2014.1泉州市2014届普通中学高中毕业班单科质量检查数学文科试题参考答案
福建省泉州市2014年初中学业质量检查数学试题(含答案)
AB C DE F (第20题图) 参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.D 2.B 3.A 4.C 5.C 6.A 7.D 二、填空题(每小题4分,共40分)8. 2 9.)3(+a a 10.61076⨯.11.1 12.4=x 13.12 14.60 15.25 16.3 17.(1) 10;(2) 2三、解答题(共89分)18.(本小题9分)解:原式3143+-+= ……………………………………………………………8分9= …………………………………………………………………………………… 9分 19.(本小题9分) 解:原式96422+-+-=x x x ……………………………………………………4分x 613-= ……………………………………………………………………6分当21-=x 时,原式)21(613-⨯-= …………………………………………………7分16= ………………………………………………………………………9分 20.(本小题9分) 证明:∵AC AB =,∴C B ∠=∠. ………………………………3分 ∵DE AB DF AC ⊥,⊥, ∴︒=∠=∠90CFD BED .…………………6分 ∵D 为BC 边的中点,∴CD BD =, ………………………………8分 ∴BED ∆≌CFD ∆. ………………………9分 21.(本小题9分)解:(1)60,补图如右;(填空3分,补图2分,共5分) (2)由图可得:第四组的件数是18件,第六组的件数是3件,组别 3 691215 1821一六 二 三 四 五 件数参赛作品件数条形统计图 (第21题图)故第四组的获奖率为:951810=,第六组的获奖率为:9632=,……………………8分 ∵9695<, ∴第六组获奖率较高. …………………………………………………………………9分 22.(本小题9分) 解:(1)P (e 队出场)=31; …………………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况,P ∴(两队都是县区队)=94. …………………………………………………………9分 解法二:列表……………………………………………………………………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况, P ∴(两队都是县区队)=94. ………………………9分 23.(本小题9分)解:(1)如图所示: …………………………………3分点B 的对应点'B 的坐标为()6,0-; ………………6分 (2) 第四个顶点D 的坐标()3,7-、()3,3、()3,5--;Ae fB ()B A , ()B e , ()B f ,g ()g A , ()g e , ()g f , h()h A ,()h e ,()h f ,A efB g h B g h B g h甲组乙组甲组 乙组AyBC O xC 'B 'A '…………………………………………………………9分24.(本小题9分)解:(1)设甲种新款服装购进x 件,那么乙种新款服装购进)100(x -件,由题意可得 42000)100(500300=-+x x ,解得40=x . ………………………………2分 经检验,符合题意.当40=x 时,60100=-x (件).答:甲种新款服装购进40件,乙种新款服装购进60件.………………………………4分 (2)解法一:设甲种新款服装购进m 件,那么乙种新款服装购进)100(m -件,由题意可得m m 2100≤-,解得3133≥m .…………………………………………………………………6分∴m 的取值范围为1003133<≤m .500600300380-<-∴同样售出一件新款服装,甲的获利比乙少,∴只能取34=m ,此时获利为9320100668034=⨯+⨯(元).答:甲种新款服装购进34件,乙种新款服装购进66件,才能使专卖店在销售完这批服装时获利最多,最大利润为9320元. …………………………………………………9分 解法二:设该专卖店销售完这批服装可获利润w 元,甲种服装m 件.依题意可得, (380300)(600500)(100)w m m =-+--, 整理得1000020w m =-.∴w 是m 的一次函数,且200-<. ∴w 随m 的增大而减小.∵乙的数量不能超过甲的数量的2倍, ∴1002m m ≤﹣, 解得3133≥m , ………………………………………………………………………6分∴m 的取值范围为1003133<≤m .∵m 为整数,∴34=m 时,w 取得最大值,此时9320=w (元).答:该专卖店购进甲种服装67件,乙种服装33件,销售完这批服装时获利最多,此时利润为9320元.…………………………………………………………………………9分 25.(本小题13分) (1) ∵抛物线1C 的过点()1,0,∴()2301-=a ,解得:91=a . ∴设抛物线1C 的解析式为()2391-=x y . …………3分(2) ①∵点A 、C 关于y 轴对称,∴点K 为AC 的中点.若四边形APCG 是平行四边形,则必有点K 是PG 的中点. 过点G 作y GQ ⊥轴于点Q , 可得:GQK ∆≌POK ∆,∴3==PO GQ ,2m OK KQ ==, 22m OQ =. ∴点()22,3m G -. ………………………………………5分 ∵顶点G 在抛物线1C 上,∴()2233912--=m , 解得:2±=m ,又0>m ,∴2=m .∴当2=m 时,四边形APCG 是平行四边形. ……………………………………8分 ②在抛物线()2391-=x y 中,令2m y =,解得:m x 33±=,又0>m ,且点C 在点B 的右侧,∴()2,33m m C +,m KC 33+=. …………………………………………………9分∵点A 、C 关于y 轴对称, ∴()2,33m m A --.∵抛物线1C 向下平移()0>h h 个单位得到抛物线2C , ∴抛物线2C 的解析式为:()h x y --=2391. ∴()h m m ----=2233391,解得:44+=m h , ∴m PF 44+=.∴()()4314134433=++=++=m m m m PF KC .…………………………………………………………13分 26.(本小题13分)解:(1)点G 的坐标是(0,2);………………………3分 (2)解法一:①连结OP 、OB .AyB x(第25题图)OG PKCD E FlC 2C 1Q∵PB 切⊙O 于点B , ∴OB PB ⊥; 根据勾股定理得:222PB OP OB =﹣,∵1OB =不变,若BP 要最小,则只须OP 最小. 即当GF OP ⊥时,线段PO 最短,………………6分 在PFO Rt ∆中,2330OF GFO =∠=︒,, ∴=3OP ,∴22PB OP OB =-=22(3)1-=2.………………………………………………8分 解法二:设直线GF 解析式为)0(≠+=m n mx y . ∵直线GF 过点(0,2)、F (23,)0,∴⎩⎨⎧==+2,032n n m 解得:⎪⎩⎪⎨⎧=-=.2,33n m ∴233+-=x y .……………………………………………………………………………5分 设)233,(+-x x P . 过P 作x PH ⊥轴于点H ,连结OA 、OP ,在OHP Rt ∆中,433434)233(222222+-=+-+=+=x x x x PH OH OP . PA 与⊙O 相切,∴︒=∠90OAP ,1=OA .在PAO Rt ∆中, 222OA OP AP -=. ∵PA PB 、均与⊙O 相切, ∴143343422222-+-=-==x x OA OP AP PB 2)23(3433343422+-=+-=x x x . ∴当23=x ,22=PB 为最小, PB 最小,此时2=PB . ………………………8分 y BA F xOPG (P 1)P 2(第26题图)H②方法一:存在.∵PA PB 、均与⊙O 相切,∴OP 平分APB ∠.∵60APB ∠=︒,∴30OPB ∠=︒.∵1OB =,∴2OP =.∴点P 是以点O 为圆心,2为半径的圆与直线GF 的交点,即图中的12P P 、两点. ∵2OG =,∴点1P 与点(0,2)G 重合.………………………………………………10分在GOF Rt ∆中,30GFO ∠=︒,∴60OGF ∠=︒.∵2OP OG =,∴2GOP ∆是等边三角形,∴2 2G P OG ==.∵4GF =,∴22FP =,∴2P 为的中点GF , ∴2(31)P ,. 综上所述,满足条件的点P 坐标为(0,2) 或(31),.……………………………………13分 方法二:假设在直线GF 上存在点P ,使得60APB ∠=︒,则必须有︒=∠30APO . OA PA ⊥,︒=∠∴90OAP . ∴21sin ==∠OP OA APO , ∴22==OA OP . ……………………………………………………………………10分 由①解法二可知43343422+-=x x OP , ∴222433434=+-x x ,解得01=x ,32=x .满足条件的点P坐标为(0,2)或(31),. …………………………………13分。
14年高考真题——文科数学(福建卷)-推荐下载
:
(D)240 元
x y 7 0
x
y 0
y
3
0
(D) 4OM
。若圆年高考真题文科数学(解析版) 卷
福建
只有一个正确,则100a 10b c 等于________。
三.解答题:本大题共 6 小题,共 74 分。解答应写出文字说明,证明过程和演算步骤。
|| P1P2 ||| x1 x2 | | y1 y2 | ,则平面内与 x 轴上两个不同的定点 F1, F2 的“ L 距离”之和
等于定值(大于 || F1F2 || )的点的轨迹可以是( )
二.填空题:本大题共 4 小题,每小题 4 分,共 16 分,把答案写在答题卡相应位置上。
19.(本小题满分 12 分)如图 16 所示,三棱锥 A BCD 中,
M
AB ⊥平面 BCD , CD ⊥ BD 。⑴求证: CD ⊥平面 ABD ;⑵若
AB BD CD 1 , M 为 AD 中点,求三棱锥 A MBC 的体 B
D
积。 20.(本小题满分 12 分)根据世行 2013 年新标准,人均
17.(本小题满分 12 分)在等比数列an中, a2 = 3 , a5 = 81 。⑴求 an ;⑵设
bn log3 an ,求数列bn的前 n 项和 Sn 。
18.(本小题满分 12 分)已知函数 f x 2 cos x sin x cos x。⑴求 f 5 4的值;
福建
2014 年高考真题文科数学(解析版) 卷
下列函数正确的是( )
9.要制作一个容积为 4 m3 ,高为 1 m 的无盖长方体容器。已知该容器的底面造价是每
平方米 20 元,侧面造价是每平方米 10 元,则该容器的最低总造价是( )
数学文卷·2014届建省泉州市普通中学高中毕业班单科质量检查(2014.01)
生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.
二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容
和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如
果后继部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
……………7 分
又∵ PD ⊥ 平面ABCD ,
第 9 页 共 13 页
∴ EH ⊥ 平面ABCD ,即 EH 是四面体 E − BDC 的高. ………8 分
根据斜二测画法的规则及题设已知条件可以得到:
在 ∆D1O′C1 中, ∠D1O′C1 = 450 , D1C1 = 5, O′C1 = 2 2,
2
,即 1 ⋅ 3
EH
⋅
S∆BDC
=
3
2,
求得 EH = 9 ,故侧棱 PD 的长是 9 .
4
2
…………12 分
21.本小题主要考查圆锥曲线、直线与圆锥曲线、合情推理等基础知识,考查推理论证能力、运 算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分 12 分.
解析:(Ⅰ)因为点 M 到点 F (1, 0) 和直线 x = −1的距离相等,
化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分 14 分.
解:(Ⅰ)因为
f
′(x)
=
1 x
−
a
,
………1 分
又因为函数 f ( x) 在点 A(1, f (1)) 处的切线斜率为 2 ,
所以 f ′(1) = 2 ,解得 a = −1 . ……………3 分
2014年高考福建文科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年福建,文1,5分】若集合{}|24P x x =≤<,{}|3Q x x =≥,则P Q = ( )(A ){}|34x x ≤< (B ){}|34x x << (C ){}|23x x ≤< (D ){}|23x x ≤≤ 【答案】A【解析】{|34}P Q x x ≤ =<,故选A . (2)【2014年福建,文2,5分】复数()32i i +等于( )(A )23i -- (B )23i -+ (C )23i - (D )23i + 【答案】B【解析】232i i 3i 223()i i +=+=-+,故选B . (3)【2014年福建,文3,5分】以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )(A )2π(B )π (C )2 (D )1【答案】A 【解析】根据题意,可得圆柱侧面展开图为矩形,长212ππ⨯=,宽1,∴212S ππ=⨯=,故选A . (4)【2014年福建,文4,5分】阅读右图所示的程序框图,运行相应的程序,输出的n 的值为( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】第一次循环1n =,判断1221>成立,则112n =+=;第二次循环,判断2222>不成立,则输出2n =,故选B .(5)【2014年福建,文5,5分】命题“[)0,x ∀∈+∞,30x x +≥”的否定是( )(A )(),0x ∀∈-∞,30x x +< (B )(),0x ∀∈-∞,30x x +≥(C )[)00,x ∃∈+∞,3000x x +< (D )[)00,x ∃∈+∞,3000x x +≥【答案】C【解析】全称命题的否定是特称命题,故该命题的否定是[)00,x ∃∈+∞,3000x x +<,故选C .(6)【2014年福建,文6,5分】直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( )(A )20x y +-= (B )20x y -+= (C )30x y +-= (D )30x y -+= 【答案】D【解析】直线过圆心()0,3,与直线10x y ++=垂直,故其斜率1k =.所以直线的方程为()310y x -=⨯-,即30x y -+=,故选D .(7)【2014年福建,文7,5分】将函数sin y x =的图像向左平移2π个单位,得到函数()y f x =的图像,则下列说法正确的是( )(A )()y f x =是奇函数 (B )()y f x =的周期为π (C )()y f x =的图像关于直线2x π=对称 (D )()y f x =的图像关于点,02π⎛⎫- ⎪⎝⎭对称 【答案】D【解析】sin y x =的图象向左平移2π个单位,得π()=sin =cos 2y f x x x ⎛⎫=+ ⎪⎝⎭的图象,所以()f x 是偶函数,A 不正确;()f x 的周期为2π,B 不正确;()f x 的图象关于直线()x k k π=∈Z 对称,C 不正确;()f x 的图象关于点(),02k k ππ⎛⎫+∈ ⎪⎝⎭Z 对称,当1k =-时,点为π(,0)2-,故选D .(8)【2014年福建,文8,5分】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是( )(A ) (B ) (C ) (D )【答案】B【解析】由题中图象可知log 31a =,所以3a =.A 选项,133xxy -⎛⎫== ⎪⎝⎭为指数函数,在R 上单调递减,故A 不正确.B 选项,3y x =为幂函数,图象正确.C 选项,()33y x x =-=-,其图象和B 选项中3y x =的图象关于x 轴对称,故C 不正确.D 选项,()3log y x =-,其图象与3log y x =的图象关于y 轴对称,故D选项不正确,故选B .(9)【2014年福建,文9,5分】要制作一个容积为43m ,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )(A )80元 (B )120元 (C )160元 (D )240元 【答案】C【解析】设容器的底长x 米,宽y 米,则4xy =.所以4y x=,则总造价为:()()80420211080202080f x xy x y x x x x ⎛⎫=++⨯⨯=++=++ ⎪⎝⎭,()0,x ∈+∞. 所以()20160f x ≥⨯=,当且仅当4x x=,即x =2时,等号成立,所以最低总造价是160元,故选C .(10)【2014年福建,文10,5分】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于( )(A )OM (B )2OM (C )3OM (D )4OM【答案】D【解析】因为M 是AC 和BD 的中点,由平行四边形法则,得2OA OC OM += ,2OB OD OM +=,所以4OA OB OC OD OM +++=,故选D .(11)【2014年福建,文11,5分】已知圆C :()()221x a y b -+-=,平面区域Ω:70300x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩.若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为( )(A )5 (B )29 (C )37 (D )49 【答案】C【解析】由题意,画出可行域Ω,圆心C ∈Ω,且圆C 与x 轴相切,所以1b =,所以圆心在直线1y =上,求得与直线30x y -+=,70x y +-=的两交点坐标分别为()2,1A -,()6,1B ,所以[]2,6a ∈-.所以[]22211,37a b a +=+∈,所以22a b +的最大值为37,故选C .(12)【2014年福建,文12,5分】在平面直角坐标系中,两点()111,P x y ,()222,P x y 间的“L -距离”定义为121212||||||||PP x x y y =-+-,则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于 12||||F F )的点的轨迹可以是( )(A ) (B ) (C ) (D )【答案】A【解析】不妨设()1,0F a -,()2,0F a ,其中0a >,点(),P x y 是其轨迹上的点,P 到1F ,2F 的“L -距离”之和等于定值b (大于12||||F F ),所以x a y x a y b +++-+=,即2x a x a y b -+++=.当x a <-,0y ≥时,上式可化为2b y x -=;当a x a -≤≤,0y ≥时,上式可化为2by =a -; 当x a >,0y ≥时,上式可化为2b x+y =;当x a <-,0y <时,上式可化为2bx+y =-;当a x a -≤≤,0y <时,上式可化为2b y a =-;当x a >,0y <时,上式可化为2bx y =-,故选A .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.(13)【2014年福建,文13,5分】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 . 【答案】0.18【解析】由几何概型可知18010001S S S ==阴影阴影正方形,所以0.18S 阴影=.故答案为0.18. (14)【2014年福建,文14,5分】在ABC ∆中,060A =,2AC =,BC =AB = .【答案】1【解析】由余弦定理可知:2222431cos 2222b c a c A bc c +-+-===⨯,所以1c =,故答案为1.(15)【2014年福建,文15,5分】函数()()()22026ln 0x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩的零点个数是 .【答案】2【解析】当0x ≤时,令()220f x x =-=,得x =x =.当0x >时,()26ln f x x x =-+,()12+0f x x'=>.所以()f x 单调递增,当0x →时,()0f x <;当x →+∞时,()0f x >,所以()f x 在()0,+∞上有一个零点.综上可知共有两个零点.故答案为2.(16)【2014年福建,文16,5分】已知集合{}{},,0,1,2a b c =,且下列三个关系:①2a ≠;②2b =;③0c ≠有且只有一个正确,则10010a b c ++等于 . 【答案】201【解析】由题意可知三个关系只有一个正确分为三种情况:(1)当①成立时,则2a ≠,2b ≠,0c =,此种情况不成立; (2)当②成立时,则2a =,2b =,0c =,此种情况不成立;(3)当③成立时,则2a =,2b ≠,0c ≠,即2a =,0b =,1c =, 所以1001010021001201a b c ++=⨯+⨯+=.三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程. (17)【2014年福建,文17,12分】在等比数列{}n a 中,23a =,581a =.(1)求n a ;(2)设3log n n b a =,求数列{}n b 的前n 项和n S .解:(1)设{}n a 的公比为q ,依题意得141381a q a q =⎧⎨=⎩,解得113a q =⎧⎨=⎩,因此13n n a -=.(2)因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()22n n n b b n nS +-==. (18)【2014年福建,文18,12分】已知函数()()2cos sin cos f x x x x =+.(1)求54f π⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期及单调递增区间. 解:(1)55552cos sin cos 2cos sin cos 24444444f πππππππ⎛⎫⎛⎫⎛⎫=+=---=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)因()22sin cos 2cos sin 21cos 2214f x x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭,故周期T π=.由222242k x k πππππ-≤+≤+得()388k x k k Z ππππ-≤≤+∈.因此()f x 的单调递增区间为()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(19)【2014年福建,文19,12分】如图所示,三棱锥A BCD -中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.解:(1)因AB ⊥平面BCD ,CD ⊂平面BCD ,故A B C D ⊥.又CD BD ⊥,AB BD B = ,AB ⊂平面ABD ,BD ⊂平面ABD ,所以CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得A B B D ⊥.因1AB BD ==,故12ABD S ∆=.因M 是AD 中点,故124ABD ABM S S ∆∆==. 由(1)知,CD ⊥平面ABD ,故三棱锥C ABM -的高1h CD ==,因此三棱锥A MBC -的体积1312ABM A MBC C ABM S h V V ∆--⋅===.(20)【2014年福建,文20,12分】根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP为13054085-美元为中等偏下收入国家;人均GDP 为408512616-美元为中等偏上收入国家;人均GDP 不低于12616GDP 如下表.(1(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率. 解:(1)设该城市人口总数为a ,则该城市人均GDP 为:()80000.2540000.3060000.1530000.10100000.206400a a a a a a⨯+⨯+⨯+⨯+⨯=.因为[)64004085,12616∈,所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有基本事件是:{}{}{}{},,,,,,,,A B A C A D A E {}{}{},,,,,,B C B D B E{}{}{},,,,,C D C E D E 共10个,设事件“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”为M ,则事件M 包含的基本事件是:{}{}{},,,,,A C A E C E 共3个,所以所求概率为()310P M =. (21)【2014年福建,文21,12分】已知曲线Γ上的点到点()0,1F 的距离比它到直线3y =- 的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线3y =分别与直线l 及y 轴交于点,M N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合) 时,线段AB 的长度是否发生变化?证明你的结论.解:(1)设(),S x y 为曲线Γ上任意一点,依题意,点S 到()0,1F 的距离与它到直线1y =-的距离相等,所以曲线Γ是以点()0,1F 为焦点,直线1y =-为准线的抛物线,所以曲线Γ的方程为24x y =. (2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为214y x =, 设()()000,0P x y x ≠,则20014y x =.由'12y x =得切线l 的斜率012k x =, 故切线l 的方程为()00012y y x x x -=-,即20042y x x x =-.由200420y x x x y ⎧=-⎪⎨=⎪⎩得01,02A x ⎛⎫ ⎪⎝⎭,由200423y x x x y ⎧=-⎪⎨=⎪⎩得0016,32M x x ⎛⎫+ ⎪⎝⎭.又()0,3N ,所以圆心0013,34C x x ⎛⎫+ ⎪⎝⎭,半径r =00||3||24x MN x =+,||AB ==所以点P 在曲线Γ上运动时,线段AB 的长度不变.(22)【2014年福建,文22,14分】已知函数()xf x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)证明:当0x >时,2x x e <;(3)证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有x x ce <. 解:(1)由题()x f x e a '=-,故()101f a '-==-,得2a =.故()2x f x e x =-,()2x f x e '=-.令()0f x '=,得ln 2x =.当ln 2x <时,()0f x '<,()f x 单调递减;当ln 2x >时,()0f x '>,()f x 单调递增.所 以当ln 2x =时,()f x 取得极小值,其值为()ln 22ln 4f =-,()f x 无极大值.(2)令()2x g x e x =-,则由(1)得()()()2ln 22ln 40x g x e x f x f '=-=≥=->,故()g x 在R 上单调递增.又()010g =>,故当时,()()00g x g >>,即2x x e <.(3)①若1c ≥,由(2)知,当0x >时,2x x e <,故当0x >时,2x x x e ce <≤.取00x =,当()0,x x ∈+∞时,恒有2xx ce <;②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立,即要()2ln 2ln ln x kx x k>=+ 成立.令()2ln ln h x x x k =--,则()21h x x=-.所以当2x >时,()0h x '>,()h x 在()2,+∞单增.取01616x k =>,故()h x 在()0,x +∞单增.又()()()()0162ln 16ln 8ln 23ln 50h x k k k k k k k =--=-+-+>,即存在016x c=,当()0,x x ∈+∞时,恒有2x x ce <.综上得证.。
2014年全国高考福建省数学(文)试卷及答案【精校版】
2014年福建文科卷一.选择题1.若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于 ( ) }{}{}{}{.34.34.23.23A x x B x x C x x D x x ≤<<<≤<≤≤ 2.复数()32i i +等于 ( ).23.23.23.23A i B i C i D i ---+-+3.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 ( ).2..2.1A B C D ππ4.阅读右图所示的程序框图,运行相应的程序,输出的n 的值为 ( ).1.2.3.4A B C D5.命题“[)30,.0x x x ∀∈+∞+≥”的否定是 ( ) ()()[)[)3333000000.,0.0.,0.0.0,.0.0,.0A x x x B x x x C x x x D x x x ∀∈-∞+<∀∈-∞+≥∃∈+∞+<∃∈+∞+≥ 6.已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=7.将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的函数图象,则下列说法正确的是 ( )()()()() (2).-02A y f x B y f x C y f x x D y f x πππ====⎛⎫= ⎪⎝⎭是奇函数的周期为的图象关于直线对称的图象关于点,对称8.若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是 ( )9.要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是每平方米10元,则该溶器的最低总造价是 ( ) .80.120.160.240A B C D 元元元元10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++ 等于 ( )..2.3.4AOM B OMC OMD OM 11.已知圆()()22:1C x a y b -+-=,设平面区域70,30,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为 ( ) .5.29.37.49A B C D12.在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L-距离”定义为121212.PP x x y y =-+-则平面内与x 轴上两个不同的定点12,F F 的“L-距离”之和等于。
2014年福建省泉州市高考数学模拟试卷(1)(文科)
2014年福建省泉州市高考数学模拟试卷(1)(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.设集合U={x∈N*|x≤4},A={1,2},B={2,4},则(∁U A)∪B=()A.{1,2}B.{1,2,3,4}C.{3,4}D.{2,3,4}【答案】D【解析】解:∵集合U={x∈N*|x≤4}={1,2,3,4},A={1,2},B={2,4},∴∁U A={3,4},则(∁U A)∪B={2,3,4}.故选:D.根据全集U与A,求出A的补集,找出A补集与B的并集即可.此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.为了解一片经济林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据画出样本的频率分布直方图(如图所示),那么在这100株树木中,底部周长大于110cm的株数是()A.30B.70C.60D.80【答案】A【解析】解:底部周长小于110cm的株数是:100×(0.1+0.2+0.7)=70,底部周长大于110cm的株数是:100-70=30,故选A先求出底部周长小于110cm的株数,根据频率分布直方图可求得,然后再求底部周长大于110cm的株数即可.本小题主要考查样本的频率分布直方图的知识和分析问题以及解决问题的能力.统计初步在近两年高考中每年都以小题的形式出现,基本上是低起点题.3.若0<x<y<1,则()A.log x3<log y3B.3y<3xC.log4x<log4yD.()x<()y【答案】C【解析】解:根据函数y=log4x在(0,+∞)上是增函数,0<x<y<1,可得log4x<log4y,故选:C.由条件,利用函数y=log4x在(0,+∞)上是增函数,可得log4x与log4y的大小.本题主要考查对数函数的单调性的应用,属于基础题.4.如图程序执行后输出的结果是S=()A.3B.6C.10D.15【答案】B【解析】解:由算法语句知:算法是当型循环结构的程序框图,∴程序第一次运行S=0+1=1,i=1+1=2≤3;第二次运行S=1+2=3,i=2+1=3≤3;第三次运行S=1+2+3=6,i=3+1=4>3,不满足条件i≤3,程序运行终止,输出S=6.故选:B.算法是当型循环结构的程序框图,依次计算运行的结果,直到不满足条件i≤3,计算输出S的值.本题考查了当型循环结构的程序框图,根据语句判断框图的流程是解答此类问题的关键.5.已知函数f(x)=,则=()A. B. C.9 D.-9【答案】A【解析】解:由题意可得f()==-2,f[(f()]=f(-2)=3-2=,故选A.先由函数的解析式求出f()=-2,可得要求的式子即f(-2)=3-2,运算求得结果.本题主要考查利用分段函数求函数的值的方法,体现了分类讨论的数学思想,对数的运算性质,属于中档题.6.将函数y=sin2x的图象向左平移个单位长度,所得函数是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数【答案】B【解析】解:令y=f(x)=sin2x,则f(x+)=sin2(x+)=cos2x,令g(x)=cos2x,∵g(-x)=cos(-2x)=cos2x=g(x),∴所得函数g(x)=cos2x是偶函数,故选:B.令y=f(x)=sin2x,依题意,可求得f(x+)=cos2x,从而可判断其奇偶性.本题考查函数y=A sin(ωx+φ)的图象变换,考查函数的奇偶性,属于中档题.7.“函数f(x)=x2+2x+m存在零点”的一个必要不充分条件是()A.m≤1B.m≤2C.m≤0D.1≤m≤2【答案】B【解析】解:若函数f(x)=x2+2x+m存在零点,则对应的判别式△=4-4m≥0,解得m≤1,则m≤2是m≤1的一个必要不充分条件,故选:B.根据函数存在零点的等价条件求出对应的充要条件,根据充分条件和必要条件的定义进行判断即可得到结论.本题主要考查充分条件和必要条件的判断,利用函数存在零点的等价条件是解决本题的关键.比较基础.8.过点M(2,0)作圆x2+y2=1的两条切线MA,MB(A,B为切点),则•=()A. B. C. D.【答案】D【解析】解:由圆的切线性质可得,OA⊥MA,OB⊥MB.直角三角形OAM、OBM中,由sin∠AMO=sin∠BMO==,可得∠AMO=∠BMO=,MA=MB===,∴•=×cos=,故选D.根据直角三角形中的边角关系,求得MA、MB的值以及∠AMO=∠BMO的值,再利用两个向量的数量积的定义求得•的值.本题主要考查直角三角形中的边角关系,两个向量的数量积的定义,属于中档题.9.角α的终边经过点A(-,a),且点A在抛物线y=-x2的准线上,则sinα=()A.-B.C.-D.【答案】B【解析】解:抛物线y=-x2的准线方程为y=1∵点A(-,a)在抛物线y=-x2的准线上∴a=1∴点A(-,1)∴sinα=故选B.先确定抛物线的准线方程,从而确定点A的坐标,利用三角函数的定义即可得到结论.本题考查抛物线的几何性质,考查三角函数的定义,属于基础题.10.函数y=x-的图象大致为()A. B. C. D.【答案】A【解析】解:令y=f(x)=x-x,∵f(-x)=-x+=-(x-)=-f(x),∴y=f(x)=x-x为奇函数,∴其图象关于原点成中心对称,故可排除C,D;又x=1时,y=1-1=0,当x>1时,不妨令x=8,y=8-8=6>0,可排除B,故选A.利用y=x-x为奇函数可排除C,D,再利用x>1时,y=x-x>0再排除一个,即可得答案.本题考查函数的图象,着重考查函数的奇偶性与单调性,考查识图能力,属于中档题.11.一个空间几何体的主视图和左视图都是矩形,俯视图是一个圆,尺寸如图,那么这个几何体的外接球的体积为()A.πB.πC.πD.π【答案】D【解析】解:由三视图可知:几何体是圆柱,且圆柱的高为2,底面直径为1,圆柱的外接球的直径等于=,半径R=,∴几何体的外接球的体积V=π×=π.故选:D.几何体是圆柱,根据圆柱的高为2,底面直径为1求出外接球的半径R,代入球的体积公式计算.本题考查了由三视图求几何体外接球的体积,根据三视图判断几何体的形状,根据三视图的数据求出外接球的半径是解答此类问题的关键.12.非空数集A={a1,a2,a3,…,a n}(n∈N*)中,所有元素的算术平均数记为E(A),即E(A)=.若非空数集B满足下列两个条件:①B⊆A;②E(B)=E(A),则称B为A的一个“保均值子集”.据此,集合{1,2,3,4,5}的“保均值子集”有()A.5个B.6个C.7个D.8个【答案】C【解析】解:非空数集A={1,2,3,4,5}中,所有元素的算术平均数E(A)==3,∴集合A的“保均值子集”有:{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{1,2,3,4,5}共7个;故选C.根据集合A和“保均值子集”的定义把集合的非空真子集列举出来,即可得到个数.本题考查的知识点是计算集合子集的个数,众数、中位数、平均数,属于基础题.二、填空题(本大题共4小题,共16.0分)13.在复平面上,若复数1+bi(b∈R)对应的点恰好在实轴上,则b= ______ .【答案】【解析】解:∵复数1+bi(b∈R)对应的点恰好在实轴上,∴1+bi为实数,因此b=0.故答案为:0.利用复数的几何意义和实轴上的点所表示的复数的性质即可得出.本题考查了复数的几何意义和实轴上的点所表示的复数的性质,属于基础题.14.焦点在y轴上,渐近线方程为y=±2x的双曲线的离心率为______ .【答案】【解析】解:设双曲线方程为(a>0,b>0),则∵渐近线方程为y=±2x,∴=2,∴a=2b,∴c==b,∴e==.故答案为:.设双曲线方程为(a>0,b>0),根据渐近线方程为y=±2x,可得=2,即可求出双曲线的离心率.本题考查双曲线的离心率,考查学生的计算能力,确定=2是关键,属于基础题.15.已知函数y=x-4+(x>-1),当x=a时,y取得最小值b,则a+b= ______ .【答案】6【解析】解:∵x>-1,∴函数y=x-4+=x+1+-5-5=3,当且仅当x=3时取等号.∴a=3=b,∴a+b=6.故答案为:6.变形利用基本不等式即可得出.本题考查了变形利用基本不等式的性质,属于基础题.16.定义映射f:A→B,其中A={(m,n)|m,n∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)]则f(2,2)= ______ ;f(n,2)= ______ .【答案】2;2n-2【解析】解:f(2,2)=f(1+1,2)=2[f(1,2)+f(1,1)]=2,∴f(2,2)=2;由题意,不妨设m<n,则f(n,2)=2[f(n-1,2)+f(n-1,1)]=2f(n-1,2)+2=2×2[f(n-2,2)+f(n-1,1)]+2=22f(n-2,2)+4+2=…=2n-1f(1,2)+2n-1+2n-2+…+4+2=2n-1+2n-2+…+4+2=2n-2.故答案为:2;2n-2.分两步走:①根据给定条件代入计算即可,②连环代入找规律即可得到结论.本题考查了映射的知识,在做题中注意给定条件的使用以及规律的发现.三、解答题(本大题共6小题,共74.0分)17.函数f(x)=M sin(ωx-)(M>0,ω>0)的部分图象如图所示.(Ⅰ)求函数X的解析式;(Ⅱ)△ABC中,角A,B,C的对边分别为a,b,c,若f(+)=,其中A∈(0,),且a2+c2-b2=ac,求角A,B,C的大小.【答案】解:(Ⅰ)由图象可知M=2…(2分)且,∴T=π…(4分)∴…(5分)故函数X的解析式为…(6分)(Ⅱ)由(Ⅰ)知,∴…(7分)∵,,∴…(8分)由余弦定理得:…(9分)∵B∈(0,π),∴…(10分)从而,∴…(12分)【解析】(Ⅰ)利用最高点,确定M,求出函数的周期,可得ω,即可求函数的解析式;(Ⅱ)根据f(+)=,求出A,由a2+c2-b2=ac,利用余弦定理,可求B,从而可求C.本题考查三角函数的解析式的求法,考查余弦定理,考查分析问题解决问题的能力,属于中档题.18.设{a n}为等差数列,S n为数列{a n}的前n项和,已知S3=-3,S7=7.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=4•2a n+n,求数列{b n}的前n项和T n.【答案】解:(I)设等差数列{a n}的公差为d,∵S3=-3,S7=7,∴,解得,∴a n=-2+(n-1)×1=n-3;(Ⅱ)由(Ⅰ)得,∴T n=b1+b2+b3+…+b n=(20+21+22+…+2n-1)+(1+2+3+…+n)==.【解析】(Ⅰ)设等差数列{a n}的公差为d,由S3=-3,S7=7可得方程组,解出即可;(Ⅱ)分组求和法:先分两组,然后借助等比数列、等差数列的求和公式可求;本题考查等差数列的通项公式、等差数列等比数列的求和公式,考查方程思想,考查学生的运算求解能力.19.已知向量=(2,1),=(x,y)(Ⅰ)若x∈{-1,0,1},y∈{-2,-1,2},求向量⊥的概率;(Ⅱ)若用计算机产生的随机二元数组(x,y)构成区域Ω:<<<<,求二元数组(x,y)满足x2+y2≥1的概率.【答案】解:(Ⅰ)从x∈{-1,0,1},y∈{-2,-1,2}取两个数x,y的基本事件有(-1,-2),(-1,-1),(-1,2),(0,-2),(0,-1),(0,2),(1,-2),(1,-1),(1,2),共9种设“向量”为事件A若向量,则2x+y=0,∴事件A包含的基本事件有(-1,2),(1,2),共2种∴所求事件的概率为;(Ⅱ)二元数组(x,y)构成区域Ω={(x,y)|-1<x<1,-2<y<2},设“二元数组(x,y)满足x2+y2≥1”为事件B,则事件B={(x,y)|-1<x<1,-2<y<2,x2+y2≥1},如图所示,∴所求事件的概率为.【解析】(Ⅰ)本问为古典概型,需列出所有的基本事件,以及满足向量⊥的基本事件,再由古典概型的概率计算公式求出即可;(Ⅱ)本问是一个几何概型,试验发生包含的事件对应的集合是Ω={(x,y)|-1<x<1,-2<y<2},满足条件的事件对应的集合是A={(x,y)|-1<x<1,-2<y<2,x2+y2≥1},做出两个集合对应的图形的面积,根据几何概型概率公式得到结果.本题主要考查古典概型以及几何概型,对于古典概型的问题,一般要列出所有的事件,以及所求事件包含的事件,再由古典概型计算公式即可得到结果.对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.20.如图,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2,现将梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一简单组合体ABCDEF如图所示,已知M、N、P分别为AF,BD,EF的中点.(1)求证:MN∥平面BCF;(2)求证:AP⊥平面DAE.【答案】解:(1)证明:连结AC,∵四边形ABCD是矩形,N为BD中点,∴N为AC中点,在△ACF中,M为AF中点,故MN∥CF.∵CF⊂平面BCF,MN⊄平面BCF,∴MN∥平面BCF.(2)依题意知DA⊥AB,DA⊥AE且AB∩AE=A,∴AD⊥平面ABFE∵AP⊂平面ABFE,∴AP⊥AD,∵P为EF中点,∴PF=AB=2,结合AB∥EF,知四边形ABFP是平行四边形∴AP∥BF,AP=BF=2,而AE=2,PE=2,∴AP2+AE2=PE2,∴∠EAP=90°,即AP⊥AE.又AD∩AE=A,∴AP⊥平面ADE.【解析】(1)连结AC,通过证明MN∥CF,利用直线与平面平行的判定定理证明MN∥平面BCF.(2)通过证明AP⊥AD,AP⊥AE,利用直线与平面垂直的判定定理求证:AP⊥平面DAE.本题考查直线与平面平行与垂直的判定定理的应用,要求熟练掌握相应的判定定理和性质定理.21.已知函数f(x)=x3-ax2+1(a∈R).(Ⅰ)若a>0,函数y=f(x)在区间(a,a2-3)上存在极值,求a的取值范围;(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.【答案】(Ⅰ)解:由已知f'(x)=x2-2ax=x(x-2a)令f'(x)=0,解得x=0或x=2a,∵a>0,∴x=0不在(a,a2-3)内要使函数y=f(x)在区间(a,a2-3)上存在极值,只需a<2a<a2-3解得a>3…(6分)(Ⅱ)证明:∵a>2,∴2a>4,∴f'(x)<0在(0,2)上恒成立,即函数y=f(x)在(0,2)内单调递减,又>,<,∴函数y=f(x)在(0,2)上恰有一个零点…(12分)【解析】(Ⅰ)求导数,令f'(x)=0,解得x=0或x=2a,x=0不在(a,a2-3)内,要使函数y=f(x)在区间(a,a2-3)上存在极值,只需a<2a<a2-3,即可求a的取值范围;(Ⅱ)确定函数y=f(x)在(0,2)内单调递减,即可证明函数y=f(x)在(0,2)上恰有一个零点.本题考查导数知识的运用,考查函数的单调性,考查函数的极值,考查学生分析解决问题的能力,属于中档题.22.已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q,且•=-5.(Ⅰ)求点T的横坐标x0;(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.①求椭圆C的标准方程;②过点F2作直线l与椭圆C交于A,B两点,设=λ,若λ∈[-2,-1],求|+|的取值范围.【答案】解:(Ⅰ)由题意得F2(1,0),F1(-1,0),设P(x0,y0),Q(x0,-y0),则,,,.由,得即,①…(3分)又P(x0,y0)在抛物线上,则,②联立①、②易得x0=2…(5分)(Ⅱ)①设椭圆的半焦距为c,由题意得c=1,设椭圆C的标准方程为>>,由,解得b=1…(6分)从而a2=b2+c2=2,故椭圆C的标准方程为…(7分)②(1)当直线l的斜率不存在时,即λ=-1时,,,,,又T(2,0),所以,,…(8分)(2)当直线l的斜率存在时,即λ∈[-2,-1)时,设直线l的方程为y=k(x-1),由得(1+2k2)x2-4k2x+2k2-2=0;设A(x1,y1),B(x2,y2),显然y1≠0,y2≠0,则由根与系数的关系,可得:,…(9分)⑤,⑥因为,所以=λ,且λ<0.将⑤式平方除以⑥式得:.由λ∈[-2,-1)得,即,,故<,解得.…(10分)因为=(x1-2,y1),=(x2-2,y2),所以+=(x1+x2-4,y1+y2),又,故高中数学试卷第11页,共12页=…(11分)令,因为所以<,即,,所以,.所以,…(13分)综上所述:|+|∈[2,).…(14分)【解析】(Ⅰ)利用•=-5,结合P(x0,y0)在抛物线上,即可求点T的横坐标x0;(Ⅱ)①设椭圆C的标准方程为>>,利用F1,F2及椭圆短轴的一个端点围成的三角形面积为1,即可求椭圆C的标准方程;②分类讨论,当直线l的斜率存在时,即λ∈[-2,-1)时,设直线l的方程为y=k(x-1),代入椭圆方程,利用=λ,可得,求出k的范围,=(x1-2,y1),=(x2-2,y2),所以|+|=(x1+x2-4,y1+y2),利用韦达定理,用k表示,即可求|+|的取值范围.本题考查椭圆方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查韦达定理,考查小时分析解决问题的能力,属于中档题.高中数学试卷第12页,共12页。
福建省泉州市高三数学1月期末质检试题 文(扫描版)新人教A版
福建省泉州市2014届高三1月期末质检数学文试题答案扫描版新人教A版泉州市2014届普通中学高中毕业班单科质量检查文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.C 2.A 3.C 4.B 5.A 6.D7.C 8.D 9.C 10.D 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13 14.75 15.48+ 16.()28f x x x c =-++(c 为任意实数)(填写其中一种情况即可)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解析:(Ⅰ)根据频数分布表,成绩在[)120,130,[)130,140,[]140,150中共有100人,成绩在[)120,130的有60人, …………2分故用分层抽样的方法所抽取的5人中,成绩在[)120,130的人数为6053100⨯=. …5分 (Ⅱ)从(Ⅰ)中抽出的5人中,成绩在[)120,130的有3名同学,记为1,23a a a , 成绩在[)130,140和[]140,150的各有1名同学,分别记为b 和c , …………6分 则从(Ⅰ)中抽出的5人中,任取2人的所有情况为{}{}{}{}{}{}{}{}{}{}121311232233,,,,,,,,,,,,,,,,,,a a a a a b a c a a a b a c a b a c b c , 共有10个基本事件, …………9分记事件[)[){}120,130130,1401A =成绩在和中各有人,该事件包含的基本事件为{}{}{}123,,,,,a b a b a b ,共有3个,…10分 故3()10P A =. …………12分 18.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等. 满分12分.解析:(Ⅰ)依题意可知233,9a a ==.设等差数列{}n b 的公差为d ,Q 1243,b a b a ==,∴143,9b b ==, …………1分又Q 413b b d =+,∴2d =, …………3分∴1(1)21n b b n d n =+-=+. …………5分(Ⅱ)数列{}n a 的一个通项公式为13n n a -=, …………7分∴()1321n n n a b n -+=++,∴()()2113333521n n S n -=+++++++++⎡⎤⎣⎦L L23122n n n -=++. …………12分 19.本小题主要考查三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想等.. 满分12分.解析:(Ⅰ)()22cos 1cos 2x f x x ==+, 2()(sin cos )12sin cos 1sin 2222x x x x g x x =+=+=+,…3分 Q ()1cos()1sin 22f x x x ππ-=+-=+,∴()2f x g x π⎛⎫-= ⎪⎝⎭,命题得证.…5分(Ⅱ)函数()()()h x f x g x =-cos sin x x =-)x x =)4x π=+, ………7分 ∵[]0,x π∈, ∴ 5444x πππ≤+≤, 当44x πππ≤+≤ ,即304x π≤≤ 时,()h x 递减; 当544x πππ≤+≤ ,即34x ππ≤≤ 时,()h x 递增. ∴函数()h x 的单调递减区间为30,4π⎡⎤⎢⎥⎣⎦,单调递增区间为3,4ππ⎡⎤⎢⎥⎣⎦. …10分 根据函数()h x 的单调性,可知当34x π=时函数()h x 取到最小值. ……12分 20.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分12分.解析:(Ⅰ)连结AC BD 、,∵四边形ABCD 为菱形,∴AC BD ⊥.……1分∵ PD ABCD ⊥平面,又AC ABCD ⊂平面,∴AC PD ⊥,……2分又∵PD BD D =I , ∴AC PBD ⊥平面.…4分 ∵PB PBD ⊂平面, ∴AC PB ⊥ . ……………5分(Ⅱ)如图连结,,OE BE DE ,∵//PA BDE 平面,PA ⊂PAC 平面,PAC 平面BDE OE ⋂=平面,∴//PA OE .∵O 为AC 的中点,∴E 为PC 的中点. ……………7分取DC 的中点H ,连结EH ,则//EH PD ,又∵PD ABCD ⊥平面,C A∴EH ⊥ABCD 平面,即EH 是四面体E BDC -的高. ………8分根据斜二测画法的规则及题设已知条件可以得到:在11D O C '∆中,01145DO C '∠=,111DC O C'= 由余弦定理可以解得:11O D '=或13O D '=.又因为11O D O C ''<,所以11O D '=. ……………9分从而,可以得到菱形ABCD 的对角线4DB =,而OC =12BDC S BD OC ∆=⋅⋅=……………10分∵四面体E BDC -的体积为13⋅EH ⋅BDC S ∆= 求得94EH =,故侧棱PD 的长是9.2 …………12分21.本小题主要考查圆锥曲线、直线与圆锥曲线、合情推理等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分12分. 解析:(Ⅰ)因为点M 到点()1,0F 和直线1-=x 的距离相等,由抛物线定义,可知曲线C 是抛物线,其中()1,0F 是焦点,所以曲线C 的方程为x y 42=. ……………3分(Ⅱ)根据图形可以直观判断,直线1l ,2l 的斜率存在且不等于0,故不妨设1l 的方程为()1y k x =-()0k ≠,()111,P x y ,()222,P x y ,由()241y x y k x ⎧=⎪⎨=-⎪⎩得()2222240k x k x k -++=, ∴ 212224k x x k ++=,121x x =. ……………5分 因为曲线C 与1l 交于点1P ,2P 且1l 过焦点()1,0F , 所以12122PP x x =++ 22242k k +=+2244k k+=. ……………7分同理可得21221441k Q Q k ⎛⎫-+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭244k =+, ……………8分 所以2221212111144444k PP Q Q k k +=+=++. ……………9分 (Ⅲ)若1l ,2l 是过椭圆22:143x y Γ+=的焦点且相互垂直的两条直线,其中椭圆Γ与1l 交于点1P ,2P ,与2l 交于点1Q ,2Q ,则121211712PP Q Q +=. ……………12分 (注:只说明121211PP Q Q +为定值或给出错误的定值扣1分 .) 22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分.解:(Ⅰ)因为()1f x a x'=-, ………1分 又因为函数()f x 在点()()1,1A f 处的切线斜率为2,所以()12f '=,解得1a =-. ……………3分(Ⅱ)因为()1,A a -,()11f a '=-,所以切线l 的方程为:()11y a x =--. ……………4分令()()()11g x f x a x =---⎡⎤⎣⎦ln 1(0)x x x =-+>,则()11g x x '=-1x x-=, 由0x >得,当()0,1x ∈时()0g x '>,当()1,x ∈+∞时()0g x '<,…6分所以函数()g x 在()0,1单调递增,在()1,+∞单调递减,……7分从而,当1x =时,()g x 取得最大值()10g =,所以()0g x ≤即()()11f x a x ≤--,从而证得函数()f x 的图象恒在其切线l 的下方(切点除外);……9分 (Ⅲ)解法一:因为()1,A a -,()000,ln Q x x ax -,所以QA k 000ln 1x ax a x -+=-00ln 1x a x =--, …10分 所以当01x >时,00ln 21x a x -<-, 即()()00ln 210x a x -+-<恒成立. ……11分令()()()()ln 211h x x a x x =-+->,则()()12h x a x '=-+. 因为1x >,所以101x<<. (ⅰ)当2a ≤-时,20a +≤,此时()0h x '>,所以()h x 在()1,+∞单调递增,有()()10h x h >=,不满足题意; (ⅱ)当21a -<<-时,021a <+<, ∴当11,2x a ⎛⎫∈ ⎪+⎝⎭时,()0h x '>,当1,2x a ⎛⎫∈+∞ ⎪+⎝⎭时,()0h x '<, 所以至少存在11,2s a ⎛⎫∈ ⎪+⎝⎭,使得()()10h s h >=,不满足题意; (ⅲ)当1a ≥-时,21a +≥,此时()0h x '<,∴()h x 在()1,+∞单调递减,()()10h x h <=,满足题意. 综上可得:1a ≥-.……………14分解法二:因为()1,A a -,()000,ln Q x x ax -,所以QA k 000ln 1x ax a x -+=-00ln 1x a x =--, …10分 …11分令()()()ln 11h x x x x =-->,则()11h x x '=-. ∵()10x h x x-'=<,∴()h x 在()1,+∞单调递减, ∴()()10h x h <=,即ln 1x x <-,ln 11x x <-(1x >). …12分 注意到当1x →时,()0h x →,ln 1x x →-,ln 11x x →-,…13分 所以21a +≥,即1a ≥-. ……………14分。
2014年福建省泉州市中考数学试卷附详细答案(原版+解析版)
2014年福建省泉州市中考数学试卷一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)1.(3分)(2014•泉州)2014的相反数是()2.(3分)(2014•泉州)下列运算正确的是()3.(3分)(2014•泉州)如图的立体图形的左视图可能是()A.B.C.D.4.(3分)(2014•泉州)七边形外角和为()5.(3分)(2014•泉州)正方形的对称轴的条数为()6.(3分)(2014•泉州)分解因式x2y﹣y3结果正确的是()7.(3分)(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()..二、填空题(每小题4分,共40分)8.(4分)(2014•泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为.9.(4分)(2014•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=°.10.(4分)(2014•泉州)计算:+=.11.(4分)(2014•泉州)方程组的解是.12.(4分)(2014•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为件.13.(4分)(2014•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= °.14.(4分)(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.15.(4分)(2014•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.16.(4分)(2014•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=.17.(4分)(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.三、解答题(共89分)18.(9分)(2014•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.19.(9分)(2014•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.20.(9分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.(9分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.22.(9分)(2014•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?23.(9分)(2014•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?24.(9分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B 处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?25.(12分)(2014•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.26.(14分)(2014•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.2014年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)3.(3分)(2014•泉州)如图的立体图形的左视图可能是()..237.(3分)(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可..的图象可知的图象可知二、填空题(每小题4分,共40分)8.(4分)(2014•泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.9.(4分)(2014•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=50°.10.(4分)(2014•泉州)计算:+=1.=111.(4分)(2014•泉州)方程组的解是.,则方程组的解为故答案为:12.(4分)(2014•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.13.(4分)(2014•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65°.14.(4分)(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为5cm.CD=CD=AB=15.(4分)(2014•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110°.16.(4分)(2014•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=7.估算出<题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关17.(4分)(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.r=,然后解方程即可.AB=r=..三、解答题(共89分)18.(9分)(2014•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.×+419.(9分)(2014•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.时,)20.(9分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.(9分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.个球,则取出红球的概率是:∴两次取出相同颜色球的概率为:=22.(9分)(2014•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA B=,则﹣++OB=B=OB=)()的顶点坐标为(﹣,﹣,<﹣时,>﹣时,﹣取得最小值时,时,﹣最大值23.(9分)(2014•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?×=52024.(9分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B 处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?;时,两遥控车的信号不会产生相互干扰;时,两遥控车的信号不会产生相互干扰0时,两遥控车的信号不会产生相互干扰.25.(12分)(2014•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.AG==12AH=12==h=﹣AH=1226.(14分)(2014•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.y=,因此点y=的图象上,y=.B=3,C=3+2BC O=A3=3CD=.3+2的值为.==.BMC=,BMC=..的坐标为(的坐标为(﹣MH=═OH=EG=MH=﹣+(﹣(﹣的坐标为()和(﹣的坐标为((﹣(﹣联想到点。
福建省泉州市2014届高三5月质量检测 数学文 Word版含答案
泉州市2014届高中毕业班5月质量检测数学(文科)一、选择题(共10小题,每小题5分,共50分,在给出的四个选项中,只有一项是符合要求的)1.设全集为R,函数f(x)=lg(x﹣1)的定义域为M,则∁R M为()A.(0,1)B.(0,1] C.(﹣∞,1] D.(﹣∞,1)2.已知角α的终边经过点P(m,4),且cosα=﹣,则m等于()A.﹣B.﹣3 C.D. 33.已知=(1,2),=(3,n),若∥,则n等于()A. 3 B. 4 C. 5 D. 64.某几何体的三视图如图所示,则该几何体的体积等于()A.+πB.3(+π)C.3(+)D.+5.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概B容是()A. i≥4?B. i<4?C. i≥3?D. i<3?7.下列说法正确的是()A.命题“∃x∈R,使得x2+x﹣1>0”的否定是“∀x∈R,x2+x﹣1<0”B.命题p:“∀x∈R,sinx+cosx≤”,则¬p是真命题C.“x=﹣1”是“x2﹣2x﹣3=0”的必要不充分条件D.“0<a<1”是“函数f(x)=a x(a>0,a≠1)在R上为减函数”的充要条件8.若不等式组所表示的平面区域被直线y﹣1=k(x﹣5)分为面积相等的两B9.双曲线﹣=1 (a>0,b>0)的一个焦点为F1,顶点为A1、A2,P是双曲线上任意一点,则分别以线段PF1,A1A2为直径的两圆一定()A.相交B.相切C.相离D.以上情况都有可能10.若函数y=f(x)满足:集合A={f(n)|n∈N*}中至少有三个不同的数成等差数列,则称函数f(x)是“等差源函数”,则下列四个函数中,“等差源函数”的个数是()①y=2x+1;②y=log2x;③y=2x+1;④y=sin(x+)A. 1 B. 2 C. 3 D. 4二、填空题:共5小题,每小题4分,共20分11.(4分)(2014•泉州模拟)复数z=(其中i为虚数单位)的共轭复数等于_________.12.(4分)(2014•泉州模拟)已知(3﹣)n的展开式中第三项为常数项,则展开式中个项系数的和为_________.13.(4分)(2014•泉州模拟)已知在等差数列{a n}中,a1=10,其公差d<0,且a1,2a2+2,5a3成等比数列,则|a1|+|a2|+|a3|+…+|a15|=_________.14.(4分)(2014•泉州模拟)如图,矩形ABCD的面积为3,以矩形的中心O为顶点作两条抛物线,分别过点A、B和点C、D,若在矩形ABCD中随机撒入300颗豆子,则落在阴影部分内的豆子大约是_________.15.(4分)(2014•泉州模拟)如图,已知点G是△ABC的重心(即三角形各边中线的交点),过点G作直线与AB、AC两边分别交于M、N两点,若=x,=y,则+=3,由平面图形类比到空间图形,设任一经过三棱锥P﹣ABC的重心G(即各个面的重心与该面所对顶点连线的交点)的平面分别与三条侧棱交于A1、B1、C1,且=x,=y,=z,则有++=_________.三、解答题:共5小题,共80分,解答应写出文字说明,证明过程或演算步骤16.(13分)(2014•泉州模拟)已知某射击队员每次射击击中目标靶的环数都在6环以上(含6环),据统计数据绘制得到的频率分布条形图如图所示,其中a,b,c依次构成公差为0.1的等差数列,若视频率为概率,且该队员每次射击相互独立,试解答下列问题:(Ⅰ)求a,b,c的值,并求该队员射击一次,击中目标靶的环数ξ的分布列和数学期望Eξ;(Ⅱ)若该射击队员在10次的射击中,击中9环以上(含9环)的次数为k的概率为P(X=k),试探究:当k为何值时,P(X=k)取得最大值?17.(13分)(2014•泉州模拟)已知m=(1,﹣),n=(sin2x,cos2x),定义函数f(x)=m•n.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)已知△ABC中,三边a,b,c所对的角分别为A,B,C,f()=0.(i)若acosB+bcosA=csinC,求角B的大小;(ii)记g(λ)=|+|,若||=||=3,试求g(λ)的最小值.18.(13分)(2014•泉州模拟)椭圆G的中心为原点O,A(4,0)为椭圆G的一个长轴端点,F为椭圆的左焦点,直线l经过点E(2,0),与椭圆G交于B、C两点,当直线l垂直x轴时,|BC|=6.(Ⅰ)求椭圆G的标准方程;(Ⅱ)若AC∥BF,求直线l的方程.19.(13分)(2014•泉州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PA=PD,PA⊥AB,点E、F分别是棱AD、BC的中点.(Ⅰ)求证:AB⊥PD;(Ⅱ)若AB=AP,求平面PAD与平面PBC所成锐二面角的余弦值;(Ⅲ)若△PAD的面积为1,在四棱锥P﹣ABCD内部,放入一个半径为R的球O,且球心O 在截面PEF中,试探究R的最大值,并说明理由.20.(14分)(2014•泉州模拟)已知函数f(x)=ln|x+1|﹣ax2.(Ⅰ)若a=且函数f(x)的定义域为(﹣1,+∞),求函数f(x)的单调递增区间;(Ⅱ)若a=0,求证f(x)≤|x+1|﹣1;(Ⅲ)若函数y=f(x)的图象在原点O处的切线为l,试探究:是否存在实数a,使得函数y=f(x)的图象上存在点在直线l的上方?若存在,试求a的取值范围;若不存在,请说明理由.本题有三小题,每题7分,请考生任选2题作答,满分14分【选修4-2:矩阵与变换】21.(7分)(2014•泉州模拟)已知是矩阵A=的一个特征向量.(Ⅰ)求m的值和向量相应的特征值;(Ⅱ)若矩阵B=,求矩阵B﹣1A.【选修4-4:坐标系与参数方】22.(7分)(2014•泉州模拟)直线l1:θ=(ρ∈R)与直线l2:(t为参数)的交点为A,曲线C:(其中α为参数).(Ⅰ)求直线l1与直线l2的交点A的极坐标;(Ⅱ)求曲线C过点A的切线l的极坐标方程.【选修4-5:不等式选讲】23.(2014•泉州模拟)已知不等式|t+3|﹣|t﹣2|≤6m﹣m2对任意t∈R恒成立.(Ⅰ)求实数m的取值范围;(Ⅱ)若(Ⅰ)中实数m的最大值为λ,且3x+4y+5z=λ,其中x,y,z∈R,求x2+y2+z2的最小值.泉州市2014届普通中学高中毕业班质量检测理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.C 2.B 3.D 4.C 5.A 6.B 7.D 8.A 9. B 10.C二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11、i -; 12、16; 13、65; 14、200; 15、4.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查组合数公式、概率、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分13分.解:(Ⅰ)依题意,得0.6a b c ++=,即0.10.20.6a a a ++++=,解得0.1a =,…2分 所以0.2,0.3b c ==.………………3分故该队员射击一次,击中目标靶的环数ξ的分布列为:60.170.280.390.36100.048.04E ξ=⨯+⨯+⨯+⨯+⨯=. ………………6分(Ⅱ)记事件A :“该队员进行一次射击,击中9环”,事件B :“该队员进行一次射击,击中10环”,则事件“该队员进行一次射击,击中9环以上(包括9环)”为A B +.………7分因为A 与B 互斥,且()0.36,()0.04P A P B ==,所以()()()0.4P A B P A P B +=+=. …………8分所以,该射击队员在10次的射击中,击中9环以上(含9环)的次数为k 的概率1010()0.40.6(0,1,2,,10)k k k P X k C k -==⨯⨯=. ………………10分当1k ≥,*k ∈N 时,101011101100.40.6()2(11)(1)0.40.63k k k k k k C P X k k P X k C k ----+⨯⨯=-===-⨯⨯. 令()1(1)P X k P X k =>=-,解得225k <. ………………12分 所以当14k ≤≤时,(1)()P X k P X k =-<=;当510k ≤≤时,(1)()P X k P X k =->=.综上,可知当4k =时,()P X k =取得最大值.………………13分17.本小题主要考查平面向量、三角恒等变换、三角函数性质以及解三角形等基础知识,考查运算求解能力与推理论证能力,考查函数与方程思想、数形结合思想、转化与化归思想等.满分13分.解:(Ⅰ)()sin 222sin(2)3f x x x x π=⋅=-=-m n , ………………2分 由222232k x k πππππ-+≤-≤+,得51212k x k ππππ-+≤≤+,k ∈Z .……3分 所以函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .………………4分 (Ⅱ)由()02A f =,得2sin()03A π-=, 因为0A π<<,所以3A π=.…………5分 (ⅰ)由正弦定理,知cos cos sin a B b A c C +=可化为2sin cos sin cos sin A B B A C +=,……6分故2sin()sin A B C +=,………………7分又因为A B C π+=-,所以2sin()sin C C π-=即2sin sin C C =,因为sin 0C ≠,所以sin 1C =,又由于0C π<<,所以2C π=,………………8分 所以()6B A C ππ=-+=.………………9分(ⅱ)AB AC λ+2222cos AB AB AC A AC λλ==+⋅+,…10分 又3AB AC ==,3A π=,所以AB AC λ+2(1AB ==12分故当12λ=-时,()g AB AC λλ=+的值取得最小值………………13分 另解:记AB AC AP λ+=,则P 是过B 且与AC 平行的直线l 上的动点,()||g AP λ=,…………12分所以()g λ的最小值即点A 到直线l …………13分 18.本小题主要考查椭圆的标准方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分13分. 解:(Ⅰ)因为(4,0)A 为椭圆G 的一个长轴端点,所以可设椭圆G 的方程为222116x y b +=,………………1分 因为当直线l 垂直x 轴时,6BC =,所以椭圆G 过点(2,3),……2分所以249116b+=,解得212b =. ………………3分 故所求椭圆的方程为2211612x y +=.………………4分 (Ⅱ)方法1:设直线l 的方程为2x my =+,联立方程组2223448x my x y =+⎧⎨+=⎩,消去x ,得22(34)12360m y my ++-=,……5分 设1122(,),(,)B x y C x y ,则1221234,m m y y +=-+……① 1223634y m y ⋅=-+.……② …………6分又2211(4,),(2,)AC x y FB x y =-=+,且AC BF ,………………7分 故2112(4)(2)0x y x y --+=,即2112(2)(4)0my y my y --+=,即122y y =-.………③ …………9分 由①②③得22212183434m m m ⎛⎫= ⎪⎝⎭++,所以245m =.…………11分 当245m =时,0∆>,所以m =,…………12分 所以直线l的方程为2x y =+,即5100x --=或5100x +-=.…………13分方法2:①当直线l 的斜率不存在时,AC 与BF 不平行;………………5分②当直线l 的斜率存在时,设直线l 的方程为(2)y k x =-,联立方程组22(2),3448.y k x x y =-⎧⎨+=⎩消去y ,整理得2222(34)1616480k x k x k +-+-=,…………6分 设1122(,),(,)B x y C x y ,则12221634x k x k =++,…………① 2221164834x k k x -=+⋅…………② …………7分 又2211(4,),(2,)AC x y FB x y =-=+,且AC BF , ………………8分故2112(4)(2)0x y x y --+=,即2112(4)(2)(2)(2)0k x x k x x ---+-=,即1226x x +=…………③ …………9分 由①③得2122228183481834k x k k x k ⎧-=⎪⎪+⎨+⎪=⎪+⎩, 代入②得2222228188181648343434k k k k k k -+-=+++………………11分 化简,得254k =, 当254k =时,0∆>,故k =,…………12分 所以直线l的方程为5100x --=或5100x +-=.……13分19.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分13分.解:(Ⅰ)在正方形ABCD 中,AB AD ⊥,又PA AB ⊥ ,PA AD A =,∴AB ⊥平面PAD ,…………2分又PD ⊂平面PAD ,AB PD ∴⊥………………3分 (Ⅱ)点E 、F 分别是棱AD 、BC 的中点,连结PE ,EF ,则,PE AD EF AB ⊥,又由(Ⅰ)知AB ⊥平面PAD , ∴EF ⊥平面PAD ,又,AD PE ⊂平面PAD ,∴,EF AD EF PE ⊥⊥,………………4分如图,以点E 为坐标原点,分别以,,AD EF EP 所在直线为为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -. 由题设可知: PA PD AB AD ===,故不妨设2AB =,则(1,0,0),(1,0,0),(1,2,0),(1,2,0),(0,2,0),A D B C F P --(1,2,PB =,(1,2,PC =-,………………5分AB ⊥平面PAD , ∴平面PAD 的一个法向量为(0,2,0)AB =,…………6分 设平面PBC 的一个法向量为(,,)x y z =n ,,PB PC ⊥⊥n n ,∴00PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n,即2020x y x y ⎧+=⎪⎨-+-=⎪⎩,解得020x y =⎧⎪⎨=⎪⎩, 令2z =,得y =∴平面PBC的一个法向量为=n .………………7分设平面PAD 与平面PBC 所成锐二面角的大小为θ,则cos cos ,7AB AB AB θ⋅=<>====nn n ∴平面PAD 与平面PBC ……………8分 (Ⅲ)由(Ⅱ)已证得PE EF ⊥,则截面PEF ∆为直角三角形.111,22PEF PAD S EF EP AD EP S ∆∆=⋅=⋅== 2.EF EP ∴⋅=………………9分设PEF ∆的内切圆半径为,r 则1()12PEF S PE EF FP r ∆=++⋅=2r PE EF PF ∴==++≤=1,==………………10分∴当且仅当EF EP =时,PEF ∆有最大内切圆,其半径 1.r =此时EF EP = 2.PF =………………11分12PAB PCD S S PA AB ∆∆==⋅=11222PBC S BC PF ∆=⋅==1PAD S ∆=,2 2.ABCD S AD EF =⋅==设PEF ∆的内切圆圆心O 到侧面PAB 、侧面PCD 的距离为d , 则1111()3333P ABCD PAD PBC ABCD PAB PCD ABCD V r S S S d S d S EP S -∆∆∆∆∆=⋅+++⋅+⋅=⋅, 即()2PAD PBC ABCD PAB ABCD r S S S d S EP S ∆∆∆∆⋅+++⋅=⋅,所以(1)12+=解得1.d r =>=………………12分 ∴在四棱锥P ABCD -的内部放入球心O 在截面PEF 中的球,其最大半径R 是1,该最大半径的球只能与四棱锥P ABCD -的三个面相切. ………13分20.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分. 解:(Ⅰ)当23a =且1x >-时,22()ln(1)3f x x x =+-,214443(23)(21)'()133(1)3(1)x x x x f x x x x x --++-=-==-+++,…………2分令'()0f x >,因为1x >-,所以(23)(21)0x x +-<,解得112x -<<, 所以函数()f x 的递增区间为1(1,)2-.…………4分 (Ⅱ)当0a =时,()ln 1f x x =+, 不等式()11f x x ≤+-即ln 1110x x +-++≤, …………5分令1t x =+,则0t >,此时不等式ln 1110x x +-++≤等价于不等式ln 10(0)t t t -+≤>. 令()ln 1t t t ϕ=-+,则11'()1tt t tϕ-=-=. …………7分 令'()0t ϕ=,得1t =.(),'()t t ϕϕ随t 的变化情况如下表由表可知,当0t >时,()(1)0t ϕϕ≤=即ln 10t t -+≤.所以()11f x x ≤+-成立. …………9分(Ⅲ)当1x >-时,2()ln(1)f x x ax =+-,1'()21f x ax x =-+,所以直线l 的斜率'(0)1k f ==,又(0)0f =,所以直线l 的方程为y x =.令2()ln 1g x x ax x =+--,则命题“函数()y f x =的图象上存在点在直线l 的上方”可等价转化为命题“存在(,1)(1,)x ∈-∞--+∞,使得()0g x >.”……10分当1x >-时,2()ln(1)g x x ax x =+--,1'()211g x ax x =--+, 当1x <-时,2()ln(1)g x x ax x =----,1'()211g x ax x =--+, 所以,对(,1)(1,)x ∈-∞--+∞,都有212(1)2(21)2'()11ax x ax a xa g x x x -++--+==++. ……11分令'()0g x =,解得0x =或212a x a+=-.①当0a >时,211a +-<-,(),'()g x g x 随x 的变化情况如下表: 又因为(1)ln ,(0)0224g a g a a a--=+-=, 所以,为使命题“存在(,1)(1,)x ∈-∞--+∞,使得()0g x >.”成立,只需111(1)ln 0224g a a a a --=+->. 令12t a =,则111(1)ln 222g t t a t--=+-, 令11()ln (0)22h t t t t t =-+>,因为2111'()022h t t t =++>,所以()h t 在(0,)+∞上为增函数,又注意到(1)0h =, 所以当且仅当112t a =>,即102a <<时,()0h t >, 故关于a 的不等式11ln024a a a +->的解集为102a a ⎧⎫<<⎨⎬⎩⎭;…………13分 ②当0a ≤时,因为存在1x e =--使得2(1)2(1)0g e e a e --=+-+>恒成立,所以,总存在点(1,e --21(1))a e -+在直线l 的上方. 综合①②,可知a 的取值范围为12a a ⎧⎫<⎨⎬⎩⎭. …………14分 21.(1)(本小题满分7分)选修4—2:矩阵与变换解:(Ⅰ)由题意,可知存在实数(0)λλ≠,使得10200k k m λ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,………1分即0k kmk λ=⎧⎨=⎩, ………2分又因为0k ≠,所以10m λ=⎧⎨=⎩, ………3分 所以0m =,特征向量0k ⎛⎫ ⎪⎝⎭相应的特征值为1. …………4分(Ⅱ)因为1=-B ,所以11223--⎛⎫=⎪-⎝⎭B , …………6分故1121014230226---⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭B A . …………7分(2)(本小题满分7分)选修4-4:坐标系与参数方程解:(Ⅰ)将12,l l 的方程化为普通方程,得1:l y x =,2l :220x y -+=,2分联立方程组220y x x y =⎧⎨-+=⎩,解得22x y =⎧⎨=⎩,所以A 的坐标为(2,2),………3分故点A 的极坐标)4π. …………4分(Ⅱ)将曲线C 的方程化为普通方程得228x y +=,…………5分所以曲线C 是圆心为(0,0)O ,半径为A (2,2)在曲线C 上.因为1OA k =,所以曲线C 过点A 的切线l 的斜率1l k =-, 所以l 的方程为40x y +-=,……6分故l 的极坐标方程为cos sin 40ρθρθ+-=. …………7分(3)(本小题满分7分)选修4—5:不等式选讲解:(Ⅰ)由已知得()2max326t t m m +--≤-………………1分因为323(2)5t t t t +--≤+--=(当且仅当2t ≥时取等号)………3分 所以265m m -≥,解得15m ≤≤,所以实数m 的取值范围是1 5.m ≤≤………………4分 (Ⅱ)由(Ⅰ)可知5λ=,所以3455x y z ++=.由柯西不等式, 可得()()()222222234534525x y zx y z ++++≥++=, …5分所以22212x y z ++≥, 当且仅当345x y z ==即321,,1052x y z ===时等号成立. ………6分 故222x y z ++的最小值为1.2………………7分。
2014福建高考真题数学文(含解析)
18.(本小题满分 12 分) 已知函数 f ( x) 2 cos x(sin x cos x) . (I)求 f (
5π ) 的值; 4
(II)求函数 f ( x ) 的最小正周期及单调递增区间.
4 / 16
19.(本小题满分 12 分) 如图,三棱锥 A BCD 中, AB BCD, CD BD . (I)求证: CD 平面 ABD ; (II)若 AB BD CD 1 , M 为 AD 中点,求三棱锥 A MBC 的体积.
(I)判断该城市人均 GDP 是否达到中等偏上收入国家标准; (II)现从该城市 5 个行政区中随机抽取 2 个,求抽到的 2 个行政区人均 GDP 都达到中等偏上收入国家标 准的概率.
6 / 16
21.(本小题满分 12 分) 已知曲线 上的点到点 F (0,1) 的距离比它到直线 y 3 的距离小 2. (I)求曲线 的方程; (II)曲线 在点 P 处的切线 l 与 x 轴交于点 A .直线 y 3 分别与直线 l 及 y 轴交于点 M , N ,以 MN 为直径 作圆 C ,过点 A 作圆 C 的切线,切点为 B ,试探究:当点 P 在曲线 上运动(点 P 与原点不重合)时,线 段 AB 的长度是否发生变化?证明你的结论.
)
5.命题“ x 0, , x3 x 0 ”的否定是 ( A. x (0, ) , x3 x 0
3 x0 0 C. x0 [0, ) , x0
)
B. x (0, ) , x3 x 0
3 x0 0 D. x0 [0, ) , x0
2014 年普通高等学校招生全国统一考试(福建卷) 数 学(文科) 第 I 卷(选择题 共 60 分)
福建省泉州市2014届普通中学高中毕业班单科质量检查语文试题参考答案及评分标准
泉州市2014届普通中学高中毕业班单科质量检查语文试题参考答案及评分标准一、(27分)(一)(6分)1.(6分)(1)秋以为期(2)金就砺则利(3)群贤毕至(4)一时多少豪杰(5)山河表里潼关路(6)落红不是无情物(每处1分,有错、漏、添字的该处不得分。
)(二)(15分)2.(3分)D(直:只,不过。
)3.(3分) C(①说的是天气情况,不属于作者船上所见之景;⑥是清风阁上所见之景。
)4.(3分)B(“少有人至”于文无据,“世人重名轻实”牵强。
)5.(6分)(1)(3分)风景清丽至极,在全湖美景中位居第一。
(大意正确、语言通顺1分,“冠”“胜”各1分。
)(2)(3分)一共经过几十次转折,然后才能到达这座亭子。
(大意正确、语言通顺1分,“凡”“造”各1分。
)(三)(6分)6.(6分)(1)(2分)借“一声”蝉鸣、“两枝”槐花,写出蝉之新、槐花刚放的初夏特点。
(“蝉”和“槐花”各1分,意思对即可。
)(2)(4分)【要点】抒发了诗人既感伤又豁达的复杂情感。
既因季节变化和“青云”迟到,而生人生易老与功名难得之叹。
又认为“杯酒”就能释怀,应坦然面对人生起落与功名得失,抒发了乐观豁达之情。
(每点2分,意思对即可;只回答“既感伤又豁达的复杂情感”而未作分析,得1分。
)二、(16分)(一)(10分)7.(5分)A D(A.“觉新”应为“觉慧”;“希望赶快把冯家的亲事办了”应为“说冯家的亲事暂时不提了”。
D.“克罗旭”应为“拿侬”;“包办了拿侬全套的嫁妆”应为“送给她三打餐具作为结婚礼物”。
)(答对一项得3分,答对两项得5分。
)8.(5分)(1)【要点】孔明死后,魏延自恃军功,不服杨仪掌权。
(2分)孔明预伏马岱于魏延身边,并在临终前交给杨仪一个锦囊,嘱咐杨仪依计行事。
(2分)两军对阵时,马岱趁魏延不备,斩下他的首级。
(1分)(2)【要点】刘姥姥带了乡下土特产送给凤姐,贾母知道后,留她住下,并请她游园吃饭。
(2分)鸳鸯与凤姐商议,让刘姥姥在席上说“老刘,老刘,食量大似牛”等笑话,逗大家开心。
2014年高考文科数学福建卷及答案解析
数学试卷 第1页(共12页)数学试卷 第2页(共12页)数学试卷 第3页(共12页)绝密★启用前2014年普通高等学校招生全国统一考试(福建卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|24}P x x =≤<,{3}Q x =≥,则P Q 等于 ( )A .{|34}x x ≤<B .{|34}x x <<C .{|23}x x ≤<D .{|23}x x ≤≤2.复数(32i)i +等于( )A .23i --B .23i -+C .23i -D .23i +3.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A .2πB .πC .2D .14.阅读下图所示的程序框图,运行相应的程序,输出的n 的值为( )A .1B .2C .3D .45.命题“[0,)x ∀∈+∞,30x x +≥”的否定是 ( )A .(,0)x ∀∈-∞,30x x +<B .(,0)x ∀∈-∞,30x x +≥C .0[0,)x ∃∈+∞,300x x +< D .0[0,)x ∃∈+∞,300x x +≥ 6.已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( ) A .20x y +-= B .20x y -+= C .30x y +-=D .30x y -+=7.将函数sin y x =的图象向左平移π2个单位,得到函数()y f x =的图象,则下列说法正确的是( )A .()y f x =是奇函数B .()y f x =的周期为πC .()y f x =的图象关于直线π2x =对称 D .()y f x =的图象关于点π(,0)2-对称8.若函数log (0,1)a y x a a =≠>且的图象如下图所示,则下列函数图象正确的是( )A .B .C .D .9.要制作一个容积为34m ,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于( )A .OMB .2OMC .3OMD .4OM11.已知圆C :22()()1x a y b -+-=,平面区域Ω:70,30,0,x y x y y +-⎧⎪-+⎨⎪⎩≤≥≥若圆心C Ω∈,且圆C 与x 轴相切,则22a b +的最大值为( )A .5B .29C .37D .4912.在平面直角坐标系中,两点111(,)P x y ,222(,)P x y 间的“L -距离”定义为121|||||PP x =-212|||x y y +-,则平面内与x 轴上两个不同的定点1F ,2F 的“L -距离”之和等于定值(大于12||||F F )的点的轨迹可以是( )A .B .C .D .--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共12页)数学试卷 第5页(共12页)数学试卷 第6页(共12页)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中的横线上. 13.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.14.在ABC △中,60A =,2AC =,BC ,则AB 等于________.15.函数22,0,()26ln ,0,x x f x x x x ⎧-=⎨-+⎩≤>的零点个数是________.16.已知集合{,,}{0,1,2}a b c =,且下列三个关系:①2a ≠;②2b =;③0c ≠有且只有一个正确,则10010a b c ++等于________.三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)在等比数列{}n a 中,23a =,581a =. (Ⅰ)求n a ;(Ⅱ)设3log n n b a =,求数列{}n b 的前n 项和n S .18.(本小题满分12分)已知函数()2cos (sin cos )f x x x x =+. (Ⅰ)求5π()4f 的值; (Ⅱ)求函数()f x 的最小正周期及单调递增区间.19.(本小题满分12分)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ;(Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.20.(本小题满分12分)根据世行2013年新标准,人均GDP 低于1 035美元为低收入国家;人均GDP 为1 035~ 4 085美元为中等偏下收入国家;人均GDP 为4 085~12 616美元为中等偏上收入国家;人均GDP 不低于12 616美元为高收入国家.某城市有5个行政区,各区人口占该城市人(Ⅰ)判断该城市人均GDP 是否达到中等偏上收入国家标准;(Ⅱ)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.21.(本小题满分12分)已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2. (Ⅰ)求曲线Γ的方程;(Ⅱ)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线3y =分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.22.(本小题满分14分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(Ⅰ)求a 的值及函数()f x 的极值; (Ⅱ)证明:当0x >时,2e x x <;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当0(,)x x ∈+∞时,恒有e x x c <.=P Q xB++2i i=3i2)4=+80160xx160元,故选M BD2OA OC OM+=,+++=,故选OA OB OC OD OM2+=,所以4OB OD OM【解析】由题意,画出可行域Ω,圆心C∈Ω,且圆C与数学试卷第7页(共12页)数学试卷第8页(共12页)数学试卷第9页(共12页)数学试卷 第10页(共12页)数学试卷 第11页(共12页)数学试卷 第12页(共12页)AB BD B =,平面ABD ,BD AB ⊥平面112ABM h =.,则该城市人均GDP。
福建省泉州市2014届普通中学高中毕业班单科质量检查
福建省泉州市2014届普通中学高中毕业班单科质量检查语文一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1.补写出下列名句名篇中的空缺部分。
(6分)(1)将子无怒,。
(《诗经·氓》)(2)故木受绳则直,。
(《荀子·劝学》)(3 ,少长咸集。
(王羲之《兰亭集序》(4)江山如画,。
(苏轼《念奴娇·赤壁怀古》)(5)峰峦如聚,波涛如怒,。
(张养浩《山坡羊·潼关怀古》)(6),化作春泥更护花。
(龚自珍《己亥杂诗(其五)》)(二)文言文阅读(15分)阅读下面的文言文,完成2~5题。
游爱莲亭记[清]邱兢郡①之北郭有水滢然,曰萧湖。
湖之北,舍舟步行,不五六里,曰后湖。
湖与运河止间一堤,南始伏龙洞,北抵钵池山,东绕盐河一带,周环约十数里,淮之胜境也。
余生长于淮,未获一至其地。
癸巳秋七月,溽暑初伏,凉风暂起,买舟于菰蒲曲之港口。
菰蒲曲者,水南程先生别业,切近伏龙洞者也。
舟行数十弓②,左转石桥,云景波光,千顷一碧。
济南大明湖、杭州西子湖,向之叹为澄涵沱澹者,仿佛遇之。
于是载沉载浮,与波上下,推篷四望,旷然神怡。
钓艇横烟,遥歌断续,菱汊也;蔬篱茅茨,数家掩映,蒲洲也;禅林道院,隐隐丛丛,柳湾也;绿树红桥,蔼蔼宛宛,爱莲亭也。
亭四面皆种莲花,故因以名,风景清绝,冠全湖之胜。
阎省庵题联句云:“五六月间无暑气,二三更后有渔歌。
”盖实景也,亭虽小而杰出于湖中。
甫登舟遥望焉,以为即之甚易,乃度渔梁③,穿荻港,沿荇田,凡经数十转,而后得造斯亭。
亭后为般若寺,僧闻客至,出迎,延坐于清风阁,饷以雪藕。
解衣盘桓,俯仰流连,见夫水鸟拍波,游鱼唼藻,不禁喟然叹曰:“物之乐其乐也,如是乎?殆移我情矣!”久之,扣舷沿旧路而返,偕游者曰:“湖之胜在爱莲亭,钵山之胜在景慧寺,由亭诣寺,直一苇航之耳,盍回舟为薄暮游?”舟子曰:“时不及矣!”遂止。
嗟夫!世之鹿鹿④尘途者,其于某水某邱,虽在故都,至老不能识焉,况侈宇宙之大观乎?然则余今之获游于此,亦非偶然,故不可以不记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泉州市2014届普通中学高中毕业班单科质量检查文科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.C 2.A 3.C 4.B 5.A 6.D7.C 8.D 9.C 10.D 11.C 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分.13 14.75 15.48+ 16.()28f x x x c =-++(c 为任意实数)(填写其中一种情况即可)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查古典概型等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解析:(Ⅰ)根据频数分布表,成绩在[)120,130,[)130,140,[]140,150中共有100人,成绩在[)120,130的有60人, …………2分故用分层抽样的方法所抽取的5人中,成绩在[)120,130的人数为6053100⨯=. …5分 (Ⅱ)从(Ⅰ)中抽出的5人中,成绩在[)120,130的有3名同学,记为1,23a a a ,成绩在[)130,140和[]140,150的各有1名同学,分别记为b 和c , …………6分则从(Ⅰ)中抽出的5人中,任取2人的所有情况为{}{}{}{}{}{}{}{}{}{}121311232233,,,,,,,,,,,,,,,,,,a a a a a b a c a a a b a c a b a c b c ,共有10个基本事件, …………9分记事件[)[){}120,130130,1401A =成绩在和中各有人,该事件包含的基本事件为{}{}{}123,,,,,a b a b a b ,共有3个,…10分 故3()10P A =. …………12分 18.本小题主要考查等差数列、等比数列等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等. 满分12分.解析:(Ⅰ)依题意可知233,9a a ==.设等差数列{}n b 的公差为d ,Q 1243,b a b a ==,∴143,9b b ==, …………1分又Q 413b b d =+,∴2d =, …………3分∴1(1)21n b b n d n =+-=+. …………5分(Ⅱ)数列{}n a 的一个通项公式为13n n a -=, …………7分∴()1321n n n a b n -+=++,∴()()2113333521n n S n -=+++++++++⎡⎤⎣⎦L L23122n n n -=++. …………12分 19.本小题主要考查三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想等.. 满分12分.解析:(Ⅰ)()22cos 1cos 2x f x x ==+, 2()(sin cos )12sin cos 1sin 2222x x x x g x x =+=+=+,…3分 Q ()1cos()1sin 22f x x x ππ-=+-=+,∴()2f x g x π⎛⎫-= ⎪⎝⎭,命题得证.…5分(Ⅱ)函数()()()h x f x g x =-cos sin x x =-2()22x x =-)4x π=+, ………7分 ∵[]0,x π∈, ∴ 5444x πππ≤+≤, 当44x πππ≤+≤ ,即304x π≤≤ 时,()h x 递减; 当544x πππ≤+≤ ,即34x ππ≤≤ 时,()h x 递增. ∴函数()h x 的单调递减区间为30,4π⎡⎤⎢⎥⎣⎦,单调递增区间为3,4ππ⎡⎤⎢⎥⎣⎦. …10分 根据函数()h x 的单调性,可知当34x π=时函数()h x 取到最小值. ……12分 20.本小题主要考查直线与直线、直线与平面的位置关系等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想等.满分12分.解析:(Ⅰ)连结AC BD 、,∵四边形ABCD 为菱形,∴AC BD ⊥.……1分∵ PD ABCD ⊥平面,又AC ABCD ⊂平面,∴AC PD ⊥,……2分又∵PD BD D =I , ∴AC PBD ⊥平面.…4分 ∵PB PBD ⊂平面, ∴AC PB ⊥ . ……………5分(Ⅱ)如图连结,,OE BE DE ,∵//PA BDE 平面,PA ⊂PAC 平面,PAC 平面BDE OE ⋂=平面,∴//PA OE .∵O 为AC 的中点,∴E 为PC 的中点. ……………7分取DC 的中点H ,连结EH ,则//EH PD ,又∵PD ABCD ⊥平面,C A∴EH ⊥ABCD 平面,即EH 是四面体E BDC -的高. ………8分根据斜二测画法的规则及题设已知条件可以得到:在11D O C '∆中,01145DO C '∠=,111DC O C'= 由余弦定理可以解得:11O D '=或13O D '=.又因为11O D O C ''<,所以11O D '=. ……………9分从而,可以得到菱形ABCD 的对角线4DB =,而OC =12BDC S BD OC ∆=⋅⋅=. ……………10分∵四面体E BDC -的体积为13⋅EH ⋅BDC S ∆= 求得94EH =,故侧棱PD 的长是9.2 …………12分21.本小题主要考查圆锥曲线、直线与圆锥曲线、合情推理等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.满分12分.解析:(Ⅰ)因为点M 到点()1,0F 和直线1-=x 的距离相等,由抛物线定义,可知曲线C 是抛物线,其中()1,0F 是焦点,所以曲线C 的方程为x y 42=. ……………3分(Ⅱ)根据图形可以直观判断,直线1l ,2l 的斜率存在且不等于0,故不妨设1l 的方程为()1y k x =-()0k ≠,()111,P x y ,()222,P x y ,由()241y x y k x ⎧=⎪⎨=-⎪⎩得()2222240k x k x k -++=, ∴ 212224k x x k ++=,121x x =. ……………5分 因为曲线C 与1l 交于点1P ,2P 且1l 过焦点()1,0F , 所以12122PP x x =++ 22242k k +=+2244k k+=. ……………7分同理可得21221441k Q Q k ⎛⎫-+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭244k =+, ……………8分 所以2221212111144444k PP Q Q k k +=+=++. ……………9分 (Ⅲ)若1l ,2l 是过椭圆22:143x y Γ+=的焦点且相互垂直的两条直线,其中椭交于点1P ,2P ,与2l 交于点1Q ,2Q ,则121211712PP Q Q +=. ……………1(注:只说明121211PP Q Q +为定值或给出错误的定值扣1分 .) 22.本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化思想、分类与整合思想、函数与方程思想、数形结合思想等.满分14分.解:(Ⅰ)因为()1f x a x'=-, ………1分 又因为函数()f x 在点()()1,1A f 处的切线斜率为2,所以()12f '=,解得1a =-. ……………3分(Ⅱ)因为()1,A a -,()11f a '=-,所以切线l 的方程为:()11y a x =--. ……………4分令()()()11g x f x a x =---⎡⎤⎣⎦ln 1(0)x x x =-+>,则()11g x x '=-1x x-=, 由0x >得,当()0,1x ∈时()0g x '>,当()1,x ∈+∞时()0g x '<,…6分所以函数()g x 在()0,1单调递增,在()1,+∞单调递减,……7分从而,当1x =时,()g x 取得最大值()10g =,所以()0g x ≤即()()11f x a x ≤--,从而证得函数()f x 的图象恒在其切线l 的下方(切点除外);……9分 (Ⅲ)解法一:因为()1,A a -,()000,ln Q x x ax -,所以QA k 000ln 1x ax a x -+=-00ln 1x a x =--, …10分 所以当01x >时,00ln 21x a x -<-, 即()()00ln 210x a x -+-<恒成立. ……11分令()()()()ln 211h x x a x x =-+->,则()()12h x a x '=-+. 因为1x >,所以101x<<. (ⅰ)当2a ≤-时,20a +≤,此时()0h x '>,所以()h x 在()1,+∞单调递增,有()()10h x h >=,不满足题意; (ⅱ)当21a -<<-时,021a <+<, ∴当11,2x a ⎛⎫∈ ⎪+⎝⎭时,()0h x '>,当1,2x a ⎛⎫∈+∞ ⎪+⎝⎭时,()0h x '<, 所以至少存在11,2s a ⎛⎫∈ ⎪+⎝⎭,使得()()10h s h >=,不满足题意; (ⅲ)当1a ≥-时,21a +≥,此时()0h x '<,∴()h x 在()1,+∞单调递减,()()10h x h <=,满足题意.综上可得:1a ≥-.……………14分解法二:因为()1,A a -,()000,ln Q x x ax -,所以QA k 000ln 1x ax a x -+=-00ln 1x a x =--, …10分 所以,当01x >时,00ln 21x a x -<-,即00ln 21x a x +>-对01x >恒成立.…11分令()()()ln 11h x x x x =-->,则()11h x x '=-. ∵()10x h x x-'=<,∴()h x 在()1,+∞单调递减, ∴()()10h x h <=,即ln 1x x <-,ln 11x x <-(1x >). …12分 注意到当1x →时,()0h x →,ln 1x x →-,ln 11x x →-,…13分 所以21a +≥,即1a ≥-.……………14分。