项目三 微分方程与差分方程
最新微分方程与差分方程详解与例题
微分方程与差分方程详解与例题第七章常微分方程与差分方程常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。
微分方程作为考试的重点内容,每年研究生考试均会考到。
特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。
【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。
理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。
了解欧拉方程的概念,会求简单的欧拉方程。
会用微分方程处理物理、力学、几何中的简单问题。
【考点分析】本章包括三个重点内容:1.常见的一阶、二阶微分方程求通解或特解。
求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。
2.微分方程的应用问题,这是一个难点,也是重点。
利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。
若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。
微分方程与差分方程的区别
微分方程与差分方程的区别微分方程和差分方程是数学中用于描述自然现象和工程问题的重要方程形式。
它们都是等式,但是它们在描述问题时使用的数学工具和方法却有所不同。
下面将对微分方程和差分方程的区别进行详细介绍。
1.定义:微分方程是描述变量与其导数之间关系的方程,它涉及到无限小的变化量。
差分方程则是描述变量与其差分之间的关系,它涉及有限的变化量。
2.自变量和因变量的类型:微分方程的自变量和因变量通常是连续函数,它们可以在实数域上进行运算。
差分方程的自变量和因变量通常是离散的,它们只能在整数域上进行运算。
3.外推和插值:微分方程可以用于外推和插值问题,即根据方程推导未知函数的行为或者在已知数据点之间插值。
差分方程主要用于外推问题,即根据已知数据点的变化规律推导未知数据点。
4.数学工具和方法:微分方程使用微积分中的概念和方法进行求解,包括导数、积分、极限等。
差分方程使用离散数学中的概念和方法进行求解,包括差分、递推等。
5.近似性:微分方程通常用于描述连续系统,它们在时间和空间上都是连续的。
在实际应用中,我们常常会用差分方程来近似微分方程。
差分方程描述的是离散系统,在时间和空间上是离散的。
6.连续性和稳定性:微分方程的解通常是连续的,因为导数是连续的。
而差分方程的解可能是不连续的,因为差分是离散的。
对于一些差分方程,即使初始条件相似,解也可能收敛到不同的结果,因此稳定性分析在差分方程中非常重要。
7.应用领域:微分方程在物理学、工程学和经济学等领域具有广泛的应用,如描述运动学、电路等。
差分方程则在信息论、计算机科学和优化问题等领域得到广泛应用,如描述编码、网络路由等。
综上所述,微分方程和差分方程在描述问题时使用的数学工具、描述对象和方法都有所不同。
微分方程主要用于描述连续系统和外推、插值问题,使用连续的数学工具和方法进行求解;而差分方程主要用于描述离散系统和外推问题,使用离散的数学工具和方法进行求解。
两种方程形式各有其适用的领域和方法,但在实际应用中它们常常相互转化和结合使用。
微分方程和差分方程解的区别与联系
微分方程和差分方程解的区别与联系哎,说起这微分方程和差分方程啊,简直就是数学里的双胞胎,长得有点像,性格却又大相径庭。
我呢,学数学那会儿,可没少被它们俩搞得头昏脑涨。
不过呢,经过一番苦战,我总算是摸出点门道来,今天就跟大家聊聊这俩家伙的区别与联系,希望能帮到同样被它们困扰的同学们。
首先啊,咱们说说微分方程。
这家伙就像是数学里的“连续剧”,讲的是变量随着时间或者其他什么因素连续变化的故事。
比如说,你扔个石头到水里,水面上的波纹就会随着时间一圈圈地扩散开去,这个过程就可以用微分方程来描述。
微分方程里头的那个“微分”,就像是连续剧里的每一帧,细腻地刻画了变化的每一个瞬间。
而差分方程呢,它更像是数学里的“动画片”,走的是离散化的路子。
它不看重那些连续的、细腻的变化,而是关注变量在每个时间节点上的跳跃式变化。
比如说,你养了一盆花,每天记录一下它的高度,这些离散的数据点之间,就可以通过差分方程来找出规律。
差分方程里的“差分”,就像是动画片里的每一帧,虽然不如连续剧那样细腻,但也能把变化的轮廓勾勒出来。
那么,这俩家伙到底有啥区别呢?简单来说,微分方程擅长处理连续变化的问题,就像是在画一幅流畅的线条画;而差分方程呢,它更擅长处理离散变化的问题,像是在用一块块拼图拼凑出一幅完整的画面。
不过,别看它们性格迥异,其实还是有不少共同点的。
比如说,它们都是用来描述变量之间关系的工具,都能帮助我们找出隐藏在数据背后的规律。
而且啊,在某些情况下,它们还能互相转化呢。
就像是你看一部动画片,虽然它是离散的,但当你把它放慢无数倍,每个画面都连接起来,就变成了一部连续的“电影”。
差分方程在某些条件下,也可以转化为微分方程,让我们从另一个角度去看待问题。
记得有一次,我在解一道复杂的微分方程时,卡壳了半天。
后来,我突然灵光一闪,试着把它转化成了差分方程,嘿,你还别说,这一转化,思路立马就清晰了起来,问题也迎刃而解了。
那一刻,我简直觉得自己就像是个数学界的魔术师,把难题变得无影无踪。
微分方程与差分方程详细讲解与例题
第七章 常微分方程与差分方程常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。
微分方程作为考试的重点容,每年研究生考试均会考到。
特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。
【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。
理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。
了解欧拉方程的概念,会求简单的欧拉方程。
会用微分方程处理物理、力学、几何中的简单问题。
【考点分析】本章包括三个重点容:1.常见的一阶、二阶微分方程求通解或特解。
求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。
2.微分方程的应用问题,这是一个难点,也是重点。
利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。
若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。
第三章 微分方程及差分方程方法
两个特解 y1 e x cos x, y2 e x sin x ,如果特征根 r 是 l 重实数根,则原方程对 应 有 l 个 特 解 y1 erx , y2 x erx ,, yl xl1 erx , 如果 特征 根有 m 重 共 轭复 数 根 i ,则原方程对应有 2m 个特解 y2k1 xk1 e x cos x , y2k xk1 e x sin x (k 1, 2,, m) 。
lim
t
x(t
)
x0
则称平衡点 x0 是稳定的(或渐近稳定);否则,称平衡点 x0 是不稳定的(或不渐
近稳定)。
判断平衡点 x0 是否稳定的两种常用方法:
6
间接法:利用定义 2。
直接法:不求方程(1)的解 x(t) ,将 f (x) 在点 x0 处作泰勒展开,只取一次 项,方程(1)近似为
dx(t ) dt
这是一个变量可分离方程,它的解是关于 u 、x 两个变量的函数,再以 y 代替 u , x
便得到齐次方程
dy dx
f
y x
的q(x) 的方程,称为一阶线性微分方程.若 q(x) 0 ,则称方
程为一阶非齐次线性微分方程;若 q(x) 0 ,则方程写为
dx dt dx x dt
dt
y
d2 y dx2
1 x2
dy dt
1 x
d2 y dt 2
第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件
x
C2
例3.求解微分方程
y
y2 ,y(0) 1,y(0) 1. y
解: 设
y
p( y) ,则
y
p
dp dy
代入方程得
p dp p2 , dy y
p(
dp dy
p y
)
0
p0
27
第27页
(三)不显含自变量 x 二阶微分方程
2
第2页
第一节 微分方程普通概念
例2.设 s=s(t) 为作自由落体运动物体在 t 时刻
下落距离, 则有
d 2s dt 2 g
s(t) g
s g
ds dt
g
ds dt
gt
C1
s(0) 0
s(0)
0
ds gdt
ds gdt
s gt C1
ds ( gt C1 )dt
ds (gt C1 )dt
于价格P线性函数: QS a bP , QD c dP ,
且 a, b, c, d 都是已知正常数. 当 QS = QD 时, 得
均衡价格 P
ac .
当 QS
> QD 时, 价格将下降,
bd
当 QS < QD 时, 价格将上涨,故价格是时间t 函数.
假设在时刻t价格P(t)改变率与这时过剩需求量
x
因
P(
x)dx
1 x
dx
ln
x
ln
1 x
,
Q(
x)e
P
(
x )dx
dx
1
x 2eln x dx
xdx x2 ,
2
故 y ( x2 C )e(ln x) ( x2 C ) x Cx x3 .
微分方程与差分方程简介
方程通解为: 二、二阶常系数线性非齐次方程 二阶常系数线性非齐次方程,其标准形式是
, 其中 a,b,c 是常数,式中的 f(x)称为右端项。
定理 2 设 是线性非齐次方程的一个特解,而 是相应的线性齐次方
程的通解,则其和
为线性非齐次方程的通解。
定理 3 设 y1 是非齐次方程 方程
的一个特解, y2 是非齐次
(4)由于λ=1+3i 不是特征方程的根,n=1,故应设特解为 。
本章重点 微分方程的概念,一阶可分离变量微分方程的解法,一阶线性微分方程的解
法,二阶常系数线性微分方程的解法。
内容提示与分析 §8.1 微分方程的一般概念
1. 微分方程:含有未知函数的导数(或微分)的方程称为微分方程。 常微分方程:微分方程中的未知函数是一元函数的,叫常微分方程,其
一般形式为
。 偏微分方程:未知函数是多元函数的微分方程,叫偏微分方程。 2. 微分方程的阶:微分方程中出现的未知函数的最高阶导数的阶数,叫 做微分方程的阶。 3.微分方程的解:如果把某个函数以及它的各阶导数代人微分方程,能使 方程成为恒等式,这个函数称为微分方程的解。 微分方程的解有通解与特解两种形式。 4. n 阶微分方程的通解:含有 n 个独立的任意常数的解,叫 n 阶微分方 程的通解。 5.微分方程的特解:不含有任意常数的解,叫微分方程的特解。
。
注意 为了运算方便,可将两端积分后方程式中的 ln|y+1|写成 ln(y+1),
只要记住最后得到的任意常数可正可负即可。另外,也可以将式中的任意常数
写为 lnC,最终 C 是任意常数。
例 5.求微分方程
的通解。
解:原方程可改写成
它是一个齐次方程。
微分方程与差分方程方法
第四章 微分方程与差分方程方法第一节 微分方程模型我们在数学分析中所研究地函数,是反映客观现实世界运动过程中量与量之间地一种关系,但我们在构造数学模型时,遇到地大量实际问题往往不能直接写出量与量之间地关系,却能比较容易地建立这些变量和它们地导数(或微分>间地关系式,这种联系着自变量、未知函数及其导数(或微分>地关系式称为微分方程.§4.1.1微分方程简介这一节,我们将介绍关于微分方程地一些基本概念. 一、微分方程地阶数首先我们具体地来看一个微分方程地例子.例4-1 物体冷却过程地数学模型将某物体放置于空气中,在时刻0=t ,测量得它地温度为C u 00150=,10分钟后测量得温度为C u 01100=.我们要求决定此物体地温度u 和时间t 地关系,并计算20分钟后物体地温度.这里我们假定空气地温度保持为C u 024=α.解:根据物理学中地牛顿冷却定律可知,热量总是从温度高地物体向温度低地物体传导。
一个物体地温度变化速度与这一物体地温度与其所在介质温度地差值成正比.设物体在时刻t 地温度为)(t u u =,则温度地变化速度可以用dtdu来表示.我们得到描述物体温度变化地微分方程)(αu u k dtdu--=(4.1.1> 其中0>k 是比例常数.方程(4.1.1>中含有未知函数u 及它地一阶导数dtdu,这样地方程,我们称为一阶微分方程.微分方程中出现地未知函数最高阶导数地阶数称为微分方程地阶数.方程)(33t f cy dt dyb dty d =++(4.1.2> 中未知函数最高阶导数地阶数是三阶,则方程(4.1.2>称为三阶微分方程. 二、常微分方程与偏微分方程如果在微分方程中,自变量地个数只有一个,我们称这种微分方程为常微分方程。
自变量地个数为两个或两个以上地微分方程称为偏微分方程.方程0222222=∂∂+∂∂+∂∂zTy T x T (4.1.3> 就是偏微分方程地例子,其中T 是未知函数,x 、y 、z 都是自变量.而方程(4.1.1>(4.1.2>都是常微分方程地例子.三、线性与非线性微分方程如果n 阶常微分方程0),,,,(=n n dxyd dx dy y x F (4.1.4>地左端为关于未知函数y 及其各阶导数地线性组合,则称该方程为线性微分方程,否则称为非线性方程.一般地n 阶线性微分方程具有形式)()()()(1111x f y x a dx dyx a dx y d x a dx y d n n n n n n =++++--- (4.1.5> 其中)1( )(),(n i x f x a i =是关于x 地已知函数.当()0f x =时,称(4.1.5>为n 阶齐次线性微分方程。
数学建模中的差分方程与微分方程
数学建模是一门研究如何用数学方法解决实际问题的学科,它在现代科学、工程技术以及社会经济领域中扮演着重要的角色。
在数学建模的过程中,我们经常会遇到需要描述连续或离散变化的问题,而差分方程与微分方程则成为了解决这类问题的有力工具。
差分方程是描述离散变化的方程,它将一个变量与它在前一时刻或前几个时刻的取值联系起来。
在数学建模中,差分方程常常被用来描述离散的时间或空间变化,比如物种数量的变化、金融市场的波动等。
差分方程最简单的形式是递推式,它用一个前一时刻的变量的值来表示当前时刻的变量的值。
例如,一个典型的一阶差分方程可以写作:$x_{n+1}=f(x_n)$,其中$x_n$表示第$n$个时刻的变量的值,$f(x_n)$表示根据$x_n$计算出的$x_{n+1}$的函数。
通过递推式,我们可以得到变量在不同时刻的取值,进而研究它的变化规律。
微分方程是描述连续变化的方程,它涉及到变量对时间的导数或各个变量之间的关系。
微分方程在数学建模中的应用非常广泛,尤其在物理学、生物学等自然科学领域中经常被用来描述变化的物理现象。
微分方程的形式多种多样,比如一阶线性微分方程、二阶非线性微分方程等等。
一阶微分方程的一般形式可以写作:$\frac{dx}{dt}=f(x,t)$,其中$x$表示一个或多个变量,$t$表示时间,$f(x,t)$表示$x$和$t$的关系。
通过求解微分方程,我们可以得到变量随时间的变化规律,并进一步分析问题。
在实际问题中,差分方程与微分方程往往会相互呼应和融合,一些问题既可以用差分方程描述离散变化,也可以用微分方程描述连续变化。
这时,我们可以通过将差分方程转化为微分方程或将微分方程离散化为差分方程来求解问题。
例如,在人口增长的问题中,我们可以通过建立一个差分方程来描述每一年的人口数量,而利用微分方程的分析方法可以得到人口增长的长期行为。
又例如,在物理学中,连续介质的运动可以用微分方程描述,而粒子的运动可以用差分方程描述。
微分方程和差分方程方法课件
适用范围
01
适用于求解具有特定形式的一阶微分方程组。
解法描述
02 通过引入特征线的概念,将微分方程转化为常微分方
程沿特征线的积分,从而简化求解过程。
实例
03
以一阶微分方程组为例,通过特征线法可以得到通解
表达式。
幂级数法
适用范围
常用于求解具有特定形式的微分方程,如线性微分方程、常系数 线性微分方程等。
01
数学家贡献
众多数学家如牛顿、莱布尼茨、欧拉、 拉格朗日等都对微分方程的发展做出了 重要贡献。
02
03
现代应用
现代科学技术领域如物理学、生物学 、经济学等广泛使用微分方程来描述 和预测现象。
差分方程的历史与发展
早期起源
差分方程起源于17世纪,主要用于解决与离散序列有关的问题。
数学家贡献
欧拉、高斯等数学家对差分方程的发展做出了重要贡献。
02
微分方程的解法
分离变量法
01
适用范围
常用于求解具有特定形式的微分 方程,如波动方程、热传导方程 等。
02
03
解法描述
实例
将微分方程中的未知函数分离出 来,转化为几个常微分方程的组 合,然后分别求解。
以一维波动方程为例,通过分离 变量法可以得到波函数的形式为 y(x,t)=f(x)g(t)。
特征线法
化性能。
高性能计算与并行计算
利用高性能计算机和并行计算技术, 加速微分方程和差分方程的求解过程 。
多尺度方法
研究多尺度方法,处理不同尺度的微 分方程和差分方程,适应不同应用场 景的需求。
当前面临的挑战
算法复杂度与计算效率 由于微分方程和差分方程的复杂 性,往往需要设计高效的算法来 降低计算复杂度,提高计算效率 。
微分方程和差分方程简介
返 回
(二)建立数值解法的一些途径
设 xi 1 xi h, i 0,1,2, n 1, 可用以下离散化方法求解微分方程: y' f(x,y) y(x0 ) y0
1、用差商代替导数 若步长h较小,则有
y ' ( x) y ( x h) y ( x ) h
解 首先分离变量 ,得
g ( y )dy
f ( x ) dx C
2 例1 求微分方程 y 3x y的通解。
1 2 dy 3 x dx y 两端积分,得 即 ln y x 3 C1 y e
x 3 C1
或y e e
C1
x3
因 e C1 仍是任意常数,令其为C,则所求得通解为 y Ce
二、常见的微分方程的类型及其解法:
1.一阶微分方程
y f ( x, y )
常用的解法:分离变量法
形如
dy f ( x) g ( y ) dx P ( x) P2 ( y ) dx Q1 ( x)Q2 ( x) 0 1
的方程均为可分离变量 的微分方程。
对(2)式两端分别积分,便可得到微分方程的通解 其中C为任意常数。
例1 求
解
d2y
2
dx du 1 u 2 的通解. dt
0 应表达为:D2y=0.
输入命令:dsolve('Du=1+u^2','t')
结
果:u = tg(t-c)
例 2 求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15
对马尔萨斯人口模型的解作进一步分析, 当 t 时,x(t ) ,表明人口将无限增长。马 尔萨斯人口论的核心内容是:人口按几何级数 增长,而生活资料则按算术级数增长,两者的 矛盾必会给人类社会进步造成障碍。马尔萨斯 并不认为: 解决人口过剩和生活资料匮乏两 者之间的矛盾,只有通过失业、饥饿、犯罪甚 至战争等方式来自发调节。使用消极手段来遏 制人口增长,这是人们对马尔萨斯人口论的一 种误解。
线性微分方程及差分方程
u x
du dx
u
1 u
2
2
即: x
2
du dx
1 u 1 8) (9
当 1 u 0时 , 分 离 变 量 得 : du 1 u
2
dx x
16
两边积分: arcsin u ln x C
再将:u arcsin y x
y x
2
二、微分方程的阶 微分方程中,未知函数的最高阶导数的阶数 定义2 称为微分方程的阶 三、微分方程的解
定义3
如果某个函数代入微分方程后使其两端恒等,则称 此函数为该微分方程的解,如果微分方程的解所含 独立的任意常数个数等于方程的阶数,则称此解为 微分方程的通解。而微分方程任意确定的解称为微 分方程的特解
一 线性方程
(Linear differential equation)
二 伯努利方程
(Bernoulli differential equation)
三 小结 思考判断题
25
一
线性方程(Linear differential equation)
一阶线性微分方程的标准形式:
dy dx
当 Q ( x ) 0,
3
4
§9.2 一阶微分方程
一、可分离变量的微分方程
1 .形 如 M ( x ) d x N ( y ) d y 0 1 3) (9 的方程称为变量已分离的微分方程
将 (9 1 3) 式 两 边 同 时 积 分 , 得
M ( x )dx N ( y )dy C (9-14)
11
解:这是一个可分离变量的初值问题,分离变量德 dx adt ( xm x ) x
微分方程与差分方程稳定性课件
微分方程稳定性理论将平衡点分为结点、焦点、 鞍点、中心等类型,完全由特征根或相应的取值决定, 下表简明地给出了这些结果,表中最后一列指按照定义 (8)式得下面关于稳定性的结论。
表1
由特征方程决定的平衡点的类型和稳定性 平衡点类型
稳定定
鞍点
稳定退化结点 不稳定退化结 点 稳定焦点 不稳定焦点 中心
不稳定
稳定 不稳定 稳定 不稳定 不稳定
对一般的非线性方程(6),仍可在平衡点作 一次Taylor展开,得常系数的近似线性 方程来讨论.
非线性方程
dx1 (t ) 0 0 0 f x1 ( x10 , x2 )( x1 x10 ) f x2 ( x10 , x2 )( x2 x2 ) dt dx2 (t ) g ( x 0 , x 0 )( x x 0 ) g ( x 0 , x 0 )( x x 0 ) x1 1 2 1 1 x2 1 2 2 2 dt
对于一阶非线性差分方程 xn+1 = f (xn ) 其平衡点x*由代数方程 x = f (x) 解给出. 为分析平衡点x*的稳定性, 将上述差分方程近 似为一阶常系数线性差分方程 xn1 f ( x*)(xn x*) f ( x*), 当 | f ( x*) | 1 时,上述近似线性差分方程与原 非线性差分方程的稳定性相同. 因此 当 | f ( x*) | 1 时, x*是稳定的; 当 | f ( x*) | 1 时, x*是不稳定的.
p ( a1 b2 ) . q det A
(13)
将特征根记作1, 2,则 1 1 , 2 ( p p 2 4q ). 2
(14)
方程(9)的一般解具有形式
微分方程与差分方程简介
u( x) e
p ( x ) dx
p ( x ) dx q( x) u( x) q( x) e
p ( x ) dx u ( x) q ( x) e dx C
p ( x ) dx p ( x ) dx u ( x) q ( x) e dx C 代入 y u ( x)e
例如,下列方程都是微分方程 (其中 y, q 均为未知函数).
(1) y= kx, k 为常数;
(2) ( y - 2xy) dx + x2 dy = 0; (3) ( y)2 2xy x 2 3
1 3 y 1 y ; ( 4) a
d 2q g (5) 2 sin q 0 ( g , l 为常数). dt l
例如函数y = x2 + C 是微分方程 y = 2x 的 通解; 而 y = x2 +3就是方程 y = 2x 的特解.
再如函数y
=Cex 是微分方程
y y 的
的通解; 如果给出初始条件 y(0) = 0 , 可得C = 0 , 从而就得到特解y=0.
通常一阶微分方程的初始条件是
y |x x0 y0 , 或 y( x0 ) y0 .
(1) 分离变量 (2) 两边积分
g ( y)dy f ( x)dx
g ( y)dy f ( x)dx C
(3) 整理后即可得方程通解.
2 例 1 求方程 y (cos x sin x) 1 y 的通解 .
解 分离变量,得 dy
1 y2
(cosx sin x)dx,
1 y 的通解,以及y(1) =2 的特解. 例 4 求 y 2 xy(1 x )
第十五章 微分方程和差分方程简介
dy 2 xy 分离变量,得到 dx
1 dy 2 xdx , y
两边同时积分,得到
y dy 2 xdx ,
ln y x 2 C ,
即 y C1e ( C1 e ) .
C
x2
1
其中 C1 是任意常数.若 C1 0 ,即得到特解 y 0 . 二、齐次微分方程 有很多的方程不是可分离变量的微分方程,其中有一些可以通过一系列的变 换转化为这种形式.看下面一类方程.
令u 再分离变量,得到
du dx . u u x
两边同时积分,得
u u ln x C .
将左边的积分求出后,再将 u 例 2 解方程 y x y ' xyy '
2 2
du
y 代入,就得到方程的解. x
解:原方程可以化为
dy y2 dx xy x 2
其中 G y
g y dy , F x f x dx .要注意的是同时积分是,左边是
1
对 y 积分,右边是对 x 积分.
我们也可以验证一下.若方程的解为 y x ,满足 G y F x C ,则
1 g y dy f x dx ,
dy 4x , dx
所以 y 4 x d x = 2 x C ,
2
当 x 0 时, y 1 ,所以 1 2 0 C ,即 C 1 .
2
所以所求的曲线方程为
y 2x 2 1.
这里
dy 4 x 就是一个一阶常微分方程. dx
总之, 微分方程在物理、几何、经济等方面都有非常重要的应用. 微分方程是含有未知函数及其导数的方程, 满足该方程的函数称为微分方程 的解.对于一阶微分方程来说,它的含有一个任意常数的解,称为此微分方程的 通解.一般来说,对于 n 阶微分方程,其含有 n 个互相独立的任意常数的解称为 微分方程的通解.不含有任意常数的解称为微分方程的特解.例如函数 y x 是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目三 微分方程与差分方程
实验类型 验证型 实验学时 4
实验目的 利用Matlab 软件的数值计算功能求解微分方程与差分方程,并对结果进行分析。
实验内容
1. 传染病问题的SIR 模型:
00(0),(0)di
si i
dt ds si dt
i i s s λμλ⎧=-⎪⎪⎪=-⎨
⎪==⎪⎪⎩
其中:(),()i t s t 表示t 时刻病人和健康者的比例,参数,λμ为日接触率和治愈率,00,i s 表示初始时刻的病人和健康者比例。
求解以上模型,并分析:
1)
病人和健康者的比例的变化 规律; 2)
参数,λμ对病人和健康者的比例变化的影响; 3)
预测传染病传播高潮(病人比例的最大值)到来的时刻; 4) 参数,λμ对染病传播高潮(病人比例的最大值)到来的时刻的影响。
程序:
1.先建立M 文件:
function f=sir(x,y)
a=1;b=0.1;
f(1)=a*y(1)*y(2)-b*y(1);
f(2)=-a*y(1)*y(2);
f=f';
保存为:sir.m
2. 在命令窗口输入:
[t,y]=ode45('sir',[0:1:50],[0.02,0.98])
plot(t,y)
[c d]=max(y(:,1)) %寻找病人比例的最大值及其时刻
结果:
2.差分形式的阻滞增长模型:
阻滞增长模型为:
(1)d x
x
rx dt N =- (1)
其中:r 为自然增长率,N 为种群最大容量。
可将其离散化为差分方程形式:
k y ~某种群第k 代的数量(人口)
则(1)化为:
1(1),1,2,k k k k y y y ry k N +-=-=
即:
1(1)1(1)k k k r y r y y r N +⎡⎤=+-⎢⎥+⎣⎦
可引入变量替换:(1)k k
r x y r N =+,1b r =+记,则上式化为: 1(1)k k k x bx x +=-
(2) 试求解上述模型(2),并分析:
(1)k x 的变化有何规律?
(2)k x 的变化如何受()b r 影响?
b=3.3;
n=100;
x(1)=0.2;
for k=1:n
x(k+1)=b*x(k)*(1-x(k)); end
x'
plot(x)。