北师大版七年级下册第四章三角形全等复习练习题(无答案)

合集下载

北师大版七年级下册第4章全等三角形复习检测(PDF版,无答案)

北师大版七年级下册第4章全等三角形复习检测(PDF版,无答案)

三角形全等复习一、必做作业:1.△ABC 中,三边长为a ,b ,c ,且a >b >c ,若b=8,c=3,则a 的取值范围是( )A.3<a<8B.5<a<11C.8<a<11D.6<a<102.如图所示,D ,E ,F 分别为ΔABC 三边中点,则与ΔDEF 全等的三角形有 ( )A .1个B .2个C .3个D .4个3.如图所示,已知∠1=∠2,AC =AD ,增加下列条件:①AB =AE ;②BC =ED ; ③∠C =∠D ;④∠B =∠E .其中能使ΔABC ≌ΔAED 的条件有 ( )A .4个 B. 3个 C .2个 D .1个4.如图5,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N , 有如下结论: △ACE ≌△DCB ; ② CM =CN ;③ AC =DN 。

④MN ∥AB其中,正确结论的个数是( )A .4个 B.3个 C .2个 D.1个5.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在同一条直线上,如图2,可以得到EDC ∆≌ABC ∆,所以ED =AB ,因此测得ED 的长就是AB 的长,判定EDC ∆≌ABC ∆的理由是( )A .SASB .ASAC .SSSD .HL6.如图所示,AB =CD ,AD ,BC 相交于点O ,要使ΔABO ≌ΔDCO ,应添加的 条件为 .(只需写一个)7.如图所示,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使ΔABE ≌ΔACD ,需添加一个条件是 .(只需写出一个条件)。

8.如图所示,已知点A ,C ,B ,D 在同一条直线上,AC =BD ,AM =CN , BM =DN ,试说明AM ∥CN ,BM ∥DN .图9.如图,已知AB=AC ,AE=AD ,点D 、E 分别在AB 、AC 上,判断OE 与OD 的关系。

北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析

北师大版数学七年级下册第4章《三角形》单元测试试题  附答案解析

北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。

北师大版七年级下册 第四章 全等三角形 证明测试题(无答案)

北师大版七年级下册 第四章 全等三角形 证明测试题(无答案)

北师大版七年级下册-第四章全等三角形证明测试题1、2、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2、已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,证21∠=∠4、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACBA CDF2 1 EADB C5、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C6、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7、已知:AB=6,AC=2,D 是BC 中线,求AD 的取值范围。

8. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

9、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CDCBA FECDB ADBCA10、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .13.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA14.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .15.如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B,求证:AB=AC+CDPEDCBA D CBA16.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.17.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .19、如图:DF=CE ,AD=BC ,∠D=∠C 。

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。

北师大版数学七年级下册4.5利用三角形全等测距离练习试题

北师大版数学七年级下册4.5利用三角形全等测距离练习试题

4.5利用三角形全等测距离练习题一、选择题1.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB为A. 8mB. 10mC. 12mD. 无法确定2.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的A. SSSB. ASAC. AASD. SAS3.如图,要测量河中礁石A离岸边B点的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA′=∠CBA,∠BCA′=∠BCA可得△A′BC≌△ABC,所以A′B= AB,所以测量A′B的长即可得AB的长,判定图中两个三角形全等的理由是()A. SASB. ASAC. SSSD. AAS4.如图所示,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带()去.A. ①B. ②C. ③D. ④5.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的长度为A. 51cmB. 48cmC. 45cmD. 54cm6.如图,△ACE≌△DBF,若AD=10,BC=4,则AB的长为()A. 6B. 5C. 4D. 37.如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华走的时间是A. 13sB. 8sC. 6sD. 5s8.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()(b−a)A. aB. bC. b−aD. 129.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A. 60°B. 75°C. 90°D. 120°10.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB ≌△OA′B′的理由是()A. SASB. ASAC. SSSD. AAS二、填空题11.如图,AC=DB,AO=DO,CD=20m,则A、B两点间的距离________.12.如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使A、C、E三点在一条直线上,这时测得______的长就等于AB的长.13.现有A、B两个大型储油罐,它们相距2km,计划修建一条笔直的输油管道,使得A、B两个储油罐到输油管道所在直线的距离都为0.5km,输油管道所在直线符合上述要求的设计方案有______种.14.如图,有两个长度相等的滑梯BC和EF,∠CBA=27°,则当∠EFD=______°时,可以得出左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.15.如图,幼儿园的滑梯中有两个长度相等的梯子(BC=EF),左边滑梯的高度AC等于右边滑梯水平方向的长度DF,则∠ABC+∠DFE=________.16.如图,把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合,固定住长木棍,把短木棍摆动,端点落在射线BC上的C、D两位置时,形成△ABD和△ABC.此时AB=AB,AC=AD,∠ABD=∠ABC,但是△ABD和△ABC不全等,这说明______.17.如图,是小明荡秋千的侧面示意图,秋千链长AB=5m(秋千踏板视作一个点),静止时秋千位于铅垂线BC上,此时秋千踏板A′到地面的距离为0.5m.当秋千踏板摆动到点D 时,点D到BC的距离DE=4m.若他从D处摆动到D′处时,恰好D′B⊥DB,则D′到地面的距离为__________m.18.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO= CO═1AC;③AC⊥BD;其中,正确的结论有______个.2∠A,BG⊥MG,19.如图,在△ABC中,∠C=90°,CA=CB.点M在线段AB上,∠GMB=12垂足为G,MG与BC交于点H.若MH=8cm,则BG=________cm.20.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,每块砌墙用的砖块厚度为8cm,小聪很快就知道了两个墙脚之间的距离DE的长为______cm.三、解答题21.小强为了测量一幢高楼AB的高度,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测得楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?22.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【答案】1. B2. D3. B4. D5. C6. D7. B8. D9. C 10. A11. 20m12. DE13. 414. 6315. 90°16. 两边及一边对角对应相等的两个三角形不一定全等 17. 1.518. 319. 420. 5621. 解:∵∠CPD =36°,∠APB =54°,∠CDP =∠ABP =90°, ∴∠DCP =∠APB =54°.在△CPD 和△PAB 中,{∠CDP =∠ABP,DC =PB,∠DCP =∠APB,∴△CPD ≌△PAB(ASA).∴DP =AB .∵DB =36米,PB =10米,∴AB =36−10=26(米).答:楼高AB 是26米.22. (1)解:河的宽度是5m ;(2)证明:由作法知,BC =DC ,∠ABC =∠EDC =90°, 在Rt △ABC 和Rt △EDC 中,{∠ABC =∠EDC =90°BC =DC ∠ACB =∠ECD,∴Rt △ABC ≌Rt △EDC(ASA),∴AB =ED ,即他们的做法是正确的.。

北师大版七年级数学下册 第四章 三角形 达标检测卷(含详细解答)

北师大版七年级数学下册 第四章  三角形 达标检测卷(含详细解答)

北师大版七年级数学下册第四章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( )2.若三角形有两个内角的和是85°,那么这个三角形是 ( )A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( ) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( ) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( )A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( ) A.BD是△ABC的高 B.CD是△BCD的高C.EG是△ABD的高 D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( )A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是()①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有 km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为 cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B,C为直线l上两点,点A在直线l外,且∠ABC=45°.若P是l上一点,且△ABP是“准直角三角形”,则∠APB 的所有可能的度数为.三、解答题(共66分)19.(6分)如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF,试说明:AB∥DE.20.(8分)如图,已知线段a,b,∠α,求作三角形ABC,使AC=b,BC=2a,∠C=180°-α.(不写作法,保留作图痕迹)21.(8分)如图,AM平分∠CAD,CN平分∠ACB,△ACB≌△CAD,请你判断AM和CN的位置关系,并说明理由.22.(8分)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C =70°,求∠AEC和∠DAE的度数.23.(10分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)试说明:△ABE≌△CBD;(2)试说明:∠1=∠3.24.(12分)(南岗区校级期中)已知AD是△ABC的角平分线(∠ACB>∠B),P是射线AD上一点,过点P作EF⊥AD,交射线AB于点E,交直线BC于点M.(1)如图①,∠ACB=90°,试说明:∠M=∠BAD;(2)如图②,∠ACB为钝角,P在AD延长线上,连接BP,CP,BP平分∠EBC,CP 平分∠BCF,∠BPD=50°,∠CPD=21°,求∠M的度数.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③参考答案第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共18分)1.下列图形中与已知图形全等的是( B)2.若三角形有两个内角的和是85°,那么这个三角形是 ( A)A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定3.(襄州区期末)如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的( D) A.SSS B.ASA C.AAS D.SAS第3题图4.已知三角形的三边分别为4,a,8,那么该三角形的周长c的取值范围是( D) A.4<c<12 B.12<c<24C.8<c<24 D.16<c<245.根据下列条件,能画出唯一△ABC的是 ( C)A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=45°D.∠A=30°,∠B=60°,∠C=90°6.(东营中考)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( C)A.50° B.30° C.20° D.15°第6题图7.如图,在△ABC中,BD⊥AC,EF∥AC,交BD于点G,那么下列结论错误的是( C) A.BD是△ABC的高B.CD是△BCD的高C.EG是△ABD的高D.BG是△BEF的高第7题图第8题图8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( A)A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD9.★如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=42°,则∠P的度数为 ( C)A.44° B.66° C.96° D.92°第9题图第10题图10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中正确的个数是( D)①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是__三角形的稳定性__.第11题图第12题图12.(朔州月考)如图,CD是△ABC的中线,若AB=8,则AD的长为__4__.13.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为__10__.第13题图第14题图14.如图所示,A,B,C,D是四个村庄,B,D,C在一条东西走向公路的沿线上,BD=1 km,DC=1 km,村庄A,C和A,D间也有公路相连,且公路AD是南北走向,AC=3 km,只有AB之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AE=1.2 km,BF=0.7 km,则建造的斜拉桥长至少有__1.1__km.15.(河南中考)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__75°__.16.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为__0.7___cm.17.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__60°.第17题图第18题图18.★(锡山区期末)如果三角形的两个内角α与β满足3α+β=90°,那么我们称这样的三角形为“准直角三角形”.如图,B ,C 为直线l 上两点,点A 在直线l 外,且∠ABC =45°.若P 是l 上一点,且△ABP 是“准直角三角形”,则∠APB 的所有可能的度数为__15°或22.5°或120°__.三、解答题(共66分)19.(6分)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,试说明:AB ∥DE.解:∵BE =CF ,∴BC =EF ,在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC = DF ,BC=EF ,∴△ABC ≌△DEF(SSS),∴∠ABC =∠DEF ,∴AB ∥DE.20.(8分)如图,已知线段a ,b ,∠α,求作三角形ABC ,使AC =b ,BC =2a ,∠C =180°-α.(不写作法,保留作图痕迹)解:如图,△ABC 即为所求.21.(8分)如图,AM 平分∠CAD ,CN 平分∠ACB ,△ACB ≌△CAD ,请你判断AM 和CN 的位置关系,并说明理由.解:AM ∥CN.理由:∵△ACB ≌△CAD ,∴∠ACB =∠CAD.∵AM 和CN 分别平分∠CAD 和∠ACB ,∴∠ACN =12 ∠ACB ,∠CAM =12 ∠CAD ,∴∠ACN =∠CAM ,∴AM ∥CN.22.(8分)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C=70°,求∠AEC 和∠DAE 的度数.解:∵∠B =42°,∠C =70°,∴∠BAC =180°-∠B -∠C =68°.∵AE 平分∠BAC ,∴∠EAC =12 ∠BAC =34°.∵AD 是高,∠C =70°,∴∠DAC =90°-∠C =20°,∴∠DAE =∠EAC -∠DAC =34°-20°=14°,∴∠AEC =90°-∠DAE =76°.23.(10分)如图,点E 在CD 上,BC 与AE 交于点F ,AB =CB ,BE =BD ,∠1=∠2.(1)试说明:△ABE ≌△CBD ;(2)试说明:∠1=∠3.解:(1)∵∠1=∠2,∴∠1+∠CBE =∠2+∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS);(2)∵△ABE ≌△CBD ,∴∠A =∠C ,∵∠AFB =∠CFE ,∴∠1=∠3.24.(12分)(南岗区校级期中)已知AD 是△ABC 的角平分线(∠ACB >∠B),P 是射线AD 上一点,过点P 作EF ⊥AD ,交射线AB 于点E ,交直线BC 于点M.(1)如图①,∠ACB =90°,试说明:∠M =∠BAD ;(2)如图②,∠ACB 为钝角,P 在AD 延长线上,连接BP ,CP ,BP 平分∠EBC ,CP 平分∠BCF ,∠BPD =50°,∠CPD =21°,求∠M 的度数.解:(1)∵EF ⊥AD ,∴∠APF =∠MCF =90°.∵∠AFP =∠MFC ,∴∠M =∠PAF.∵∠BAD =∠CAD ,∴∠M=∠BAD.(2)∵∠BPD=50°,∠CPD=21°,∴∠BPC=71°,∴∠PBC+∠PCB=109°.∵∠BCF=2∠PCB,∠EBC=2∠PBC,∴∠EBC+∠BCF=218°,∴∠ABC+∠ACB=360°-218°=142°,∴∠BAC=180°-142°=38°,∴∠DCP=∠FCP=∠CPD+∠CAD=40°,∴∠MDP=∠DPC+∠DCP=61°.∵EF⊥AP,∴∠MPD=90°,∴∠M=90°-61=29°.25.(14分)如图①,点M为直线AB上一动点,△PAB,△PMN都是等边三角形,连接BN.(1)试说明:AM=BN;(2)分别写出点M在如图②和图③所示位置时,线段AB,BM,BN三者之间的数量关系,不需证明.①②③解:(1)∵△PAB和△PMN是等边三角形,∴∠BPA =∠MPN =60°, AB =BP =AP ,PM =PN =MN ,∴∠BPA -∠MPB =∠MPN -∠MPB , ∴∠APM =∠BPN.在△APM 和△BPN 中,⎩⎪⎨⎪⎧AP =BP ,∠APM =∠BPN ,PM =PN ,∴△APM ≌△BPN(SAS), ∴AM =BN.(2)图②中,BN =AB +BM ; 图③中,BN =BM -AB.。

北师大版七年级下册 第四章 三角形 复习练习题(无答案)

北师大版七年级下册  第四章  三角形 复习练习题(无答案)

第四章复习(一)1.以长为 3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,可以构成三角形的个数是 ( ) A .1 个 B .2 个 C .3 个 D .4 个2.已知△ABC 的三个内角∠A ,∠B ,∠C 满足关系式∠B+∠C=2∠A ,则此三角形( )A .一定有一个内角为 45°B .一定有一个内角为 60°C .一定是直角三角形D .一定是钝角三角形 3.把三角形的面积分为相等的两部分的是( )A .三角形的中线 B.三角形的角平分线 C.三角形的高 D.以上都不对4.如果线段a 、b 、c 能组成三角形,那么它们的长度比可能是( ) A .1:2:4 B .1:3:4 C .3:4:7 D .2:3:45.下面四个图形中,线段BD 是△ABC 的高的是()A.B.C .D.6.如图 3,把一副三角板的两个直角三角形叠放在一起,则α的度数( )A .75°B .135C .120°D .105°7.在△ABC 中,若∠B=∠C=2∠A ,则∠C=_______.8.在△ABC 中,AB=AC=5,那么BC 的范围是_______.9.如图所示是用一张长方形纸条折成的,如果,那么______ .10.在直角△ABC 中,∠C=90°,沿图中虚线剪去∠C ,则∠1+∠2= .11.直角三角形两锐角平分线的夹角为 ________.12.如果一个三角形三条高的交点在三角形外部,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定13.已知在Rt △ABC 中,∠ACB=90°,AB=5,AC=4,BC=3,CD 是AB 边上的高,求CD 的长 .14.△ABC 的三边长分别为a 、b 、c ,则|a-b+c|-|c-a-b|=________.15.已知一个等腰三角形的两边长分别是3和5,那么这个等腰三角形的周长为 . 16.一个三角形的两边长分别为3和6,第三边长为奇数,则这个三角形周长是________.17.如图,一张△ABC 纸片,小明将△ABC 沿着DE 折叠并压平,点A 与A′重合,若∠A=78°,则∠1+∠2=( )17题图 18题图18.如图,∠A =∠B ,∠C =α,DE ⊥AC ,FD ⊥AB ,则∠EDF 等于_________(用含有α的代数式表示).19.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M.如果∠ADF =100°,那么∠BMD 为________.20.如图,在△ABC 中,BD 是边AC 上的中线,E 是BC 的中点,连接DE.如果△BDE 的面积为2,那么△ABC 的面积为____.20题图 21题图 21.如图 10,在△ABC 中,D 、E 分别是 AB 、AC 上的点,点 F 在 BC 的延长线上,DE ∥BC ,∠A=44°,∠1=57°,则∠2= .22.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=28,求DE的长.23.(8 分)如图,在△ABC 中,CD、CE 分别是△ABC 的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD 的度数;(2)试用含有∠A、∠B的代数式表示∠ECD.24.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20步有一棵树C,继续前行20步到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长就是河宽AB.请你证明他们做法的正确性.25如图1、图2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,(1)在图1中,AC和BD相等吗?请说明理由(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC和BD还相等吗?26.如图,在△ABC中,BE,CF分别是AC,AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.求证:AG=AD.27.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点P,根据下列条件,求∠BPC 的度数.(1)若∠ABC=50°,∠ACB=60°,则∠BPC= ;(2)若∠ABC+∠ACB=120°,则∠BPC= ;(3)若∠A=80°,则∠BPC= ;(4)从以上的计算中,你能发现已知∠A,求∠BPC 的公式是:∠BPC= (提示:用∠A表示).。

精品解析2021-2022学年北师大版七年级数学下册第四章三角形章节练习练习题(无超纲)

精品解析2021-2022学年北师大版七年级数学下册第四章三角形章节练习练习题(无超纲)

北师大版七年级数学下册第四章三角形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:如图,D 、E 分别在AB 、AC 上,若AB =AC ,AD =AE ,∠A =60°,∠B =25°,则∠BDC 的度数是( )A .95°B .90°C .85°D .80°2、如图,AB =AC ,点D 、E 分别在AB 、AC 上,补充一个条件后,仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BE =CD D .∠AEB =∠ADC3、尺规作图:作A O B '''∠角等于已知角AOB ∠.示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS4、如果一个三角形的两边长分别为5cm 和8cm ,则第三边长可能是( )A .2cmB .3cmC .12cmD .13cm5、如图,在△ABC 和△BAD 中,AC =BD ,要使△ABC ≌△BAD ,则需要添加的条件是( )A .∠BAD =∠ABCB .∠BAC =∠ABD C .∠DAC =∠CBD D .∠C =∠D6、下列长度的各组线段中,能组成三角形的是( )A .1,2,3B .2,3,5C .3,4,8D .3,4,57、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个8、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°9、如图,ABC ≌DEF ,点B 、E 、C 、F 在同一直线上,若BC =7,EC =4,则CF 的长是( )A .2B .3C .4D .710、已知线段AB =9cm ,AC =5cm ,下面有四个说法:①线段BC 长可能为4cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为3cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C .①②④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米;则河的宽度为 _____米.2、在ABC中,39,,则BC的取值范围是_______.==AB AC3、如图,∠C=∠D=90°,AC=AD,请写出一个正确的结论________.4、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).5、如图,某同学把一块三角形的玻璃打碎成了三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带____(填序号)去配,这样做的科学依据是_______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,AD ,BE 相交于点O ,AB ⊥BE ,DE ⊥AD ,垂足分别为B ,D ,OA =OE .求证:△ABO ≌△EDO .2、在ABC 中,AC BC =,90ACB ∠=︒,点D 是直线AC 上一动点,连接BD 并延长至点E ,使ED BD =.过点E 作EF AC ⊥于点F .(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:2AD AF EF=+.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,AB∥CF,E为DF的中点,AB=20,CF=15,求BD的长度.4、某中学八年级学生进行课外实践活动,要测池塘两端A,B的距离,因无法直接测量,经小组讨论决定,先在地上取一个可以直接到达A,B两点的点O,连接AO并延长到点C,使AO=CO;连接BO并延长到点D,使BO=DO,连接CD并测出它的长度.(1)根据题中描述,画出图形;(2)CD的长度就是A,B两点之间的距离,请说明理由.5、如图,已知在△ABC 中,AB =AC =10cm ,∠B =∠C ,BC =8cm ,D 为AB 的中点.点P 在线段BC 上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上由点C 向点A 运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等?请说明理由.(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?-参考答案-一、单选题1、C【分析】根据SAS 证△ABE ≌△ACD ,推出∠C =∠B ,求出∠C 的度数,根据三角形的外角性质得出∠BDC =∠A +∠C ,代入求出即可.【详解】解:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),∴∠C =∠B ,∵∠B =25°,∴∠C=25°,∵∠A=60°,∴∠BDC=∠A+∠C=85°,故选C.【点睛】本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB=AC,A A∠=∠,ASA可以证明△ABE≌△ACD,故A不符合题意;若B C∠=∠,则根据()若AD=AE,则根据(SAS)可以证明△ABE≌△ACD,故B不符合题意;SSA不可以证明△ABE≌△ACD,故C符合题意;若BE=CD,则根据()AAS可以证明△ABE≌△ACD,故D不符合题意;若∠AEB=∠ADC,则根据()故选:C.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.3、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.4、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c,c,由题可知8-5<<8+5c,即3<<13所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点5、B【分析】利用全等三角形的判定方法对各选项进行判断.解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、D【分析】根据两边之和大于第三边,两边之差小于第三边判断即可.【详解】∵1+2=3,∴A不能构成三角形;∵3+2=5,∴B不能构成三角形;∵3+4<8,∴C不能构成三角形;∵∵3+4>5,∴D 能构成三角形;故选D .【点睛】本题考查了三角形的三边关系定理,熟练掌握性质定理是解题的关键.7、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆,∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆,∴AFH AFG ∠=∠∴FA 平分DFE ∠故④正确假设AF 平分DAE △则DAF EAF ∠=∠∵DAB CAE ∠=∠∴DAF DAB FAE CAE ∠-∠=∠-∠即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.8、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD =60°,∠B =20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.9、B【分析】根据全等三角形的性质可得BC EF=,根据CF EF EC=-即可求得答案.【详解】解:ABC≌DEF,∴BC EF=点B、E、C、F在同一直线上,BC=7,EC=4,∴CF EF EC-=-=BC EC=-743故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.10、D【分析】分三种情况:C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:∵线段AB=9cm,AC=5cm,∴如图1,A,B,C在一条直线上,∴BC=AB−AC=9−5=4(cm),故①正确;如图2,当A,B,C在一条直线上,∴BC=AB+AC=9+5=14(cm),故②正确;如图3,当A,B,C不在一条直线上,9−5=4cm<BC<9+5=14cm,故线段BC可能为9cm,不可能为3cm,故③,④正确.故选D.【点睛】此题主要考查了三角形三边关系,线段之间的关系,正确分类讨论是解题关键.二、填空题1、5【分析】将题目中的实际问题转化为数学问题,利用全等三角形的判定方法证得两个三角形全等即可得出答案.【详解】解:由题意知,在Rt ABC和Rt EDC中,90ABC EDC BC DC ACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, Rt ABC Rt EDC ≅,∴5AB ED ==,即河的宽度是5米,故答案为:5.【点睛】题目主要考查全等三角形的应用,熟练应用全等三角形的判定定理和性质是解题关键.2、612BC <<【分析】由构成三角形的条件计算即可.【详解】∵ABC 中39AB AC ==,∴AC AB BC AC AB -<<+∴612BC <<.故答案为:612BC <<.【点睛】本题考查了由构成三角形的条件判断第三条边的取值范围,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.3、BC =BD【分析】根据HL 证明△ACB 和△ADB 全等解答即可.【详解】解:在Rt△ACB和Rt△ADB中,AC ADAB AB=⎧⎨=⎩,∴△ACB≌△ADB(HL),∴BC=BD,故答案为:BC=BD(答案不唯一).【点睛】此题考查全等三角形的判定和性质,关键是根据HL证明△ACB和△ADB全等解答.4、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.5、③ ASA【分析】由题意已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法进行分析即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为:③;ASA.【点睛】本题主要考查全等三角形的判定方法的实际应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.三、解答题1、见解析【分析】利用AAS即可证明△ABO≌△EDO.【详解】证明:∵AB ⊥BE ,DE ⊥AD ,∴∠B =∠D =90°.在△ABO 和△EDO 中,,B D AOB EOD OA OE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABO ≌△EDO .【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2、(1)DF DC =(2)见解析(3)2AF EF AD -=【分析】(1)利用边相等和角相等,直接证明EDF BDC ∆∆≌,即可得到结论.(2)利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.(3)要证明2AF EF AD -=,先利用边相等和角相等,直接证明EDF BDC ∆∆≌,得到DF DC =和EF BC AC ==,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:DF DC =90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=.(2)解:当点D 在线段AC 的延长线上时,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,=2AF EF AD DF AC AD CD AD ∴+=++=+.(3)解:2AF EF AD -=,如下图所示:90ACD ∠=︒,EF AC ⊥,90ACB EFD ∴∠=∠=︒,在EDF ∆和BDC ∆中,ACB EFD FDE BDC ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()EDF BDC AAS ∴∆∆≌,DF DC ∴=,EF BC AC ==,()2AF EF AF AC AF DF AD AF DF AD AD ∴-=-=--=-+=.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、5【分析】由平行线的性质可得A ECF ∠=∠,ADE F ∠=∠,再由E 为DF 的中点,得到DE FE =,即可证明ADE CFE ≌,得到15==AD CF ,由此求解即可.【详解】解:∵∥AB CF∴A ECF ∠=∠,ADE F ∠=∠,又∵E 为DF 的中点,∴DE FE =,∴()≌ADE CFE AAS ,∴15==AD CF ,∴20155=-=-=BD AB AD .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.4、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可;(2)利用全等三角形的性质解决问题即可.【详解】解:(1)图形如图所示:(2)连接AB .在△AOB 和△COD 中,AO CO AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩, ∴△AOB ≌△COD (SAS ),∴AB =CD ,∴CD 的长度就是A ,B 两点之间的距离.【点睛】本题考查作图﹣应用与设计作图,全等三角形的判定和性质等知识,解题的关键是学会利用全等三角形的性质解决问题.5、(1)△BPD 与△CQP 全等,理由见解析;(2)当点Q 的运动速度为154cm /s 时,能够使△BPD 与△CQP 全等.【分析】(1)经过1秒后,PB =3cm ,PC =5cm ,CQ =3cm ,由已知可得BD =PC ,BP =CQ ,∠ABC =∠ACB ,即据SAS 可证得△BPD ≌△CQP ;(2)可设点Q 的运动速度为x (x ≠3)cm /s ,经过ts △BPD 与△CQP 全等,则可知PB =3tcm ,PC =8-3tcm ,CQ =xtcm ,据(1)同理可得当BD =PC ,BP =CQ 或BD =CQ ,BP =PC 时两三角形全等,求x的解即可.【详解】解:(1)经过1秒后,PB =3cm ,PC =5cm ,CQ =3cm ,∵△ABC 是等边三角形,D 为AB 的中点.∴∠ABC =∠ACB =60°,BD=PC =5cm ,在△BPD 和△CQP 中,BD PC ABC ACB BP CQ =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS );(2)设点Q 的运动速度为x (x ≠3)cm /s ,经过ts △BPD 与△CQP 全等;则可知PB =3tcm ,PC =(8-3t )cm ,CQ =xtcm ,∵AB =AC ,∴∠B =∠C ,根据全等三角形的判定定理SAS 可知,有两种情况:①当BD =PC 且BP =CQ 时,△BPD ≌△CQP (SAS ),则8-3t =5且3t =xt ,解得x =3,∵x ≠3,∴舍去此情况;②BD=CQ,BP=PC时,△BPD≌△CPQ(SAS),则5=xt且3t=8-3t,解得:x=154;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为154cm/s时,能够使△BPD与△CQP全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)

北师大版七年级数学下册 第四章 三角形 达标测试卷(word打印版+详细答案)

北师大版七年级数学下册第四章三角形达标测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,CN∥AB,若MB=6 cm,CN=4 cm,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C点拨:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA点拨:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm点拨:由CN∥AB,点E为AC的中点,可得∠EAM=∠ECN,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM=CN=4 cm.所以AB=AM+MB=4+6=10(cm).14.SSS15.1<c<7;3<m<17点拨:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形EFMN对角线EM的取值范围为4-3<EM<4+3,即1<EM<7.所以10-7<m<10+7,即3<m<17.16.5点拨:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC=∠DBF.又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,⎩⎨⎧∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△ACN :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△ACN 中,⎩⎨⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN (ASA). 选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD⊥AB,所以∠BCD+∠B=90°.所以∠ECF=∠B.在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。

北师大版七年级下册第四章《三角形》章末习题(无答案)

北师大版七年级下册第四章《三角形》章末习题(无答案)

《三角形》章末习题知识技能专题一:三角形三边关系1.小明有两根长度分别为4cm和9cm的木棒,他想再取一根木棒,并充分利用这三根木棒钉一个三角形木框,则小明选取的第三根木棒长度可以是()A.5cmB.9cmC.13cmD.17cm2.若实数m,n满足等式0-m,且m,n恰好是等腰△ABC的-n+22=)4(两边的边长,则△ABC的周长是()A.12B.10C.8D.63.长为9,6,5,4的四根木条,组成三角形,选法有()A.1种B.2种C.3种D.4种专题二:三角形内角和4.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形5.如图,在△ABC中,∠B,∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°专题三:全等三角形的判定及应用6.如图,小敏做了一个角平分仪,ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线,此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,就这样就有∠QAE=∠PAE,则说明这两个三角形全等的依据是()A.SASB.ASAC.AASD.SSS第8题图7.如图,在方格纸中,以AB为一边作三角形ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个8.如图,点B,A,D,E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是。

9.如图,AB与CD相交于点E,AE=CE,DE=BE.试说明:∠A=∠C.10.如图,点A,C,B,D在同一条直线上,∠M=∠N,AM=CN,请你添加一个条件,使△ABM≌△CDN。

北师大版七年级数学下册 第四章 三角形 第二节 图形的全等 同步练习题(无答案)

北师大版七年级数学下册 第四章 三角形 第二节 图形的全等 同步练习题(无答案)

第1节综合训练1.等腰三角形的两个角的比是1:2,则该三角形的形状不可能是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.已知三角形的三边长分别为a,b,c,化简|a﹣b+c|﹣|a﹣b﹣c|得()A.2a﹣2b B.2a﹣2c C.a﹣2b D.03.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.如图AD是△ABC的中线,点E、F是AD的三等分点,若△ABC的面积为30cm2,则图中阴影部分的面积为()A.5cm2B.10cm2C.15cm2D.20cm25.一个三角形有两边长分别为2,3,第三边长为偶数,则这个三角形的周长为()A.7B.9C.7或9D.7或8或96.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.7.(1)已知a+b=4,a2+b2=8,求ab与(a﹣b)2的值.(2)已知△ABC三边分别是a、b、c,化简代数式:|a+b﹣c|﹣|c﹣a+b|﹣|b﹣c﹣a|+|b﹣a﹣c|.8.如图,在△ABC中,AD是高,AE,BF分别是∠BAC,∠ABC的角平分线,它们相交于点O,∠BAC =50°,∠C=∠BAC+20°,求∠DAC和∠BOA的度数.图形的全等题型一、全等图形的概念1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列叙述中错误的是()A.能够完全重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形题型二、全等三角形的性质及应用3.如图,△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=5,BD=6,AD=4,那么BC等于()A.4B.6C.5D.无法确定4.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°6.如图,已知△ABC≌△DEF,点B,E,C,F在同一条直线上,若BC=5,BE=2,则BF=.7.如图已知△ABE≌△ACF,AC交BE于点M,CF交BE于点D,交AB于点N,∠E=∠F=90°,∠CMD =60°,则∠2=.8.如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=25°,则∠B的度数是.9.如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.10.如图,△ABE和△ACD是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC=150°,求∠θ的度数.。

北师大版七年级下册第四章三角形测试题(无答案)

北师大版七年级下册第四章三角形测试题(无答案)

北师大版七年级下册第四章三角形测试题〔无答案〕七年级数学下第三章三角形检测题学号 姓名一、选择题〔每题3分,共30分〕1. 三角形被遮住的两个角不可能是〔 〕A .一个锐角,一个钝角B .两个锐角C .一个锐角,一个直角D .两个钝角 2.在以下列图中,正确画出AC 边上高的是〔 〕.B B B BEA E C A C E A C E A CA B C D 以下说法:①两个面积相等的三角形全等;②一条边对应相等的两个等边三角形全等; ③全等图形的面积相等;④所有的正方形都全等中,正确的有 〔 〕 A 、1个 B 、2个 C 、3个 D 、4个 两根木条的长分别是10cm 和20cm ,要钉成一个三角形的木架, 那么第三根木条的长度可以是〔 〕A 、10cm B 、5cm C 、25cm D 、35cm 小明不慎将一块三角形的玻璃摔碎成如下列图的四块你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形.应该带〔〕.3 2A .第1块B .第2块C .第3块D .第4块416. 如图,两根钢条AA′、BB′的中点 O 连在一起,使 AA′、BB′可以绕着点 O 自由转动,就做成了一个测量工具,A′B′的长等于内槽宽 AB , 那么判定△OAB≌△OA′B′的理由是〔 〕A .边角边B .角边角C .边边边D .角角边 7.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,那么图中面积相等的三角形有〔 〕 A .4对 B .5对 C .6对 D .7对8.如图,AB=CD ,AB∥CD,∠BAE=∠DCF,BD=8,EF=4,那么BE=〔〕9. 在以下条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶5∶6,③∠A=900-∠B,④∠A=∠B=1 ∠C 中,能确定△ABC 是直角三角形的条件有 ( ) 2A 、1个B 、2个C 、3个D 、4个 10.在以下条件中,不能说明△ ABC≌△A’B’C 的是〔 〕.A 〕∠A =∠A ’,∠C =∠C ’,AC =A ’C ’B 〕∠A =∠A ’,AB =A ’B ’,BC =B ’C ’ C 〕∠B =∠B ’,∠C =∠C ’,AB =A ’B ’D 〕AB =A ’B ’,BC =B ’C ,AC =A ’C ’二、填空题:〔每题3分,共27分〕11.如图在建筑工地上,工人师傅砌门时,常用木条EF 固定长方形门框,使其不变形,这种做法的根据是 12.等腰三角形的两边长是5cm 和6cm ,那么此三角形的周长是__ ___ .13.在ABC 中,∠A+∠B=120°,∠B+∠C=160°,那么∠B=。

北师大版七年级数学下册第四章三角形专题训练试卷(含答案详细解析)

北师大版七年级数学下册第四章三角形专题训练试卷(含答案详细解析)

北师大版七年级数学下册第四章三角形专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点B、E、C、F在同一条直线上,已知AB DE∠=∠,添加下列条件中的一个:①=,A D∠=∠.其中不能确定ABC DEF∠=∠;④ACB F≅的是()AC DF=;③ABC DEC=;②BC EFA.①B.②C.③D.④2、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE=,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.403、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论:①AE =BF ;②AE ⊥BF ;③QF =QB ;④S 四边形ECFG =S △ABG .正确的个数是( )A .1B .2C .3D .44、如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒,连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A .1个B .2个C .3个D .4个5、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点A ,再在河的这一边选定点B 和F ,使AB BF ⊥,并在垂线BF 上取两点C 、D ,使BC CD =,再作出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,因此证得ABC EDC △△≌,进而可得AB DE =,即测得DE 的长就是AB 的长,则ABC EDC △△≌的理论依据是( )A .SASB .HLC .ASAD .AAA6、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,107、以下列长度的三条线段为边,能组成三角形的是( )A .359,,B .5,6,13C .4,4,8D .5,6,108、根据下列已知条件,能画出唯一的ABC ∆的是( )A .90C ∠=︒,6AB = B .4AB =,3BC =,30A ∠=︒C .60A ∠=︒,45B ∠=︒,4AB =D .3AB =,4BC =,8CA =9、如图,ABC 和DEF 全等,且A D ∠=∠,AC 对应DE .若6AC =,5BC =,4AB =,则DF 的长为( )A .4B .5C .6D .无法确定10、下列各组图形中,是全等形的是( )A .两个含30°角的直角三角形B .一个钝角相等的两个等腰三角形C .边长为5和6的两个等腰三角形D .腰对应相等的两个等腰直角三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,△ABC中,∠B=20°,D是BC延长线上一点,且∠ACD=60°,则∠A的度数是____________ 度.2、如图,在ABC中,AB AC∠=∠,若16=,点D,E在边BC上,BAD CAEDE=,则CE的长BC=,6为______.∠-∠=_______°.3、我们将一副三角尺按如图所示的位置摆放,则αβ4、如图,在ABC中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知AD CD=,2=,且BE CE ABC的面积为60平方厘米,则ADF的面积为______平方厘米;如果把“2=”改为BE CE“BE nCE=”其余条件不变,则ADF的面积为______平方厘米(用含n的代数式表示).5、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点B ,F ,C ,E 在同一直线上,AB ∥DE ,BF =CE ,AB =ED ,求证:∠A =∠D .2、如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==,,(1)求证:AD 平分BAC ∠;(2)已知102AC BE ==,,求AB 的长.3、如图,在ABC 中,90ACB ∠=︒,CE AB ⊥于点E ,AD AC =,AF 平分CAB ∠交CE 于点F ,DF 的延长线交AC 于点G .求证:DF BC ∥.4、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.5、如图,已知点A,E,F,C在同一条直线上,AE=CF,AB∥CD,∠B=∠D.请问线段AB与CD相等吗?说明理由.-参考答案-一、单选题1、B【分析】由已知条件知可得:∠A=∠D,AB=DE,再结合全等三角形的判定定理进行解答即可.【详解】解:已知条件知:∠A=∠D,AB=DEA、当添加AC=DF时,根据SAS能判ABC DEF≅,故本选项不符合题意;B、当添加BC=EF时则BC=EF,根据SSA不能判定ABC DEF≅,故本选项符合题意;C、当添加ABC DEC∠=∠时,根据ASA能判定ABC DEF≅,故本选项不符合题意;D、当添加ACB F∠=∠时,根据AAS能判定ABC DEF≅,故本选项不符合题意.故选:B.【点睛】本题主要考查了全等三角形的判定定理,理解SSA不能判定三角形全等成为解答本题的关键.2、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.3、D【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正确.【详解】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,AB BCABE BCF BE CF=⎧⎪∠=∠⎨⎪=⎩,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四边形ECFG=S△ABG,故④正确.故选:D.【点睛】本题主要是考查了三角形全等、正方形的性质,熟练地综合应用全等三角形以及正方形的性质,证明边相等和角相等,是解决本题的关键.4、C【分析】由全等三角形的判定及性质对每个结论推理论证即可.【详解】∵50DAB CAE ∠=∠=︒∴DAB BAC CAE BAC ∠+∠=∠+∠∴DAC BAE ∠=∠又∵AB AD =,AC AE =∴()DAC BAE SAS ≅△△∴BE CD =故①正确∵DAC BAE ≅∴AEB ACD ∠=∠由三角形外角的性质有ACD CFE AEB CAE ∠+∠=∠+∠则50EFC CAE ∠=∠=︒故②正确作AH DC ⊥于H ,AG BE ⊥于G ,如图所示:则90AGE AHC =∠∠=°,在AHC 和AGE 中,AHC AGE DAC BEA AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()AG AHC E AAS ≅∆, ∴AH AG =,在AHF △和AGF 中,AH AG AHF AGF AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AGF L A H HF ≅∆, ∴AFH AFG ∠=∠ ∴FA 平分DFE ∠ 故④正确假设AF 平分DAE △ 则DAF EAF ∠=∠ ∵DAB CAE ∠=∠ ∴DAF DAB FAE CAE ∠-∠=∠-∠ 即BAF CAF ∠=∠由④知AFD AFE ∠=∠又∵BFD CFE ∠∠、为对顶角∴BFD CFE ∠=∠∴BFD AFD CFE AFE ∠+∠=∠+∠∴AFB AFE ∠=∠∴在ABF 和ACF 中,BAF CAF AF AF BFA CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()CF BFA A ASA ≅∆即AB =AC又∵AB AC >故假设不符,故AF 不平分DAE △故③错误.综上所述①②④正确,共有3个正确.故选:C .【点睛】本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.5、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵AB BF ⊥,DE BF ⊥,∴90ABC EDC ∠=∠=︒,在ABC 和EDC △中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC EDC △△≌(ASA ),∴AB DE =;故选C .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.6、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A 、1+2=3,不能组成三角形,不符合题意;B 、3+4=7,不能组成三角形,不符合题意;C 、2+3>4,能组成三角形,符合题意;D 、4+5<10,不能组成三角形,不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.7、D【分析】根据三角形的三边关系,即可求解.【详解】解:A 、因为3589+=< ,所以不能构成三角形,故本选项不符合题意;B 、因为651113+=< ,所以不能构成三角形,故本选项不符合题意;C 、因为448+= ,所以不能构成三角形,故本选项不符合题意;D 、因为651110+=> ,所以能构成三角形,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、C【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A .∠C =90°,AB =6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B .4AB =,3BC =,30A ∠=︒,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C .60A ∠=︒,45B ∠=︒,4AB =,符合全等三角形的判定定理ASA ,能画出唯一的三角形,故本选项符合题意;D .3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C .【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.9、A【分析】全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.【详解】∵ABC和DEF全等,A D∠=∠,AC对应DE∴ABC DFE≅∴AB=DF=4故选:A.【点睛】本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.10、D【分析】根据两个三角形全等的条件依据三角形全等判定方法SSS,SAS,AAS,SAS,HL逐个判断得结论.【详解】解:A、两个含30°角的直角三角形,缺少对应边相等,故选项A不全等;B、一个钝角相等的两个等腰三角形.缺少对应边相等,故选项B不全等;C、腰为5底为6的三角形和腰为6底为5的三角形不全等,故选项C不全等;D、腰对应相等,顶角是直角的两个三角形满足“边角边”,故选项D是全等形.故选:D.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.二、填空题1、40【分析】直接根据三角形外角的性质可得结果.【详解】解:∵∠B=20°,∠ACD=60°,∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴602040∠=∠-∠=︒-︒=︒,A ACD B故答案为:40.【点睛】本题考查了三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键2、5【分析】由题意易得B C=,进而问题可求解.△≌△,则有BD CE∠=∠,然后可证ABD ACE【详解】解:∵AB AC=,∴B C∠=∠,∵BAD CAE∠=∠,∴ABD ACE△≌△(ASA),∴BD CE=,∵16BC=,6DE=,∴10BD CE BC DE+=-=,∴5BD CE==;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.3、45【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.4、630 21 n【分析】连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=12S△ABC=30,S△ACE=13S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得1102203x x,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积. 【详解】如图,连接CF,∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,∴S△BCD=12S△ABC=30,S△ACE=13S△ABC=20,设S△ADF=S△CDF=x,则S △BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=13S△BFC=13(30﹣x)=1103x,∵S△ACE=S△FEC+S△AFC,∴1102203x x,解得x=6,即△ADF的面积为6平方厘米;当BE=nCE时,S△AEC=601n,设S△AFD=S△CFD=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=11n+S△BFC=11n+(30﹣x),∵S△ACE=S△FEC+S△AFC,∴16030211x xn n,解得3021xn,即△ADF的面积为3021n平方厘米;故答案为:30 6,21n【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.5、8cm2【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【详解】解:∵F点为CE的中点,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D点为BC的中点,∴S△BDE=12S△BCE=2cm2,∵E点为AD的中点,∴S△ABD=2S△BDE=4cm2,∴S △ABC =2S △ABD =8cm 2.故答案为:8cm 2.【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.三、解答题1、见解析【分析】根据平行线的性质得出∠B =∠E ,进而利用SAS 证明ABC DEF ≅,利用全等三角形的性质解答即可.【详解】证明:FB CE =,FB CF CE CF ∴+=+, 即BC EF =.//AB DE ,B E ∴∠=∠.在ABC 和DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ()ABC DEF SAS ∴≅△△A D ∴∠=∠.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ABC DEF ≅是解题的关键.2、(1)证明见解析;(2)6【分析】(1)由题所给条件可得BED CFD ≅△△,即得ED =DF ,则可得AED AFD ≅,则EAD CAD ∠=∠,故AD 平分BAC ∠.(2)由(1)问所得条件,得AF =AE =8,则AB =8-2=6.【详解】(1)∵DE AB ⊥于,E DF AC ⊥于F ,BD CD BE CF ==、∴BED CFD ≅△△(HL )∴ED =DF∵DE AB ⊥于,E DF AC ⊥于F ,AD =AD∴AED AFD ≅(HL )∴EAD CAD ∠=∠故AD 平分BAC ∠.(2)∵BE =CF∴AF =AC -BE =10-2=8∴AE =AF =8∴AB =AE -BE =8-2=6.【点睛】本题考查了直角三角形全等的判定,所应用的定理为斜边、直角边定理:斜边和一条直角边分别相等的两个直角三角形全等(简写成HL ).3、见解析【分析】根据已知,利用SAS 判定△ACF ≌△ADF ,从而得到对应角相等可得结论.【详解】证明:∵AF 平分CAB ∠,∴CAF DAF ∠=∠.在ΔACF 和ΔADF 中,∵AC AD CAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴()ΔΔACF ADF SAS ≅.∴ACF ADF ∠=∠.∵90ACB ∠=︒,CE AB ⊥,∴90ACE CAE ∠+∠=︒,90CAE B ∠+∠=︒,∴ACF B ∠=∠,∴ADF B ∠=∠.∴DF //BC .【点睛】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形解决问题.4、见解析【分析】先由BF =CE 说明BC= EF .然后运用SAS 证明△ABC ≌△DEF ,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE ,∴BC= EF .在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).∴AC =DF .【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC ≌△DEF 是解答本题的关键.5、AB =CD ,理由见解析.【分析】由平行线的性质得出∠A =∠C ,证明△ABF ≌△CDE (AAS ),由全等三角形的性质得出AB =CD .【详解】解:AB =CD .理由如下:∵AB ∥CD ,∴∠A =∠C ,∵AE =CF ,∴AE +EF =CF +EF ,∴AF =CE ,在△ABF 和△CDE 中,A CB D AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CDE(AAS),∴AB=CD.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理证明三角形全等.。

北师大版七年级数学下册第四章三角形---全等三角形 综合训练(含答案)

北师大版七年级数学下册第四章三角形---全等三角形 综合训练(含答案)

全等三角形综合训练一、选择题1. 在如图所示的三角形中,与图中的△ABC全等的是()2. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 43. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE4. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC5. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm6. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A. ①B. ②C. ③D. ①和②7. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙8. 如图,在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10 cm,BD CD=3 2,则点D到AB的距离是()A.6 cmB.5 cmC.4 cmD.3 cm9. 如图,OP平分∠AOB,点P到OA的距离为3,N是OB上的任意一点,则线段PN 的长度的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤310. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.3二、填空题11. 如图,已知△ABC≌△ADE,若∠B=42°,∠C=90°,∠EAB=40°,则∠BAD =________°.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 如图,△ABC≌△DEF,根据图中提供的信息,得x=________.14. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.15. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.16. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).17. (2019•襄阳)如图,已知ABC DCB∠=∠,添加下列条件中的一个:①A D∠=∠,②AC DB=,③AB DC=,其中不能确定ABC△≌△DCB△的是_ _________(只填序号).18. 如图,在Rt ABC△中,90C∠=︒,以顶点B为圆心,适当长度为半径画弧,分别交AB BC,于点M N,,再分别以点M N,为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△______ ____.三、解答题19. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.20. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.21. 如图,一艘轮船沿AC方向航行,轮船在点A时测得航线两侧的两个灯塔与航线的夹角相等,当轮船到达点B时测得这两个灯塔与航线的夹角仍然相等,这时轮船与两个灯塔的距离是否相等?为什么?22. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.23. 如图①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB ⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.全等三角形综合训练-答案一、选择题1. 【答案】C2. 【答案】B【解析】如解图,过点P作PG⊥OA于点G,根据角平分线上的点到角的两边距离相等可得,PG=PD=2.3. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.4. 【答案】C[解析] 当添加条件A时,可用“ASA”证明△ABD≌△ACD;当添加条件B时,可用“AAS”证明△ABD≌△ACD;当添加条件D时,可用“SAS”证明△ABD≌△ACD;当添加条件C时,不能证明△ABD≌△ACD.5. 【答案】C6. 【答案】C7. 【答案】D8. 【答案】C[解析] ∵BC=10 cm,BD CD=3 2,∴CD=×10=4(cm).∵AD是角平分线,∴点D到AB的距离等于CD,即点D到AB的距离为4 cm.故选C.9. 【答案】C[解析] 作PM⊥OB于点M.∵OP平分∠AOB,PE⊥OA,PM⊥OB,∴PM=PE=3.∴PN≥3.10. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt △CDF 中,∠C=45°,∴△CDF 为等腰直角三角形,∴CF=DF=1,∴∴BC=BD+CD=2A .二、填空题11. 【答案】88[解析] 因为△ABC ≌△ADE ,所以∠D =∠B =42°.又∠C =90°,所以∠E =90°,所以∠EAD =180°-42°-90°=48°.这时∠BAD =∠EAB +∠EAD =40°+48°=88°.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】2014. 【答案】AB =AC15. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.16. 【答案】答案不唯一,如∠C =∠E 或AB =FD 等17. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.18. 【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =,∴12BCD ABD S S =△△.故答案为:12.三、解答题19. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.20. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS). ∴∠BAC =∠DAC , 即AC 平分∠BAD. (2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS). ∴BE =DE.21. 【答案】解:当轮船到达点B 时,与两个灯塔的距离相等. 理由如下:如图,根据题意,得∠DAB =∠EAB ,∠1=∠2. ∵∠1+∠3=180°,∠2+∠4=180°, ∴∠3=∠4.在△ABD 与△ABE 中,⎩⎨⎧∠DAB =∠EAB ,AB =AB ,∠3=∠4,∴△ABD ≌△ABE(ASA). ∴BD =BE ,即当轮船到达点B 时,与两个灯塔的距离相等.22. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点, ∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°, ∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°, ∴∠ACE =45°.∴∠MEF =75°=∠NDF.在△DNF 和△EMF 中,⎩⎨⎧∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.23. 【答案】解:(1)证明:∵EC ⊥AD ,FB ⊥AD , ∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB+BC=BC+CD , 即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB. 在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.(2)EF 平分线段BC 仍成立.理由:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB-BC=CD-BC ,即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB.在△CEG和△BFG中,∴△CEG≌△BFG(AAS).∴CG=BG,即EF平分线段BC.。

第四章 全等三角形复习 练习-北师大版七年级数学下册(无答案)

第四章 全等三角形复习 练习-北师大版七年级数学下册(无答案)

ECDB ABCABACD全等三角形复习【编号:413】班别: 姓名: 学号: (编辑: 范德耀)教学目标:复习巩固第四章的有关知识教学重点:复习巩固第四章的有关知识教学难点:在具体题型中选择适当的全等判定方法一、知识点梳理:1.如图1:已知△ABD ≌△A CE ,AB=8,BD=7,AE=3,则CD=_______2.如图2 已知△ABD ≌△AB C ,∠C=100°,∠CBD=30°,则∠DAB=____度 图1 图2 图3 图43. 如图3,△ABC ≌△CDA 以下结论错误的是( ) A. ∠B=∠D B.AB ∥CD C.AB=CD D.AB=CD4. 如图4已知△ABC ≌△DCB, ∠A=80°,∠ABC=60°,则∠DBC=( ) A.80° B. 60° C.50° D. 40°5、如图5,在⊿AMC 和⊿BMD 中,∠1=∠2,CM=DM 加上条件 , 可得到⊿AMC ≌⊿BMD ,其理由是 。

6、如图5,在⊿AMC 和⊿BMD 中,AM=BM ,CM=DM 加上条件 , 可得到⊿AMC ≌⊿BMD ,其理由是 。

7、如图6,在⊿ADB 和⊿ADC 中,∠1=∠2,加上条件 ,可得到⊿ADB ≌⊿ADC ,其理由是 。

二、巩固练习1. 根据条件分别判定下面的三角形是否全等.依据是什么?(1) 线段AD 与BC 相交于点O ,AO =DO ,BO =CO. △ABO 与△BCO ;答:(2) AC =AD , BC =BD. △ABC 与△ABD ;答: (3) ∠A =∠C , ∠B =∠D. △ABO 与△CDO ;答: (4) 线段AD 与BC 相交于点E ,AE =BE , CE =DE , AC =BD. △ABC 与△BAD ?答:M A BCD1 2图5图6B122. 要使下列各对三角形全等,还需要增加什么条件?依据是什么?(1)∠A=∠D,∠B=∠F;增加的条件是,依据是(2)∠A=∠D,AB=DE.增加的条件是,依据是3、如图,给出下列四组条件,其中能使△ABC≌△DEF的条件有如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AC=DF,∠A=∠D,∠B=∠E;4.若两个三角形两个对应边相等,那下面哪个条件满足它们全等( )A.一对对应角相等B.角平分线相等C.不可能全等D.上述都错5.下面判断不正确的是( )A.两边对应相等的两个直角三角形全等B.两个锐角对应相等的两个直角三角形全等C.一个锐角和一条边对应相等的两个直角三角形全等D.一个角和两条边对应相等的两个直角三角形全等6.下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边7.已知:如图,∠ACB=∠DBC,根据图形条件,若增加一个条件,就可使△ABC≌△DCB。

北师大版七年级数学下册 第四章 三角形 单元测试题(无答案)

北师大版七年级数学下册 第四章 三角形 单元测试题(无答案)

1北师大版七年级数学下册第四单元三角形测试题班级: 姓名: 学号: 成绩: 一、选择题(每题3分,共30分)1.下列选项中,不能用来判断三角形全等的是( ) A .SSS B .SAS C .ASA D .AAA2.有下列长度的三条线段,能组成三角形的是( )A 、1cm ,2cm ,3cmB 、1cm ,4cm ,2cmC 、2cm ,3cm ,4cmD 、6cm ,2cm ,3cm 3.下列条件中,能判断两个直角三角形全等的是( )A 、一个锐角对应相等B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等 4.两根木条的长分别是10cm 和20cm ,要钉成一个三角形的木架, 则第三根木条的长度可以是 ( )A 、10cmB 、5cmC 、25cmD 、35cm 5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块你认为将其中的 哪一些块带去,就能配一块与原来一样大小的三角形. 应该带( ). A .第1块 B .第2 块 C .第3 块 D .第4块6.如图,两根钢条AA ′、BB ′的中点 O 连在一起,使 AA ′、BB ′可以绕着点 O 自由转动,就做成了一个测量工具, A ′B ′的长等于内槽宽 AB , 那么判定△OAB ≌△OA ′B ′的理由是( )A .边角边B .角边角C .边边边D .角角边7.已知等腰三角形的两边长是5cm 和6cm ,则此三角形的周长是( )A .16cmB .17cmC .11cmD .16cm 或17cm8.下列说法:①两个面积相等的三角形全等;②一条边对应相等的两个等边三角形全等;③全等图形的面积相等;④所有的正方形都全等中,正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个9.如图,已知∠1=∠2,则下列条件中,不能使△ABC ≌△DBC 成立的是 ( )A 、AB =CD B 、AC =BD C 、∠A =∠D D 、∠ABC =∠DBC 10.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6, ③∠A=900-∠B ,④∠A=∠B=12 ∠C 中,能确定△ABC 是直角三角形的条件有 ( )123422280︒40︒60︒40︒B ′C ′D ′O ′A ′OD C B AA 、1个B 、2个C 、3个D 、4个 二、填空题:(每题2分,共24分)1.等边三角形的每个内角都等于 º2.已知直角三角形的一个锐角的度数为50º,则其另一个锐角的度数为 度3.如图在建筑工地上,工人师傅砌门时,常用木条 EF 固定长方形门框,使其不变形,这种做法的根据是 4.如图,△ABC 中,DE ∥BC ,若∠A =80º,∠B =40º, 则∠AED = º5.如图,△ABC 中,∠A =40º,∠B =80º,CD 平分∠ACB ,则∠ACD = ºDCBA6.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为 cm7.在直角三角形、钝角三角形和锐角三角形中,有两条高在三角形外部的是 三角形8.如图,已知AB =AC ,EB =EC ,则图中共有全等三角形 对9.如图所示的两个三角形全等吗? ,可以根据 得到的。

北师大版数学七年级下册第四章三角形4.5 利用三角形全等测距离 同步测试题(无答案)

北师大版数学七年级下册第四章三角形4.5 利用三角形全等测距离 同步测试题(无答案)

北师大版数学七年级下册第四章三角形4.5 利用三角形全等测距离同步测试题一、选择题(共10小题,每小题3分,共30分)1、已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角2、某大学计划为新生配备如图①所示的折叠凳.图②是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,则由以上信息可推得CB的长度也为30 cm,依据是( )A.SASB.ASAC.SSSD.AAS3、已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线4、如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中,要使DC=AB,AO、BO、CO、DO应满足下列的哪个条件?()A.AO=CO B.BO=DO C.AC=BD D.AO=CO且BO=DO5、下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.有两组边与一组角对应相等的两个三角形全等;D.在平面内过一点有且只有一条直线垂直于已知直线6、如图,在△AFD和△BEC中,AD∥BC,AE = FC,AD=BC,点A、E、F、C在同一直线上,其中错误的是()A.FD∥BE B.∠B = ∠D C.AD = CE D.∠BEA = ∠DFC7、如图,要测量河中礁石A离岸边B点的距离,采取的方法如下:顺着河岸的方向任作一条线段BC,作∠CBA'=∠CBA,∠BCA'=∠BCA.可得△A'BC≌△ABC,所以A'B=AB,所以测量A'B的长即可得AB的长.判定图中两个三角形全等的理由是( )A.SASB.ASAC.SSSD.AAS8、在下列四组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC= EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC= DEC.∠A=∠E,∠B=∠F,∠C=∠DD.AB=DE,BC= EF,△ABC的周长等于△DEF的周长9、对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为()A .0B .1C .2D .310、如图,将长方形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,则图中45︒的角(虚线也视为角的边)的个数是( )二、填空题(共5小题,每小题3分,共15分)11、教室里有几盆花,如图①,要想测量这几盆花两旁的A,B 两点间的距离不方便,因此,选点A,B 都能到达的一点O,如图②,连接BO 并延长BO 到点C,使CO=BO,连接AO 并延长AO 到点D,使DO=AO.那么C,D 两点间的距离就是A,B 两点间的距离.理由:在△COD 和△BOA 中,{CO =BO ,?COD =?BOA ,DO =AO ,所以△COD ≌△BOA( ).所以CD= .所以只要测出C,D 两点间的距离就可知A,B 两点间的距离.12、把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 ( ) 度.13、如图已知AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE =3cm. 则AE 的长是( ).C 'B C AB CDE第13题图图1214、如图有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,把△ABC折叠,使点B 与点A重合,折痕为DE,则△ACD的周长为()图315、如图,△AOD关于直线l进行轴对称变换后得到△BOC,那么对于(1)∠DAO=∠CBO,∠ADO=∠BCO(2)直线l垂直平分AB、CD(3)△AOD和△BOC均是等腰三角形(4)AD=BC,OD=OC中不正确的是().图2三、解答题(共55分)16、如图,AB=DC,∠A=∠D.试说明:∠ABC=∠DCB.17、如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.18、如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD的长度就得到了A,B两点之间的距离.你能说明其中的道理吗?19、如图所示,小王想测量小口瓶下半部的内径,他把两根长度相等的钢条AA′,BB′的中点连在一起,A,B两点可活动,使M,N卡在瓶口的内壁上,A′,B ′卡在小口瓶下半部的瓶壁上,然后量出AB的长度,就可量出小口瓶下半部的内径,请说明理由.20、如图,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC交CA的延长线于点D,求∠ABD 的度数.21、在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,如何测得距离?一位战士的测量方法是:面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿势,这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡的距离。

北师大版七年级数学下第四章三角形复习课作业卷(无答案)

北师大版七年级数学下第四章三角形复习课作业卷(无答案)

《三角形复习课》作业A卷1、已知四边形ABCD是正方形,AE⊥EF,CF⊥EF. 求证:△ABE≌△BCF2、如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F。

求证:∠1=∠2。

3、如图,已知△ABD与△AEC都是等边三角形,求证:BE=DC.4、如图,等腰直角△ACB中,∠C=90°,过点C作直线l,A M⊥l于点M,BN⊥l于N,则AM,BN,MN有什么关系?请说明理由。

5、如图,在ABC∆中,ο50,2=∠=∠==CBACAB,点D在线段BC上运动(D不与B、C重合),连接AD,作ο50=∠ADE,DE交线段AC于E.ACBNlMFDECBA(1)当ο120=∠BDA 时,=∠EDC °,=∠DEC °;点D 从B 向C 运动时,BDA ∠逐渐变 (填“大”或“小”); (2)当DC 等于多少时,ABD ∆≌DCE ∆,请说明理由;《三角形复习课》作业B 卷1、如图,已知EC=FB ,ED=AB ,ED ∥AB ,求证:∠A=∠D 。

2、已知:如图,∠ABC =∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线. 求证:AB =DC .3、在数学小组中,小明给大家出了一道题:如图,AE 平分∠BAC ,AB=AC (1)若D 是AE 上任意一点,则△ABD ≌△ACD ,请说明理由.(2)若点D 是AE 反向延长线上一点,结论还成立吗?请画出示意图,试说明你的猜想。

备用图ABC50°D50°AB C50°EABCED4、如图,AD=AE,∠1=∠2,试说明:BE=CD.5、如图,在△ABC中,∠BAC是钝角,完成下列画图。

(1)∠BAC的平分线;(2)AC边上的中线;(3)AB边上的高.(4)用尺规作图法作△DEF,使得△DEF ≌△ABC (要求有明显的作图痕迹,不写作法)《三角形复习课》作业C卷1、下列各组数分别表示三根小棒的长度,将它们首尾相接后能摆成三角形的是()A.1,2,3 B.5,7,12 C.6,6,13 D.6,8,102、在下列各组图形中,是全等的图形是()A B C D3、下列条件中,不能判定两个三角形全等的条件是()A 两边一角对应相等B 两角一边对应相等C 三边对应相等D 两边和它们的夹角对应相等4、在△ABC中,已知∠A=30°,∠B=70°,则∠C的度数是,那么这个三角形是三角形.5、如右图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用三角形的.6、如图,AB=AD, ∠BAE=∠CAD,∠C=∠E, AC与AE相等吗?7、画出图中BC边上的高,AC边上的中线,∠A的平分线。

北师大版七年级下册第四章三角形全等的条件与性质练习题无答案

北师大版七年级下册第四章三角形全等的条件与性质练习题无答案

北师大版七年级下册第四章三角形全等的条件与性质练习题无答案三角形全等的条件与性质练习题1如图,AB=AC , BD=DC ;△ABD与△ACD 是否全等?为什么?。

2、如图,AB =AC ,∠B =∠C ,你能证明△ABD ≌△ACE 吗?3、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?4、已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,问ABD ≌⊿ACE .吗?为什么? 6.已知∠1=∠2,BC =AD ,问⊿ABC ≌⊿BAD 吗?7.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?8.已知BE ∥DF ,AD ∥BC ,AE =CF ,问⊿AFD ≌⊿CEB 吗?A B CEH D A B C E DF AD E B C 12 A BCEH D A B CDO 1 2明理由。

18、已知∠E =∠F ,∠1=∠2,AB =CD ,问AE =DF吗?说明理由。

19、已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB∥DE 吗?说明理由。

20、已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?A CDB 123 4A B C D EF1 2 AB C E F D A DE B C1 23 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
三角形全等章节复习
一、三角形的性质
1.下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为50o 和20o 的三角形一定是钝角三角形,④直角三角形中两锐角的和为90o ,其中判断正确的有( )
A .1个
B .2个
C .3个
D .4个
2.工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )
A .A ,C 两点之间
B .E ,G 两点之间
C .B ,F 两点之间
D .G ,H 两点之间
第2题 第3题
3.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是(• ) A .三角形的稳定性 B .两点之间线段最短 C .两点确定一条直线 D .垂线段最短
二、三角形中三边的关系
4.三角形两条边分别是2cm,7cm,则第三边c的范围为.
5.等腰三角形的一边长为6cm,另一边长为12cm,则其周长()
A.24cm B.30cm C.24cm或30cm D.18cm
6.下列长度的三条线段,能组成三角形的是( )
A.4cm、5cm、9cm B.8cm、7cm、15cm
C.5cm、5cm、11cm D.13cm、12cm、20cm
7.四条长度分别是3cm,5 cm,7 cm,11cm的线段,任选3条可以组成个三角形.它们的边长分别是.
三、三角形中角的关系
8.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角是度.
第8题第9题
9.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA.求∠BPC 的度数等于().
A.115° B.100° C.130° D.140°
四、三角形中中线、高线、角平分线
10.如图,已知AD、AE分别是△ABC的中线、高,且AB=5cm,AC=3cm,则△ABD与△ACD的周长之差为___________,△ABD与△ACD的面积之间的关系为____________.
第10题第11题第12题
11.如图,在△ABC中,BE是边AC上的中线。

已知AB=4,AC=3,BE=5,△ABE的周长=________.
12.如图,(1)在△ABC中,BC边上的高是;
(2)在△AEC中,AE边上的高是;(3)在△FEC中,EC边上的高是;(4)若AB=CD=4cm,AE=5cm,求△AEC的面积和CE的长?
13.如图,点B、C、D在同一直线上,CE,CF分别是∠ACB、∠ACD的平分线,
则∠ECF的度数=______度.
14.如图,AD、BF都是△ABC的高线,若∠CAD=30度,则∠CBF=______度。

15.在△ABC中,∠B=24°,∠C=104°,则∠A的平分线和BC边上的高的夹角等于.16.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.
第13题第14题第16题
五、三角形其他类
17.如图所示,下列推理正确的个数有()
①若∠1=∠2,则AB∥CD②若AD∥BC,则∠3+∠A=180°
③若∠C+∠CDA=180°,则AD∥BC④若AB∥CD,则∠3=∠4.
A.0个B.1个C.2个D.3个
18.如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是()A.25° B.55° C.65° D.155°
第17题第18题
19.给定下列条件,①∠A ∶∠B ∶∠C=1∶2∶3;②∠A+∠B=∠C ;③∠A=∠B=∠C ; ④3∠A=2∠B=∠C 中,能确定△ABC 是直角三角形的条件有( )
A .1
B .2
C .3
D .4
六、三角形全等
20.根据下列已知条件,能判断△ABC ≌△A′B′C′的是( )
A .A
B =A′B′,B
C =B′C′,∠A =∠A′
B .∠A =∠A′,∠
C =∠C′,AC =B′C′
C .∠A =∠A′,∠B =∠B′,∠C =∠C′
D .AB =A′B′,BC =B′C′,△ABC 的周长等于△A′B′C′的周长
21.如图所示,已知∠1=∠2,要使△ABC ≌△ADE ,还需条件( )
A .A
B =AD ,B
C =DE B .BC =DE ,AC =AE
C .∠B =∠
D ,∠C =∠
E D .AC =AE ,AB =AD
22.如图,已知∠3=∠4,要说明△ABC ≌△DCB ,(1)若以“SAS”为依据,则需添加一个条件是_____________;(2)若以“AAS”为依据,则需添加一个条件是____________;(3)若以“ASA”为依据,则需添加一个条件是_____________;
第21题 第228题
23.如图,你能添加条件使△ABC 与△BAD 全等吗?你有多少种方法?
D C
B A
4231
O
24.如图,AD和BC相交于点O,若AD=BC,AC=BD,则∠D=∠C,请说明理由.
25.已知如图,BD=CD,∠ABD=∠ACD,DE、DF分别垂直于AB及AC交延长线于E、F.求证:DE=DF.
26.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,CD⊥CE 且CD=CE。

(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
27.如图,山脚下有A、B两点,要测出A、B两点的距离。

(1)在地上取一个可以直接到达A、B点的点O,连接AO并延长到C,使AO=CO,你能完成下面的图形?
(2)说明你是如何求AB的距离。

相关文档
最新文档