析平均水平,再计算方差(标准差)分析稳定情况.2.若给出图形,一方面可以由图形得到相应的样本数据,再计算平均数、方差(标准差);另一方面,可以从图形直观分析样本数据的分布情况,大致判断平均数的范围,并利用数据的波动性大小比较方差(标准差)的大小.[针对训练](2014·济南模拟)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x甲、x乙和中位数y甲、y乙进行比较,下面结论正确的是()A.x甲>x乙,y甲>y乙B.x甲<x乙,y甲<y乙C.x甲<x乙,y甲>y乙D.x甲>x乙,y甲<y乙第四节变量间的相关关系、统计案例1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^=y -b ^x .(3)通过求Q =∑i =1n(y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n (ad -bc )(a +b )(a +c )(b +d )(c +d )(其中n =a +b +c +d 为样本容量).1.易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(x ,y )点,可能所有的样本数据点都不在直线上.3.利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值). [试一试]1.(2013·石家庄调研)下列结论正确的是( ) ①函数关系是一种确定性关系; ②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A .①② B .①②③ C .①②④ D .①②③④2.已知x ,y 之间的数据如表所示,则回归直线过点( )A .(0,0) C .(3,2.5)D .(4,3.2)1.求回归直线方程的步骤(1)依据样本数据画出散点图,确定两个变量具有线性相关关系; (2)计算出x ,y,∑i =1nx 2i ,∑i =1nx i y i 的值; (3)计算回归系数a ^,b ^; (4)写出回归直线方程y ^=b ^x +a ^. 2.独立性检验的一般步骤(1)根据样本数据制成2×2列联表;(2)根据公式K2=n(ad-bc)2(a+b)(a+d)(a+c)(b+d)计算K2的值;(3)查表比较K2与临界值的大小关系,作统计判断.[练一练]1.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误概率不超过0.01的前提下认为这个结论是成立的,则下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有2.在2012伦敦奥运会期间,某网站针对性别是否与看奥运会直播有关进行了一项问卷调查,得出如下表格:(附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)),则K2=()A.700 B.750C.800 D.850相关关系的判断1.对变量x i i10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关2.已知变量x,y呈线性相关关系,线性回归方程为y=0.5+2x,则变量x,y是() A.线性正相关关系B.由回归方程无法判断其正负相关C.线性负相关关系D.不存在线性相关关系3.(2014·镇江模拟)如图所示,有A,B,C,D,E,5组数据,去掉________组数据后,剩下的4组数据具有较强的线性相关关系.[类题通法]相关关系的直观判断方法就是作出散点图,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性,若呈图形区域且分布较乱则不具备相关性.回归方程的求法及回归分析[典例]某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1到6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用选取的2组数据进行检验.(1)若选取的是1月与6月的2组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y ^=b ^x +a ^;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是理想的,试求该小组所得的线性回归方程是否理想?在本例(1)条件下,试预测昼夜温差为5℃时,因感冒而就诊的人数约为多少?[类题通法]利用线性回归方程可以对总体进行预测估计,线性回归方程将部分观测值所反映的规律进行延伸,是我们对有线性相关关系的两个变量进行分析和控制的依据,依据自变量的取值估计和预测因变量的值,在现实生活中有广泛的应用.[针对训练](2013·大连模拟)已知下列表格所示数据的回归直线方程为y ^=3.8x +a ,则a 的值为________.独立性检验[典例] 名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 2212n 21)n 1+n 2+n +1n +2⎝ ⎛⎭⎪⎫注:此公式也可以写成K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )[类题通法]1.在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0.|ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论. [针对训练]2012年欧洲杯期间,某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,40岁以上调查了50人,不高于40岁调查了50人,所得数据制成如下列联表:已知工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为35,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )。

高中数学概率与统计中的抽样与调查技巧

高中数学概率与统计中的抽样与调查技巧

高中数学概率与统计中的抽样与调查技巧在高中数学的概率与统计中,抽样与调查是一项重要的技巧,它们被广泛应用于各个领域,如市场调研、社会调查、医学研究等。

掌握好抽样与调查的技巧,能够帮助我们更好地了解问题,做出准确的判断和决策。

本文将从抽样的基本概念、常见的抽样方法以及调查的设计与实施等方面进行论述,帮助高中学生和他们的父母更好地掌握这一技巧。

一、抽样的基本概念抽样是指从总体中选取一部分个体进行观察和研究,以便对总体进行推断。

在抽样过程中,我们需要关注两个重要概念:样本和总体。

样本是从总体中选取的一部分个体,而总体则是我们所关心的全部个体。

通过对样本的研究和观察,我们可以推断出总体的一些特征或规律。

二、常见的抽样方法1. 简单随机抽样简单随机抽样是指从总体中随机选择n个个体作为样本,每个个体被选中的概率相等。

这种抽样方法能够保证样本的代表性和可靠性,适用于总体规模较小且个体之间相互独立的情况。

例如,我们要对某个班级的学生进行调查,可以使用简单随机抽样方法从班级名单中随机选取一部分学生作为样本。

2. 系统抽样系统抽样是指按照一定的规律从总体中选取样本。

例如,我们要对某个城市的居民进行调查,可以按照住址的字母顺序,每隔一定间隔选择一个个体作为样本。

系统抽样相对于简单随机抽样来说,更加方便实施,适用于总体规模较大的情况。

3. 分层抽样分层抽样是指将总体分成若干层,然后从每一层中随机选择一部分个体作为样本。

这种抽样方法能够保证样本在各个层次上的代表性,适用于总体存在明显差异的情况。

例如,我们要对某个学校的学生进行调查,可以将学生按照年级进行分层,然后从每个年级中随机选择一部分学生作为样本。

三、调查的设计与实施在进行调查时,我们需要注意以下几个方面:1.明确调查目的:在设计调查问题和样本规模时,需要明确调查的目的和研究问题,以便更好地选择合适的抽样方法和样本规模。

2.合理选择调查方式:调查方式可以是面对面访问、电话访问、网络问卷等多种形式。

高中数学概率统计抽样题解题技巧

高中数学概率统计抽样题解题技巧

高中数学概率统计抽样题解题技巧在高中数学的概率统计部分,抽样题是一个常见的考点。

抽样是指从一个总体中选取部分个体进行观察和研究,通过对抽样数据的分析,可以得出总体的某些特征。

在解答抽样题时,我们需要注意一些技巧,以便更好地理解题意并正确解答问题。

首先,我们需要明确抽样的目的。

在题目中,通常会给出抽样的目的,例如了解某一特定群体的情况、推断总体的某些特征等。

明确抽样的目的有助于我们选择合适的抽样方法和分析手段。

其次,我们需要了解不同的抽样方法。

常见的抽样方法包括随机抽样、系统抽样、分层抽样等。

随机抽样是指每个个体被选中的概率相等,系统抽样是指按照一定的规律选取个体,分层抽样是指将总体划分为若干层,然后在每一层中进行抽样。

在解答题目时,我们需要根据题目给出的条件,选择合适的抽样方法。

接下来,我们需要学会分析抽样数据。

在题目中,通常会给出一些抽样数据,我们需要通过这些数据进行分析,得出结论。

在分析数据时,我们可以使用统计方法,例如计算平均数、中位数、众数等,以及绘制统计图表,例如条形图、折线图、饼图等。

通过对数据的分析,我们可以得出总体的一些特征,并回答题目中的问题。

举个例子来说明。

假设某班级有60名学生,我们想了解这些学生的身高分布情况。

我们可以采用随机抽样的方法,从中随机选取10名学生进行测量。

测量结果如下:165cm、168cm、170cm、172cm、175cm、176cm、178cm、180cm、182cm、185cm通过计算平均数,我们可以得出这10名学生的平均身高为175.1cm。

进一步,我们可以绘制一个条形图,将学生的身高分布情况可视化。

从图中可以看出,大部分学生的身高集中在170cm到180cm之间。

根据这些分析结果,我们可以得出结论:这个班级的学生身高分布较为集中,大部分学生的身高在170cm到180cm之间。

同时,我们还可以回答一些问题,例如有多少学生的身高超过175cm等。

在解答抽样题时,还需要注意一些常见的陷阱。

高中数学的实用技巧掌握概率与统计的抽样与推断方法

高中数学的实用技巧掌握概率与统计的抽样与推断方法

高中数学的实用技巧掌握概率与统计的抽样与推断方法高中数学的实用技巧:掌握概率与统计的抽样与推断方法高中数学作为一门重要的学科,对于学生的学习和发展起着重要的作用。

其中,概率与统计是高中数学的重要内容之一。

了解并掌握概率与统计的抽样与推断方法,对于学生提高数学素养、拓宽思维能力以及应对考试具有重要意义。

本文将介绍一些高中数学中实用的技巧,帮助学生更好地理解和应用概率与统计的抽样与推断方法。

一、概率的抽样方法1. 简单随机抽样简单随机抽样是指从一个总体中随机选择的样本,确保每个样本有相同的机会被选中。

这种抽样方法通常适用于总体的特征比较均匀的情况下,如班级内学生的身高、体重等指标的抽样调查。

2. 系统抽样系统抽样是指按照一定的规则,从总体中选择样本。

例如,从一个班级的学生名单中,每隔一定间隔选择一个样本,直到达到所需的样本量。

这种抽样方法适用于总体有一定的顺序或周期性排列的情况。

3. 分层抽样分层抽样是指将总体划分为若干个层次,然后从每个层次中进行抽样。

这种抽样方法通常适用于总体具有明显区别的情况下。

例如,从一个包含不同年级的学校中,分别抽取每个年级的学生作为样本。

4. 整群抽样整群抽样是指从总体中选择若干个群组作为样本,而不是从每一个群组中选择个体作为样本。

这种抽样方法通常适用于群组内部差异较小的情况下。

例如,从一个学区中的几所学校中,选择其中几所学校进行调查。

二、统计的推断方法1. 参数估计参数估计是指使用样本数据推断总体的未知参数。

常见的参数估计方法有点估计和区间估计。

点估计是指直接使用样本统计量来估计总体的参数值,例如使用样本均值来估计总体均值。

区间估计是指根据样本数据给出总体参数的一个区间范围,例如给出总体均值的置信区间。

2. 假设检验假设检验是用来判断总体参数假设是否成立的方法。

假设检验通常包括建立原假设和备择假设、选择合适的显著性水平、计算检验统计量、判断拒绝域以及做出结论等步骤。

假设检验可以帮助我们判断某一推断是否可靠,例如判断某种治疗方法是否有效。

高中数学中的概率与统计抽样方法

高中数学中的概率与统计抽样方法

高中数学中的概率与统计抽样方法概率与统计是数学中重要的概念和工具,它们在各个领域和行业都有广泛的应用。

在高中数学中,学生们开始接触概率与统计的基本概念,并学习如何使用抽样方法进行数据分析。

本文将介绍高中数学中的概率与统计抽样方法,并探讨其应用。

一、概率的基本概念概率是研究随机事件发生可能性的数学分支。

在高中数学中,学生们学习了概率的基本概念和性质。

首先,学生们学习了样本空间、事件和概率的定义。

样本空间是指一个随机试验中所有可能结果的集合,事件是样本空间的子集,概率是事件发生的可能性。

然后,学生们学习了事件的互斥性和相对频率的概念。

互斥事件指的是两个事件不能同时发生,相对频率指的是事件发生的次数与试验次数的比值。

最后,学生们学习了概率的运算法则,包括加法法则和乘法法则。

二、统计抽样方法统计抽样方法是概率论在实际问题中的应用。

在高中数学中,学生们学习了几种常见的统计抽样方法,包括简单随机抽样、分层抽样和系统抽样。

1. 简单随机抽样简单随机抽样是最基本的抽样方法之一。

它的特点是每个样本具有相同的被选中的概率。

在高中数学中,学生们学习了如何使用随机数表或随机数发生器进行简单随机抽样。

简单随机抽样适用于总体较小、总体分布不均匀或没有其他信息可用的情况。

2. 分层抽样分层抽样是将总体分成若干个层,然后从每个层中进行抽样。

分层抽样的目的是保证样本能够代表总体的各个子群体。

在高中数学中,学生们学习了如何确定分层标准和计算各层的样本量。

分层抽样适用于总体分布不均匀,且各个子群体有明显差异的情况。

3. 系统抽样系统抽样是按照一定的规则从总体中选择样本。

例如,从某个时间点开始,每隔一定的时间间隔选择一个样本。

系统抽样的优势是能够保持总体的随机性,且便于实施。

在高中数学中,学生们学习了如何确定抽样规则,并计算样本量和抽样间隔。

系统抽样适用于总体有明显的规律和周期性的情况。

三、概率与统计抽样方法的应用概率与统计抽样方法在现实生活中有广泛的应用。

高中数学概率与统计抽样方法解析

高中数学概率与统计抽样方法解析

高中数学概率与统计抽样方法解析概率与统计是高中数学中的重要内容,其中抽样方法是统计学中的一项关键技术。

本文将以实际例题为基础,详细解析概率与统计中的抽样方法,并给出解题技巧和指导。

一、简单随机抽样简单随机抽样是最常见的抽样方法之一,它的特点是每个样本被选中的概率相等且相互独立。

下面通过一个例题来说明简单随机抽样的应用。

例题:某班级有60名学生,要从中随机抽取10名学生进行调查,求抽到的学生中男生人数为4的概率。

解析:首先,我们需要计算总体中男生人数为4的样本空间。

根据组合数的性质,可以得到C(30, 4),即从30名男生中选取4名男生的组合数。

同样地,我们需要计算总体中的样本空间,即C(60, 10),即从60名学生中选取10名学生的组合数。

因此,所求的概率为C(30, 4) / C(60, 10)。

解题技巧:在计算组合数时,可以利用计算器或者数学软件来简化计算过程,避免繁琐的手工计算。

二、系统抽样系统抽样是一种按照一定的规则从总体中选取样本的方法。

它的特点是按照一定的间隔选择样本,适用于总体有一定规律的情况。

下面通过一个例题来说明系统抽样的应用。

例题:某学校有800名学生,要从中抽取40名学生进行问卷调查,如果我们按照每20名学生抽取一个样本的规则进行系统抽样,求抽到的学生中男生人数为10的概率。

解析:首先,我们需要计算总体中男生人数为10的样本空间。

根据组合数的性质,可以得到C(400, 10),即从400名男生中选取10名男生的组合数。

同样地,我们需要计算总体中的样本空间,即C(800, 40),即从800名学生中选取40名学生的组合数。

因此,所求的概率为C(400, 10) / C(800, 40)。

解题技巧:在系统抽样中,关键是确定间隔。

通常情况下,可以根据总体的规模和样本数量来确定合适的间隔,以保证样本的代表性。

三、整群抽样整群抽样是一种将总体划分为若干个互不相交的群体,然后从群体中随机选择样本的方法。

(2019版)高一数学抽样复习

(2019版)高一数学抽样复习
复习回顾
1 你学过哪几种随机抽样方法?
简单随机抽样 系统抽样 分层抽样
抽签法 随机数法
2 三种抽样方法的比较
类别 简单随机
抽样
系统 抽样
分层 抽样
各自特点
从总体中 逐个抽取
将总体均分成 几部分,按事 先确定的规则 在各部分抽取
将总体分成 几层,分层 进行抽取
相抽

各层抽样时 采用简单随 机抽样或系 统抽样
总体中的 个体数较

总体中的 个体数较

总体由差 异明显的 几部分组

; 外链代发 外链代发 ;
从而导致了这个下场 轶事典故编辑 1 孙子与有力焉 [9] 《读通鉴论·穆帝》 百钱差沮 君王身边本就有这样的人 站3人一排 威震天下 .国学网[引用日期2014-09-07] 司马迁 文官进位三等 韩信影视形象(15张) 攻破楚国都城郢 别都鄢 插上汉军红旗 今如此避而不击 从平王世充 和窦建德 于汉家勋可以比周 召 太公之徒 见《东周列国志·第八十六回·吴起杀妻求将 葬于茂陵东北1000米处 疲态日现 加封食邑6000户(汉书8700户) 以为汉皆已得赵王将矣 吴起没有答应 难兼卫霍功 又西行四十里 不过在后世之人看来 酬功而报德者 广宗伯 14.三是 罐可装7 斤油 受其义父史天泽被贬影响 谷永:“昔白起为秦将 .国学网[引用日期2013-01-08] 台湾嘉义东石先天宫奉白起为白府千岁 无容同叛逆之科 但你且细想 你且细看 ”人莫之徙也 李德裕--?关于孙武的结局 无不通书史 史上再无这支2019年7月战队的记载了!(《加李靖特进制》) ③李靖 李勣二人 刻画尤为鲜明突出 病尚图功 晃晃悠悠进了军营大门 孙武把宫女分为左右两队 《孙子兵法》阐述了战争中制胜敌人的规律 父母 遽请斩之 阴令怀玺送于京师 接受它带

2019年高考文科数学知识点总结:概率与统计

2019年高考文科数学知识点总结:概率与统计

2019年高考文科数学知识点总结:概率与统计概率与统计105算法初步的常见题型及解题策略(1)已知程序框图,求输出的结果.可按程序框图的流程依次执行,最后得出结果.可以在条件判断框的入口处列表判定此时各变量的取值情况(2)完善框图添加条件问题。

结合初始条件和输出结果,分析控制循环的变量应满足的条件或累加、累乘的变量的表达式.注意临界点的变量值的分析 106、随机抽样需借助于随机数表(先对总体逐一编号),分层抽样的关键是“按比例”:总体中各层的比例等于样本中各层的比例。

在所有的抽样中,每一个个体被抽到的概率相等。

系统抽样要注重等距性的理解 107、“读懂”样本频率分布直方图:直方图的高=频率/组距,直方图中小矩形框的面积是频率;频率×样本个数=频数。

由频率分布直方图计算中位数时要根据中位数两侧频率各为0.5计算横坐标值。

由频率分布直方图计算平均数时可以用每个小组的中位数乘上本组频率的累加和得出108、线性回归方程 线性回归方程:a bx y +=∧(最小二乘法)其中,1221ni i i ni i x y nx yb x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x .109.相关系数(判定两个变量线性相关性):∑∑∑===----=ni ni iini i iy yx xy y x xr 11221)()())((注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵①||r 越接近于1,两个变量的线性相关性越强;②||r 接近于0时,两个变量之间几乎不存在线性相关关系。

110、独立性检验(分类变量关系)统计量χ2的计算公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )111、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生,A ∩B 为不可能事件)。

计算公式:P (A +B )=P (A )+P (B )。

高中数学测试题概率与统计中的抽样与调查

高中数学测试题概率与统计中的抽样与调查

高中数学测试题概率与统计中的抽样与调查在概率与统计中,抽样与调查是非常重要的研究方法。

通过合适的抽样方法和调查过程,我们可以从一个较大的总体中获取所需的信息,并用这些信息来做出推断或者预测。

本文将介绍抽样与调查的基本概念、常用的抽样方法以及如何进行有效的调查,以帮助我们更好地理解和运用概率与统计中的抽样与调查。

一、抽样的基本概念抽样是指从总体中挑选出一部分个体进行观察和研究的过程。

总体是我们研究的对象的全体,该全体通常很大,难以对整个总体进行研究,因此我们需要从中抽取一小部分作为样本进行研究。

合适的抽样方法可以使样本代表总体,从而得出对总体的推断。

二、常用的抽样方法1. 简单随机抽样简单随机抽样是最基本的抽样方法,它要求每个个体有相等的被选中的机会。

在简单随机抽样中,我们通过随机数或者抽签等方式对总体中的个体进行随机选择。

2. 系统抽样系统抽样是指按照一定的规则从总体中选择样本个体。

例如,我们可以按照总体中个体的顺序,每隔一定的间隔选取一个个体作为样本。

3. 分层抽样分层抽样是将总体分为若干层次,然后从每个层次中随机选取一部分个体作为样本。

这样可以确保样本中的个体能够代表总体中不同层次的特点。

4. 整群抽样整群抽样是将总体划分为若干个群体,然后从这些群体中随机选择部分群体作为样本。

在实际应用中,我们可以选择一些代表性的群体进行研究,从而减少抽样的工作量。

三、有效的调查方法进行有效的调查是抽样与调查的重要一环。

在调查过程中,我们需要确保样本的选择合理,调查问题明确,信息收集准确可靠。

1. 设计调查问卷在进行调查前,我们需要设计一份合适的调查问卷。

问卷应包含相关的问题,以便获取我们关心的信息。

同时,问卷的设计要简洁明了,避免出现歧义的问题,以确保被调查者能够轻松理解和回答问题。

2. 进行预调查在正式调查之前,进行预调查是很有必要的。

通过预调查,我们可以对问卷的设计进行修正和完善,确保问题的准确性和有效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学总复习:抽样检验与概率1.2018年2月,为确保食品安全,北京市质检部门检查一箱装有1 000袋方便面的质量,抽查总量的2%.在这个问题中下列说法正确的是()A.总体是指这箱1 000袋方便面B.个体是一袋方便面C.样本是按2%抽取的20袋方便面D.样本容量为20答案 D2.总体容量为524,若采用系统抽样法抽样,当抽样间隔为多少时不需要剔除个体() A.3B.4C.5 D.6答案 B解析显然524能被4整除,不能被3,5,6整除.3.(2017·四川资阳)某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为()A.6 B.4C.3 D.2答案 C解析936+18×18=3,故选C.4.某客运公司有200辆客车,为了解客车的耗油情况,现采用系统抽样的方法按1∶10的比例抽取一个样本进行检测,将客车依次编号为1,2,…,200,则其中抽取的4辆客车的编号可能是()A.3,23,63,102 B.31,61,87,127C.103,133,153,193 D.57,68,98,108答案 C解析抽取间距为10,故只需选项中的四个数是公差为10的等差数列中的部分项.故选C.5.某工厂有甲、乙、丙、丁四类产品共3 000件,且它们的数量成等比数列,现用分层抽样的方法从中抽取150件进行质量检测,其中从乙、丁两类产品中抽取的总数为100件,则甲类产品有()A.100件B.200件C.300件D.400件答案 B解析设从甲、乙、丙、丁四类产品中分别抽取a1、a2,a3,a4件进行检测,由于四类产品的数量成等比数列且是分层抽样,所以a 1,a 2,a 3,a 4也成等比数列,设此等比数列的公比为q ,由⎩⎪⎨⎪⎧a 1+a 3=50,a 2+a 4=100,即⎩⎪⎨⎪⎧a 1(1+q 2)=50,a 1q (1+q 2)=100,解得⎩⎪⎨⎪⎧a 1=10,q =2.即从甲类产品中抽取10件,则甲类产品的数量为101503 000=200(件),故选B. 6.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9 答案 B解析 从600人中抽取容量为50的样本,采取的是系统抽样,因此每12人里抽取一个,且它们的序号成等差数列,第1个是003,第2个一定是015,第3个是027,…,第50个是591.这些号码构成的等差数列的通项公式为a n =12n -9,1≤n ≤50,n ∈N *,可计算出这个数列的项在第1营区的有25个,在第Ⅱ营区的有17个,在第Ⅲ营区的有8个,故选B. 7.(2018·河北定州中学期末)某服装加工厂某月生产A ,B ,C 三种产品共4 000件,为了保证产品质量,进行抽样检验,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是( ) A .80 B .800 C .90 D .900答案 B解析 设C 产品数量为x ,则A 产品数量为1 700-x , 则1 700-x 10-x 10=10,∴1 700-x -x =100,∴x =800.8.(2018·广东肇庆三模题)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个组,组号依次为一,二,三,…,十.现用系统抽样方法抽取一个容量为10的样本,如果在第一组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第七组中抽取的号码是( ) A .63B .64答案 A9.某班级有男生20人,女生30人,从中抽取10个人的样本,恰好抽到了4个男生、6个女生.给出下列命题:①该抽样可能是简单的随机抽样; ②该抽样一定不是系统抽样;③该抽样女生被抽到的概率大于男生被抽到的概率. 其中真命题的个数为( ) A .0 B .1 C .2 D .3答案 C解析 由随机抽样可知①正确;②显然错误;由概率可知③正确.故选C.10.(2018·河北武邑中学周考)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10答案 A解析 在扇形统计图中,根据抽取的比例计算样本容量,根据条形统计图计算抽取的高中生近视人数.该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A.11.(2018·西安地区八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( ) (注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行C .42D .52答案 D解析 依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D.12.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.若第1组抽出的号码为2,则所有的被抽出职工的号码为________. 答案 2,10,18,26,3413.(2018·湖南七校联考)某高中共有学生1 000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于________. 答案 25解析 因为该高中共有学生1 000名,在全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,所以高二年级女生有1 000×0.19=190(人),则高二年级共有学生180+190=370(人),所以高三年级共有学生1 000-370-380=250(人),则采用分层抽样(按年级分层)在全校抽取100人,应在高三年级中抽取的人数为2501 000×100=25.14.(2017·江苏南通二调)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________. 答案 76解析 根据系统抽样的特点,共有80个产品,抽取5个样品,则可得组距为805=16,又其中有1个为28,则与之相邻的为12和44,故所取5个依次为12,28,44,60,76,即最大的为76.15.(2017·浙江五校)某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成等差数列,且共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽30份,则在D 单位抽取的问卷是________份. 答案 60解析 由题意依次设在A ,B ,C ,D 四个单位回收的问卷数分别为a 1,a 2,a 3,a 4,则30a 2=1501 000,∴a 2=200.又a 1+a 2+a 3+a 4=1 000,即3a 2+a 4=1 000,∴a 4=400.设在D 单位抽取的问卷数为n ,∴n 400=1501 000,解得n =60.16.(2018·山东济宁模拟)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图.若规定得分不小于85分的学生得到“诗词达人”的称号,低于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为________.答案 2解析 由茎叶图可得,获“诗词达人”称号的学生有8人,设抽取的学生中获得“诗词达人”称号的人数n ,则n 10=840,解得n =2.17.(2018·广东肇庆第三次模拟题)某市组织高一全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了A 、B 两所学校各60名学生的成绩,得到样本数据如下:A 校样本数据条形图B 校样本数据统计表(1)(2)从A 校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人,求这2人成绩之和大于或等于15的概率. 答案 (1)B 校好 (2)35解析 (1)从A 校样本数据的条形图可得:成绩为4分、5分、6分、7分、8分、9分的学生分别有6人、15人、21人、12人、3人、3人. 所以A 校样本的平均成绩为x A =4×6+5×15+6×21+7×12+8×3+9×360=6(分),A 校样本的方差为s A 2=160×[6×(4-6)2+…+3×(9-6)2]=1.5(分2), 从B校样本数据统计表可知:B校样本的平均成绩x B =4×9+5×12+6×21+7×9+8×6+9×360=6(分),B 校样本的方差为s B 2=160×[9×(4-6)2+…+3×(9-6)2]=1.8(分2),因为x A =x B ,所以两校学生的计算机成绩的平均分相同.又因为s A 2<s B 2,所以A 校学生的计算机成绩比较稳定,总体得分情况比B 校好. (2)依题意,A 校成绩为7分的学生应抽取的人数为1212+3+3×6=4,记为a ,b ,c ,d ,成绩为8分的学生应抽取的人数为312+3+3×6=1,记为e ,成绩为9分的学生应抽取的人数为312+3+3×6=1,记为f ,所以,所有基本事件有ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15个,其中,满足条件的基本事件有ae ,af ,be ,bf ,ce ,cf ,de ,df ,ef ,共9个, 所以从抽取的6人中任选2人,这2人成绩之和大于或等于15的概率为P =915=35.18.(2017·河北冀州中学期末)某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率. 答案 (1)144 (2)12名 (3)49解析 (1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200, 设应在第三批次中抽取m 名,则m 200=54900,解得m =12.∴应在第三批次中抽取12名教职工.(3)设第三批次中女教职工比男教职工多为事件A ,第三批次女教职工和男教职工数记为数对(y ,z),由(2)知y +z =200(y ,z ∈N ,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个,而事件A 包含的基本事件有:(101,99),(102,98),(103,97),(104,96),共4个,∴P(A)=49.1.(2018·陕西西安质检)采用系统抽样方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1 000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( ) A .12 B .13 C .14 D .15答案 A解析 1 000÷50=20,故由题意可得抽到的号码构成以8为首项,以20为公差的等差数列,且此等差数列的通项公式为a n =8+(n -1)×20=20n -12.由751≤20n -12≤1 000,解得38.15≤n ≤50.6.再由n 为正整数可得39≤n ≤50,且n ∈Z ,故做问卷C 的人数为12.故选A.2.(2018·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学生负担情况.宜采用的抽样方法依次是( ) A .①简单随机抽样,②系统抽样 B .①分层抽样,②简单随机抽样 C .①系统抽样,②分层抽样 D .①②都是分层抽样 答案 B解析 因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法,故选B.3.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 答案 (1)有关 (2)3名 (3)35解析 (1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众2745×5=35×5=3名.(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y 1,Y 2),大于40岁有3名(记为A 1,A 2,A 3).5名观众中任取2名,共有10种不同取法:Y 1Y 2,Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,A 1A 2,A 1A 3,A 2A 3.设A 表示随机事件“5名观众中任取2名,恰有1名观众的年龄为20至40岁”,则A 中的基本事件有6种:Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y 2A 3,故所求概率为P(A)=610=35.4.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,(2)若在这6件商品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.答案 (1)1,3,2 (2)415解析 (1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ,B 1,B 2,B 3,C 1,C 2.则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为4 15.。

相关文档
最新文档