推荐 高等数学同济第七版上册课后习题答案

合集下载

高等数学同济大学数学系第七版上册第七章课后答案

高等数学同济大学数学系第七版上册第七章课后答案
微分方程课后习题答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等数学同济大学数学系第七版上册第七章课后答案高等

高等数学同济第七版上册课后习题答案

高等数学同济第七版上册课后习题答案

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。

高等数学同济第七版上册课后习题答案 (1)

高等数学同济第七版上册课后习题答案 (1)

高等数学同济第七版上册课后习题答案 (1)1 ⎭ 习题 1-11. 求下列函数的自然定义域:(2) y = 1;(1) y = 1 - x 2(3) y = 1x (4); y =1(5) y =(6) y = tan(x +1);(7) y = arcsin(x - 3); (9) y = ln(x + 1);(8) y1+ arctan ; x(10) y = e e x.解:(1)3x + 2 ≥ 0 ⇒ x ≥ - 2,即定义域为⎡- 2 , +∞⎫(2)1 - x 2 3 ≠ 0 ⇒ x ≠ ±1,⎣⎢ 3⎪ 即定义域为(-∞, -1) ⋃ (-1,1) ⋃ (1, +∞)(3)x ≠ 0 且1- x 2 ≥ 0 ⇒ x ≠ 0 且 x ≤ 1即定义域为[-1,0) ⋃ (0,1](4)4 - x 2 > 0 ⇒ x < 2 即定义域为(-2, 2) (5)x ≥ 0, 即定义域为[0, +∞)(6)x +1 ≠ k π + π(k ∈ Z ),2 即定义域为⎧x x ∈ R 且x ≠ (k + 1 )π -1, k ∈ Z ⎫⎨ 2 ⎬⎩ ⎭⎩⎪ π π π(7) x - 3 ≤ 1 ⇒ 2 ≤ x ≤ 4, 即定义域为[2, 4](8)3 - x ≥ 0且 x ≠ 0,即定义域为(-∞, 0) ⋃ (0,3] (9)x + 1 > 0 ⇒ x > -1即定义域为(-1, +∞) (10)x ≠ 0,即定义域为(-∞, 0) ⋃ (0, +∞)2. 下列各题中,函数 f (x ) 和 g (x ) 是否相同?为什么?(1) f (x ) = lg x 2 , g (x ) = 2 l g x (2) f (x ) = x , g (x )(3) f (x ) g (x ) = (4) f (x ) = 1, g (x ) = sec 2 x - tan 2 x解:(1) 不同,因为定义域不同(2) 不同,因为对应法则不同, g (x ) == ⎧ x , x ≥ 0(3) 相同,因为定义域,对应法则均相同(4) 不同,因为定义域不同⎨-x , x < 0⎧sin x , 3.设ϕ(x ) = ⎨ x < π 3 π ⎪ 0, x ≥⎩3求ϕ(),ϕ( ),ϕ(- 644),ϕ(-2), 并指出函数 y = ϕ (x )的图形( ) = sin = ,ϕ( ) = sin = ϕ π π1 π π 6 62 4 4 2 解:ϕ(- π ) = sin(- π ) = 2,ϕ(-2) = 0,4 4 2y = ϕ (x )的图形如图1-1所示4. 试证下列函数在指定区间内的单调性:(1) y =x ; 1 - x(2) y = x + ln x ,(0, +∞)证明:(1) y =f (x ) =x 1 - x= -1+1 1 - x,(-∞,1) 设x 1 < x 2 < 1,因为f (x ) - f (x ) = x 2 - x 1 > 02 1(1 - x )(1- x ) 1 2所以 f (x 2 ) > f (x 1 ), 即 f (x ) 在(-∞,1) 内单调增加(2) y = f (x ) = x + ln x ,(0, +∞)设0 < x 1 < x 2 ,因为2,f (x ) -f (x ) =x -x + ln x2 > 02 1 2 11所以 f (x2 ) > f (x1 )即f (x) 在(0, +∞) 内单调增加5.设f (x) 为定义在(-l,l) 内的奇函数,若 f (x) 在(0,l) 内单调增加,证明f (x) 在(-l, 0) 内也单调增加证明:设-l <x1 <x2< 0 ,则0 <-x2<-x1 <l由f (x) 是奇函数,得f (x2 ) - f (x1 ) =-f (x2 ) + f (-x1 )因为 f (x) 在(0,l) 内单调增加,所以 f (-x1 ) -f (-x2 ) > 0即f (x) 在(-l, 0) 内也单调增加6.设下面所考虑的函数都是定义在区间(-l,l) 上的。

高等数学同济第七版上册课后答案

高等数学同济第七版上册课后答案

习题1-101.证明方程x5-3x=1至少有一个根介于1和2之间.证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数.因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根.因此方程x5-3x=1至少有一个根介于1和2之间.2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b.证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数.f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0.若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根;若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根.总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b.3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)⋅f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0.证明设x0为(a,b)内任意一点.因为0||lim |)()(|lim 00000=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00=-→x f x f x x , 即 )()(lim 00x f x f x x =→. 因此f (x )在(a , b )内连续.同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续.因为f (x )在[a , b ]上连续, 且f (a )⋅f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0.4. 若f (x )在[a , b ]上连续, a <x 1<x 2< ⋅ ⋅ ⋅ <x n <b , 则在[x 1, x n ]上至少有一点ξ, 使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 证明 显然f (x )在[x 1, x n ]上也连续. 设M 和m 分别是f (x )在[x 1, x n ]上的最大值和最小值.因为x i ∈[x 1, x n ](1≤ i ≤n ), 所以有m ≤f (x i )≤M , 从而有 M n x f x f x f m n n ⋅≤+⋅⋅⋅++≤⋅)( )()(21,M nx f x f x f m n ≤+⋅⋅⋅++≤)( )()(21. 由介值定理推论, 在[x 1, x n ]上至少有一点ξ . 使nx f x f x f f n )( )()()(21+⋅⋅⋅++=ξ. 5. 证明: 若f (x )在(-∞, +∞)内连续, 且)(lim x f x ∞→存在, 则f (x )必在(-∞, +∞)内有界.证明 令A x f x =∞→)(lim , 则对于给定的ε >0, 存在X >0, 只要|x |>X , 就有|f (x )-A |<ε , 即A -ε<f (x )<A +ε .又由于f (x )在闭区间[-X , X ]上连续, 根据有界性定理, 存在M >0, 使|f (x )|≤M , x ∈[-X , X ].取N =max{M , |A -ε|, |A +ε|}, 则|f (x )|≤N , x ∈(-∞, +∞), 即f (x )在(-∞, +∞)内有界.6. 在什么条件下, (a , b )内的连续函数f (x )为一致连续?。

高等数学同济大学数学系第七版上册

高等数学同济大学数学系第七版上册

高等数学(同济人学数学系-第七版)上册高等数学(同济大学数学系第七版)上册第三章:微分屮值定理与导数的应用课后习题答案微分中值定理&I.脸证罗尔定理对= Insin x任区间[于打]上的止确性.证函数/(x)=lnsinx^[y^]匕连续•在(卡•乎)内可导■又4f)= ,nsin 6 =,n \ /(T)= ,n,in T=,n T*即4才)唧认卜灯⑷在[:・丫]上満足罗尔定理条件•山罗尔定理®至少仔任T・(H(:、罟卜仙'(§)"•乂 JS二瓷令厂(丫)“得""T +于(w = 0. = 1 ・ ± 2 .・•・)・ JR 兀=0 w(? •普)・IM比罗尔定理对函数尸Insin x任区叫亍'寻]上是正确的•& 2.脸证拉格制日中值定理对函敎y・4』-5/u 2在区何[0,1]上的正确性.it 匪数/(尤)=4“・5/在区河卫・1上连缤■金(0.1)內叫导,故/(・丫)在0」上满足拉格朗H中值定理条件,从而至少存在一点f e(0J).使门小斗护二仝严“又•由八° =12^2 - 10f 4 I =0 olUlf =^~^G(0J) JM此拉俗阴H屮值定理对函敗y=4八5P r・2徃区何0」;上是正确的."i"及化X)’ + cos X在IX间|o,y]j;验让柯內中值定理的正确性.证旳数"+0*在区1叫0,;]上连续皿(0.;)內可品.M住卩•寸)内=1 -MOX ZO.故.心)屮(兀)满足柯两中值定理条件•从而至55/ 1.高等数学(同济人学数学系•第七版)上册55/ 2.高等数学(同济人学数学系•第七版)上册55/ 3.高等数学(同济大学数学系-第七版)上册.55/ 4.高等数学(同济人学数学系•第七版)上册.55/ 5.高等数学(同济人学数学系-第七版)上册86 一、《离等数学》(第七版)上冊习趣全解55 / 6.高等数学(同济人学数学系•第七版)上册件;)"(0)"(目1 -0 cos £ T . 1 - HI1 {T"14Z n = 0,得 go = 2arclan -一~ . 1*1 0 < < 丨•故 C = 2arckm j 4 ^ * | € (。

同济大学高等数学第七版上下册答案详解

同济大学高等数学第七版上下册答案详解
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
( 1)
-1

高等数学(同济第七版)第一章课后答案

高等数学(同济第七版)第一章课后答案

高等数学(同济第七版)第一章课后答案高等数学(同济第七版)第一章课后答案答案如下:1.a) 设 y=f(x)=x^2 +2x-3则f’(x)=2x+2当f’(x)=0 时,2x+2=0,解得 x=-1所以函数 f(x) 的驻点为 x=-1b) f’’(x)=2当 x=-1 时,f’’(x)=2>0所以驻点 x=-1 对应的函数值 f(-1)=4 为极小值c) 当x→±∞ 时,f(x)→+∞当x→-∞ 时,f(x)→+∞所以函数 f(x) 在 x=-1 处的极小值为最小值2.a) 设 y=f(x)=x^3-3x则f’(x)=3x^2-3当f’(x)=0 时,3x^2-3=0,解得 x=±1所以函数 f(x) 的驻点为 x=±1b) f’’(x)=6x当 x=1 时,f’’(1)=6>0,所以驻点 x=1 对应的函数值 f(1)=-2 为极小值当 x=-1 时,f’’(-1)=-6<0,所以驻点 x=-1 对应的函数值 f(-1)=2 为极大值c) 当x→±∞ 时,f(x)→+∞所以函数 f(x) 在 x=1 处的极小值为最小值,函数 f(x) 在 x=-1 处的极大值为最大值3.a) 设 y=f(x)=x^3-9x^2+24x-10则f’(x)=3x^2-18x+24当f’(x)=0 时,3x^2-18x+24=0,化简得 x^2-6x+8=0,解得 x=2 或x=4所以函数 f(x) 的驻点为 x=2 或 x=4b) f’’(x)=6x-18当 x=2 时,f’’(2)=6(2)-18=-6<0,所以驻点 x=2 对应的函数值f(2)=-10 为极大值当 x=4 时,f’’(4)=6(4)-18=6>0,所以驻点 x=4 对应的函数值f(4)=10 为极小值c) 当x→±∞ 时,f(x)→+∞所以函数 f(x) 在 x=2 处的极大值为最大值,函数 f(x) 在 x=4 处的极小值为最小值4.a) 设 y=f(x)=x^3-3x^2-9x+17则f’(x)=3x^2-6x-9当f’(x)=0 时,3x^2-6x-9=0,化简得 x^2-2x-3=0,解得 x=3 或 x=-1所以函数 f(x) 的驻点为 x=3 或 x=-1b) f’’(x)=6x-6当 x=3 时,f’’(3)=6(3)-6=18>0,所以驻点 x=3 对应的函数值f(3)=8 为极小值当 x=-1 时,f’’(-1)=6(-1)-6=-12<0,所以驻点 x=-1 对应的函数值f(-1)=18 为极大值c) 当x→±∞ 时,f(x)→+∞所以函数 f(x) 在 x=3 处的极小值为最小值,函数 f(x) 在 x=-1 处的极大值为最大值在本章的课后练习中,我们通过求导数、求二阶导数和讨论函数的单调性,求解了各种函数的极值及其最值。

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

同济大学高等数学第7版上册课后习题答案

同济大学高等数学第7版上册课后习题答案

资料来源:墨水多学习网(),转载请注明! 第4页
资料来源:墨水多学习网(),转载请注明! 第5页
资料来源:墨水多学习网(),转载请注明! 第6页
资料来源:墨水多学习网(),转载请注明! 第7页
资料来源:墨水多学习网(),转载请注明! 第8页
资料来源:墨水多学习网(),转载请注明! 第9页
资料来源:墨水多学习网(),转载请注明! 第10页
资料来源:墨水多学习网(),转载请注明! 第11页
资料来源:墨水多学习网(),转载请注明! 第12页
资料来源:墨水多学习网(),转载请注明! 第14页
笔记和课后习题含考研真题详解同济大学数学系高等数学第7版上册资料来源
同济大学数Байду номын сангаас系《高等数学》(第7版)(上册)
笔记和课后习题(含考研真题)详解
资料来源:墨水多学习网(),转载请注明! 第2页
资料来源:墨水多学习网(),转载请注明! 第3页

高等数学同济第七版上册课后习题答案

高等数学同济第七版上册课后习题答案

高等数学同济第七版上册课后习题答案【注意:以下是根据题目需求给出的格式,仅供参考。

具体格式请根据实际情况自行调整。

】第一章函数与极限1.1 函数的概念与性质1.(1)解:设函数f(x) = x^2 + 3x - 2,则有:f(-1) = (-1)^2 + 3(-1) - 2 = 4 - 3 - 2 = -11.(2)解:设函数g(x) = 2x - 1,则有:g(3) = 2(3) - 1 = 6 - 1 = 51.(3)解:将x = 3代入f(x) = x^2 + g(x)中,得:f(3) = 3^2 + g(3) = 9 + 5 = 141.(4)解:由f(x) = 2x + g(2)可得:g(2) = f(x) - 2x = 2x + g(x) - 2x = g(x)1.(5)解:f(g(-1)) = f(2(-1) - 1) = f(-3) = (-3)^2 + 3(-3) - 2 = 9 - 9 - 2 = -21.(6)解:海伦公式中,设a = BC = 3,b = AC = 4,c = AB = 5,则有:p = (a + b + c) / 2 = 6S = √[p(p-a)(p-b)(p-c)] = √[6(6-3)(6-4)(6-5)] = √[6(3)(2)(1)] = √[36] = 62.极限与连续性2.(1)解:根据极限的定义,当x趋于2时,有:lim(x->2)(x^2 + 3x - 2) = 2^2 + 3(2) - 2 = 4 + 6 - 2 = 82.(2)解:根据极限的性质,当x趋于2时,有:lim(x->2)(2x - 1) = 2(2) - 1 = 4 - 1 = 32.(3)解:由题意得,当x趋于3时,有:lim(x->3)(x^2 + 2x) = 3^2 + 2(3) = 9 + 6 = 152.(4)解:在x = 2处,f(x)不连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1()1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求((),(),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1(sin ,()sin 66244(sin()(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。

证明:(1)两个偶函数的和是偶函数,两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数证明:(1)设12(),()f x f x 均为偶数,则1122()(),()()f x f x f x f x -=-=令12()()()F x f x f x =+于是1212()()()()()()F x f x f x f x f x F x -=-+-=+=故()F x 为偶函数设12(),()g x g x 均为奇函数,则1122()(),()()g x g x g x g x -=--=-令12()()()G x g x g x =+于是1212()()()()()()G x g x g x g x g x G x -=-+-=-+-=-故()G x 为奇函数(2)设12(),()f x f x 均为偶数,则1122()(),()()f x f x f x f x -=-=令12()()()F x f x f x =⋅于是1212()()()()()()F x f x f x f x f x F x -=-⋅-==故()F x 为偶函数设12(),()g x g x 均为奇函数,则1122()(),()()g x g x g x g x -=--=-令12()()()G x g x g x =⋅于是121212()()()()()()()()G x g x g x g x g x g x g x G x -=-⋅-=-⋅-==故()G x 为偶函数设()f x 为偶函数,()g x 为奇函数,则()(),()()f x f xg x g x -=-=-令()()()H x f x g x =⋅于是[]()()()()()()()()H x f x g x f x g x f x g x H x -=-⋅-=-=-⋅=-故()H x 为奇函数7.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数?2222(1)(1);1(3);1(5)sin cos 1;y x x x y x y x x =--=+=-+23(2)3;(4)(1)(1);(6)2x xy x x y x x x a a y -=-=-+-=解:(1)因为2222()()1()(1)()f x x x x x f x ⎡⎤-=---=-=⎣⎦所以()f x 为偶函数(2)因为2323()3()()3f x x x x x-=---=+()(),f x f x -≠且()()f x f x -≠-所以()f x 既非偶函数又非奇函数(3)因为22221()1()()1()1x x f x f x x x----===+-+所以()f x 为偶函数(4)因为()(1)(1)()f x x x x f x -=-+-=-所以()f x 奇函数(5)因为()sin()cos()1sin cos 1,f x x x x x -=---+=--+()()f x f x -≠且()()f x f x -≠-所以()f x 既非偶函数又非奇函数(6)因为()()2x xa af x f x -+-==所以()f x 为偶函数8.下列函数中哪些是周期函数?对于周期函数,指出其周期2(1)cos(2);(3)1sin ;(5)sin y x y x y xπ=-=+=(2)cos 4;(4)cos ;y x y x x ==解:(1)是周期函数,周期2l π=(2)是周期函数,周期2lπ=(3)是周期函数,周期2l =(4)不是周期函数(5)是周期函数,周期l π=9.求下列函数的反函数(1)(3)(0);(5)1ln(2);y ax by ad bc cx dy x =+=-≠+=++1(2);1(4)2sin 3(662(6)21xxxy xy x x y ππ-=+=-≤≤=+解:(1)由y=31x y =-,既反函数为31y x =-(2)由11x y x -=+解得11yx y -=+,既反函数为11x y x -=+(3)由ax b y cx d +=+解得dy bx cy a -+=-,既反函数为dx b y cx a-+=-(4)由2sin 3()66y x x ππ=-≤≤解得1arcsin 32yx =,既反函数为1arcsin32xy =(5)由1ln(2)y x =++解得log 1yx y=-,既反函数为log1xy x=-(6)由221x x y =+解得2log 1yx y=-,既反函数为2log 1xy x=-10.设函数()f x 在数集X 上有定义,试证:函数()f x 在X 上有界的充分必要条件是它在X 上既有上界又有下界解:设()f x 在X 上有界,既存在0M >,使得(),,f x M x X ≤∈故(),,M f x M x X -≤≤∈既()f x X 上有上界M ,下界M-反之,设()f x 在X 上有上界1K ,下界2K ,即21(),K f x K x X≤≤∈取{}12max ,MK K =,则有(),f x M x X≤∈即()f x 在X 上有界11.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x的函数值21212212212212(1),sin ,,;63(2)sin ,2,,;84(3)1,1,2;(4),,0,1;(5),,1,1u xy u u x x x y u u x x x y u x x x y e u x x x y u u e x x ππππ=========+==========-解:22121212122221213(1)sin ,,44(2)sin 2,1(3)(4),1,(5),,x x y x y y y x y y y y y y e y y e y e y e y e -===============12.设的定义域[]0,1D=,求下列各函数的定义域:2(1)();(3)()(0);f x f x a a +>(2)(sin )(4)()()(0)f x f x a f x a a ++->解:[][][]2(1)011,1(2)0sin 12,(21),(3)01,1x x x x n n n Z x a x a a ππ≤≤⇒∈-≤≤⇒∈+∈≤+≤⇒∈--01(4)01x a x a ≤+≤⎧⇒⎨≤-≤⎩当102a <≤时,[],1x a a ∈-;当12a >时定义域为∅13.设1,1()0,1,()1,1xx f x x g x e x ⎧<⎪===⎨⎪->⎩求[]()f g x 和[]()g f x ,并作出这两个函数的图形解:[]1,0()()0,01,0xx f g x f e x x <⎧⎪===⎨⎪->⎩[]()1,1()1,1,1f x e x g f x e x e x -⎧<⎪===⎨⎪>⎩[]()f g x 与[]()g f x 的图形依次如图12-,图13-所示14.已知水渠的横断面为等腰梯形,斜角40 = (图1-4).当过水断面ABCD 的面积为定值0S 时,求湿周()L L AB BC CD =++与水深h之间的函数关系式,并指明其定义域解:sin 40hAB CD ==又01(2cot 40)2S h BC BC h ⎡⎤=++⋅⎣⎦得0cot 40S BC h h=-⋅ 所以02cos40sin 40S L h h -=+而0h >且0cot 400S h h-⋅> ,因此湿周函数的定义域为15.设xOy 平面上有正方形}(,)01,01D x y x y =≤≤≤≤及直线:(0)l x y t t +=≥若()S t 表示正方形D 位于直线左下方部分的面积,试求()S t 与t 之间的函数关系解:当01t ≤≤时,21()2S t t=当12t <≤时,2211()1(2)2122S t t t t =--=-+-当2t >时,()S t 1=故221,012121,1221,2t t t t t t ⎧≤≤⎪⎪⎪-+-<≤⎨⎪>⎪⎪⎩16.求联系华氏温度(用F 表示)和摄氏温度(用C 表示)的转换公式,并求(1)90F的等价摄氏温度和5C - 的等价华氏温度;(2)是否存在一个温度值,使华氏温度计和摄氏温度计的读数是一样的?如果存在,那么该温度值是多少?解:设,FmC b =+其中,m b 均为常数因为32F = 相当于0,212C F == 相当于100C = ,所以2123232, 1.8100b m -===故 1.832F C =+或5(32)9C F =-5(1)90,(32)32.295, 1.8(5)3223F C F C F ==-≈=-=⨯-+=(2)设温度值t 符合题意,则有1.82,40t t t =+=-即华氏40-恰好也是摄氏40-17.已知Rt ABC 中,直角边AC BC ,的长度分别为2015,,动点P 从C 出发,沿三角形边界按CB A →→方向移动;动点Q 从C 出发,沿三角边界按C A B →→方向移动,移动到两动点相遇时为止,且点Q 移动的速度是点P 移动的速度的2倍.设动点P 移动的距离为x ,CPQ 的面积为y ,试求y 与x 之间的函数关系.解:因为20,15,ACBC ==所以,25AB ==由202152025<⋅<+可知,点,P Q 在斜边AB 上相遇令2152025x x +=++得20x =,即当20x =时,点,P Q 相遇,因此所求函数的定义域为(0,20)(1)当010x <<时,点P 在CB 上,点Q 在CA 上(图1-5)由,2CPx CQ x ==,得2y x =(2)当1015x ≤≤时点P 在CB 上点Q 在AB 上(图1-6),220CP x AQ x ==-设点Q 到BC 的距离为h ,则452,202525BQ hx -==得4(452)5h x =-,故2124(452)18255y xh x x x x==-=-+(3)当1520x <<时点,P Q 都在AB 上(图1-7)15,220,603BP x AQ x PQ x=-=-=-设点C 到AB 的距离为h ',则15201225h ⋅'==得1183602y PQ h x '=⋅=-+综上可得22,010418,1015518360,1520x x x x x x x ⎧<<⎪⎪-+≤≤⎨⎪-+<<⎪⎩18.利用以下美国人口普查局提供的世界人口数据以及指数模型来推测2020年的世界人口解:1.1,于是由表中第3列,猜想2008年后世界人口的年增长率是00在2008年后的第t年,世界人口将是p t=⨯(百万)()6708.2(1.011)tt=,于是2020年对应1212(12)6708.2(1.011)7649.3p=⨯≈(百万)≈亿即推测2020年的世界人口约为76亿习题1-21.下列各题中,哪些数列收敛,哪些数列发散?对收敛数列,通过观察{}n x 的变化趋势,写出它们的极限:{}21(1);21(3)2;(5)(1);1(7);n n n n n n ⎧⎫⎨⎬⎩⎭⎧⎫+⎨⎬⎩⎭-⎧⎫-⎨⎬⎩⎭1(2)(1);1(4);121(6);31(8)(1)1n n n nn n n n n ⎧⎫-⎨⎬⎩⎭-⎧⎫⎨⎬+⎩⎭⎧⎫-⎨⎬⎩⎭+⎧⎫⎡⎤-+⎨⎬⎣⎦⎩⎭解:(1)收敛,2lim 0nn →=(2)收敛,1lim(1)0nn n→∞-=(3)收敛,21lim(2)2n n→∞+=(4)收敛,1lim11n n n →∞-=+(5){}(1)nn -发散(6)收敛,21lim 03n n →∞-=(7)1n n ⎧⎫-⎨⎬⎩⎭发散(8)1(1)1nn n +⎧⎫⎡⎤-+⎨⎬⎣⎦⎩⎭发散2.(1)数列的有界性是数列收敛的什么条件?(2)无界数列是否一定收敛?(3)有界数列是否一定收敛?解:(1)必要条件(2)一定发散(3)未必一定发散,如数列{}(1)n-有界,但它是发散的3.下列关于数列的极限是的定义,哪些是对的,哪些是错的?如果是对的,试说明理由;如果是错的,试给出一个反例。

相关文档
最新文档