《专业英语(材料科学)》材料化学班20111031学习内容

合集下载

《材料化学》教学大纲

《材料化学》教学大纲

《材料化学》教学大纲一、课程基本信息课程编码:0803124B中文名称:材料化学英文名称:Material Chemistry课程类别:专业核心课总学时:48总学分:3适用专业:材料化学先修课程:高等数学、大学物理、无机化学、有机化学、物理化学、材料科学基础二、课程的性质与任务材料科学是一门新兴的边沿学科,在国外的建立和发展也不过三四十年,但它对于一个国家的现代化建设的战略重要性不言而喻。

作为材料科学的一门主要分支,材料化学内容含有材料的组成、结构与性能,以及材料的制备化学等,涉及材料及化学两个一级学科的各个二级学科。

本课程是材料化学专业的必修课。

通过该课程的学习,掌握材料的微观结构和转变的规律以及它们与材料的各种物理、化学性能之间的关系,并运用这些规律改进材料性能、研制新型材料的基础理论;培养从基本理论出发进行材料设计、运用化学新概念进行材料制备及改性创新的能力。

三、课程教学基本要求掌握材料化学的基本问题、基本概念、基本原理,使学生从材料化学的基本层面出发,去认识和理解材料科学与工程中出现的基本化学问题,使学生建立大材料的概念,为材料的研究与开发、选择和使用打下坚实的基础。

四、课程教学内容及要求第一章绪论(2学时)【教学目标与要求】1、介绍材料科学在国民经济和社会发展中的重要地位,讲解现代材料化学研究的对象和内容,论述材料性能与内部结构的关系。

2、通过本单元学习应该正确认识先进材料的重要性,正确理解材料化学对材料科学所起的重要作用。

【教学重点与难点】准确理解和掌握材料性能与内部结构的【教学内容】1.1材料的发展过程1.2材料的分类1.3材料科学和材料化学第二章材料的结构(12学时)【教学目标与要求】本章是材料化学重要的基础理论内容。

学生应掌握晶体与非晶体理论、材料的相结构等内容,为学好本课程奠定比较扎实的理论基础。

【教学重点与难点】理解和掌握晶体的结构和缺陷【教学内容】2.1固体——晶体和非晶体2.2晶体材料的微观结构2.3缺陷和非整比化合物2.4无机非金属材料的结构2.5X射线衍射技术测晶体的结构第三章材料的性能(8学时)【教学目标与要求】1、使学生理解材料的化学性能、力学性能、热性能、电性能、磁性和铁电等性能;2、掌握材料的结构和性能的关系【教学重点与难点】能带理论以及材料的各种性能【教学内容】3.1材料的化学性能3.2材料的力学性能3.3材料的热性能3.4材料的电性能3.5材料的磁性能3.6材料的光学性能第四章材料热力学(8学时)【教学目标与要求】1、熟悉二元相图及其应用;2、理解和掌握铁碳相图。

材料化学专业主要学什么(附课程目录)

材料化学专业主要学什么(附课程目录)

材料化学专业主要学什么(附课程目录)材料化学专业主要学什么?材料化学专业是一门研究材料的组成、结构、性质和制备方法的学科,它涵盖了广泛的知识领域。

学习材料化学的学生将会了解不同材料的性质、应用和制备过程,培养实验技能和科研能力,为未来在材料科学与工程领域发展打下坚实的基础。

本文将详细介绍材料化学专业的课程目录,并针对每门课程进行简要的描述和解释。

第一部分:基础课程(共4门课程)1. 无机化学基础:这门课程主要介绍无机化合物的基本性质和反应规律,包括无机化合物的结构、键合理论、酸碱性质以及氧化还原反应等。

学生将学习到常见无机化合物的制备方法,了解它们在材料制备中的应用。

2. 有机化学基础:有机化学是材料化学中不可或缺的一部分。

这门课程将介绍有机化合物的特性、功能基团和反应机理。

学生将学习有机化合物的命名规则,了解常见的有机合成方法,并掌握基本的有机合成实验技能。

3. 分析化学基础:分析化学是材料化学中重要的实验技术之一。

这门课程将介绍分析化学的基本原理和分析技术,包括定量分析和定性分析的方法和仪器。

学生将学习如何进行化学分析和材料表征实验,并掌握常见分析技术的操作和数据处理方法。

4. 物理化学基础:物理化学是材料化学研究的基础。

这门课程将介绍物理化学的基本原理和概念,包括热力学、动力学、量子化学和电化学等内容。

学生将了解各种物理化学现象和定律,并学习如何应用这些原理解释材料性质和反应过程。

第二部分:专业核心课程(共6门课程)1. 材料化学原理:这门课程将深入介绍材料化学的基本原理和概念,包括材料结构、相变、晶体缺陷和材料表征方法等。

学生将学习不同材料类型的特性和性质,并了解它们在各个领域的应用。

2. 材料制备技术:材料制备是材料化学研究的核心环节。

这门课程将介绍常见的材料制备方法,包括溶胶凝胶法、热处理、沉积技术和材料改性方法等。

学生将学习如何选择适合的制备方法,并掌握相应的实验操作技能。

3. 材料性能测试与表征:材料性能测试和表征是评价材料性能和质量的重要手段。

材料化学专业主要学什么(附课程目录)

材料化学专业主要学什么(附课程目录)

材料化学专业主要学什么(附课程目录)在高考填报志愿的时候,不少人对材料化学专业比较感兴趣,那么,材料化学专业是个什么样的专业呢?材料化学专业主要学什么?课程设置如何?下面为大家整理了材料化学专业课程目录,希望可以帮助大家全面了解材料化学专业。

材料化学专业主要学什么?
▶材料化学专业课程目录:高分子化学、高分子物理、材料研究与测试方法、材料性能学、材料化学专业实验、实验技能、信息获取、材料工艺学以及材料基础实验、材料科学基础、现代材料分析技术、结晶化学、接受计算机课程模拟及应用,工程设计、科学研究,材料
化学
通过学习,可以帮助大家掌握材料化学专业的的基础知识和能力,通过了解本学科的理论前沿和发展动态,可以拓宽知识视野,进而提升材料化学专业方面的专长与技能,为今后的工作学习奠定坚实的理论与实践基础。

材料化学专业简介
材料化学(Material Chemistry)专业是材料学的一个分支,一般是作为材料科学与工程系学院中的一个专业方向。

研究新型材料在制备、生产、应用和废弃过程中的化学性质,研究范围涵盖整个材料领域,包括无机和有机的各类应用材料的化学性能,是根据材料的基本理论和方法对工业生产中与化学有关的问题进行应用基础理论和方法的研究以及实验开发研究的一门科学。

主要的研究范畴并不是材料的化学性质,而是材料在制备、使用过程中涉及到的化学过程、材料性质的测量。

材料化学专业就业前景怎么样?
科研院所、高等院校的科研和教学工作;光电信息、石油化工、轻工、工程塑料、特种复合材料、新能源材料、环保、市政、建筑、消防等领域内行业的质量检验、产品开发、生产、技术管理等工作。

材料化学专业代码是多少?
专业代码:80403
专业类别:材料类
门类:工学。

《材料科学专业英语》课程大纲

《材料科学专业英语》课程大纲

《材料科学专业英语》课程大纲一、课程概述课程名称(中文):材料科学专业英语(英文):Professional English for Materials课程编号:14351024课程学分:3学分课程总学时:48学时课程性质:专业课二、课程内容简介(300字以内)随着本科毕业生就业渠道的日益拓宽,对专业英语知识的需求也同样增加。

在了解基本的专业词汇的基础上,更需要对更为专业的表达方式和理论知识的英语表达具有一定的了解。

因此,本课程是大学英语教学的基础上,结合相关专业基础课程(如:高分子化学与物理、高分子材料、材料力学、生物质资源材料学等)和专业选修课程(如:纳米技术、生物质能源利用、功能性纤维等)开设的旨在提高学生使用英文对专业基础知识和技术资料进行阅读,并掌握英文论文的书写格写及英文论文摘要的写作技巧。

三、教学目标与要求通过学习有关专业科技英语的语法知识,了解和掌握英译汉的基本方法和翻译技巧,提高阅读和翻译速度。

培养学生顺利阅读科技及专业英文文献,并达到较高的翻译质量标准。

在此基础上,可以利用英语对本专业的简单问题进行口语交流。

四、教学内容与学时安排Introduction(4学时)1、教学目的要求了解学习专业英语的重要性;掌握本专业名称和主要课程的英文翻译;熟悉普通英语口语交流2、教学要点和难点第一节Why we need to lean professional English? (1学时)一、What is professional English?二、What can we learn from professional English?三、Is it any contribution of professional English to our future career?第二节What can we do in the professional English Class? (1学时)一、Learn how to read二、Learn how to write三、Learn how to use language freely第三节Do you know about in your major? (1学时)一、English name of our causes二、Main concerns of materials science三、Pioneer work in materials science第四节Can you introduce yourself to us? (1学时)一、Several essential points in your self introduction二、Oral English also important in language study三、Are you ready to enjoy losing your face?Chapter One Polymer Chemistry & polymer chains(12学时)1、教学目的要求掌握聚合物的定义和相关专业词汇,熟悉用英语表达常见高分子合成反应;了解分子量及其分布的英文表达方式2、教学要点和难点第一节What are Polymer ? (2学时)一、Definition of polymer and polymer science二、Development of polymer and polymer science三、Polymer and daily life第二节Polymerization method(2学时)一、Characterization of polymerization二、Catalogue of chemical polymerization method三、Chain reaction polymerization四、Step reaction polymerization五、Emulsion polymerization第三节Structure of Polymer chains(3学时)一、Polymer chains二、Conformation of polymer chains三、Molecular chains motion四、Movement of polymer chains五、Glass transition第四节Properties Polymer solution(3学时)一、Dissolution of polymer二、Definition of polymer solution三、Experimental investigation of polymer solution四、Application of polymer solution第五节Molecular Weight and its Distributions of Polymers(2学时)一、Polymer size and shape二、Molecular weight average三、Determination method of molecular weight四、Determination method of molecular weight distributionChapter two Polymer Physics and properties(10学时)1、教学目的要求掌握用英语表达高分子的结构,熟悉用英语表达高分子力学性能;了解用英语表达高分子热学、电学和光学性能。

《材料化学专业英语》

《材料化学专业英语》

To sum up, by learning this course, you could
Improve your English, learning new phrases or terms and concepts of materials science.
Expand your knowledge on the Principal of Materials Science and Engineering.
Unique[’ju:ni:k]太监 Unique [ju:’ni:k] usually good and special.
e.g., a unique opportunity
Attendance and class involvement (出勤与课堂表现)
Regular attendance is expected. In-class discussion of the writing assignments will be crucial to being able to complete them adequately by yourself. You are also expected to show up to class on time and asked for a leave or absense if you do being sick or have something to do.
Transpire: pass through the tissue or substance or its pores or interstices, as of gas
Prior to publication, the editorial office had consulted a German sinologist (汉学家)for a translation of the relevant text. The sinologist concluded that the text in question depicted classical Chinese characters in a noncontroversial (有争议的)context. To our sincere regret, however, it has now emerged that the text contains deeper levels of meaning, which are not immediately accessible to a non-native speaker.

材料科学与工程专业英语课程教学大纲

材料科学与工程专业英语课程教学大纲

专业英语课程教学大纲课程名称:专业英语课程编号:16118231学时/学分:24/1.5开课学期:6适用专业:材料科学与工程专业课程类型:院系选修课一、课程说明本课程是材料科学与工程专业的一门院系选修课。

专业英语是大学英语的后续课程,通过本课程的学习,同学们应该大致了解专业英语的文章的结构、词汇、写作方法及其与公共英语的异同点。

掌握材料专业常用的英语词汇,能较顺利的阅读、理解和翻译有关的科技英文文献和资料并掌握英文论文的书写格式及英文论文摘要的写作技巧,从而使同学们进一步提高英语能力,并能在今后的生产实践中有意识地利用所学知识,通过阅读最新的专业英语文献,能跟踪学科的发展动态,同时能与外国专家进行交流,为从事创新性的工作打下基础。

二、课程对毕业要求的支撑毕业要求10沟通:能够就本专业复杂工程问题与业界同行及社会公众进行有效沟通和交流,包括撰写报告和设计文稿、陈述发言、清晰表达或回应指令。

并具备一定的国际视野,能够在跨文化背景下进行沟通和交流。

指标点10.2:具备一定的国际视野,能够在跨文化背景下进行沟通和交流。

三、课程的教学目标1.掌握材料科学专业要求的基本专业英语词汇以及阅读、翻译、写作的技巧和方法。

2.能够理解阅读、翻译、写作对材料科学研究的意义以及培养专业学习兴趣,了解文化差异。

3.具备运用英语结合实际在涉外交际的日常活动和业务活动中进行简单的口头和书面交流能力。

四、课程基本内容和学时安排PartⅠIntroduction to materials science and engineering(10学时)知识点:Materials science and engineering(2学时),Classification of materials(2学时),Atomic structure of materials(2学时),Physical and chemical properties of materials(2学时),Mechanical properties of materials(2学时);重点:Classification of materials,Mechanical properties of materials。

材料化学专业《专业英语阅读》课程教学大纲

材料化学专业《专业英语阅读》课程教学大纲

材料化学专业《专业英语阅读》课程教学大纲课程代码:ABCL0411课程中文名称:专业英语阅读课程英文名称:Professional English Reading课程性质:选修课程学分数:1.5课程学时数:24授课对象:材料化学专业本课程的前导课程:大学英语一、课程简介本课程主要进行无机非金属材料专业英语的学习。

第一部分通过讲解无机非金属材料,如水泥、玻璃、陶瓷、耐火材料和复合材料等,一些英文原著,让学生掌握本专业常用的基本词汇,阅读技巧和语法特点,培养学生阅读本专业英语文章的能力。

第二部分通过扩展阅读无机非金属材料类的科技文章,拓展学生的知识面。

二、教学基本内容和要求1. Historical Development of Materials and Technology课程教学内容:材料的历史发展以及与材料制备相关的技术发展史。

课程的重点、难点:课程教学要求:了解人类的发展史就是材料的发展史,明确材料在人类历史发展过程中的重要性。

掌握相关专业英语词汇。

2. Manufacture of Portland Cement课程教学内容:波特兰水泥的制作工艺。

课程的重点、难点:课程教学要求:了解波特兰水泥的制备工艺过程,掌握相关专业英语词汇。

3. Ceramming: Changing Glass to Glass-Ceramics课程教学内容:玻璃到玻璃陶瓷的转变。

课程的重点、难点:玻璃陶瓷的概念。

课程教学要求:了解玻璃和玻璃陶瓷概念的差别,理解由玻璃到玻璃陶瓷转变所发生的物理化学变化,掌握相关专业英语词汇。

4. History of Glass Making课程教学内容:玻璃制作的历史。

课程的重点、难点:课程教学要求:了解玻璃的制作历史,掌握相关专业英语词汇。

5. Ceramics课程教学内容:陶瓷的概念和分类。

课程的重点、难点:。

材料专业英语

材料专业英语

材料专业英语材料专业英语是材料科学与工程专业学生必须掌握的一门重要课程,它涉及到材料学的基本理论、材料工程的实际应用以及国际间的学术交流。

通过学习材料专业英语,学生不仅可以提高自己的英语水平,还可以更好地理解和应用材料学的相关知识。

本文将从课程内容、学习方法和实践应用三个方面进行介绍和探讨。

首先,材料专业英语的课程内容主要包括材料学的基本概念、材料性能表征、材料加工工艺、材料表面处理、材料工程设计等方面的知识。

学生在学习过程中需要掌握大量的专业术语和表达方式,同时还需要了解相关领域的国际最新研究成果和学术进展。

因此,学生需要通过大量的阅读、听力训练和写作练习来提高自己的语言能力,以便更好地理解和应用所学知识。

其次,学习材料专业英语的方法非常重要。

除了课堂学习外,学生还可以通过阅读相关领域的英文教材、期刊论文和学术著作来提高自己的语言水平。

此外,参加国际会议、交流学术观点,与国外学者进行学术交流也是提高英语水平的有效途径。

同时,学生还可以通过参加英语角、英语辩论等活动来提高自己的口语表达能力,从而更好地应对国际间的学术交流和合作。

最后,学习材料专业英语的实践应用非常重要。

随着我国材料科学与工程领域的不断发展,越来越多的国际合作项目和国际交流活动需要学生具备良好的英语能力。

因此,学生需要通过实际项目合作、学术交流和国际合作实习来提高自己的英语水平,为将来的学术研究和工程实践做好准备。

总之,材料专业英语是材料科学与工程专业学生必须掌握的重要课程,它不仅可以提高学生的英语水平,还可以更好地理解和应用材料学的相关知识。

通过合理的学习方法和实践应用,相信学生们一定可以在这门课程中取得良好的学习效果,为将来的学术研究和工程实践打下坚实的语言基础。

【专业英语】材料科学与工程

【专业英语】材料科学与工程
材料科学与工程专业英语
Part 1 Introduction to materials science and engineering
• Unit 1 Physical and chemical properties of materials
• Unit 2 Mechanical properties of materials
材料科学与工程专业英语
Unit 1 Physical and chemical properties of materials
• Physical properties are those that can be observed without changing the identity of the substance. The general properties of matter such as color, density, hardness, are examples of physical properties. Properties that describe how a substance changes into a completely different substance are called chemical properties. Flammability and corrosion/oxidation resistance are examples of chemical properties.
材料科学与工程专业英语
材料科学与工程专业英语
ห้องสมุดไป่ตู้
• In general, some of the more important physical and chemical properties from an engineering material standpoint include phase transformation temperatures, density, specific gravity, thermal conductivity, linear coefficient of thermal expansion, electrical conductivity and resistivity, magnetic permeability, and corrosion resistance, and so on. 磁导率

《材料成型专业英语》教学大纲.doc

《材料成型专业英语》教学大纲.doc

《材料成型专业英语》课程教学大纲课程名称:材料科学与工程专业英语(Material Science and engineering major English )课程编号:012003-04总学时数:64学时讲课学时:64学时学分:4学分先修课程:材料科学基础、金属工艺学教材:《Engineering Materials and Manufacturing Technology》(自编)。

参考书目:P. N. Rao 编著,《Manufacturing Technology-Foundry, Forming and Welding》,机械工业出版社,2002年《课程内容简介》:本课程相当于工程材料及成型技术、金属工艺学或机械制造基础的热加工部分。

共分两大部分,第一部分包括各种金属材料及其性能(含热处理),重点在于钢铁材料,介绍各种铸铁、铸钢、碳钢、合金钢、工具钢和不锈钢等牌号、成分特点、工艺特点及使用性能及热处理方法等。

第二部分包括金属铸造生产过程(包括砂型铸造及特种铸造)、金属成型过程(热锻、冷冲及轧制)和焊接生产,侧重各种工艺过程的特点及新发展。

一、课程性质、目的和要求本课程是为了提高材料加工工程专业的高年级学生的专业英语阅读能力而设置的一门课。

使学生掌握机械工程、材料加工领域内最基本的相关专业词汇和术语,加强学生的英语实际应用能力,为学生从事国际学术交流和学习打好基础。

本课程的基本要求:1.了解材料及热处理工艺基本原理方面的英语词汇和英语表达2.了解成型工艺方面的英语词汇和英语表达3.了解铸造工艺方面的英语词汇和英语表达4.了解焊接工艺方面的英语词汇和英语表达二、教学内容、要点和课时安排《材料成型专业英语》授课课时分配表章节讲课章节讲课章节讲课Chapterl 4 Chapter? 4 Chapterl3 4Chapter? 6 Chapters 2 Chapterl4 4Chapter3 6 Chapter9 2 Chapterl5 2Chapter4 8 ChapterlO 2 Chapterl6 2Chapter5 8 Chapterll 2 Chapterl7 2本课程的教学内容共分17章Chapter 1 Engineering Properties and Their MeasurementStrength, Hardness, Ducti1ity, Toughness oChapter 2 Cast Irons and Cast SteelsGray Iron, Maileable Iron, Ductile Iron, White Alloy Irons, Steel Castings Chapter 3 Carbon and Alloys SteelsAl loy Designation, Carbon Steels , Al loy Steels , Selection of Alloy Steels , High-Strength Sheet Steels , High-Strength, Low Alloy SteelsChapter 4 Tool Steelsdent ificat ion and Classification, Chemical Compos i t ion of Tool Steels, Steel Properties, Tool Steel DefectsChapter 5 Stainless SteelsMetallurgy of Stainless Steels, Alloy Identification , Mechanical Properties, Corrosion Characteristics, Alloy SelectionChapter 6 Metal Castings ProcessesAdvantages and Limitations, Applications, Casting Terms,Sand Mould Making ProcedureChapter 7 PatternsPattern Allowances, Core Prints,, Elimination of Details, Pattern Materials, Types of Patterns ,Pattern Colour CodeChapter 8 CoresCore Sands, Carbon Dioxide Moulding , Types of Cores , Core Prints, Chaplets, Forces Acting on the Moulding FlasksChapter 9 Elements of Gating SystemsElements of a Gating System, Casting YieldChapter 10 Casting Cleaning and Casting DefectsFett1ing,Defects in CastingsChapter 11 Special Casting ProcessesShe!1 Moulding , Investment Casting, Permanent Mould Casting, Die Casting, Centrifugal Casting , Continuous CastingChapter 12 Metal Forming ProcessesNature of Plastic Deformat ion, Hot Working and Cold WorkingChapter 13 Rol1ingPrinciple, Rol1ing Stand Arrangement, Rol1ing Load , Rol1 Passes, Breakdown Passes,Rol1 Pass SequencesChapter 14 ForgingForging Operations, Smith Forging , Drop Forging, Press Forging , Machine Forging , Forging Defects, Forging Design, Drop Forging Die Design, Upset Forging Die Design Chapter 15 Electric Arc WeldingPrinciple of Arc, Arc Welding Equipment,Electrodes, Manua1 Meta 1 Arc Welding, Inert Gas Shielded Arc Welding , Submerged Arc WeldingChapter 16 Resistance WeldingPrinciple, Resistance Spot Welding, Resistance Seam Welding , Projection Welding, Upset Welding ,Flash WeldingChapter 17 Other WeldingThermit Welding, Electro Slag Welding, Electron Beam Welding, Laser Beam Welding, Forge Welding , Friction Welding, Diffusion Welding, Explosion Welding三、教学方法以教师讲授为主,教学过程中运用多媒体课件及相关教学软件,并根据课程特点,适当进行双语教学。

英语学习《材料科学与工程专业英语》

英语学习《材料科学与工程专业英语》

英语学习《材料科学与工程专业英语》《材料科学与工程专业英语》Unit1 Materials Science and Metallurgical EngineeringMaterials are properly more deep-seated in our culture than most of us realize. Trans -portation, housing, clothing, communication, recreation and food production--virtually every segment of our everyday lives is influenced to one degree or another by materials. Historically, the development and advancement of societies have been intimately tied to the members' abilities to produce and manipulate materials to fill their needs. In fact, early civilizations have been designated by the level of their materials development (i.e.Stone Age, Bronze Age).The earliest humans has access to only a very limited number of materials, those that occur naturally stone, wood, clay, skins, and so on. With time they discovered techniques for producing materials that had properties superior to those of the natural ones: these new materials included pottery and various metals. Furthermore, it was discovered that the properties of a material could be altered by heat treatments and by the addition of other substances. At this point, materials utilization was totally a selection process, that is, deciding from a given, rather limited set of materials the one that was best suited for an application by virtue of its characteristic. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties. This knowledge, acquired in the past 60 years or so, has empowered them to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of differentmaterials have evolved with rather specialized characteristics that meet the needs of our modern and complex society.The development of many technologies that make our existence so comfortable has been intimately associated with the accessibility of suitable materials. Advancement in the under--standing of a material type is often the forerunner to the stepwise progression of a technology. For example, automobiles would not have been possible without the availability of inexpensive steel of some other comparable substitutes. In our contemporary era, sophisticated electronic devices rely on components that are made from what are called semiconducting materials.Materials Science EngineeringMaterials science is an interdisciplinary study that combines chemistry, physics, metallurgy, engineering and very recently life sciences. One aspect of materials science involves studying and designing materials to make them useful and reliable in the service of humankind. It strives for basic understanding of how structures and processes on the atomic scale result in the properties and functions familiar at the engineering level. Materials scientists are interested in physical and chemical phenomena acting across large magnitudes of space and time scales. In this regard it differs from physics of chemistry where the emphasis is more on explaining the properties of pure substances. In materials science there is also an emphasis on developing and using knowledge to understand how the properties of materials can be controllably designed by varying the compositions, structures, and the way in which the bulk and surfaces phase materials are processed.In contrast, materials engineering is, on the basis of those structure properties correlations, designing or engineering thestructure of a material to produce a predetermined set of properties. In other words, materials engineering mainly deals with the use of materials in design and how materials are manufactured."Structure" is a nebulous term that deserves some explanation. In brief, the structure of a material usually relates to the arrangement of its internal components. Subatomic structure involves electrons within the individual atoms and interactions with their nuclei. On an atomic level, structure encompasses the organization of atoms or molecules relative to one another. The next large structural realm, which contains large groups of atoms that are normally agglomerated together, is termed "microscopic" meaning that which is subject to direct observation using some type of microscope. Finally, structural elements that may be viewed with the naked eye are termed "macroscopic".The notion of "property" deserves elaboration. While in service use, all materials are exposed to external stimuli that evoke some type of response. For example, a specimen subject to forces will experience deformation; or a polished metal surface will reflect light. Property is a material trait in terms of the kind and magnitude of response to a specific imposed stimulus. Generally, definitions of properties are made independent of material shape and size.Virtually all important properties of solid materials may be grouped into six different categories; mechanical, electrical, thermal, magnetic, optical, and deteriorative. For each there is s characteristic type of stimulus capable of provoking different responses. Mechanical properties relate deformation to an applied load or force: examples include elastic modulus andstrength. For electrical properties, such as electrical conductivity and dielectric constant, the stimulus is an electric filed. The thermal behavior of solids can be represented in terms of heat capacity and thermal conductivity. Magnetic properties demonstrate the response of a material to the application of a magnetic field. For optical properties, the stimulus is electromagnetic or light radiation: index of refraction and reflectivity are representative optical properties. Finally, deteriorative characteristics indicate the chemical reactivity of materials.In addition to structure and properties, two other important components are involved in the science and engineering of materials, namely "processing" and "performance". With regard to the relationships of these four components, the structure of a material will depend on how it is processed. Furthermore, a material's performance will be a function of its properties. Thus, the interrelationship between processing, structure, properties, and performance is linear as follows:Processing→Structure→Properties→PerformanceWhy Study Materials Science and Engineering?Why do we study materials? Many an applied scientists or engineers, whether mechanical, civil, chemical, or electrical, will be exposed to a design problem involving materials at one time or another. Examples might include a transmission gear, the superstructure for a building, an oil refinery component, or an integrated circuit chip. Of course, materials scientists and engineers are specialists who are totally involved in the investigation and design of materials.Many times, a materials problem is to select the right material from many thousands available ones. There are severalcriteria on which the final decision is normally based. First of all, the in-service conditions must be characterized. On only rare occasion does a material possess the maximum or ideal combination of properties. Thus, it may be necessary to trade off one characteristic for another. The classic example involves strength and ductility; normally, a material having a high strength will have only a limited ductility. In such cases a reasonable compromise between two or more properties may be necessary.A second selection consideration is any deterioration of material properties that may occur during service operation. For example, significant reductions in mechanical strength may result from exposure to elevated temperatures or corrosive environments.Finally, probably the overriding consideration is economics. What will the finished product cost? A material may be found that has the ideal set of properties, but is prohibitively expensive. Here again, some compromise is inevitable. The cost of a finished piece also includes any expense incurred during fabrication.The more familiar an engineer or scientist is with the various characteristics and structure-property relationships, as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria.(Selected from Materials Science and Engineering: AnIntroduction, by William D Callister,2002)New Words and Expressionspottery n. 陶瓷by virtue of 依靠(……力量),凭借,由于,因为empower vt.授权,准许,使能够empower sb.to do sth. 授权某人做某事forerunner n. 先驱(者),传令官,预兆stepwise a. 逐步地,分阶段地interdisciplinary a. 交叉学科的metallurgy n. 冶金学nebulous a. 星云的,云雾状的,模糊的,朦胧的agglomerate n. 大团,大块;a.成块的,凝聚的elaboration n. 详尽的细节,解释,阐述electrical conductivity 电导性,电导率dielectric constant 介电常数thermal conductivity 热导性,热导率heat capacity 热容refraction n. 衍射reflectivity n. 反射ductility n. 延展性corrosive a. 腐蚀的,蚀坏的,腐蚀性的;n. 腐蚀物,腐蚀剂overriding a. 最重要的;高于一切的prohibitive a. 禁止的,抵制的judicious a. 明智的criterion n. 标准,准则,尺度Notes1. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties.这是一个强调句,强调时间。

(材料化学)材料化学培训资料

(材料化学)材料化学培训资料
投资。
材料化学性能测试与
03
表征
热学性能测试
总结词
热学性能测试是评估材料在 温度变化下的性能表现,包 括热导率、热膨胀系数和热 稳定性等。
热导率
衡量材料在加热或冷却过程 中热量传递的能力,对于材 料的热管理性能和隔热性能 具有重要意义。
热膨胀系数
描述材料在温度升高时尺寸 变化的程度,对于材料在高 温环境下的应用具有重要影 响。
VS
新材料的设计与开发需要综合考虑材 料的组成、结构、性能等多个方面, 通过理论计算和实验验证相结合的方 法,探索材料的潜在应用价值,并逐 步实现产业化。
材料性能的优化与提高
材料性能的优化与提高是材料化学领域的另一个重要发展趋势。随着各种新材料的不断涌现,如何提高材料的性能成为了一 个亟待解决的问题。
VASP
全称Vienna
Ab
initio
Simulation Package,是一款基
于密度泛函理论的计算软件,适
用于研究固体材料的电子结构和
物理性质。
CASTEP
全称Cambridge Sequential Total Energy Package,是一款 高效且功能强大的材料计算软件, 支持多种计算方法和材料体系。
储能材料
材料化学在储能领域的应用主要涉及锂离子电池、超级电容器和储 氢材料的研究,以提高储能设备的性能和安全性。
环保领域
1 2 3
污水处理
材料化学在污水处理领域的应用主要涉及新型吸 附剂和催化剂的研发,以提高污水处理的效率和 降低处理成本。
空气净化
材料化学在空气净化领域的应用主要涉及高效滤 材和光触媒的研究,以提高空气净化的效果和降 低能耗。
材料的安全性与环境友好性需要从多个方面入手,如材料的 可降解性、低毒性、资源节约等。通过深入研究材料的生态 学特性,可以更好地发掘其环保潜力,为可持续发展提供有 力支持。

《材料专业英语》课程教学大纲

《材料专业英语》课程教学大纲

材料专业英语Material Specialty English一、课程基本情况课程类别:专业任选课课程学分:2学分课程总学时:32学时课程性质:选修开课学期:第7学期先修课程:基础英语,材料科学基础,物理化学适用专业:材料物理教材:匡少平,王世颖,顾元香,《材料科学与工程专业英语》,化学工业出版社,2015 年。

开课单位:物理与光电工程学院材料物理系二、课程性质、教学目标和任务材料专业英语是针对材料物理专业学生在学完公共英语课及专业基础课之后开设的一门任选课程,主要目的是通过学习与专业相关的英语知识,使同学们了解专业英语的文章的结构、词汇及其与公共英语的异同点,并掌握材料学专业常用的英语词汇,能较顺利的阅读、理解和翻译有关的科技英文文献和资料,同时了解科技英语论文的写作格式和要求。

通过教学,力争到达:让学生能顺利阅读并正确理解本专业的英文文献资料,速度每分钟30-60 词;学生能通顺翻译本专业词汇,英译汉速度每小时200个词汇以上;学生最终能用英文写摘要,要求表达原意,且无重大语言错误。

本课程的最终目的是提高学生的英语能力,为毕业论文(设计)或今后从事专业研究打下坚实的基础,并能在今后的生产实践中有意识地利用所学知识,使学生能真正以英语为工具,熟练地获取和交流本专业所需的信息。

三、教学内容和要求第1章绪论(Introduction to Material Specialty English)(2 学时)1.1 What do you expect from Material Specialty English (1 学时)(1)了解学习专业英语的目的(2)理解材料科学专业英语的任务(3)掌握材料专业英语文献检索渠道重点:材料专业英语文献检索渠道。

难点:材料专业英语文献检索渠道。

1.2 Characteristics of Scientific English (1 学时)(1)了解专业英语与普通英语的差异(2)理解专业英语的词汇特点(3)掌握专业英语语法结构特点,并能举例应用重点:专业英语的词汇、语法结构特点。

《材料化学专业英语》课程教学的几点思考

《材料化学专业英语》课程教学的几点思考

材料化学专业英语是材料科学与工程专业的一门重要课程,它旨在帮助学生掌握材料化学领域的专业知识,并提高他们在国际交流中使用英语的能力。

在教学过程中,我们需要深入思考如何更好地设计和实施这门课程,以满足学生的需求,并促进他们的学习和发展。

下面就材料化学专业英语课程教学的若干思考进行全面评估,并撰写一篇深度和广度兼具的文章。

1. 课程目标和内容材料化学专业英语课程的首要目标是帮助学生掌握和运用专业英语,特别是在材料化学领域中。

在设计课程内容时,我们需要充分考虑材料化学的基本理论、研究方法、前沿技术和国际发展动态,以及相关领域的新闻、论文和展会等。

另外,还要注重培养学生的写作、阅读、听力和口语能力,使他们能够进行学术研究,撰写论文,参加国际会议,甚至进行海外交流。

2. 教学方法和手段在教学方法方面,我们要综合运用多种手段,如课堂讲授、案例分析、小组讨论、实验实践、英文文献阅读和翻译,甚至是海外交流和实习等。

这样可以使学生在实践中学习,在交流中提高,在体验中成长。

另外,还要充分利用现代化教学技术和工具,如多媒体课件、网上资源、语音视频软件和电子期刊等,来增强教学效果,提高教学质量。

3. 评价和反馈机制针对材料化学专业英语的特点,我们需要建立起科学合理的评价和反馈机制,以有效促进学生的学习和提高。

评价方式应多样化,包括平时表现、作业考核、阶段性测试、课堂互动、小组项目、论文写作等,同时要注重及时给予学生反馈,指导他们改进,激励他们进步。

4. 个人观点和理解作为一名材料化学专业英语的教师,我认为在教学过程中要注重培养学生的专业素养和跨文化交际能力,促进国际化人才的培养。

还要引导学生树立正确的学习态度和价值观念,激发他们对材料化学的兴趣和热情,促进他们全面发展和终身学习。

总结回顾《材料化学专业英语》课程教学需要结合材料化学的特点,设计符合学生需求的课程目标和内容,采用多种教学方法和手段,建立起科学合理的评价和反馏机制,并重视学生的综合素质培养。

《材料化学》课程教学大纲

《材料化学》课程教学大纲

材料化学课程教学大纲课程名称:材料化学英文名称:Materials Chemistry课程编码:x4030511学时数:32其中实践学时数:0 课外学时数:0学分数:2.0适用专业:化学工程与工艺一、课程简介《材料化学》是能源化学工程专业选修课。

课程主要内容材料化学所涉及的物理化学中的基础知识,材料制备过程与热能相关的技术方法,高分子材料、复合材料、纳米材料的基本概念、特性、制备与应用,金属材料与无机非金属材料的结构、性能等内容。

培养学生系统掌握材料化学的基本理论与技术,具备材料化学相关的基本知识和基本技能,能运用化学和材料科学的基础理论、基本知识和实验技能在材料科学与化学及其相关的领域从事研究、教学、科技开发及相关管理工作的具有开拓型、前瞻性、复合型的人才。

二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点基本要求:了解金属材料的化学性质及其高温化学合成、非金属材料的化学组成及其烧结过程的化学变化、高分子材料的合成方法及其结构与性能的关系。

掌握各类材料的基本化学性质、化学合成方法、材料的结构与性能的关系等基础知识。

(一)绪论基本要点:了解材料化学的发展过程,人类与材料之间关系,材料分类等。

重点:材料分类和材料化学的特点,掌握材料的分类方法;了解金属材料、无机非金属材料、高分子材料和复合材料;了解材料化学在个领域的应用及作用。

难点:材料的概念及随科技发展对材料的认识与应用。

(二)化学基础知识基本要点:化学热力学与动力学,表现与界面现象,电化学基础,相与相平衡。

重点:掌握物理化学中的基础知识,并能够解决实际问题,了解具体原理的实际应用。

难点:热力学平衡与动力学平衡,界面现象,相图。

(三)材料的制备基本要点:晶体(非晶)材料生长技术,气相沉积法(CVD与PVD),溶胶-凝胶法,水热合成法,固相反应。

重点:CVD,溶胶-凝胶法,水热合成法。

难点:掌握材料制备过程与热能相关的技术方法。

(四)材料的性能基本要点:化学性能,力学性能,热血性能,电/磁学性能,工艺性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Unit 3Text1.From the periodic table, it can be seen that there are only about 100 different kinds of atomsin the entire Universe. (Unit 3, P21, Para 1, Line 1)2.The atomic structure primarily affects the chemical, physical, thermal, electrical, magnetic,and optical properties.(Unit 3, P22, Para 5, Line 1)3.The microstructure and macrostructure can also affect these properties but they generallyhave a larger effect on mechanical properties and on the rate of chemical reaction. (Unit 3, P22, Para 5, Line 2)4.From elementary chemistry it is known that the atomic structure of any element is made upof positively charged nucleus surrounded by electrons revolving around it. (Unit 3, P22, Para 6, Line 1)5.An element’s atomic number indicates the number of positively charged protons in thenucleus.(Unit 3, P22, Para 6, Line 3)6.The atomic weight of an atom indicates how many protons and neutrons in the nucleus.(Unit 3, P22, Para 6, Line 4)7.It is also known that electrons are present with different energies and it is convenient toconsider these electrons surrounding the nucleus in energy “shell”.(Unit 3, P22, Para 7, Line 2)8.For example, magnesium, with an atomic number of 12, has two electrons in the inner shell,eight in the second shell and two in the other shell.(Unit 3, P22, Para 7, Line 4)9.All chemical bonds involve electrons.(Unit 3, P22, Para 8, Line 1)10.Atoms are at their most stable when they have no partially-filled electron shells. (Unit 3, P22,Para 8, Line 2)11.When metal atoms bond, a metallic bond occurs.(Unit 3, P23, Para 1, Line 1)12.The bond between two nonmetal atoms is usually a covalent bond.(Unit 3, P23, Para 1, Line4)13.Where metal and nonmetal atom come together an ionic bond occurs.(Unit 3, P23, Para 1,Line 4)Reading Material1.Ionic bonding occurs between charged particles.(Unit 3, P26, Para 1, Line 1)2.Metals usually have 1, 2, or 3 electrons in their outermost shell.(Unit 3, P26, Para 1, Line 2)3.Since electrons have a negative charge, the atom that gains electrons becomes a negativelycharged ion (i.e., anion) because it now has more electrons than protons. (Unit 3, P26, Para 2, Line 1)4.Alternately, an atom that loses electrons becomes a positively charged ion (i.e., cation).(Unit 3, P26, Para 2, Line 2)5.Fig 1.3 schematically shows the process that takes place during the formation of an ionicbond between sodium and chlorine atoms.(Unit 3, P26, Para 3, Line 1)6.Note that sodium has one valence electron that it would like to give up so that it wouldbecome stable with a full outer shell of eight.(Unit 3, P26, Para 3, Line 2)7.Also note that chlorine has seven valence electrons and it would like to gain an electron inorder to have a full shell of eight.8.The transfer of the electron causes the previously neutral sodium atom to become apositively charge ion (cation), and the previously neutral chlorine atom to become a negatively charged ion (anion).(Unit 3, P26, Para 3, Line 4)9.Nonmetals have 4 or more electrons in their outer shells (except boron). (Unit 3, P26, Para 5,Line 2)10.The more atoms in each molecule, the higher a compound’s melting and boilingtemperature will be.(Unit 3, P27, Para 3, Line 2)11.So, for example, when aluminum atoms are grouped together in a block of metal, the outerelectrons leave individual atoms to become part of common “electron cloud”. (Unit 3, P27, Para 5, Line 3)12.In this arrangement, the valence electrons have considerable mobility and are able to conductheat and electricity easily.(Unit 3, P27, Para 5, Line 5)13.This regular pattern of atoms is the crystalline structure of metals. (Unit 3, P28, Para 2, Line 4)14.In the crystal lattice, atoms are packed closely together to maximize the strength of thebonds.(Unit 3, P28, Para 2, Line 5)15.An actual piece of metal consists of many tiny crystals called grains that touch at grainboundaries.(Unit 3, P28, Para 2, Line 6)16.The van der Waals bonds occur to some extent in all materials but are particularly importantin plastics and polymers.(Unit 3, P28, Para 4, Line 1)17.These materials are made up of a long string molecules consisting of carbon atoms covalentlybonded with other atoms, such as hydrogen, nitrogen, oxygen, and fluorine. (Unit 3, P28, Para 4, Line 2)18.The covalent bonds within the molecules are very strong and ruptured only under extremeconditions.(Unit 3, P28, Para 4, Line 4)19.The bonds between the molecules that allow sliding and rupture to occur are called van derWaals forces.(Unit 3, P28, Para 4, Line 5)20.For example, in polyethylene the molecules are composed of hydrogen and carbon atoms inthe same ratio as ethylene gas.(Unit 3, P29, Para 2, Line 2)21.Polymers are often classified as being either a thermoplastic or a thermosetting material.(Unit 3, P29, Para 2, Line 6)Unit 4Text1.Properties that describe how a substance changes into a completely different substance arecalled chemical properties.(Unit 4, P31, Para 1, Line 3)2.Flammability and corrosion/oxidation resistance are examples of chemical properties. (Unit4, P31, Para 1, Line 4)3.When a material changes from a solid to a liquid to a vapor it seems like them become adifferent substance.(Unit 4, P31, Para 2, Line 2)4.However, when a material melts, solidifies, vaporizes, condenses or sublimes, only thestate of the substance changes.(Unit 4, P31, Para 2, Line 3)5.Phase is a physical property of matter and matter can exist in four phases: solid, liquid, gasand phasma.(Unit 4, P31, Para 2, Line 5)6.In general, some of the more important physical and chemical properties from an engineeringmaterial standpoint include phase transformation temperatures, density, specific gravity, thermal conductivity, linear coefficient of thermal expansion, electrical conductivity and resistivity, magnetic permeability, and corrosion resistance, and so on. (Unit 4, P31,Para 3, Line 1)7.Transitions from solid to liquid, from solid to vapor, from vapor to solid and visa versa arecalled phase transformations or transitions.(Unit 4, P31, Para 4, Line 2)8.Since some substances have several crystal forms, technically there can also be solid toanother solid form phase transformation.(Unit 4, P31, Para 4, Line 3)9.The phase transition temperature where a solid changes to a liquid is called the melting point.The temperature at which the vapor pressure of a liquid equals 1 atm (101.3 kPa) is called the boiling point.(Unit 4, P31, Para 5, Line 1)10.The temperature at which a solid, glassy material begins to soften and flow is called the glasstransition temperature.(Unit 4, P31, Para 5, Line 7)11.The space the mass occupies is its volume, and the mass per unit of volume is its density.(Unit 4, P32, Para 1, Line 1)12.Mass is a fundamental measure of the amount of matter. Weight is a measure of the forceexerted by a mass and this force is produced by the acceleration of gravity. (Unit 4, P32, Para 2, Line 1)13.Therefore, on the surface of the earth, the mass of an object is determined by dividing theweight of an object by 9.8 m/s2 (the acceleration of gravity on the surface of the earth). (Unit 4, P32, Para 2, Line 3)14.The density of liquids and gases is very temperature dependent.(Unit 4, P32, Para 3, Line 1)15.Some common units used for expressing density are grams/cubic centimeter,kilograms/cubic meter, grams/milliliter, grams/liter, pounds for cubic inch and pounds per cubic foot; but it should be obvious that any unit of mass per any unit of volume can be used.(Unit 4, P32, Para 4, Line 1)16.Specific gravity values for a few common substances are: Au, 19.3; mercury, 13.6; alcohol,0.7893; benzene, 0.8786.(Unit 4, P32, Para 5, Line 6)17.Magnetic permeability or simply permeability is the ease with which a material can bemagnetized.(Unit 4, P32, Para 6, Line 1)18.It is a constant of proportionality that exists between magnetic induction and magnetic fieldintensity.(Unit 4, P32, Para 6, Line 2)19.This constant is equal to approximately 1.257×10-6 Henry per meter (H/m) in free space (avacuum).(Unit 4, P32, Para 6, Line 3)20.Materials that cause the lines of flux to move farther apart, resulting in a decrease inmagnetic flux density compared with a vacuum, are called diamagnetic. (Unit 4, P32, Para 7, Line 1)21.Materials that concentrate magnetic flux by a factor of more than one but less than or equalto ten are called paramagnetic; materials that concentrate the flux by a factor of more than ten are called ferromagnetic.(Unit 4, P32, Para 7, Line 2)22.For non-ferrous metals such as copper, brass, aluminum etc., the permeability is the sameas that of “free space”, i.e. the relative permeability is one. For ferrous metals however the value of μr may be several hundred.(Unit 4, P33, Para 2, Line 1)23.This effect is useful in the design of transformers and eddy current probes. (Unit 4, P33, Para3, Line 2)Reading Material1.The electrons carry a negative electrostatic charge and under certain conditions can movefrom atom to atom.(Unit 4, P35, Para 1, Line 1)2.The directional movement of electrons due to an electromotive force is what is known aselectricity.(Unit 4, P36, Para 1, Line 3)3.It is the ratio of the current density to the electric field strength.(Unit 4, P36, Para 2, Line 2)4.Its SI derived unit is the Siemens per meter, but conductivity values are often reported aspercent IACS.(Unit 4, P36, Para 2, Line 2)5.IACS is an acronym for International Annealed Copper Standard or the material that wasused to make traditional copper-wire.(Unit 4, P36, Para 2, Line 4)6.Conductivity values in Siemens/meter can be converted to % IACS by multiplying theconductivity value by 1.724×10-6.(Unit 4, P36, Para 3, Line 1)7.Electricity conductivity is a very useful property since values are affected by such things as asubstance chemical composition and the stress state of crystalline structures. (Unit 4, P36, Para 4, Line 1)8.Electrical resistivity is the reciprocal of conductivity.(Unit 4, P36, Para 5, Line 1)9.The SI unit for electrical resistivity is the ohm meter.(Unit 4, P36, Para 6, Line 1)10.Resistivity values in microhm centimeters units can be converted to % IACS conductivityvalues with the following formula: 172.41 / resistivity = % IACS.(Unit 4, P36, Para 6, Line 5)11.Thermal conductivity (λ) is the intrinsic property of a material which relates its ability toconduct heat.(Unit 4, P36, Para 7, Line 1)12.Conduction takes place when a temperature gradient exists in a solid (or stationary fluid)medium.(Unit 4, P36, Para 7, Line 3)13.Thermal conductivity is defined as the quantity of heat(Q) transmitted through a unitthickness (L) in a direction normal to a surface of unit area (A) due to a unit temperature gradient (ΔT) under steady state conditions and when the heat transfer is dependent only on the temperature gradient.(Unit 4, P37, Para 2, Line 1)14.When heat is added to most materials, the average amplitude of the atoms’ vibrating withinthe material increases.(Unit 4, P37, Para 3, Line 1)15.As shown in the following equation, α is the ratio of change in length (Δl) to the totalstarting length (l i) and change in temperature (ΔT).(Unit 4, P37, Para 3, Line 6)16.By rearranging this equation, it can be seen that if the linear coefficient of thermalexpansion is known, the change in components length can be calculated for each degree of temperature change.(Unit 4, P37, Para 4, Line 1)17.That is to say, if energy is removed from a material then the object’s temperature willdecrease causing the object to contract. (Unit 4, P37, Para 4, Line 3)18.Thermal expansion (and contraction) must be taken into account when designing productswith close tolerance fits as these tolerances will change as temperature changes if the materials used in the design have different coefficients of thermal expansion. (Unit 4, P37, Para 5, Line 1)19.For example, thermostats and other heat-sensitive sensors make use of the property oflinear expansion.(Unit 4, P37, Para 5, Line 7)。

相关文档
最新文档