最新-福建省福州市2018届高三5月综合质量检测理科数学试题及答案 精品
2018年福建省普通高中毕业班数学质量检查模拟试卷(理科)带答案
2018年福建省普通高中毕业班单科质量检查理科数学试题模拟卷(满分:150分 考试时间:120分钟)注意事项:1.本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题有12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)如果复数)1)((2mi i m ++是实数,则实数m = (A )1(B )-1 (C )2(D )-2(2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则(A )=N M ∅ (B )M N M = (C )M N M =(D )=N M R(3)设}{n a 是公差为正数的等差数列,若321321,15a a a a a a =++=80,则131211a a a ++=(A )120 (B )105 (C )90(D )75(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41 (B )43(C )42 (D )32 (5)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果 (A )2 (B )3 (C )4 (D )5 (6)某几何体的正视图和俯视图如右图所示,则该几何体的侧视图可以是(A ) (B ) (C ) (D )(7)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34(B )57 (C )58 (D )3(8)五名同学进行百米赛跑比赛,先后到达终点,则甲比乙先到达的情况有(A )240种 (B )120种 (C )60种 (D )30种 (9)函数sin sin y x x =+图象的一条对称轴是(A )4x π=-(B )4x π=(C )2x π=(D )34x π=(10)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0. 如果平面向量b 1、b 2、b 3满足 i i i a a b 且|,|2||=顺时针旋转30°后与b i 同向,其中i =1,2,3,则(A )0321=++-b b b (B )0321=+-b b b(C )0321=-+b b b(D )0321=++b b b(11)点P 是椭圆22122:11x y C a a +=+与双曲线22222:11x y C a a -=-的交点,F 1与F 2是椭圆C 1的焦点,则12F PF ∠等于(A )3π (B )2π(C )23π (D )与a 的取值有关(12)国际上常用恩格尔系数(恩格尔系数=食品支出金额总支出金额)来衡量一个国家和地区人民生活水平的状况。
福州一中2018年5月高三理科数学质检试卷及答案
福州一中2018-2019学年高三校质检试卷理 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题),第II 卷第21题为选考题,其他题为必考题.本试卷共5页.满分150分.考试时间120分钟. 参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式 V =Sh 24S R =π,343V R =π其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,}0)3(|{<+=x x x M ,}1|{-<=x x N ,则图中阴影部分表示的集合为 A .}03|{<<-x x B .}1|{-≥x xC .}3|{-≤x xD .}01|{<≤-x x (第1题图)2.若11a i i i+=-(i 为虚数单位),则a 的值为 A . i B . i - C . 2i - D . 2i 3.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率等于 A .5 B .5 C .25 D .45 4.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和, 则3253S S S S --的值为A .2B .3C .2-D .3- 5.下列判断不正确的是A .若)25.0,4(~B ξ,则1=ξEB .命题“2,0x R x ∀∈≥”的否定是“200,0x R x ∃∈<”C .从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样D .10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等6.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象 A .关于点,012π⎛⎫⎪⎝⎭对称 B .关于直线12x π=对称C .关于点)0,6(π对称 D .关于直线6π=x 对称7.设点(,a b )是区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内的任意一点,则函数2()41f x ax bx =-+在区间[1,)+∞上是增函数的概率为ABCD8.如图,在棱长均为2的四棱锥P ABCD -中,点E 为 PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且直线BE 到平面PADB .BE ∥平面PAD ,且直线BE 到平面PAD的距离为3C .BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角大于30 第8题图 D .BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角小于30 9.称(,)||d a b a b =-为两个向量,a b 间的“距离”.若向量,a b 满足: ①||1b =; ②a b ≠; ③对任意的t R ∈,恒有(,)(,)d a tb d a b ≥. 则以下结论一定成立的是A .a b ⊥B .()b a b ⊥-C .()a a b ⊥-D .()()a b a b +⊥-10.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 有且只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.11.若4(4),0(),(2012)cos ,0xf x x f x f tdt x π->⎧⎪==⎨≤⎪⎩⎰则 .12.若某程序框图如图所示,则该程序运行后输出的值为 .13.在O 点测量到远处有一物体在做匀速直线运动,开始时 该物体位于P 点,一分钟后,其位置在Q 点,且90POQ ∠=, 再过两分钟后,该物体位于R 点,且30QOR ∠=, 则tan OPQ ∠的值为 .14.在2015(2)x -的二项展开式中,含x 的奇次幂的项之和为S ,则当2x =时,S 等于 .15.已知a 为[0,1]上的任意实数,函数1()f x x a =-,22()1f x x =-+,323()f x x x =-+. 则以下结论:①对于任意0∈x R ,总存在)(x ,)(x ({,}i j ⊂≠{1,2,3}),使得00()()0i j f x f x ≥; ②对于任意0∈x R ,总存在)(x ,)(x ({,}i j ⊂≠{1,2,3}),使得00()()0i j f x f x ≤; ③对于任意的函数)(x ,)(x ({,}i j ⊂≠{1,2,3}),总存在0∈x R ,使得00()()0i j f x f x >; ④对于任意的函数)(x ,)(x ({,}i j ⊂≠{1,2,3}),总存在0∈x R ,使得00()()0i j f x f x <. 其中正确结论的序号是 .(填上你认为正确的所有答案序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)(第12题图)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X ,求随机变量X 的分布列和期望EX .17.(本小题满分13分)如图,四边形ABCD 与BDEF 均为菱形,设AC 与BD 相交于点O ,若060=∠=∠DBF DAB ,且FC FA =. (Ⅰ)求证:FC ∥∥平面EAD ; (Ⅱ)求二面角A FC B --的余弦值.(第17题图)18.(本小题满分13分)设m R ∈,函数(Ⅰ)求()f x 的单调递减区间;(Ⅱ)设锐角△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,,求()f A 的取值范围.19.(本小题满分13分)已知(2, 0)A -,(2, 0)B 为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异 于A ,B 的动点,且APB ∆面积的最大值为(Ⅰ)求椭圆C 的方程;(Ⅱ)直线AP 与椭圆在点B 处的切线交于点D ,当直线AP 绕点A 转动时,试判断以BD 为直径的圆与EA B CDFO直线PF 的位置关系,并加以证明.20.(本小题满分14分)已知函数23()1x f x x +=+,()ln()g x x x p =--. (Ⅰ)求函数()f x 的图象在点11(,())33f 处的切线方程;(Ⅱ)判断函数()g x 的零点个数,并说明理由;(Ⅲ)已知数列{}n a 满足:03n a <≤,*n N ∈,且1220153()2015a a a +++=.若不等式122015()()()()f a f a f a g x +++≤在(,)x p ∈+∞时恒成立,求实数p 的最小值.21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换 已知矩阵11a M b ⎛⎫=⎪⎝⎭的一个特征值1所对应的特征向量为10⎛⎫⎪⎝⎭.(Ⅰ)求矩阵M 的逆矩阵;(Ⅱ)求曲线C :22221x xy y ++=在矩阵M 对应变换作用下得到的新的曲线方程.(2)(本小题满分7分) 选修4—4:极坐标与参数方程 在平面直角坐标系xOy 中,直线l 的参数方程为12x ty t=⎧⎨=+⎩(t 为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的极坐标方程为)4πρθ=+.(Ⅰ)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (Ⅱ)设直线l 和曲线C 相交于A 、B 两点,求AB 的长.(3)(本小题满分7分)选修4—5:不等式选讲 已知正数a ,b ,c 满足2226a b c ++=. (Ⅰ)求2a b c ++的最大值M ;(Ⅱ)在(Ⅰ)的条件下,若不等式1||x x m M +++≥恒成立,求实数m 的取值范围.福州一中2018-2019学年高三校质检理科数学参考答案一、选择题:二、填空题:313214. 40292 15. ①④ 选择题10简解:依题意可设直线l :1x my =+,(1)代入24y x =,得2440y m y --=,△=216(1)m +,把(1)代入22)1(r y x =+-设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,||||AC BD =,即1324||||y y y y -=-,若1324()y y y y -=--,则1234y y y y +=+,0m =.即22(1)r m =+,故当2r >时,l 有三条.从而本题应该选D . 三、解答题:16.解:(Ⅰ)茎叶图如右图所示,由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,因此应选派乙参赛更好. ……………… 5分(Ⅱ)随机变量X 的所有可能取值为0,1,2.1144115516(0)25C C P X C C ===,14115528(1)25C P X C C ===, 115511(2)25P X C C ===,…………………10分 随机变量X 的分布列是:1680122525255EX =⨯+⨯+⨯=.…………………………………………………13分 17.(I )证明:因为四边形ABCD 与BDEF 均为菱形, 所以BC AD ∥,BF DE ∥.因为FBC AD 平面⊄,FBC D 平面⊄E ,所以FBC AD 平面∥,FBC DE 平面∥…………………………………………………2分 又AD DE D ⋂=,EAD AD 平面⊂,EAD DE 平面⊂,8 7 5 6 9826甲 乙55 72 58 5所以EAD 平面∥平面FBC 又FBC FC 平面⊂,所以EAD FC 平面∥…………………………………………………………………………4分 (II )连接FO 、FD ,因为四边形BDEF 为菱形,且060=∠DBF , 所以DBF ∆为等边三角形,因为O 为BD 中点.所以BD FO ⊥, 又因为O 为AC 中点,且FC FA =, 所以FO AC ⊥又AC BD O ⋂=,所以ABCD FO 平面⊥………………………………………………6分 由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O - 设2=AB ,因为四边形ABCD 为菱形,060=∠DAB , 则2=BD ,1=OB ,3==OF OA ,所以)3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -…8分所以)0,1,3(),3,0,3(==→→CB CF 设平面BFC 的一个法向量为),,(z y x n =→,则有⎪⎩⎪⎨⎧=⋅=⋅→→→→00CB n CF n ,所以⎩⎨⎧=+=+03033y x z x ,令1=x ,则)1,3,1(--=→n …………………………………………………………………10分 因为AFC 平面⊥BD ,所以平面AFC 的一个法向量为)0,1,0(OB =→. 因为二面角B FC --A 为锐二面角,设二面角的平面角为θ,则51553,cos cos =-=⋅⋅=><=→→→→→→OBn OBn OB n θ. 所以二面角B FC --A 的余弦值为515…………………………………………………13分 18.解:(I2分…………………………………4分 5分,k Z ∈∴()f x 的单调递减区间为:,k Z ∈………………………………7分 (II……………………………………………………………………………………………8分11分 12分13分19.解:(Ⅰ)由题意可设椭圆C 的方程为22221(0)x y a b a b+=>>,(,0)F c .由题意知解得b =1c =.故椭圆C 的方程为22143x y +=.…………………………………………………………4分(Ⅱ)以BD 为直径的圆与直线PF 相切.…………………………………………………5分 证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k --=+.所以2026834kx k -=+,00212(2)34ky k x k=+=+. ……………………………8分 因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±. ⎧⎪⎨⎪⎩2221222, .a b a a b c ⋅⋅===+直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+=与直线PF 相切. ……………………………………………………………………………………………9分 当12k ≠±时,则直线PF 的斜率0204114PF y k k x k ==--. 所以直线PF 的方程为24(1)14ky x k=--.………………………………………10分 点E 到直线PF的距离d =322228142||14|14|k k k k k k +-==+-. 又因为||4||BD k = ,所以1||2d BD =. 故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………13分20. 解:(Ⅰ)222222(1)2(3)61'()(1)(1)x x x x x f x x x +-+--+==++,……………………………1分 2121199'()1310(1)9f --+∴==-+,又1()33f =, 所以函数()f x 在13x =的切线方程为913()103y x -=--, 即9331010y x =-+.……………………………………………………………………4分 (Ⅱ)11'()1()x p g x x p x p x p--=-=>-- 当(,1)x p p ∈+时,'()0,g x <所以()g x 在(,1)p p +单调递减; 当(1,)x p ∈++∞时,'()0,g x >所以()g x 在(,1)p p +单调递增;所以 1x p =+时,min ()(1)1g x g p p =+=+.……………………………………………5分 ①当10p +>,即1p >-时,()g x 的零点个数为0; ②当10p +=,即1p =-时,()g x 的零点个数为1;③当10p +<即1p <-时,此时(1)0g p +<,(0)ln()0g p =-->,()ln 0p p p p g p e p e e e +=+-=>(或,()x p g x →→+∞)因为()g x 在定义域上连续,由零点存在定理及()g x 的单调性,知()g x 在(,1)p p +有且只有一个零点,()g x 在(1,)p ++∞有且只有一个零点, 所以1p <-时,()g x 的零点个数为2.综上所述,当1p <-时,()g x 的零点个数为2;1p =-时,()g x 的零点个数为1;1p >-时,()g x 的零点个数为0. …………………………………………………………………9分 (Ⅲ)1220153()2015,a a a +++=当12201513a a a ====时,有1()33f =.所以1220151()()()2015()60453f a f a f a f +++=⨯=.………………………10分接下来证明:122015()()()6045f a f a f a +++≤.由(I)知,函数23()1x f x x+=+在13x =的切线方程为9331010y x =-+. 而当03x <≤时,2239331()(3)()0110103x f x x x x x +=≤-+⇔--≤+成立. 所以,当03,n a n N *<≤∈时,有9333()(113)101010n n n f a a a ≤-+=-………………12分所以,1220151220153()()()[1120153()]6045,10f a f a f a a a a +++≤⨯-+++=所以,当12201513a a a ====时,122015()()()f a f a f a +++的最大值为6045.再由(II)知,min ()1,g x p =+60451,p ∴≤+得6044.p ≥ 所以p 的最小值为6044.……………………………………………………………14分21.解:(1)(Ⅰ)依题意,1111100a b ⎛⎫⎛⎫⎛⎫=⋅⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,10a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,所以1a =,0b =.…2分所以1101M ⎛⎫=⎪⎝⎭.因为det 1M =,所以11101M --⎛⎫= ⎪⎝⎭.………………………………4分 (Ⅱ)曲线C :22221x xy y ++=上任意一点(,)x y 在矩阵M 对应变换作用下'11x x ⎛⎫⎛⎫⎛⎫'x x y ⎧=+⎪''x x y ⎧=-⎪代入方程22221x xy y ++=得'2'2()()1x y +=.因此,曲线C 在矩阵M 对应变换作用下得到的新的曲线方程为221x y +=.…………7分(2)(Ⅰ)由12x ty t=⎧⎨=+⎩,得直线l 的直角坐标方程为:210x y -+=.………………2分由)4πρθ=+,得coscos sin )2sin 2cos 44ππρθθθθ=+=+, 22sin 2cos ρρθρθ=+,得曲线C 的直角坐标方程为:22(1)(1)2x y -+-=.……4分(Ⅱ)圆心(1,1)到直线l 的距离5d ==,圆的半径R =||AB ===.……………………………………………………7分(3)(Ⅰ)由柯西不等式,2222222()(121)(2)a b c a b c ++++≥++,即有2(2)36a b c ++≤,……………………………………………………………………2分 又a 、b 、c 是正数,∴26a b c ++≤即2a b c ++的最大值为6,当且仅当121a b c==,即当1,2a c b ===时取得最大值.……………………………4分(Ⅱ)因为1|||1()||1|x x m x x m m +++≥+-+=-,由题意及(Ⅰ)得,16m -≥,得7m ≥或5m ≤-.综上,实数m 的取值范围为7m ≥或5m ≤-.……………………………………………7分。
2018届福州市5月质检理科数学试题及答案 精品
2018年福州市高中毕业班综合练习数学(理科)试卷(完卷时间:120分钟;满分:150分)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.参考公式:第Ⅰ卷 (选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1.已知全集U =R ,集合2{0}M x x x =->,则U M =ð A .{|01}x x << B .{|01}x x ≤≤C .{|01}x x x <>或D .{|01}x x x ≤≥或 2.如图,在复平面内,若复数12,z z 对应的向量分别是,OA OB,则复数12z z +所对应的点位于A .第一象限B .第二象限K K s s 55u uC .第三象限D .第四象限3.设等比数列{}n a 的前n 项和为n S ,则“10a >”是“32S S >”的A .充分而不必要条件B .必要而不第2题图1AA充分条件C.充要条件D.既不充分也不必要条件4.若一个几何体的三视图,其正视图和侧视图均为矩形、俯视图为正三角形,尺寸如图所示,则该几何体的体积为AC D.5.如图,执行程序框图后,输出的结果为A.8 B.10 C.12D.326.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上单调递增的奇函数是A.sin2y xπ⎛⎫=-⎪⎝⎭B.cos22y xπ⎛⎫=-⎪⎝⎭C.sin22y xπ⎛⎫=+⎪⎝⎭D.cos22y xπ⎛⎫=+⎪⎝⎭7.已知0AB BC⋅=,1AB=,2BC=,0AD DC⋅=,则BD的最大值为8.若从区间(0,)e内随机取两个数,则这两个数之积不小于e的概率为A.11e- B. 21e- C. 1e9.如图,在正方体1111ABCD A BC D-中,若平面1AP到1AB和BC的距离相等,则点P的轨迹为A.椭圆的一部分 B.圆的一部分C.一条线段 D.抛物线的一部分第4题图第9题图第5题图第15题图10.将方程tan 0x x +=的正根从小到大地依次排列为12,,,,n a a a ,给出以下不等式:①102n n a a π+<-<;②12n n a a ππ+<-<;③122n n n a a a ++>+; ④122n n n a a a ++<+; 其中,正确的判断是A. ①③B. ①④C. ②③D. ②④二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.已知函数,0()2,0xx x f x x ⎧≤⎪=⎨>⎪⎩,则()()1f f -= .12.已知双曲线221(0,0)x y m n m n-=>>的离心率为2,有一个焦点与抛物线216y x =的焦点重合,则n =__________.13.已知等差数列{}n a 的公差不为零,12513a a a ++>,且1a 、2a 、5a 成等比数列,则1a 的取值范围为 .14.已知三次函数32()f x ax bx cx d =+++的图象如图所示, 则(3)(1)f f '-=' ★★★ .15.假定平面内的一条直线将该平面内的一个区域分成面积相等的两个区域,则称这条直线平分这个区域.如图,ℵ是平面α内的任意一个封闭区域.现给出如下结论:① 过平面内的任意一点至少存在一条直线平分区域ℵ;② 过平面内的任意一点至多存在一条直线平分区域ℵ;③ 区域ℵ内的任意一点至少存在两条直线平分区域ℵ; ④平面内存在互相垂直的两条直线平分区域ℵ成四份. 其中正确结论的序号是 .第14题图 第14题图三、解答题:本大题共6小题,共80分.解答写在答题卡相位置,应写出文字说明、证明过程或演算步骤.16.(本小题满分13分)招聘会上,某公司决定先试用后再聘用小强,该公司的甲、乙两个部门各有4个不同岗位.(Ⅰ)公司随机安排小强在这两个部门中的3个岗位上进行试用,求小强试用的3个岗位中恰有2个在甲部门的概率;(Ⅱ)经试用,甲、乙两个部门都愿意聘用他.据估计,小强可能获得的岗位月工资及相应概率如下表所示:求甲、乙两部门月岗位工资的期望与方差,据此请帮助小强选择一个部门,并说明理由.17.(本小题满分13分)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,2,6AB AC ==, 点D 在线段1BB 上,且113BD BB =,11AC AC E = . (Ⅰ)求证:直线DE 与平面ABC 不平行; (Ⅱ)设平面1ADC 与平面ABC 所成的锐二面角为θ,若cos θ=1AA 的长;(Ⅲ)在(Ⅱ)的条件下,设平面1ADC 平面ABC l =,求直线l与DE 所成的角的余弦值.18.(本小题满分13分)如图,圆C 与y 轴相切于点()0,2T ,与x ,M N(点M 在点N 的左侧),且3MN =.(Ⅰ)求圆C 的方程;(Ⅱ)过点M 任作一条直线与椭圆22:148x y Γ+=A B 、,连接AN BN、,求证:ANMBNM∠=∠.19.(本小题满分13分)已知函数()ln(1)1ax f x x x =+++()a ∈R .(Ⅰ)当2a =时,求函数()x f y =的图象在0x =处的切线方程; (Ⅱ)判断函数()f x 的单调性;(Ⅲ)求证:2111ln 1n nn ⎛⎫+>-⎪⎝⎭(*n N ∈).20.(本小题满分14分)如图,在平面直角坐标系中,锐角α、β的终边分别与单位圆交于A ,B 两点.(Ⅰ)如果3tan 4α=,B 点的横坐标为513,求()cos αβ+的值;(Ⅱ)若角αβ+的终边与单位圆交于C 点,设角α、β、αβ+的正弦线分别为MA 、NB 、PC ,求证:线段MA 、NB 、PC 能构成一个三角形;(III )探究第(Ⅱ)小题中的三角形的外接圆面积是否为定值?若是,求出该定值;若不是,请说明理由.第20题图第18题图21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵M 是把坐标平面上的点的纵坐标伸长到原来的2倍,横坐标保持不变的伸缩变换.(Ⅰ)求矩阵M ;(Ⅱ)求矩阵M 的特征值以及属于每个特征值的一个特征向量.(2)(本小题满分7分) 选修4—4:极坐标与参数方程 在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. 已知点A 、B 的极坐标分别为(1,)3π、2(3,)3π,曲线C 的参数方程为cos ,(sin x r y r ααα=⎧⎨=⎩为参数). (Ⅰ)求直线AB 的直角坐标方程;K K s s 55u u(Ⅱ)若直线AB 和曲线C 只有一个交点,求r 的值. (3)(本小题满分7分) 选修4—5:不等式选讲 已知关于x m <对于任意的[1,2]x ∈-恒成立(Ⅰ)求m 的取值范围;(Ⅱ)在(Ⅰ)的条件下求函数()21(2)f m m m =+-的最小值.2018年福州市高中毕业班综合练习 理科数学试卷参考答案及评分参考一、选择题(本大题共10小题,每小题5分,共50分)1.B2.A3.C4.D5.B6.D7. C8. B9.D10. D二、填空题(本大题共5小题,每小题4分,共20分) 11. 2 12. 12 13. (1,)+∞ 14. 5- 15. ①④ 三、解答题(本大题共6小题,共80分) 16.(本小题满分13分)解:(Ⅰ)记事件“小强试用的3个岗位中恰有2个在甲部门的概率”为A ,则()21443837C C P A C ⋅==. ·········6分(Ⅱ)22000.424000.326000.228000.12400E =⨯+⨯+⨯+⨯=甲(元), 7分20000.424000.328000.232000.12400E =⨯+⨯+⨯+⨯=乙(元).·· 8分()()()()()2222220024000.4240024000.3260024000.2280024000.1D X =-⨯+-⨯+-⨯+-⨯甲 40000=,················· 9分()()()()()2222200024000.4240024000.3280024000.2320024000.1D X =-⨯+-⨯+-⨯+-⨯乙160000=. (10)分选择甲部门:因为()()X X D X D X =<甲乙甲乙,,说明甲部门各岗位的工资待遇波动比乙部门小,竞争压力没有乙部门大,比较安稳.K K s s 55u u ·························· 13分选择乙部门:因为()()X X D X D X =<甲乙甲乙,,说明乙部门各岗位的工资待遇波动比甲部门大,岗位工资拉的比较开,工作比较有挑战性,能更好地体现工作价值. ············· 13分17.(本小题满分13分)解:依题意,可建立如图所示的空间直角坐标系A xyz -,设1AA h =,则()()()()112,0,0,0,6,0,2,0,,0,0,,0,6,,0,3,32h h B C D A h C h E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.2分(Ⅰ)证明:由1AA ⊥平面ABC 可知()10,0,1n =为平面ABC 的一个法向量.∴()12,3,0,0,1066h hDE n ⎛⎫⋅=-⋅=≠ ⎪⎝⎭ . (3)分∴ 直线DE 与平面ABC 不平行. · 4分 (Ⅱ)设平面1ADC 的法向量为()2,,n x y z =,则()()()221,,2,0,2033,,0,6,60h h n AD x y z x z n AC x y z h y hz ⎧⎛⎫⋅=⋅=+= ⎪⎪⎝⎭⎨⎪⋅=⋅=+=⎩ , · 5分 取6z =-,则x y h ==,故()2,,6n h h =-. 6分∴121212cos cos ,n n n n n n θ⋅=<>== =, ······ 7分解得h =.∴1AA =.················· 8分(Ⅲ)在平面11BCC B 内,分别延长1CB C D 、,交于点F ,连结AF ,则直线AF 为平面1ADC 与平面ABC 的交线.····· 9分∵ 1//BD CC ,1111==33BD BB CC ,∴ 113BF BD FC CC ==. ∴12BF CB =,∴ ()()()112,0,02,6,03,3,022AF AB BF AB CB =+=+=+-=-. ·· 11分由(Ⅱ)知,h =,故(2,3,6h DE ⎛⎫=-=- ⎪⎝⎭ , ∴cos ,AF DE AF DE AF DE ⋅<>===······· 12分∴ 直线l 与DE所成的角的余弦值为=·· 13分18.(本小题满分13分)解:(Ⅰ)设圆C 的半径为r (0r >),依题意,圆心坐标为(,2)r .·························· 1分∵ 3MN =∴ 222322r ⎛⎫=+ ⎪⎝⎭,解得2254r =. ···········3分∴圆C 的方程为()22525224x y ⎛⎫-+-= ⎪⎝⎭. ······· 5分(Ⅱ)把0y =代入方程()22525224x y ⎛⎫-+-= ⎪⎝⎭,解得1x =,或4x =, 即点()1,0M ,()4,0N . ··············· 6分 (1)当AB x ⊥轴时,由椭圆对称性可知ANMBNM∠=∠. 7分(2)当AB 与x 轴不垂直时,可设直线AB 的方程为()1y k x =-. 联立方程()22128y k x x y ⎧=-⎨+=⎩,消去y 得,()22222280k x k x k +-+-=. 8分设直线AB 交椭圆Γ于()()1122,,A x y B x y 、两点,则212222k x x k +=+,212282k x x k -⋅=+. ············ 9分∵ ()()11222,2y k x y k x =-=-, ∴()()12121212114444AN BN k x k x y y k k x x x x --+=+=+---- ()()()()()()122112141444k x x k x x x x --+--=--. ··········· 10分∵()()()()()()221221121222281014142588022k k x x x x x x x x k k ---+--=-++=-+=++, ························ 11分 ∴0AN BN k k +=,ANM BNM∠=∠. ·········· 12分综上所述,ANM BNM∠=∠. ············ 13分19.(本小题满分13分) 解:(Ⅰ)当2a =时,2()ln(1)1xf x x x =+++,∴22123()1(1)(1)x f x x x x +'=+=+++, ············ 1分∴ (0)3f '=,所以所求的切线的斜率为3. ······ 2分 又∵()00f =,所以切点为()0,0. ·········· 3分 故所求的切线方程为:3y x =. ·········· 4分 (Ⅱ)∵()ln(1)1axf x x x =+++(1)x >-, ∴221(1)1()1(1)(1)a x ax x a f x x x x +-++'=+=+++. ·········· 5分①当0a ≥时,∵1x >-,∴()0f x '>;K K s s 55u u ······· 6分 ②当0a <时,由()01f x x '<⎧⎨>-⎩,得11x a -<<--;由()01f x x '>⎧⎨>-⎩,得1x a >--;· 7分综上,当0a ≥时,函数()f x 在(1,)-+∞单调递增;当0a <时,函数()f x 在(1,1)a ---单调递减,在(1,)a --+∞上单调递增. ························ 8分(Ⅲ)方法一:由(Ⅱ)可知,当1a =-时,()()ln 11xf x x x =+-+在()0,+∞上单调递增. ······· 9分 ∴ 当0x >时,()()00f x f >=,即()ln 11xx x +>+. ···· 10分 令1x n =(*n ∈N ),则111ln 1111n n n n⎛⎫+>= ⎪+⎝⎭+. ······· 11分另一方面,∵()2111n n n<+,即21111n n n-<+,∴ 21111n n n>-+. ················ 12分 ∴2111ln 1n n n⎛⎫+>- ⎪⎝⎭(*n ∈N ). ··········· 13分方法二:构造函数2()ln(1)F x x x x =+-+,(01)x ≤≤ ··· 9分 ∴1(21)'()1211x x F x x x x +=-+=++, ··········· 10分∴当01x <≤时,'()0F x >;∴函数()F x 在(0,1]单调递增. ··········· 11分 ∴函数()(0)F x F > ,即()0F x >∴(0,1]x ∀∈,2ln(1)0x x x +-+>,即2ln(1)x x x +>- ···· 12分令1x n =(*n ∈N ),则有2111ln 1n nn ⎛⎫+>-⎪⎝⎭. ······· 13分20.(本小题满分14分) 解:(Ⅰ)已知α是锐角,根据三角函数的定义,得3sin 5α=,4cos 5α=,··················· 1分又5cos 13β=,且β是锐角,所以12sin 13β=. ······ 2分所以4531216cos()cos cos sin sin 51351365αβαβαβ+=-=⨯-⨯=-. ·· 4分(Ⅱ)证明:依题意得,sin MA α=,sin NB β=,sin()PC αβ=+因为0παβ⎛⎫∈ ⎪⎝⎭,,2,所以cos (0,1)α∈,cos (0,1)β∈,于是有sin()sin cos cos sin sin sin αβαβαβαβ+=+<+,①······ 6分又∵()0,,1cos()1αβπαβ∈∴-<<++,sin sin(())sin()cos cos()sin sin()sin ααββαββαββαββ=+-=+⋅-+⋅<++,②························· 7分 同理,sin sin()sin βαβα<++,③ 由①,②,③可得,线段MA 、NB 、PC 能构成一个三角形. ········ 8分 (III )第(Ⅱ)小题中的三角形的外接圆面积是定值,且定值为4π.不妨设A B C '''∆的边长分别为()sin sin sin αβαβ+、、,其中角A '、B '、C '的对边分别为()sin sin sin αββα+、、.则由余弦定理,得:222sin sin sin ()cos 2sin sin A αβαβαβ+-+'=⋅ ··········· 9分222222sin sin sin cos cos sin 2sin cos cos sin 2sin sin αβαβαβαβαβαβ+---=⋅ 2222sin sin sin sin 2sin cos cos sin 2sin sin αββααβαβαβ⋅+-=⋅ sin sin cos cos αβαβ=⋅-cos()αβ=-+················ 11分因为0παβ⎛⎫∈ ⎪⎝⎭,,2,所以(0,)αβπ+∈,所以sin sin()A αβ'=+, 12分设A B C '''∆的外接圆半径为R , 由正弦定理,得sin()21sin sin()B C R A αβαβ''+==='+,∴12R =, ··· 13分所以A B C '''∆的外接圆的面积为4π. ········· 14分21.(1)(本小题满分7分)选修4-2:矩阵与变换 解:(Ⅰ)由条件得矩阵1002M ⎛⎫= ⎪⎝⎭. ········ 2分(Ⅱ)因为矩阵1002M ⎛⎫=⎪⎝⎭的特征多项式为1()(1)(2)02f λλλλλ-==---,令()0f λ=,解得特征值为11λ=,22λ=, ······· 4分 设属于特征值1λ的矩阵M 的一个特征向量为1x e y ⎛⎫= ⎪⎝⎭,则12x x M e y y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,解得0y =,取1x =,得110e ⎛⎫= ⎪⎝⎭, ······5分同理,对于特征值2λ,解得0x =,取1y =,得201e ⎛⎫= ⎪⎝⎭, · 6分 所以110e ⎛⎫= ⎪⎝⎭是矩阵M 属于特征值11λ=的一个特征向量,201e ⎛⎫= ⎪⎝⎭是矩阵M 属于特征值22λ= 的一个特征向量. ······· 7分(2)(本小题满分7分) 选修4—4:极坐标与参数方程解:(Ⅰ)∵点A 、B 的极坐标分别为(1,)3π、2(3,)3π, ∴点A 、B的直角坐标分别为1(,22、3(,)22-, ·· 2分 ∴直线AB的直角坐标方程为40y +-=. ··· 4分 (Ⅱ)由曲线C 的参数方程cos ,(sin x r y r ααα=⎧⎨=⎩为参数)化为普通方程为222x y r +=, ···················· 5分∵直线AB 和曲线C 只有一个交点,∴半径r ==. ·········· 7分 (3)(本小题满分7分) 选修4—5:不等式选讲 解:(Ⅰ)∵关于xm 对于任意的[1,2]x ∈-恒成立max m ⇔>··············· 1分根据柯西不等式,有222222(11[11]]6=≤+⋅+=12x =时等号成立,故m >3分(Ⅱ)由(Ⅰ)得20m ->,则()221111(2)(2)2(2)22(2)f m m m m m m =+=-+-++-- ∴()22f m ≥= ······ 5分当且仅当211(2)2(2)m m -=-,即2m >· 6分所以函数()21(2)f m m m =+-2.K K s s 55u u ·· 7分。
2018届高三下学期普通高中毕业班5月质量检查理科数学试题含答案
2018年三明市普通高中毕业班质量检查理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1216}x A x =<≤,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .4a >B .4a ≥C .0a ≥D .0a > 2.已知i 是虚数单位,则复数134ii-++的共轭复数在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为( ) A .15 B .25 C .49 D .454.设12,F F 为双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点,P 为Γ上一点,2PF 与x轴垂直,直线1PF 的斜率为34,则双曲线Γ的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±5.执行如图所示的程序框图,运行相应的程序,若输入x 的值为2,则输出S 的值为( )A .64B .84C .340D .13646.已知数列{}n a 的前n 项和为n S ,且11a =,()*12n n n a a n N +=∈,则2016S =( )A .1008323-B .201621-C .200923-D .200823-7.已知函数()()()sin 2cos f x x x ϕϕ=+-+()0ϕπ<<的图象关于直线x π=对称,则cos 2ϕ=( )A .35 B .35- C .45 D .45- 8.在区域()0,|11x x y x y x y ⎧≥⎫⎧⎪⎪⎪Ω=+≤⎨⎨⎬⎪⎪⎪-≤⎩⎩⎭中,若满足0ax y +>的区域面积占Ω面积的13,则实数a 的值是( ) A .23 B .12 C .12- D .23- 9.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==则直线AB 与CD 所成角的余弦值为( ) A .13-B .14-C .14D .1310.函数2||1||()2x x n x f x =的图象大致是( )A .B .C .D .11.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段2PF与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则22a e b+(其中e 为椭圆C 的离心率)的最小值为( ) A.4 C.412.“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形ABCD 是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为r 的圆,根据祖暅原理,可求得该几何体的体积为( )A .383r B .383r π C .3163r D .3163r π第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分.13.已知向量,a b满足)a =,||1b =,且a b λ=,则实数λ= .14.()()511ax x ++的展开式中2x 的系数是20,则实数a = .15.已知函数()()2cos f n n n π=,数列{}n a 满足()()1()n a f n f n n N +=++∈,则122n a a a ++= .16.对于定义域为R 的函数()f x ,若满足①()00f =;②当x R ∈,且0x ≠时,都有()0xf x '>;③当12x x ≠,且()()12f x f x =时,120x x +<,则称()f x 为“偏对称函数”.现给出四个函数:()211()(0)2120(0)xx x g x x ⎧+≠⎪=-⎨⎪=⎩;()()11(0)2(0)n x x h x x x --≤⎧⎪=⎨>⎪⎩;()3232x x x φ=-+;()1x x e x ϕ=--.则其中是“偏对称函数”的函数个数为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且60B =,4c =. (Ⅰ)若6b =,求角C 的正弦值及ABC ∆的面积;(Ⅱ)若,D E 在线段BC 上,且BD DE EC ==,AE =,求AD 的长. 18.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠=, 2AD AP ==,AB DP ==,E 为CD 的中点,点F 在线段PB 上.(Ⅰ)求证:AD PC ⊥;(Ⅱ)试确定点F 的位置,使得直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.19.某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[]0,2,(2,4],,(14,16]分成8组,制成了如图1所示的频率分布直方图.(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;(ⅱ)试估计全市居民用水价格的期望(精确到0.01);(Ⅱ)如图2是该市居民李某2018年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x ∧=+.若李某2018年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.20.已知椭圆2222:1(0)x y a b a b Γ+=>>的右焦点(1,0)F ,椭圆Γ的左,右顶点分别为,M N .过点F 的直线l 与椭圆交于,C D 两点,且MCD ∆的面积是NCD ∆的面积的3倍.(Ⅰ)求椭圆Γ的方程;(Ⅱ)若CD 与x 轴垂直,,A B 是椭圆Γ上位于直线CD 两侧的动点,且满足ACD BCD ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.已知函数22()(21)x f x e ax x =+-,a R ∈.(Ⅰ)当4a =时,求证:过点(1,0)P 有三条直线与曲线()y f x =相切; (Ⅱ)当0x ≤时,()10f x +≥,求实数a 的取值范围.请考生在(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目记分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极cos()204πθ--=,曲线C 的极坐标方程为:2sin cos ρθθ=,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线1C . (Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求||||PA PB +的值. 23.选修4-5:不等式选讲已知函数()|2||21|f x x a x =-+-,a R ∈.(Ⅰ)当3a =时,求关于x 的不等式()6f x ≤的解集; (Ⅱ)当x R ∈时,2()13f x a a ≥--,求实数a 的取值范围.试卷答案一、选择题1-5:ADBCB 6-10:AACDD 11、12:CC二、填空题13.2± 14.2 15.2n - 16.2三、解答题17.解:(Ⅰ)60B =,4c =,6b =,在ABC ∆中,由正弦定理sin sin b cB C=, 得34sin 32sin 6c BC b===,又b c >,所以B C >,则C 为锐角,所以cos C =则sin sin()A B C =+=sin cos cos sin B C B C +613322+=+=所以ABC∆的面积1323sin 122S bc A +===(Ⅱ)设BD x =,则2BE x =,AE =,又60B =,4c =, 在ABE ∆中,由余弦定理得2212164242cos60x x x =+-, 即28168x x =-,解得1x =,则2BE =,所以90AEB ∠=, 在直角ADE ∆中,AD=.18.解:(Ⅰ)证明:在平行四边形ABCD 中,连接AC ,因为AB =2BC =,45ABC ∠=,由余弦定理得2842222cos454AC =+-=,得2AC =, 所以90ACB ∠=,即BC AC ⊥,又//ADBC , 所以AD AC ⊥,又2AD AP ==,DP =PA AD ⊥,AP AC A =,所以AD ⊥平面PAC ,所以AD PC ⊥.(Ⅱ)侧面PAD ⊥底面ABCD ,PA AD ⊥,所以PA ⊥底面ABCD ,所以直线,,AC AD AP 两两互相垂直,以A 为原点,直线,,AC AD AP 为坐标轴,建立如图所示空间直角坐标系A xyz -,则(0,)(2,0)(0,20)A D C-(2,0),(1,10),(0,2)B E P-,所以(0,2,2)PC =-,(2,0,2)PD =--,(2,2,2)PB =-, 设([0,1])PFPBλλ=∈, 则(2,2,2)PF λλλ=-,(2,2,22)F λλλ-+, 所以(21,21,22)EF λλλ=+--+, 易得平面ABCD 的法向量(0,0,1)m =. 设平面PDC 的法向量为(,,)n x y z =, 由0n PC =,0n PD =,得220220y z x z -=⎧⎨--=⎩,令1x =,得(1,1,1)n =-. 因为直线EF 与平面PDC 所成的角和此直线与平面ABCD 所成的角相等, 所以|cos ,||cos ,|EF m EF n <>=<>,即||||||||||||EF m EF n EF m EF n =,所以|22|||λ-+=,1||31|λλ-=-,解得3λ=,所以3PF PB =.19.解:(Ⅰ)(ⅰ)由题意,从全市居民中依次随机抽取5户,每户居民月用水量超过12吨的概率为110,因此这5户居民恰好3户居民的月用水量都超过12吨的概率为 33251981()()101010000P C ==.(ⅱ)由题设条件及月均用水量的频率分布直方图,可得居民每月的水费数据分组与概率分布表如下:所以全市居民用水价格的期望()40.9 4.20.06 4.60.04 4.04E X =⨯+⨯+⨯≈吨. (Ⅱ)设李某2018年1~6月份的月用水费y (元)与月份x 的对应点为(,)(1,2,3,4,5,6)i i x y i =,它们的平均值分别为,x y ,则126216x x x x +++==,又点(,)x y 在直线233y x ∧=+上,所以40y =,因此126240y y y ++=,所以7月份的水费为294.624054.6-=元.设居民月用水量为t 吨,相应的水费为()f t 元,则4012()48(12) 6.6121461.2(14)7.81416t t f t t t t t <≤⎧⎪=+-⨯<≤⎨⎪+-⨯<≤⎩,即4012()2 6.631.212147.8481416t t f t t t t t <≤⎧⎪=-<≤⎨⎪-<≤⎩,当13t =时,() 6.61331.254.6f t =⨯-=, 所以李某7月份的用水吨数约为13吨.20.解法一:(Ⅰ)因为MCD ∆的面积是NCD ∆的面积的3倍, 所以3MF NF =,即3()a c a c +=-,所以22a c ==,所以23b =,则椭圆Γ的方程为22143x y +=.(Ⅱ)当ACD BCD ∠=∠,则0AC BC k k +=, 设直线AC 的斜率为k ,则直线BC 的斜率为k -, 不妨设点C 在x 轴上方,3(1,)2C ,设1122(,),(,)A x y B x y ,则AC 的直线方程为3(1)2y k x -=-,代入22143x y +=中整理得22(34)4(23)k x k k x +--241230k k +--=,124(23)1(34)k k x k -+=+;同理224(23)1(34)k k x k ++=+.所以212286(34)k x x k -+=+,12224(34)k x x k --=+, 则12121212()212AB y y k x x k k x x x x -+-===--,因此直线AB 的斜率是定值12. 解法二:(Ⅰ)同解法一.(Ⅱ)依题意知直线AB 的斜率存在,所以设AB 方程:y kx m =+代入22143x y +=中整理得222(43)84120k x kmx m +++-=,设1122(,),(,)A x y B x y ,所以122843km x x k +=-+,212241243m x x k -=+, 2222644(43)(412)k m k m ∆=-+-2216(1239)0k m =-+>当ACD BCD ∠=∠,则0AC BC k k +=,不妨设点C 在x 轴上方,3(1,)2C ,所以12123322011y y x x --+=--,整理得121232()()2302kx x m x x m +-+-+=,所以2241232()432m k m k -+-+28()23043km m k --+=+, 整理得21212(2)960k m k m +-+-=,即(63)(223)0k k m -+-=,所以2230k m +-=或630k -=. 当2230k m +-=时,直线AB 过定点3(1,)2C ,不合题意;当630k -=时,12k =,符合题意, 所以直线AB 的斜率是定值12.21.解法一:(Ⅰ)当4a =时,22()(421)x f x e x x =+-,22()2(421)x f x e x x '=+-+222(82)2(46)x x e x e x x +=+设直线与曲线()y f x =相切,其切点为00(,())x f x ,则曲线()y f x =在点00(,())x f x 处的切线方程为:000()()()y f x f x x x '-=-, 因为切线过点(1,0)P ,所以000()()(1)f x f x x '-=-, 即02200(421)x ex x -+-=0220002(46)(1)x e x x x +-,∵020x e >,∴30081410x x -+=, 设3()8141g x x x =-+,∵(2)350g -=-<,(0)10g =>,(1)50g =-<,(2)370g => ∴()0g x =在三个区间(2,0),(0,1),(1,2)-上至少各有一个根又因为一元三次方程至多有三个根,所以方程381410x x -+=恰有三个根, 故过点(1,0)P 有三条直线与曲线()y f x =相切.(Ⅱ)∵当0x ≤时,()10f x +≥,即当0x ≤时,22(21)0x e ax x +-≥∴当0x ≤时,221210xax x e +-+≥, 设221()21x h x ax x e =+-+,则22211()222(1)x x h x ax ax e e'=+-=+-, 设21()1x m x ax e =+-,则21()x m x a e'=+.(1)当2a ≥-时,∵0x ≤,∴222x e≥,从而()0m x '≥(当且仅当0x =时,等号成立)∴21()1x m x ax e=+-在(,0]-∞上单调递增,又∵(0)0m =,∴当0x ≤时,()0m x ≤,从而当0x ≤时,()0h x '≤,∴221()21xh x ax x e =+-+在(,0]-∞上单调递减,又∵(0)0h =, 从而当0x ≤时,()0h x ≥,即221210x ax x e+-+≥于是当0x ≤时,()10f x +≥.(2)当2a <-时,令()0m x '=,得220x a e +=,∴121()02x n a=-<, 故当12(1(),0]2x n a ∈-时,222()()0x x a m x e e a'=+<,∴21()1x m x ax e =+-在12(1(),0]2n a-上单调递减,又∵(0)0m =,∴当12(1(),0]2x n a∈-时,()0m x ≥,从而当12(1(),0]2x n a∈-时,()0h x '≥,∴221()21x h x ax x e =+-+在12(1(),0]2n a-上单调递增,又∵(0)0h =,从而当12(1(),0)2x n a ∈-时,()0h x <,即221210x ax x e +-+<于是当12(1(),0]2x n a∈-时,()10f x +<,综合得a 的取值范围为[2,)-+∞.解法二:(Ⅰ)当4a =时,22()(421)x f x e x x =+-,22()2(421)x f x e x x '=+-+222(82)2(46)x x e x e x x +=+,设直线与曲线()y f x =相切,其切点为00(,())x f x ,则曲线()y f x =在点00(,())x f x 处的切线方程为000()()()y f x f x x x '-=-,因为切线过点(1,0)P ,所以000()()(1)f x f x x '-=-, 即02200(421)x ex x -+-=0220002(46)(1)x e x x x +-,∵020x e >,∴30081410x x -+=设3()8141g x x x =-+,则2()2414g x x '=-,令()0g x '=得x =当x 变化时,()g x ,()g x '变化情况如下表:∴381410x x -+=恰有三个根,故过点(1,0)P 有三条直线与曲线()y f x =相切. (Ⅱ)同解法一.22.解:(Ⅰ)曲线C 的直角坐标方程为2y x =, ∴1C 的直角坐标方程为22(1)y x =-. (Ⅱ)由直线l cos()204πθ--=,得cos sin 20ρθρθ+-=所以直线l 的直角坐标方程为:20x y +-=,又点(2,0)P 在直线l 上,所以直线l 的参数方程为:222x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),代入1C 的直角坐标方程得240t +-=, 设,A B 对应的参数分别为12,t t ,∴121281604t t t t ∆=+>⎧⎪+=-⎨⎪=-⎩1212||||||||||PA PB t t t t +=+=-==.23.解:(Ⅰ)当3a =时,不等式()6f x ≤为|23||21|6x x -+-≤若12x <时,不等式可化为(23)(21)446x x x ----=-+≤,解得1122x -≤<, 若1322x ≤≤时,不等式可化为(23)(21)26x x --+-=≤,解得1322x ≤≤, 若32x >时,不等式可化为(23)(21)446x x x -+-=-≤,解得3522x <≤,综上所述,关于x 的不等式()6f x ≤的解集为15|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (Ⅱ)当x R ∈时,()|2|21|f x x a x =-+-≥|212||1|x a x a -+-=-, 所以当x R ∈时,2()13f x a a ≥--等价于2|1|13a a a -≥--, 当1a ≤时,等价于2113a a a -≥--,解得1a ≤≤, 当1a >时,等价于2113a a a -≥--,解得11a <≤ 所以a的取值范围为[.。
2018年5月份福建省南平市高三毕业班第二次综合质量检查试卷理科数学试题参考答案
2018年南平市普通高中毕业班第二次综合质量检查考试理科数学试题参考答案及评分标准说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3、只给整数分数. 选择题和填空题不给中间分.一、选择题:本题考查基础知识和基本运算,每小题5分,满分60分.(1)C (2)D (3)C (4)A (5)D (6)C(7)C (8)B (9)A (10)C (11)B (12)A二、填空题:本题考查基础知识和基本运算,每小题5分,满分20分.(13)2 (14)]21,45[+- (15)3422=+y x (16)32π 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.(17)(Ⅰ)证:当2≥n 时,1n n n a S S -=-,代入已知得1n n S S -=-,…………2分=,因为0n a >,0≠,……………4分1=*(2),N n n ≥∈,故是等差数列;………5分(Ⅱ)解:由(Ⅰ)知是以1为首项,1为公差的等差数列,所以1(1)1n n =+-⋅=……………6分从而2n S n =,当*2,Nn n ≥∈时,121n a n n n ==+-=-, ………………7分又11a =适合上式,所以21n a n =-.所以112(21)2n n n n b a n --=⋅=-⋅ ……………………………8分01221123252(23)2(21)2n n n T n n --=⨯+⨯+⨯+-⨯+-⨯ ①12312123252(23)2(21)2n n n T n n -=⨯+⨯+⨯+-⨯+-⨯ ② ………10分 ②-①得,1231(22222222)(21)21n n n T n -=-⨯+⨯+⨯++⨯+-⨯-1234(12)(222)(21)21(21)2112n n nn n n ---=-++++-⨯-=+-⨯-- 111242212323n n n n n n n +++=-++⋅--=⋅-⋅+…………………………12分 (18)解:(Ⅰ)由题意可知:3554321=++++=t ,655.62.667.56.5=++++=y ,…………1分 3.25.022.010)3.0()1()4.0()2())((51=⨯+⨯++-⨯-+-⨯-=--∑=i i i y y t t…2分 10210)1()2()(2222512=+++-+-=-∑=i it t …………3分23.0103.2)())((ˆ51251==---=∑∑==i i i i i t ty y t t b ,31.5323.06ˆˆ=⨯-=⋅-=t b y a ,…5分 ∴y 关于t 的线性回归方程为31.523.0ˆ+=t y;…………6分 当6=t 时,69.631.5623.0ˆ=+⨯=y, 即2018年该农产品的产量为6.69万吨……………………8分(Ⅱ)当年产量为y 时,年销售额)6.12(30010)3.078.3(23y y y y S -=⨯⋅-=(万元),…………10分因为二次函数图像的对称轴为3.6=y ,又因为},5.6,2.6,6,7.5,6.5{∈y ,所以当2.6=y 时,即2016年销售额最大,于是4=t .………… 12分(说明:①第(Ⅱ)小题中,求S 与y 的关系式时,如果单位原因出错,此步骤不给分,但后续步骤可以按标准正常给分;②如果考生计算出每一年的年销售额S 的值,可以相应给分。
2018年福建省质检数学(理科)试卷(教师版)-(9573)
2018年福建省高三毕业班质量检查测试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,则()21{|log 0},33xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭A B = A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R1.【答案】B【考查意图】本小题以集合为载体,考查指数函数、对数函数的图象与性质,集合的运算等基础知识;考查运算求解能力,考查数形结合思想等.【答题分析】只要掌握指、对数函数的图象与性质,集合的运算等,便可解决问题.解:等价于,解得,所以;等价于2log 0x <22log log 1x <01x <<(0,1)A =133x⎛⎫< ⎪⎝⎭,解得,所以,从而.11133x-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭1x >-(1,)B =-+∞(0,1)A B = 2.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,sin 2y x =()y f x =则()A .的图象关于直线对称()y f x =8x π=B .的最小正周期为()f x 2πC .的图象关于点对称()y f x =,02π⎛⎫⎪⎝⎭D .在单调递增()f x ,36ππ⎛⎫-⎪⎝⎭2.【答案】D【考查意图】本小题以三角函数为载体,考查函数的图象变换及三角函数的图象与性质等基础知识,考查推理论证能力,考查数形结合思想、特殊与一般思想等.【答题分析】只要掌握函数图象变换知识、三角函数的图象与性质,便可解决问题.解:由题意得,.()sin f x x =的图象对称轴为直线,所以选项A 错误;sin y x =,2x k k Z ππ=+∈的最小正周期为,所以选项B 错误;sin y x =2T π=的图象对称中心为,所以选项C 错误;sin y x =(,0),k k Z π∈的一个单调递增区间为,,所以选项D 正确.sin y x =,22ππ⎛⎫- ⎪⎝⎭,,3622ππππ⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系;在如图所示的正五角星中,以为顶点的多边形为正五边形,且,,,,A B C D E.下列关系中正确的是()PT AT =A.BP TS RS-= B.CQ TP += C .51ES AP BQ--= D .51AT BQ -+= ABCD EP QR S T 【考察意图】本小题以正五角星为载体,考查平面向量的概念及运算等基础知识,考查推理论证能力,考查转化与化归思想等.【答题分析】只要掌握平面向量的概念,平面向量的加法、减法及数乘运算的几何意义,便可解决问题.解:由题意得,,所以选项A 正确.51BP TS TE TS SE RS +-=-==,所以选项B 错误;51CQ TP PA TP TA ++=+== ,所以选项C 错误;51ES AP RC QC RQ --=-== ,若,则51AT BQ SD RD RS RD SD -+=+==- 51AT BQ -+= ,不合题意,所以选项D 错误.故选A .0SD =4.已知,则5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++024a a a ++=( )A .123B .91C .120-D .152-4.【答案】D【考查意图】本小题以代数恒等式为载体,考查二项式定理等基础知识,考查运算求解能力、抽象概括能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握二项式定理,会合理赋值,便可解决问题.解法一:由,5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++取得:, ①1x =01234563a a a a a a a ++++++=取得:,②1x =-0123456243a a a a a a a -+-+-+=-,得,又,所以.+①②0246120a a a a +++=-561232a =⨯=024152a a a ++=-解法二:因为的展开式的第项,5(21)x -1r +515(2)(1),0,1,2,3,4,5r rr r T C x r -+=-=所以,554143230525522(1)2,12(1)22(1)70a C a C C =⨯-=-=⨯-+⨯-=-,所以,故选D .23214145512(1)22(1)80a C C =⨯-+⨯-=-024152a a a ++=-5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为( )S A .120B .84C .56D .28【答案】B【考查意图】本小题以数学文化为载体,考查程序框图等基础知识,考查运算求解能力、应用意识.【答题分析】只要按程序框图逐步执行,便可解决问题.解:按步骤执行程序框图中的循环体,具体如下:;1,1,12,3,43,6,104,10,20i n S i n S i n S i n S ===→===→===→===.5,15,356,21,567,28,84i n S i n S i n S ===→===→===所以输出.故选B .84S =6.已知函数.命题的图象关于点对称;命题若,则22()22x f x x x =-+1:()p y f x =(1,1)2:p 2a b <<.则在命题和()()f a f b <112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨中,真命题是()412:()q p p ∧⌝A .13,q q B .14,q q C .23,q q D .24,q q 【答案】B【考察意图】本小题以分式函数为载体,考查函数的图象与性质、导数及其应用、逻辑联结词的含义等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握逻辑联结词的含义、函数图象的对称性,会利用导数研究函数的单调性,会判断含逻辑联结词的命题的真假,便可解决问题.解法一:因为,2222(2)44(2)(2)2(2)222x x x f x x x x x --+-==---+-+所以,故的图象关于点对称,故命题为真命题;22244()(2)222x x x f x f x x x -+++-==-+()f x (1,1)1p 因为,所以,故命题为假命题.2(2),(0)05f f -==(2)0f ->2p 所以为假命题,为真命题,故为真命题.故选B .1p ⌝2p ⌝1212,()p p p p ∨∧⌝解法二:因为,所以函数的图象可由2222(1)()122(1)1x x f x x x x -==+-+-+()y f x =的图象向右平移1个单位,再向上平移1个单位后得到.因为,所以是22()1xg x x =+()()g x g x -=-()g x 奇函数,的图象关于原点对称,从而的图象关于点对称,故命题为真命题.()g x ()y f x =(1,1)1p 因为,令,得,所以的单调递增区间为;令22224()(22)x xf x x x -+'=-+()0f x '>02x <<()f x (0,2),得或,所以的单调递减区间为,;()0f x '<0x <2x >()f x (,0)-∞(2,)+∞故命题为假命题.2p 所以为假命题,为真命题,故为真命题.故选B .1p ⌝2p ⌝1212,()p p p p ∨∧⌝解法三:同解法一可得,命题为真命题.1p 因为当时,,设,0x ≠2221()2211122x f x x x x x ==-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭2()221h t t t =-+,则在单调递减,当时,,又因为1t x =1t x=(,0)-∞(,0)x ∈-∞(,0)t ∈-∞在单调递减,当时,,2()221h t t t =-+(,0)-∞(,0)t ∈-∞()(1,)h t ∈+∞所以在单调递增,又因为在单调递减,211122y x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭(,0)-∞1y x =(1,)+∞所以在单调递减,故命题为假命题.()f x (,0)-∞2p 所以为假命题,为真命题,故为真命题.故选B .1p ⌝2p ⌝1212,()p p p p ∨∧⌝7.如图,在平面直角坐标系中,质点间隔3分钟先后从点出发,绕原点按逆时针方向作角速xOy ,M N P 度为弧度/分钟的运算圆周运动,则与的纵坐标之差第4次达到最大值时,运动的时间为(6πM N N )A .分钟37.5B .分钟40.5C.分钟49.5D .分钟52.5【答案】A【考查意图】本小题以匀速圆周运动为背景,考查任意角三角函数的定义、三角函数的图象与性质等基础知识,考查抽象概括能力、推理论证能力、运算求解能力、应用意识及创新意识,考查函数与方程思想、数形结合思想等.【答题分析】只要掌握任意角三角函数的定义、三角函数的图象与性质等,或结合平面几何知识直观判断,便可解决问题.解法一:设点出发后的运动的时间为分钟,圆的半径为1,由三角函数的定义,得N t O ,因为间隔3分钟,所以,sin cos 266N y t t πππ⎛⎫=-+=- ⎪⎝⎭,M N 362MON ππ∠=⨯=所以,所以sin sin 2626M y t t ππππ⎛⎫=-++= ⎪⎝⎭,sincos26664M N y y t t t ππππ⎛⎫-=+=+ ⎪⎝⎭当,即时,2,642t k k Z ππππ+=+∈312,2t k k Z =+∈取得最大值,故当时,第4次取得M N y y -3k =M N y y -最大值,此时,故选A .37.5t =解法二:因为间隔3分钟,所以,M N 362MON ππ∠=⨯=,当取得最大值时,轴,且,M N y y -MN x ⊥4PON π∠=O PyNM当第一次取得最大值时,运动的时间为分钟;M N y y -N 4 1.56ππ=又质点运动一周的时间为分钟,N 2126ππ=当第4次取得最大值时,运动的时间为分钟.M N y y -N 1.512337.5+⨯=8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π-B .648π-C .16643π-D .8643π-【答案】C【考查意图】本小题以空间几何体为载体,考查三视图,正方体,圆柱,圆锥的体积等基础知识;考查空间想象能力,运算求解能力.【答题分析】只要掌握三视图及正方体、圆柱、圆锥的体积计算公式,便可解决问题.解:由三视图可知该几何体是由棱长为4的正方体截去个圆锥和个圆柱所得的几何体,且圆锥的底面半1414径为2,高为4;圆柱的底面半径为2,高为4,如图.所以该几何体的体积为.故选C .311164444464433πππ⎛⎫-⨯⨯⨯+⨯⨯=-⎪⎝⎭9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( )A .3200元B .3400元C .3500元D .3600元【答案】C【考查意图】本小题以故障机器问题为载体,考查计数原理、排列与组合、随机变量的分布列与数学期望等基础知识,考查抽象概括能力、运算求解能力及应用意识,考查统计与概率思想、分类与整合思想等.【答题分析】只要能列出随机变量的所有取值并应用计数原理及排列组合知识计算对应的概率,理解数学期望的意义,便可解决问题.解法一:设检测机器的台数为,则的所有可能取值为2,3,4.ξξ,1123223232235513133(2),(3),(4)1101010105C C A A A P P P A A ξξξ+========--=所以,故所需检测费用的均值为元.133234 3.510105E ξ=⨯+⨯+⨯=10003500E ξ⨯=解法二:设检测费为元,则的所有可能取值为2000,3000,4000.ηη所以1123223232235513133(2000),(3000),(4000)1101010105C C A A A P P P A A ηηη+========--=,故所需检测费用的均值为元.133200030004000350010105E η=⨯+⨯+⨯=350010.已知抛物线的焦点为,过且斜率为1的直线交于两点,线段的中2:2(0)E y px p =>F F E ,A B AB 点为,其垂直平分线交轴于点,轴于点.若四边形M x C MN y ⊥N 的面积等于7,则的方程为( )CMNF E A .2y x=B .22y x=C .24y x=D .28y x=【答案】C【考查意图】本小题以抛物线为载体,考查抛物线的标准方程及其简单几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想等.【答题分析】只要掌握抛物线的标准方程及其简单几何性质,直线与抛物线的位置关系,并根据题意准确作,设,则//FC NM 112200(,),(,),(,)A x y B x y M x y 1212221212122122AB y y y y pk y y x x y y p p--====-+-所以,所以,作轴于,则,因为的斜率为1,122y y p +=0y p =MK x ⊥K MK p =AB 所以为等腰直角三角形,故,所以FMK △FK KC p ==,所以四边形的面积为,解得,故32MN OK OF FK p ==+=CMNF 132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭2p =抛物线方程为.24y x =解法二:由题意,得,直线的方程为,四边形为梯形,且,02p F ⎛⎫⎪⎝⎭AB 2p y x =-CNMF ,设,由,得,则,//FC NM 112200(,),(,),(,)A x y B x y M x y 222p y x y px ⎧=-⎪⎨⎪=⎩2220y py p --=122y y p +=所以,故,由于,令,得,0y p =(0,)N p 2p y x =-0y p =032x p =所以,因为,所以,故,从而直线的方程为3,2M p p ⎛⎫⎪⎝⎭MC AB ⊥1MC AB k k ⋅=-1MC k =-MC ,令,得,故,所以四边形的面积为52y x p =-+0y =52C x p =5,02p C ⎛⎫⎪⎝⎭CMNF ,解得,故抛物线方程为.132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭2p =24y x =11.已知四点均在以点为球心的球面上,且,,,,A B C D 1O 5AB AC AD ===.若球在球内且与平面相切,则球直径的最大值为( )42,8BC BD CD ===2O 1O BCD 2O A .1B .2C .4D .8【答案】D【考查意图】本小题以球为载体,考查空间几何体,球的性质等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想等.【答题分析】只要通过长度关系,认清以四点为顶点的三棱锥的图形特征,正确判断球心的位,,,A B C D 1O 置,借助方程求出球的半径,直观判断球的位置,便可解决问题.1O 2O 解法一:取的中点,连结,如图,因为,所以CD O ,AO BOBC BD ==8CD =,所以,故为的外心,因为,所以,222BD BC CD +=BC BD ⊥O BCD △AC AD ==AO CD ⊥且,故,又,所以平面,2AO =AO OB ⊥BO CD O = AO ⊥BCD 所以在直线上,连结,设,则,,因为,所以1O AO 1O D 1O D R =1AO R =12OO R =-1OO DO ⊥,即,解得,球的直径最大时,球与平面相切且22211DO OO O D +=2216(2)R R +-=5R =2O 2O BCD 与球相切,四点共线,此时球的直径为.1O 12,,,A O O O 2O 18R OO +=解法二:将补形成正方形,如图,易知四棱锥为正四棱锥,正方形的Rt BCD △ECBD A BCED -BDEC 中心为,.连结,则为的外心,因为O BO CD ⊥,AO BO O BCD △,所以,且,又因为,所以25AC AD ==AO CD ⊥2AO =4,4OD BO ==,故,又,所以平面,222AO BO AB +=AO OB ⊥BO CD O = AO ⊥CBDE 设,则,,因为,所以,即1O D R =1AO R =12OO R =-1OO DO ⊥22211DO OO O D +=,解得,球的直径最大时,球与平面相切且与球相切,2216(2)R R +-=5R =2O 2O BCD 1O 四点共线,此时球的直径为.12,,,A O O O 2O 18R OO +=A 1O 2O A BCDOE 12.已知函数在上的值域为,则的取值范围是( )3()()3(0)f x x a x a a =--+>[1,]b -[22,0]a --b A .[0,3]B .[0,2]C .[2,3]D .(1,3]-【答案】A【考查意图】本题以三次函数为载体,考查导数及其应用等基础知识,考查运算求解能力、推理论证能力及创新意识,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想等.【答题分析】只要将函数的图象作平移变换得到3()()3()2f x x a x a a =----,将条件转化为“当时,的值域为”,注意到的极小值与3()3g x x x =-[1,]x a b a ∈---()g x [2,2]a -()g x它在上的最小值相等,再结合函数图象,由的值域为直观判断的取值范围;[1,]a b a ---()g x [2,2]a -b a -或直接研究函数的图象与性质,通过分类讨论确定的值,进而根据图象直观判断出的取值范围.()f x a b 解法一:将函数的图象向左平移个单位,再向上平移33()()3()3()2f x x a x a x a x a a =--+=----a 个单位,得到的图象,故条件等价于在2a 3()3g x x x =-3()3g x x x =-的值域为.,所以当或时,[1,]a b a ---[2,2]a -2()333(1)(1)g x x x x '=-=+-(,1)x ∈-∞-(1,)x ∈+∞,故的单调递增区间为;当时,,故的单调递减()0g x '>()g x (,1),(1,)-∞-+∞(1,1)x ∈-()0g x '<()g x 区间为.又,(1,1)-(1)2,(1)2g g -==-令,得,即,得或,因为,()2g x =3320x x -+=2(1)(2)0x x -+=2x =-1x =0a >所以,由图象得,故.11a --<-12a ---≥01a <≤①当时,在的值域为,因为,令,1a =3()3g x x x =-[2,1]b --[2,2]-(1)(2)2g a g --=-=-()2g x =得,即,解得:或,故由图象得3320x x --=2(1)(2)0x x +-=1x =-2x =,解得;112b --≤≤03b ≤≤②当时,,所以,又在上单调递增,所01a <<211,022a a -<--<-<<1b a -<-()g x (1,)a b a ---以,此时与题意矛盾.()(1)2g x g a -->-≥综上,可知,故选A .03b≤≤解法二:因为,所以,令得:3()()3f x x a x a =--+2()3()3f x x a '=--()0f x '=或,又,1x a =+1x a =-(1)22,(1)22f a a f a a +=---=-+当变化时,的变化情况如下表:x (),()f x f x 'x(,1)a -∞-1a -(1,1)a a -+1a +(1,)a ++∞()f x '()0f x '>0()0f x '<0()0f x '>()f x 单调递增22a -+单调递减22a --单调递增① 若,则,整理得,,解得:或(舍去),(1)22f a -=--32340a a +-=2(1)(2)0a a -+=1a =2a =-此时,令,解得或;3()(1)31f x x x =--+()4f x =-1x =-2x =令,解得或,因为在的值域为,故由图象可得.()0f x =0x =3x =()f x [1,]b -[4,0]-03b≤≤②若,因为,所以,要使在上的值域为,则(1)22f a ->--0a >11a ->-()f x [1,]b -[22,0]a --,所以,所以,1a b +≤1[1,]a b -∈-(1)22(1)0f a f a ->--⎧⎨-⎩≤即,即,无解.3(1)322220a a a a ⎧--++>--⎨-⎩≤2(1)(2)01a a a ⎧-+<⎨⎩≥综上,可得,故选A .03b ≤≤二、填空题:本大题共4小题,每小题5分,共20分。
2018年福州市高中毕业班质量检测参考答案(理科数学)
(9) 【答案】C.
【解析】由三视图可知,该几何体是由直四棱柱与半圆锥组合而成的简单组合体.因
1 1 1 为 V四棱柱 = 1 2 2 2 6, V半圆锥 = 12 2 ,所以该几何体的体积为 2 2 3 3
V V四棱柱 V圆锥 6 (10) 【答案】C.
题意,排除 A;故选 C.
(11) 【答案】D.
理科数学参考答案及评分细则 第 2 页(共 14 页)
所以 D 与 B1 重合. 分别过点 A, B 作 AA1 , BB1 垂直于 l , 【解析】 依题意, 易证 BD // x 轴, 且 垂 足 分 别 为 A1 , B 1 , 由 已 知 条 件 BE 2 BF 得 BE 2 BF 2 BB1 , 所 以
(7) 【答案】D.
【解析】根据程序框图的功能,可知判断框内应填 S 1 000 .由程序框图知,当首次 满足 S 1 000 时,已多执行两次“ i i 1 ”,故输出框中应填写“输出 i 2 ”.
(8) 【答案】B.
【解析】 可分两步: 第一步, 甲、 乙两个展区各安排一个人, 有 A62 种不同的安排方法; 第二步,剩下两个展区各两个人,有 C42 C22 种不同的安排方法;根据分步计数原理,有 不同的安排方案的种数为 A62 C42 C22 180 .
x x2 y 2 1 ,所以 E 的渐近线方程为 y . 4 2
2 1 i 2 1 i , z 对应的点为 1,1 , i 1 i 11 i
(2)C (8)B
(3)B (9)C
(4)B (10)C
(5)D (11)D
(6)A (12)B
2018年5月份福建省三明市高三毕业班5月质检质量检查试卷理科数学试题参考答案
2018年三明市普通高中毕业班质量检查测试理科数学参考答案一.二.填空题:13.6 14.e 1- 15.5 16.(1,2)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)因为1a =,且2(1)32t S a a +=++,21(b b ++-21a b +++23n n-. ...................... 23n n-11n n ++-+18.解:(1)因为//AB CD ,所以11,23AM AB AM MC CD AC ===即. .....................2分 因为//MN PCD 平面,MN ⊂平面PAC ,平面PAC 平面PCD PC =,所以//MN PC . ......................................................... 4分 所以13AN AM AP AC ==,即13m =. ...........................................5分 (2)因为,60AB AD BAD =∠=︒,可知ABD ∆为等边三角形,所以BD AD PD ==,又BP =, 故222BP PD DB =+,所有PD DB ⊥. 由已知,PD AD ADBD D ⊥=,所以PD ⊥平面ABCD ,如图,以D 为坐标原点,DA DP ,的方向为,x y 轴的正方向建 立空间直角坐标系,设1AB =,则1,2AB AD DP CD ====,所以)3,0,1(),0,1,0(),23,0,21(-C P B ,则13(,1,),(1,22PB PC =-=--, 设平面PBC 的一个法向量为1111(,,)x y z =n ,则有110,0,PBPC ⎧⋅=⎪⎨⋅=⎪⎩n n 即11111120,0.x y x y ⎧-=⎪⎨+=⎪⎩ 设11x =,则112,y z =所以1(1=n , ………………………8分 设平面PCD 的一个法向量为2222(,,)x y z =n ,由已知可得220,0,DC DP⎧⋅=⎪⎨⋅=⎪⎩n n 即2220,0.x y ⎧=⎪⎨=⎪⎩ 令21z =,则2x =所以 2=n . …………………………………10分所以121212cos ,⋅<>===⋅n n n n n n ,………………………11分 设二面角B PC D --的平面角为θ,则410)46(1sin 2=-=θ.………12分 19.解:(1)设(,)H x y ,由题意得(,2)C x y (0)y ≠,所以(22,),()NH x y MC x y =-=+, …………………………2分所以22828NH MC x y ⋅=-+=,化简得221168x y +=,所以所求点H 的轨迹E 的方程为221168x y +=(0)y ≠. ………………………5分 (2)由题意可知直线l 的斜率存在,设直线l 的方程为(4)y k x =+(0)k ≠, 令0x =,得4y k =,即(0,4)Q k .由22(4),1,168y k x x y =+⎧⎪⎨+=⎪⎩ 解得222488,1212P P k k x y k k -==++,即222488(,)1212k k P k k -++,…8分 因为l l '∥,所以l '的方程为y kx =,由22,1,168y kx x y =⎧⎪⎨+=⎪⎩ 解得222221616,1212R R k x y k k ==++, ……………10分所以||AQ =,||AP ,22216(1)||12k OR k +=+,所以2||||||AQ AP OR ⋅=2. …………………………………………………12分 20.解:(1)由频率分布直方图知,该汽车交易市场2017年成交的二手车使用时间在(8,12]的频率为0.0740.28⨯=,使用时间在(]12,16的频率为0.0340.12⨯=.所以在该汽车交易市场2017年成交的二手车随机选取1辆,其使用时间在(]8,16的概 率为0.280.120.4+=, .................................................. 2分所以所求的概率为()2230.410.40.288P C =⋅-=. ............................. 3分(2)①由e a bx y +=得ln y a bx =+,则Y 关于x 的线性回归方程为Y a bx =+. .... 4分由于()()()10101110102222111079.7510 5.5 1.90.338510 5.510iii ii i i ii i x x Y Y x Y x Yb x x xx ====---⋅-⨯⨯====--⨯--∑∑∑∑()1.90.3 5.5 3.55a Y x β=-⋅=--⨯=则Y 关于x 的线性回归方程为 3.550.3Y x =-, ……………………………6分 所以y 关于x 的回归方程为 3.550.3exy -= ……………………………7分②根据频率分布直方图和①中的回归方程,对成交的二手汽车可预测: 使用时间在(]04,的频率为0.0540.2⨯=,对应的成交价格的预测值为 3.550.32 2.95e e 19.1-⨯=≈;使用时间在(]48,的频率为0.0940.36⨯=, 对应的成交价格预测值为 3.550.36 1.75e e 5.75-⨯=≈;使用时间在(]812,的频率为0.0740.28⨯=, 对应的成交价格的预测值为 3.550.3100.55e e 1.73-⨯=≈; 使用时间在(]1216,的频率为0.0340.12⨯=,对应的成交价格的预测值为 3.550.3140.65e e 0.52-⨯-=≈; 使用时间在(]1620,的频率为0.0140.04⨯=,对应的成交价格的预测值为 3.550.318 1.85e e 0.16-⨯-=≈.……………………………9分若采用甲方案,预计该汽车交易市场对于成交的每辆车可获得的平均佣金为()0.219.10.36 5.750.28 1.730.120.520.040.165%⨯+⨯+⨯+⨯+⨯⨯=0.321660.32≈万元;若采用乙方案,预计该汽车交易市场对于成交的每辆车可获得的平均佣金为()()0.219.10.36 5.754%0.28 1.730.120.520.040.1610%⨯+⨯⨯+⨯+⨯+⨯⨯0.290920.29=≈万元. …………………………………………………………11分 因为0.32>0.29,所以采用甲方案能获得更多佣金. ……………12分21.解:(1)因为()2(4)e 0x f x m x x -=-+≥对()2,x ∀∈+∞恒成立,等价于24e x x xm --≥-对()2,x ∀∈+∞恒成立, …………………………1分 设()224(1)4e e x x xx x x ϕ--=--=得()()22222244'1e e 0x x x x x x x ϕ---⎛⎫=-+=≥ ⎪⎝⎭, …………………………3分 故()x ϕ在()2,+∞上单调递增,当2x >时,由上知()()21x ϕϕ>=-,所以1m -≤-,即1m ≥,所以实数m 的取值范围为[)1,+∞; ……………………………6分 (2)对()()22e (2)2x ax ag x x x --+=>-求导得()()()2323(4)e [](4)e ',(2)22x x x x a x ax x g x x x x ----+==>-+-, ……………7分记()24e x x F x xa --=+,(2)x >, 由(1)知()F x 在区间()2,+∞内单调递增,又(2)10,(4)0F a F a =-+<=≥, 所以存在唯一正实数0(2,4]x ∈,使得020004()e 0x x F x x a --+==, ∴当0(2,)x x ∈时,()0F x <,'()0g x <,函数()g x 在区间0(2,)x 单调递减;0(,)x x ∈+∞时,()0F x >,'()0g x >,函数()g x 在区间0(,)x +∞单调递增;所以()g x 在()2,+∞内有最小值()()020020e 2x ax ag x x --+=-, …………………9分由题设即()()02020e 2x ax ah a x --+=-.又因为02004e x x a x ---=.所以()()02001e x h a g x x -==. ……………………10分 根据(1)知, ()x ϕ在()2,+∞内单调递增,(]0200e 1,04x x a x -=-∈--, 所以024x <≤.令()21e (24)x u x x x-=<≤,则 ()221e 0x x u x x -'-=>,函数()u x 在区间(]2,4内单调递增, 所以()()()24u u x u <≤,即函数()h a 的值域为21e ,24⎛⎤⎥⎝⎦. ……………………………12分22. 解法一:(1)由1,1,x y t ⎧=-⎪⎨=+⎪⎩得l的普通方程为1x =, …………1分又因为cos ,sin ,x y ρθρθ=⎧⎨=⎩, 所以l的极坐标方程为()cos 1ρθθ= .... 3分(或π2sin()16ρθ+=+由2cos ρθ=得22cos ρρθ=,即222x y x +=, ............................ 4分所以C 的直角坐标方程为2220xy x +-=. ................................ 5分(2)设,P Q 的极坐标分别为()()1122,,,ρθρθ,则12POQ θθ∠=- ............... 6分由()cos 12cos ,ρθθρθ⎧=⎪⎨=⎪⎩消去ρ得()2cos cos 1θθθ=+ .... 7分化为cos22θθ=,即πsin 26θ⎛⎫+= ⎪⎝⎭........................ 8分因为π02θ⎛⎫∈ ⎪⎝⎭,,即ππ7π2+666θ⎛⎫∈ ⎪⎝⎭,,所以ππ263θ+=,或π2π263θ+=, ...... 9分 即12π,12π,4θθ⎧=⎪⎪⎨⎪=⎪⎩或12π,4π,12θθ⎧=⎪⎪⎨⎪=⎪⎩所以12π=6POQ θθ∠=-. ......................... 10分 解法二: (1)同解法一 ……………………………5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆. .... 6分将l的参数方程化为标准形式1,112x y t ⎧'=-⎪⎪⎨⎪'=+⎪⎩(其中t '为参数),代入C 的直角坐标方程为2220x y x +-=得,221112102t ⎛⎫⎛⎫⎛⎫'''++-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理得,20t t ''+=,解得0t '=或1t '=-. .................................. 8分 设,P Q 对应的参数分别为12,t t '' ,则121PQ t t ''=-=.所以π3PCQ ∠=, ...... 9分 又因为O 是圆C 上的点,所以π26PCQ POQ ∠∠==.......................... 10分 解法三: (1)同解法一. ……………………………5分(2)曲线C 的方程可化为()2211x y -+=,表示圆心为()1,0C 且半径为1的圆. ... 6分又由①得l的普通方程为(10x -=, ........................... 7分则点C 到直线l的距离为d =, ....................................... 8分所以1PQ ==,所以PCQ △是等边三角形,所以π3PCQ ∠=, ........ 9分 又因为O 是圆C 上的点,所以π26PCQ POQ ∠∠==.......................... 10分23. 解:(1)当1a =时,()11f x x x =-++,则()2 ,1,2, 11,2, 1.x x f x x x x -<-⎧⎪=-<⎨⎪⎩≤≥ 2分当1x <-时,由()f x ≤4得,22x --≤4,解得21x -<-≤; 当11x -<≤时,()f x ≤4恒成立;当1x ≥时,由()f x ≤4得,2x ≤4,解得12x ≤≤. .......................... 4分 所以()f x ≤4的解集为{}22x x -≤≤. .................................. 5分 (2)因为对任意1x ∈R ,都存在2x ∈R ,使得不等式()()12f x g x >成立,所以()()min min f x g x >. ............................................... 6分因为()2223120a a a -+=-+>,所以223a a >-,且()()222223232323x a x a x a x a a a a a -+-+---+=-+=-+≥, ① 当223a x a -≤≤时,①式等号成立,即()2min 23f x a a =-+.................. 7分又因为2222444244a a a x ax x ⎛⎫++=++-- ⎪⎝⎭≥, ②当2a x =-时,②式等号成立,即()2min 44a g x =-. .......................... 8分所以222344a a a -+>-,整理得,25840a a -->, ........................ 9分解得25a <-或2a >,即a 的取值范围为()2,2,5⎛⎫-∞-+∞ ⎪⎝⎭. ..............10分。
(理科数学参考答案)2018年5月份福州市高三毕业班适应性练习
1 1 1 2 2 1
n 1
n 1
1 2
····························································· 10 分
3 1 2 2
3 ·································································· 11 分 2
AO , AC1 , OB1
因为 AA1∥CC1 , 所以 A, A1 , C1 , C 四点共面, 又平面 ABCD 平面 A1 B1C1 , 平面 AA1C1C 平面 ABCD AC , 平面 AA1C1C 平面 A1 B1C1 A1C1 , 所以 AC∥A1C1 , ·················································································· 1 分 所以四边形 AA1C1C 为平行四边形, 又 AA1 AC , 所以四边形 AA1C1C 为菱形,
当 n 2 时, Sn
1 1 1 1 a1 a2 a3 an
1 1 1 1 2 n 1 ··························································· 9 分 2 2 2 2
1 2
2018 年 5 月福州市高中毕业班适应性练习
理科数学参考答案及评分细则
评分说明: 1. 本解答给出了一种或几种解法供参考, 如果考生的解法与本解答不同, 可根据试题 的主要考查内容比照评分标准制定相应的评分细则。 2. 对计算题, 当考生的解答在某一步出现错误时, 如果后继部分的解答未改变该题的 内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数 的一半;如果后继部分的解答有较严重的错误,就不再给分。 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 4.只给整数分数。选择题和填空题不给中间分。 一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分。 (1)C (7)B (2)A (8)C (3)C (9)B (4)D (10)C (5)D (11)A (6)A (12)D
[首发]福建省福州市2018届高三5月质检数学(理)答案
数学试题(第1页共10页)2018年5月福州市高中毕业班适应性练习理科数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分数。
选择题和填空题不给中间分。
一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分。
(1)C (2)A (3)C (4)D (5)D (6)A (7)B(8)C(9)B(10)C(11)A(12)D二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分。
(13)2 (14)23(15)2- (16)3三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤。
17. 【命题意图】本小题考查递推公式,用叠加法求数列的通项公式,等比数列的前n 项和的公式、放缩法证明不等式等基础知识,考查运算求解能力,考查函数与方程思想、化归和转化思想等。
满分12分。
【解析】(1)因为12a =,112n n na a -+-=, 所以0212a a -=,1322a a -=, 2432a a -=,…()2122n n n a a n ---= ,把以上1n -个式子相加得,()01212222n n a a n --=++⋅⋅⋅+ , ······················ 2分即()1111221212n n n a a n ----==-- , ························································· 3分 更多金卷请入网 相关视频讲解入群 更多学而思下载相关视频观看 入群更新课程数学试题(第2页共10页)又因为12a =,所以()1212n n a n -=+ ,··················································· 4分 且12a =也满足式子121n n a -=+,所以()1*21n n n a -=+∈N ; ····································································· 5分 (2)由(1)可得,()111112212n n n a n --=<+ ,········································· 7分 当1n =时,1111322a S ==<;·································································· 8分 当2n 时,1231111n nS a a a a =+++⋅⋅⋅+ 2111112222n -<+++⋅⋅⋅+ ··························································· 9分 11112211212n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+-····························································· 10分1313222n -⎛⎫=-<⎪⎝⎭·································································· 11分 综上所述,32nS <. ··········································································· 12分18. 【命题意图】本小题考查空间直线与直线、直线与平面、平面与平面的垂直关系及异面直线所成角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等。
2017-2018届福建省福州一中高三5月校质检理科数学试题及答案
福建省福州一中2017-2018届高三5月校质检数学理试题(WORD 版) 5本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分(满分150分 考试时间120分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置.)1. 已知命题p :x R ∃∈,21x =.则p ⌝是A .x R ∀∉,21x ≠ B. x R ∀∈,21x ≠ C .x R ∃∉,21x ≠ D. x R ∃∈,21x ≠ 2. 设集合{}1,1M =-,{}2N a =,则“1a =”是“M N M = ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3. 执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为A .2B .3C .4D .54. 设变量,x y 满足约束条件01030y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =+的最大值为A.2-B. 3C. 4D. 6 5. 在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于A .40B .42C .43D .456.若sin 44πα⎛⎫+= ⎪⎝⎭,则sin 2α等于 A .34 B .34- C .12 D .12- 7. 函数()412x x f x +=的图象A .关于y 轴对称B .关于x 轴对称C .关于直线y x =对称D .关于原点对称8. 已知平面α外不共线的三点,,A B C 到α的距离都相等,则正确的结论是A .平面ABC 必平行于αB .平面ABC 必与α相交 C .平面ABC 必不垂直于αD .存在ABC ∆的一条中位线平行于α或在α内9. 已知共焦点的椭圆和双曲线,焦点为12,F F ,记它们其中的一个交点为P ,且12120F PF ∠= ,则该椭圆离心率1e 与双曲线离心率2e 必定满足的关系式为A .1213144e e += B. 221231144e e +=C .221231144e e += D. 221213144e e +=10.设12,,,n A A A 为集合{}1,2,,S n = 的n 个不同子集()4n ≥,为了表示这些子集,作n 行n 列的数阵,规定第i 行与第j 列的数为0,,1,,j ij j i A a i A ∉⎧⎪=⎨∈⎪⎩则下列说法正确的个数是①数阵中第1列的数全是0当且仅当1A =∅;②数阵中第n 列的数全是1当且仅当n A S =;③数阵中第j 行的数字和表明元素j 属于12,,,n A A A 中的几个子集;④数阵中所有的2n 个数字之和不小于n ; ⑤数阵中所有的2n 个数字之和不大于21n n -+.A .2 B. 3 C .4 D. 5第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.若复数1iz i=+,则z 的共轭复数z =___________. 12.已知多项式()()()22012111nn n x x x b b x b x b x ++++++=++++ ,且满足12n b b b +++26=,则正整数n 的一个可能值为___________.13.已知圆22:440C x y x y +--=,直线60l y ++-=,在圆C 上任取一点A ,则点A 到 直线l 的距离小于2的概率为________. 14. 已知()ln ln 1x x x '=+,则1ln exdx =⎰___________.15.已知两个非零向量a 和b所成的角为()0θθπ≤≤,规定向量c a b =⨯,满足:(1)模:sin c a b θ=;(2)方向:向量c 的方向垂直于向量a 和b (向量a 和b构成的平面),且符合“右手定则”:用右手的四指表示向量a的方向,然后手指朝着手心的方向摆动角度θ到向量b的方向,大拇指所指的方向就是向量c的方向.这样的运算就叫向量的叉乘,又叫外积、向量积. 对于向量的叉乘运算,下列说法正确的是___________.①0a a ⨯= ; ②0a b ⨯= 等价于a 和b共线;③叉乘运算满足交换律,即a b b a ⨯=⨯;④叉乘运算满足数乘结合律,即()()()a b a b a b λλλ⨯=⨯=⨯.三、解答题:本大题共6小题,共80分.解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学所需时间的范围是[]100,0,样本数据分组为[)20,0,[)40,20,[)60,40,[)80,60,[]100,80,学校规定上学所需时间不小于1小时的学生可以申请在学校住宿.(Ⅰ)求频率分布直方图中x 的值;(Ⅱ)根据频率分布直方图估计样本数据的中位数;(Ⅲ)用这个样本的频率分布估计总体分布,将频率视为概率,从可以住宿的学生当中随机抽取3人,记ξ为其中上学所需时间不低于80分钟的人数,求ξ的分布列及其数学期望.17. (本小题满分13分)已知几何体A BCED -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形. (Ⅰ)求二面角E AD B --的余弦值;(Ⅱ)试探究在棱D E 上是否存在点Q ,使得 AQ BQ ⊥,若存在,求出DQ 的长;若不存在,请说明说明理由.18. (本小题满分13分)如图,直角三角形ABC 中,90B ∠= ,1,AB BC ==点,M N分别在边AB 和AC 上(M 点和B 点不重合),将AMN∆沿MN 翻折,AMN ∆变为A MN '∆,使顶点A '落在边BC 上(A '点和B 点不重合).设AMN θ∠=.(Ⅰ)用θ表示线段AM 的长度,并写出θ的取值范围; (Ⅱ)求线段A N '长度的最小值.19. (本小题满分13分)已知抛物线C 的顶点为坐标原点,其焦点()(),00F c c >到直线l 20x y -+=(Ⅰ)求抛物线C 的方程;(Ⅱ)若M 是抛物线C 上异于原点的任意一点,圆M 与y 轴相切. (i )试证:存在一定圆N 与圆M 相外切,并求出圆N 的方程;(ii )若点P 是直线l 上任意一点,,A B 是圆N 上两点,且AB BN λ=,求PA PB ⋅的取值范围.20. (本小题满分14分)已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线斜率为3. (Ⅰ)求实数a 的值;(Ⅱ)若k Z ∈,且()f x kx k >-对任意1x >恒成立,求k 的最大值; (III )若()*2ln 23ln 3ln 3,k a k k k k N =+++≥∈ ,证明:311nk ka =<∑()*,n k n N ≥∈.21. 本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵2413M ⎛⎫= ⎪⎝⎭,2010N ⎛⎫= ⎪⎝⎭, (Ⅰ)求二阶矩阵X ,使MX N =;(Ⅱ)求圆221x y +=在矩阵X 变换下的曲线方程.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系,已知曲线()2:sin 2cos 0C a a ρθθ=>,已知过点()2,4P --的直线l 的参数方程为:()24x t y ⎧=-+⎪⎪⎨⎪=-+⎪⎩是参数,直线l 与曲线C 分别交于,M N . (Ⅰ)写出曲线C 和直线l 的普通方程; (Ⅱ)若,,PM MN PN 成等比数列,求a 的值.(3)(本小题满分7分)选修4-5:不等式选讲 已知,a b 为正实数.(Ⅰ)求证22a b a b b a+≥+;(Ⅱ)利用(Ⅰ)的结论求函数()()221011x x y x xx-=+<<-的最小值.福州一中高考模拟数学试卷(2017-2018年5月)参考答案(理科) 一.选择题 BACDB BADCC 二.填空题 11.12i -;12. 4;13. 14;14. 1;15. ①②④ 三.解答题16.解:(I )由直方图可得:200.025200.0065200.0032201x ⨯+⨯+⨯+⨯⨯=.所以0.0125x =. …………………………………3分 (II )设中位数为y ,则()200.0125200.0250.5y ⨯+-⨯=,解得30y =所以中位数估计为30分钟. .……………6分(III )依题意得13,2B ξ⎛⎫ ⎪⎝⎭,ξ的所有可能取值为0,1,2,3, .……………7分()()33131102813128P P C ξξ⎛⎫===⎪⎝⎭⎛⎫=== ⎪⎝⎭()32313228P C ξ⎛⎫=== ⎪⎝⎭()311328P ξ⎛⎫=== ⎪⎝⎭.……………11分所以ξ的分布列为ξ123P18383818所以ξ的数学期望是13322E ξ=⨯=..……………13分 17. 解:(I )由三视图知,,,CA CB CE 两两两垂直,以C 为原点,以,,CA CB CE 所在直线为,,x y z 轴建立空间直角坐标系.……………1分则A (4,0,0),B (0,4,0),D (0,4,1),E (0,0,4)∴(0,4,3),(4,4,0)DE AB =-=-,()()4,4,1,0,0,1DA BD =--=……………3分设面ADE 的法向量为(),,n x y z = ,面ABD 的法向量为(),,m x y z '''=则有0n DE n DA ⎧⋅=⎪⎨⋅=⎪⎩,即430440y z x y z -+=⎧⎨--=⎩,取1z =得31,,14n ⎛⎫= ⎪⎝⎭ , 0m AB m BD ⎧⋅=⎪⎨⋅=⎪⎩,即4400x y z -+=⎧⎨=⎩,取1x =得()1,1,0m = ,……………… 6分设二面角E AD B --的大小为θ,由图可知θ为钝角故31cos cos ,82n m n m n mθ+⋅=-=-==-∴二面角E AD B --的余弦值为.…………………………… 8分x(II )∵点Q 在棱D E 上,∴存在()01λλ≤≤使得DQ DE λ=………………… 9分()()()0,0,10,4,30,4,31BQ BD DQ BD DE λλλλ∴=+=+=+-=-+同理()4,44,31AQ λλ=--+………………… 11分,0AQ BQ AQ BQ ⊥∴⋅=即()()()2444+3+1=0λλλ--解得15λ=所以满足题设的点Q 存在,DQ 的长为1.…………………………13分18. 解:(I )设MA MA x '==,则1MB x =-. 在Rt MBA '∆中,()1cos 2xxπθ--=, …………………………………2分 ∴2111cos22sin MA x θθ===-. …………………………………4分 ∵点M 在线段AB 上,M 点和B 点不重合,A '点和B 点不重合,∴42ππθ⎛⎫∈ ⎪⎝⎭,.…………………………………5分 (II )在AMN ∆中,23ANM πθ∠=- 2sin sin 3ANMAπθθ=⎛⎫- ⎪⎝⎭,21sin sin 12sin 222sin sin 2sin sin 333MA AN θθθπππθθθθ⋅===⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.…………… 8分令2212sin sin 2sin sin sin cos 32t πθθθθθθθθ⎛⎫⎛⎫=-=+=+ ⎪⎪⎝⎭⎝⎭1112cos2sin 22226πθθθ⎛⎫=+-=+- ⎪⎝⎭………………… 11分 ∵42ππθ<<, ∴52366πππθ<-<. 当且仅当262ππθ-=,即3πθ=时, t 有最大值32.∴3πθ=时,AN '有最小值23.………………… 13分19.解:(Ⅰ) 依题意,设抛物线C 的方程为24y cx =,2=结合0c >,解得1c =. 所以抛物线C 的方程为24y x =. …………4分(Ⅱ) (i )设圆M 与y 轴的切点是点M ',连结MM '交抛物线C 的准线于点M '',则1M MF MM r ''==+,所以圆M 与以F 为焦点,1为半径的圆相切,圆N 即为圆F ,圆N 的方程为()2211x y -+=;…………8分(ii)由AB BN λ=可知,AB 为圆N 直径,…………9分从而()()()22211272PA PB PN NA PN NB PN PN NA NB NA NB PN ⋅=+⋅+=+⋅++⋅=-⎛≥- ⎝⎭= 所以PA PB ⋅ 的取值范围是7,2⎡⎫+∞⎪⎢⎣⎭.…………13分 20.解:(I )因为()ln f x ax x x =+,所以()ln 1f x a x '=++.………………… 1分因为函数()ln f x ax x x =+的图像在点e x =处的切线斜率为3, 所以()e 3f '=,即ln e 13a ++=. 所以1a =.………………… 2分 (II )由(1)知,()ln f x x x x =+, 所以()1f x k x <-对任意1x >恒成立,即ln 1x x xk x +<-对任意1x >恒成立.………………… 3分 令()ln 1x x xg x x +=-, 则()()2ln 21x x g x x --'=-,………………… 4分令()ln 2h x x x =--()1x >, 则()1110x h x xx-'=-=>, 所以函数()h x 在()1,+∞上单调递增.………………… 5分 因为()()31ln30,422ln 20h h =-<=->,所以方程()0h x =在()1,+∞上存在唯一实根0x ,且满足()03,4x ∈. 当01()0x x h x <<<时,,即()0g x '<,当0()0x x h x >>时,,即()0g x '>,6分所以函数()ln 1x x xg x x +=-在()01,x 上单调递减,在()0,x +∞上单调递增. 所以()()()()()000000min 001ln 123,411x x x x g x g x x x x ++-====∈⎡⎤⎣⎦--.……… 7分所以()()0min 3,4k g x x <=∈⎡⎤⎣⎦.故整数k 的最大值是3.………………… 8分(III )由(II )知()ln 231x x x x >->,取()*2,x k k k N =≥∈,则有2ln 2223,3ln3233,,ln 23k k k >⋅->⋅->⋅-将上面各式相加得()()()222ln 23ln 3ln 22331211k k k k k k k +++>+++--=-+=-即()21k a k >-,故()()()11131(2)1k k a k k k <=≥---,所以 ()()33111111122312111111223211111nk kn a a a n n n n n ==++<+++⨯⨯--=-+-++---=--<∑ …………………14分21.(1)解:(Ⅰ)法1:由于24213=,∴M -1=1322112M -⎛⎫-⎪= ⎪ ⎪-⎝⎭, ∴1X M N -==32201021100012⎛⎫-⎪⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪-⎝⎭;…………………3分(Ⅱ)设圆上任意一点(),x y 在矩阵1M -对应的变换作用下变为(),x y ''则10000x x x y y '⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭则0x x y '=⎧⎨'=⎩, 所以作用后的曲线方程为0(11)y x =-#.…………………7分 (2)解:(Ⅰ)2,22-==x y ax y …………………4分(Ⅱ)直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y t x 224222(t 为参数),代入ax y 22=得到0)4(8)4(222=+++-a t a t ,则有)4(8),4(222121a t t a t t +=⋅+=+,因为2MN PM PN =,所以()21212t t t t -=,即()212125t t t t += ,即()()284404a a +=+解得1=a …………………7分(3)(Ⅰ)证明:0,0a b >> ,由柯西不等式得()()222a b b a a b b a ⎛⎫++≥+=+ ⎪⎝⎭=a b =. 所以22a b a b b a+≥+.…………………4分(Ⅱ)解:01,10x x <<∴->由(Ⅰ)知,()221111x x y x x xx-=+≥-+=-, 当且仅当1x x -=,即12x =时等号成立.所以函数()()221011x x y x xx-=+<<-的最小值为 1. …………………7分。
2018届福建省福州一中高三5月质量检测试卷理科数学试
福州一中2018-2018学年高三校质检试卷理 科 数 学本试卷分第I 卷(选择题)和第II 卷(非选择题),第II 卷第21题为选考题,其他题为必考题.本试卷共5页.满分150分.考试时间120分钟. 参考公式:样本数据x 1,x 2, …,x n 的标准差 锥体体积公式V =31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V =Sh24S R =π,343V R =π其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集RU =,}0)3(|{<+=x x x M ,}1|{-<=x x N ,则图中阴影部分表示的集合为A .}03|{<<-x xB .}1|{-≥x xC .}3|{-≤x xD .}01|{<≤-x x (第1题图) 2.若11a ii i+=-(i 为虚数单位),则a 的值为 A. i B. i - C. 2i - D. 2i 3.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率等于 A .5 B .5 C .25D .45 4.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和, 则3253S S S S --的值为A .2B .3C .2-D .3- 5.下列判断不正确的是 A .若)25.0,4(~B ξ,则1=ξEB .命题“2,0x R x ∀∈≥”的否定是“200,0x R x ∃∈<”C .从匀速传递的产品生产线上,检查人员每隔5分钟从中抽出一件产品检查,这样的抽样是系统抽样D .10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,这组数据的中位数与众数相等6.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象A .关于点,012π⎛⎫⎪⎝⎭对称 B .关于直线12x π=对称C .关于点)0,6(π对称 D .关于直线6π=x 对称 7.设点(,a b )是区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内的任意一点,则函数2()41f x ax bx =-+在区间[1,)+∞上是增函数的概率为AD8.如图,在棱长均为2的四棱锥P ABCD -中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且直线BE 到平面PADB .BE ∥平面PAD ,且直线BE 到平面PADC.BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角大于30 第8题图D.BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角小于30 9.称(,)||d a b a b =-为两个向量,a b 间的“距离”.若向量,a b 满足: ①||1b =; ②a b ≠; ③对任意的t R ∈,恒有(,)(,)d a tb d a b ≥.则以下结论一定成立的是 A .a b⊥ B .()b a b ⊥- C .()a a b ⊥-D .()()a b a b +⊥- 10.已知抛物线M :24y x =,圆N:222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BDAC =的直线l 有且只有三条的必要条件是 A .(0,1]r ∈ B .(1,2]r ∈ C .3(,4)2r ∈ D .3[,)2r ∈+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置. 11.若4(4),0(),(2012)cos ,0x f x x f x f tdt x π->⎧⎪=⎨≤⎪⎩⎰则12为 .13.在O 点测量到远处有一物体在做匀速直线运动,开始时该物体位于P 点,一分钟后,其位置在Q 点,且90POQ ∠=, 再过两分钟后,该物体位于R 点,且30QOR ∠=, 则tan OPQ ∠的值为 .(第12题图)14.在2015(2)x -的二项展开式中,含x 的奇次幂的项之和为S ,则当2x =时,S 等 于 .15.已知a 为[0,1]上的任意实数,函数1()f x x a =-,22()1f x x =-+,323()f x x x =-+.则以下结论:①对于任意0∈x R ,总存在)(x ,)(x ({,}i j ⊂≠{1,2,3}),使得00()()0i j f x f x ≥;②对于任意0∈x R ,总存在)(x ,)(x ({,}i j ⊂≠{1,2,3}),使得00()()0i j f x f x ≤;③对于任意的函数)(x ,)(x ({,}i j ⊂≠{1,2,3}),总存在0∈x R ,使得00()()0i j f x f x >;④对于任意的函数)(x ,)(x ({,}i j ⊂≠{1,2,3}),总存在0∈x R ,使得00()()0i j f x f x <.其中正确结论的序号是 .(填上你认为正确的所有答案序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX.17.(本小题满分13分)如图,四边形ABCD与BDEF均为菱形,设AC与BD 相交于点O,若060=∠=∠DBFDAB,且FCFA=. (Ⅰ)求证:FC∥∥平面EAD;(Ⅱ)求二面角A FC B--的余弦值.第17题图)EA B CDFO18.(本小题满分13分)设m R∈,函数(Ⅰ)求()f x的单调递减区间;(Ⅱ)设锐角△ABC的内角A、B、C所对的边分别为a、b、c,,求()f A的取值范围.19.(本小题满分13分)已知(2, 0)B为椭圆C的左、右顶点,F为其右焦点,P A-,(2, 0)是椭圆C上异于∆面积的最大值为A,B的动点,且APB(Ⅰ)求椭圆C的方程;(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.20.(本小题满分14分) 已知函数23()1x f x x +=+,()ln()g x x x p =--. (Ⅰ)求函数()f x 的图象在点11(,())33f 处的切线方程;(Ⅱ)判断函数()g x 的零点个数,并说明理由; (Ⅲ)已知数列{}n a 满足:03n a <≤,*n N ∈,且1220153()2015a a a +++=.若不等式122015()()()()f a f a f ag x +++≤在(,)x p ∈+∞时恒成立,求实数p 的最小值.21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵11a M b ⎛⎫= ⎪⎝⎭的一个特征值1所对应的特征向量为10⎛⎫ ⎪⎝⎭. (Ⅰ)求矩阵M 的逆矩阵;(Ⅱ)求曲线C :22221x xy y ++=在矩阵M 对应变换作用下得到的新的曲线方程.(2)(本小题满分7分) 选修4—4:极坐标与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为12x t y t =⎧⎨=+⎩(t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的极坐标方程为)4πρθ=+.(Ⅰ)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程;(Ⅱ)设直线l 和曲线C 相交于A 、B 两点,求AB 的长.(3)(本小题满分7分)选修4—5:不等式选讲已知正数a,b,c满足2226++=.a b c(Ⅰ)求2++的最大值M;a b c(Ⅱ)在(Ⅰ)的条件下,若不等式1||x x m M+++≥恒成立,求实数m的取值范围.福州一中2018-2018学年高三校质检理科数学参考答案一、选择题:二、填空题:12. 313214. 40292 15.①④选择题10简解:依题意可设直线l :1x my =+,(1)代入24y x =,得2440y my --=,△=216(1)m +,把(1)代入222)1(r y x =+-得设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,||||AC BD =,即1324||||y y y y -=-,若1324()y y y y -=--,则1234y y y y +=+,0m =.即22(1)r m =+,故当2r >时,l 有三条.从而本题应该选D. 三、解答题:16.解:(Ⅰ)茎叶图如右图所示,由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,因此应选派乙参赛更好. ……………… 5分(Ⅱ)随机变量X 的所有可能取值为0,1,2.1144115516(0)25C C P X C C ===,14115528(1)25C P X C C ===,115511(2)25P X C C ===,…………………10分随机变量X 的分布列是:8 7 5 6 9826 甲乙5572 58 5160122525255EX =⨯+⨯+⨯=.…………………………………………………13分17.(I )证明:因为四边形ABCD 与BDEF 均为菱形, 所以BC AD ∥,BF DE ∥.因为FBC AD 平面⊄,FBC D 平面⊄E , 所以FBCAD 平面∥,FBC DE 平面∥ (2)分又AD DE D ⋂=,EAD AD 平面⊂,EAD DE 平面⊂, 所以EAD 平面∥平面FBC 又FBC FC 平面⊂, 所以EAD FC 平面∥…………………………………………………………………………4分(II )连接FO 、FD ,因为四边形BDEF 为菱形,且060=∠DBF , 所以DBF ∆为等边三角形, 因为O 为BD 中点.所以BD FO ⊥, 又因为O 为AC 中点,且FC FA =, 所以FO AC ⊥ 又AC BD O⋂=,所以ABCD FO 平面⊥ (6)分由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O - 设2=AB ,因为四边形ABCD为菱形,060=∠DAB ,则2=BD ,1=OB ,3==OF OA ,所以)3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O -…8分所以)0,1,3(),3,0,3(==→→CB CF 设平面BFC 的一个法向量为),,(z y x n =→,则有⎪⎩⎪⎨⎧=⋅=⋅→→→→0CB n CF n ,所以⎩⎨⎧=+=+03033y x z x , 令1=x ,则)1,3,1(--=→n …………………………………………………………………10分因为AFC 平面⊥BD ,所以平面AFC 的一个法向量为)0,1,0(OB =→. 因为二面角B FC --A 为锐二面角,设二面角的平面角为θ,则51553,cos cos =-=⋅⋅=><=→→→→→→OBn OBn OB n θ.所以二面角BFC --A 的余弦值为515…………………………………………………13分 18.解:(I)2分由得:,∴…………………………………4分∴………5分∴()f x的单调递减,k Z∈………………………………7分(II)∵,由余弦定理得:……………………………………………………………………………………………8分即2cos cos cosa B c Bb C-=,由正弦定理得:2sin cos sin cos sin cosA B C B B C-=,2sin cos sin()sinA B B C A=+=,,∴11分∵△ABC锐角三角形,∴,12分的取值范围为(1,2].…………………………………………13分19.解:(Ⅰ)由题意可设椭圆C的方程为22221(0)x ya ba b+=>>,(,0)F c.由题意知解得b =,1c =. 故椭圆C的方程为22143x y +=.…………………………………………………………4分(Ⅱ)以BD为直径的圆与直线PF相切.…………………………………………………5分 证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=. 设点P 的坐标为00(,)x y ,则2021612234k x k --=+.所以2026834k x k -=+,00212(2)34k y k x k =+=+. ……………………………8分因为点F 坐标为(1, 0),当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±.直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+=与直线PF 相切.⎧⎪⎨⎪⎩2221222, .a b a a b c ⋅⋅===+……………………………………………………………………………………………9分当12k ≠±时,则直线PF 的斜率0204114PF y kk x k ==--. 所以直线PF的方程为24(1)14ky x k=--.………………………………………10分点E 到直线PF 的距离d 2||k . 又因为||4||BD k = ,所以1||2d BD =. 故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………13分 20.解:(Ⅰ)222222(1)2(3)61'()(1)(1)x x x x x f x x x +-+--+==++, (1)分2121199'()1310(1)9f --+∴==-+,又1()33f =,所以函数()f x 在13x =的切线方程为913()103y x -=--, 即9331010y x =-+.……………………………………………………………………4分(Ⅱ)11'()1()x p g x x p x p x p--=-=>-- 当(,1)x p p ∈+时,'()0,g x <所以()g x 在(,1)p p +单调递减; 当(1,)x p ∈++∞时,'()0,g x >所以()g x 在(,1)p p +单调递增;所以1x p =+时,min ()(1)1g x g p p =+=+ (5)分①当10p +>,即1p >-时,()g x 的零点个数为0; ②当10p +=,即1p =-时,()g x 的零点个数为1;③当10p +<即1p <-时,此时(1)0g p +<,(0)ln()0g p =-->,()ln 0p p p p g p e p e e e +=+-=>(或,()x p g x →→+∞)因为()g x 在定义域上连续,由零点存在定理及()g x 的单调性,知()g x 在(,1)p p +有且只有一个零点,()g x 在(1,)p ++∞有且只有一个零点, 所以1p <-时,()g x 的零点个数为2.综上所述,当1p <-时,()g x 的零点个数为2;1p =-时,()g x 的零点个数为1;1p >-时,()g x 的零点个数为0. …………………………………………………………………9分 (Ⅲ)1220153()2015,a a a +++=当12201513a a a ====时,有1()33f =. 所以1220151()()()2015()60453f a f a f a f +++=⨯= (10)分接下来证明:122015()()()6045f a f a f a +++≤. 由(I)知,函数23()1x f x x +=+在13x =的切线方程为9331010y x =-+. 而当03x <≤时,2239331()(3)()0110103x f x x x x x +=≤-+⇔--≤+成立. 所以,当03,n a n N *<≤∈时,有9333()(113)101010n n n f a a a ≤-+=-………………12分所以,1220151220153()()()[1120153()]6045,10f a f a f a a a a +++≤⨯-+++=所以,当12201513a a a ====时,122015()()()f a f a f a +++的最大值为6045.再由(II)知,min ()1,g x p =+60451,p ∴≤+得6044.p ≥ 所以p的最小值为6044 (14)分21.解:(1)(Ⅰ)依题意,1111100a b ⎛⎫⎛⎫⎛⎫=⋅⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,10a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,所以1a =,0b = (2)分所以1101M ⎛⎫= ⎪⎝⎭.因为det 1M =,所以11101M --⎛⎫= ⎪⎝⎭.………………………………4分(Ⅱ)曲线C :22221x xy y ++=上任意一点(,)x y 在矩阵M 对应变换作用下得到''(,)x y ,则''1101x x y y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,得''x x y y y ⎧=+⎪⎨=⎪⎩,即'''x x yy y⎧=-⎪⎨=⎪⎩, 代入方程22221x xy y ++=得'2'2()()1x y +=.因此,曲线C 在矩阵M 对应变换作用下得到的新的曲线方程为221x y += (7)分(2)(Ⅰ)由12x ty t=⎧⎨=+⎩,得直线l 的直角坐标方程为:210x y -+= (2)分由)4πρθ=+,得cos cos sin )2sin 2cos 44ππρθθθθ=+=+,22sin 2cos ρρθρθ=+,得曲线C的直角坐标方程为:22(1)(1)2x y -+-= (4)分(Ⅱ)圆心(1,1)到直线l 的距离d ==,圆的半径R =,||AB ===.……………………………………………………7分(3)(Ⅰ)由柯西不等式,2222222()(121)(2)a b c a b c ++++≥++, 即有2(2)36a b c ++≤,……………………………………………………………………2分 又a 、b 、c 是正数,∴26a b c ++≤即2a b c ++的最大值为6,当且仅当121a b c ==,即当1,2a cb ===时取得最大值.……………………………4分(Ⅱ)因为1|||1()||1|x x m x x m m +++≥+-+=-, 由题意及(Ⅰ)得,16m -≥,得7m ≥或5m ≤-. 综上,实数m的取值范围为7m ≥或5m ≤- (7)分。
(理科数学参考答案)2018年5月份福州市高三毕业班适应性练习
当 n 2 时, Sn
1 1 1 1 a1 a2 a3 an
1 1 1 1 2 n 1 ··························································· 9 分 2 2 2 2
1 2
a3 a2 21 , a4 a3 22 ,
…
an an 1 2n 2 n 2 ,
把以上 n 1 个式子相加得, an a1 20 21 2n 2 n 2 , ······················ 2 分 即 an a1
1 2n 1 2n 1 1 n 2 , ························································· 3 分 1 2
数学试 2n 1 1 n 2 , ··················································· 4 分 且 a1 2 也满足式子 an 2n 1 1 , 所以 an 2n 1 1 n N* ; ····································································· 5 分 (2)由(1)可得, 当 n 1 时, S1
数学试题(第 2 页共 10 页)
π , 3 所以 AA1C1 是等边三角形, 因为 O 为 A1C1 中点,所以 AO A1C1 ; ······················································ 2 分
又 AA1C1
2018年福建省福州市高三5月份质检(二模)理科综合试卷(word版)
2018年福建省福州市高三5月份质检(二模)理科综合试卷可能用到的相对原子质量:H-1 C-12 O-1 Na-23 Al-27 S-32 Cl-35.5 Fe-56 Cu-64第I卷(126分)一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的1.1965年,我国科学家在世界上率先合成具有生物活性牛胰岛素结晶,其大致过程是根据已知的氨基酸序列,先用化学方法分别合成胰岛素A、B两条肽链,再催化两条肽链间形成二硫键。
下列分析正确的是:A.上述合成胰岛素的方法必须利用mRNA为模板B.一些氨基酸R基上的氨基或羧基参与肽键的形成C.形成二硫键后,A、B两条肽链的肽键数目增多、形成更复杂的空间结构D.若饥饿小鼠被注射该产物后出现低血糖症状,则说明产物具有生物活性2.关于原核细胞与真核细胞遗传物质的说法,正确的是A.拟核和成形细胞核的化学成分相同B.染色质不能被龙胆紫或醋酸洋红染色C.两者DNA上都具有RNA聚合酶的结合位点D.核仁是真核细胞储藏遗传信息的主要场所3.下列有关酶的实验设计思路,正确的是A.利用淀粉、蔗糖、淀粉酶和碘液验证酶的专一性B.利用过氧化氢和过氧化氢酶探究温度对酶活性的影响C.利用DNA酶、蛋白质酶等处理S型肺炎双球菌的提取物,以确定转化因子D.利用胃蛋白酶、蛋清和pH分别为5、7、9、11的缓冲液验证pH对酶活性的影响4.小麦种子萌发的过程中,萌发的胚产生赤霉素诱导胚乳糊粉层细胞大量合成α-淀粉酶,此过程会受到脱落酸的抑制。
下列相关叙述正确的是A.保存种子的过程中应尽量降低脱落酸含量B.赤霉素能调节胚乳糊粉层细胞的基因表达C.赤霉素能够直接催化胚乳中淀粉水解为还原糖D.去掉胚的小麦种子,用赤霉素处理,胚乳不可能出现还原糖5.Na+-K+泵是细胞膜上的一种载体蛋白,每消耗1分子的ATP,它就逆浓度梯度将3分子的Na+泵出细胞外,将2分子的K+泵入细胞内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年福州市普通高中毕业班综合质量检测理科数学能力测试(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,满分150分 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将试题卷和答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集为R ,集合{1,1,2,4}M =-,2{|23}N x x x =->,则()M N =Rð (A ){1,1,2}- (B ){1,2} (C ){4} (D ){}12x x -剟2、复数z 满足(1i)|1i |z -=+,则复数z 的共轭复数在复平面内的对应点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3、函数()sin()f x A x ϕ=+(0A >)在π3x =处取得最小值,则(A )π()3f x +是奇函数(B )π()3f x +是偶函数(C )π()3f x -是奇函数(D )π()3f x -是偶函数4、在ABC ∆中,5AB AC ⋅= ,4BA BC ⋅=,则AB =(A )9 (B )3 (C )2 (D )15、已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数Y 的影响及相应的概率P 如下表所示:在降水量X 至少是100的条件下,工期延误不超过15天的概率为 (A )0.1 (B )0.3 (C )0.42 (D )0.56、若,x y 满足约束条件10,20,220,x x y x y +⎧⎪-+⎨⎪++⎩………且目标函数z ax y =-取得最大值的点有无数个,则z 的最小值等于 (A )2- (B )32-(C )12-(D )127、执行右面的程序框图,若输入n 值为4,则输出的结果为 (A )8 (B )21 (C )34(D )558、512x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 的系数为(A )45 (B )60(C )90(D )120降水量X 100X < 100200X <… 20030X <… 300X …工期延误天数Y 0 5 15 30 概率P0.40.20.10.39、正项等比数列{}na 满足11a=,2635a a a a +=128,则下列结论正确的是(A )n ∀∈*N ,12n n n a aa ++… (B )n ∃∈*N ,212nn n aa a +++= (C )n ∀∈*N ,1nn Sa +< (D )n ∃∈*N ,312nn n n aa a a ++++=+10、双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是E 左支上一点,112PF F F =,直线2PF 与圆222xy a +=相切,则E 的离心率为(A )54(B(C )53(D11、一个三棱锥的三视图如图所示,则该三棱锥的体积等于 (A )2 (B)(C(D )312、设m ∈R ,函数222()()(e 2)x f x x m m =-+-.若存在0x 使得01()5f x …成立,则m = (A )15(B )25(C )35(D )45第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题4小题,每小题5分,共20分.把答案填在答题卡相应位置.13、知函数1,02,()1,20.x x f x x-<⎧=⎨--⎩…剟若()()[],2,2g x f x ax x =+∈-为偶函数,则实数a =. 14、所有棱长均为2的正四棱锥的外接球的表面积等俯视图于 . 15、抛物线2:4C y x =的准线与x 轴交于点M ,过焦点F 作倾斜角为60︒的直线与C 交于,A B 两点,则tan AMB ∠= .16、数列{}na 的前n 项和为nS .已知12a =,1(1)2nn nS S n ++-=,则100S =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17、(本小题满分12分)ABC ∆的内角A ,B ,C 所对的边分别为,,a b c ,已知tan 21tan A cB b+=. (Ⅰ)求A ;(Ⅱ)若BC边上的中线AM =,高线AH =ABC ∆的面积. 18、(本小题满分12分)为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).10%的前提下认为“该学科成绩与性别有关”?(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率. 附:))()()(()(2d b c a d c b a bc ad n K ++++-=.19、(本小题满分12分)如图所示,四棱锥P ABCD -的底面是梯形,且//AB CD ,AB ⊥平面PAD ,E 是PB 中点,12CD PD AD AB ===.(Ⅰ)求证:CE ⊥平面PAB ;(Ⅱ)若CE =,4AB =,求直线CE 与平面PDC 所成角的大小. 20、(本小题满分12分)在平面直角坐标系xOy 中,已知点,A B 的坐标分别为()()2,0,2,0-.直线,AP BP 相交于点P ,且它们的斜率之积是14-.记点P 的轨迹为Γ.(Ⅰ)求Γ的方程;(Ⅱ)已知直线,AP BP 分别交直线:4l x =于点,M N ,轨迹Γ在点P 处的切线与线段MN 交于点Q ,求MQ NQ的值.21、(本小题满分12分)已知a ∈R ,函数1()e x f x ax -=-的图象与x 轴相切. (Ⅰ)求()f x 的单调区间;(Ⅱ)当1x >时,()(1)ln f x m x x >-,求实数m 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答,如果E DCBAP多做,则按所做的第一题计分,做答时请写清题号. 22、(本小题满分10分)选修4-1:几何证明选讲 如图所示,ABC ∆内接于圆O ,D 是 BAC 的中点,∠BAC 的平分线分别交BC 和圆O 于点E ,F .(Ⅰ)求证:BF 是ABE ∆外接圆的切线;(Ⅱ)若3AB =,2AC =,求22DB DA -的值. 23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数).以O 为极点,x 轴正半轴为极轴,并取相同的单位长度建立极坐标系.(Ⅰ)写出1C 的极坐标方程;(Ⅱ)设曲线222:14x C y +=经伸缩变换1,2x x y y⎧'=⎪⎨⎪'=⎩后得到曲线3C ,射线π3θ=(0ρ>)分别与1C 和3C 交于A ,B 两点,求||AB .24、(本小题满分10分)选修4-5:不等式选讲 已知不等式|3|21x x +<+的解集为{|}x x m >. (Ⅰ)求m 的值;(Ⅱ)设关于x 的方程1||||x t x m t-++=(0t ≠)有解,求实数t 的值.2018年福州市普通高中毕业班综合质量检测理科数学试题答案及评分参考F评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.(1)A (2)D (3)B (4)B (5)D (6)C(7)C (8)D (9)C (10)C (11)A (12)B二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分.(13)12- (14)8π (15) (16)198三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)本小题主要考查正弦定理、余弦定理、三角形面积公式及三角恒等变换等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分12分. 解:(Ⅰ)因为tan 21tan A c Bb+=,所以sin cos 2sin 1sin cos sin A B C B AB+=, 2分即sin()2sin sin cos sin A B C B AB+=,因为sin()sin 0A B C +=≠,sin 0B ≠, 所以1cos 2A =, ············································· 4分又因为(0,π)A ∈,所以π3A =. ···························· 5分(Ⅱ)由M 是BC 中点,得1()2AM AB AC =+,即2221(2)4AM AB AC AB AC =++⋅,所以2232c b bc ++=,① ····································· 7分 由11sin 22S AH BC AB AC A =⋅=⋅⋅,=,即2bc a =,② ······························ 9分又根据余弦定理,有222a b c bc =+-,③ ············· 10分 联立①②③,得2()3222bc bc =-,解得8bc =.所以△ABC的面积1sin 2S bc A ==. ·················· 12分(18)本小题主要考查频率分布直方图、茎叶图、n 次独立重复试验、独立性检验等基础知识,考查运算求解能力、数据处理能力、应用意识,考查必然与或然思想、化归与转化思想.满分12分.假设0H :该学科成绩与性别无关,2K 的观测值22()50(991121)3.125()()()()20302030n ad bc k a b c d a c b d -⨯-⨯===++++⨯⨯⨯,因为3.125 2.706>,所以能在犯错误概率不超过10%的前提下认为该学科成绩与性别有关. ·································· 6分(Ⅱ)由于有较大的把握认为该学科成绩与性别有关,因此需要将男女生成绩的优分频率200.450f ==视作概率. ····· 7分设从高三年级中任意抽取3名学生的该学科成绩中,优分人数为X ,则X 服从二项分布(3,0.4)B , ························· 9分所求概率223333(2)(3)0.40.60.40.352P P X P X C C ==+==⨯⨯+⨯=. ····························································· 12分(19)本小题主要考查空间直线与直线、直线与平面的位置关系及直线与平面所成的角等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等.满分12分.(Ⅰ)证明:取AP 的中点F ,连结,DF EF ,如图所示.因为PD AD =,所以DF AP ⊥. ··························· 1分 因为AB ⊥平面PAD ,DF ⊂平面PAD , 所以AB DF ⊥. 又因为AP AB A = , 所以DF ⊥平面PAB . ····································· 3分 因为点E 是PB 中点,所以//EF AB ,且2AB EF =. ······························· 4分又因为//AB CD ,且2AB CD =,所以//EF CD ,且EF CD =,所以四边形EFDC 为平行四边形, 所以//CE DF ,所以CE ⊥平面PAB . ···················· 6分(Ⅱ)解:设点O ,G 分别为AD ,BC 的中点,连结OG ,则//OG AB ,因为AB ⊥平面PAD ,AD ⊂平面PAD , 所以AB AD ⊥,所以OG AD ⊥. ··························· 7分 因为EC DF = 又因为4AB =,所以2AD =,所以22,AP AF ===所以APD ∆为正三角形,所以PO AD ⊥, 因为AB ⊥平面PAD ,PO ⊂平面PAD , 所以AB PO ⊥.又因为AD AB A = ,所以PO ⊥平面ABCD . ············ 8分故,,OA OG OP 两两垂直,可以点O 为原点,分别以,,OA OG OP的方向为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,如图所示.P ,(1,2,0),(1,0,0)C D --,1(,2E ,所以(1,0,PD =-,(1,2,PC =-,3(,0,2EC =- , ·· 9分设平面PDC 的法向量(,,)x y z =n ,则0,0,PD PC ⎧⋅=⎪⎨⋅=⎪⎩n n所以0,20,x x y ⎧--=⎪⎨-+=⎪⎩取1z =,则(=n , ································ 10分设EC 与平面PDC 所成的角为α,则1sin |cos ,|2EC α=<>==n, ··························· 11分因为π[0,]2α∈,所以π6α=,所以EC 与平面PDC 所成角的大小为π6. ··········· 12分(20)本小题考查椭圆的标准方程及几何性质、直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、函数与方程思想、分类与整合思想等.满分12分. 解法一:(Ⅰ)设点P 坐标为(),x y ,则 直线AP 的斜率2APy k x =+(2x ≠-);直线BP 的斜率2BP y k x =-(2x ≠). (2)分 由已知有1224y y x x ⨯=-+-(2x ≠±), (3)分 化简得点P 的轨迹Γ的方程为2214x y +=(2x ≠±). (4)分 (注:没写2x ≠或2x ≠-扣1分) (Ⅱ)设()00,P x y (02x ≠±),则22014x y+=. (5)分直线AP 的方程为()0022y y x x =++,令4x =,得点M 纵坐标为0062My yx =+;····································································· 6分 直线BP 的方程为()022y y x x =--,令4x =,得点N 纵坐标为022Ny y x =-; 7分设在点P 处的切线方程为()00y yk x x -=-,由()022,44,y k x x y x y ⎧=-+⎨+=⎩得()()()2220000148440k x k y kx x y kx ++-+--=. ··· 8分由0∆=,得()()()2222000064161410k ykx k y kx ⎡⎤--+--=⎣⎦, 整理得22220000214ykx y k x k -+=+.将()222200001,414x y x y =-=-代入上式并整理得200202x y k ⎛⎫+= ⎪⎝⎭,解得004x k y =-, 9分所以切线方程为()0004x y yx x y -=--. 令4x =得,点Q 纵坐标为()()22000000000000441441444Qx x x y x x x yy y y y y ---+-=-===.··································································· 10分设MQ QN =λ,所以()QMNQy y y y -=-λ,所以00000000162122xy y x y x x y ⎛⎫---=- ⎪+-⎝⎭λ. ······························· 11分所以()()()()()()22000000000012621222x x y y x x y x y x -+----=+-λ. 将22014x y =-代入上式,02+(2+)22xx -=-λ, 解得1=λ,即1MQNQ=. ········································· 12分解法二:(Ⅰ)同解法一. (Ⅱ)设()0,P x y (02x ≠±),则220014x y +=. ··················· 5分直线AP 的方程为()0022y y x x =++,令4x =,得点M 纵坐标为0062My yx =+;····································································· 6分 直线BP 的方程为()022y y x x =--,令4x =,得点N 纵坐标为022Ny y x =-; 7分设在点P 处的切线方程为()00y yk x x -=-,由()022,44,y k x x y x y ⎧=-+⎨+=⎩得()()()2220000148440k x k y kx x y kx ++-+--=. ··· 8分由0∆=,得()()()2222000064161410k ykx k y kx ⎡⎤--+--=⎣⎦, 整理得22220000214ykx y k x k -+=+.将()222200001,414x y x y =-=-代入上式并整理得200202x y k ⎛⎫+= ⎪⎝⎭,解得004x k y =-, 9分所以切线方程为()0004x y yx x y -=--. 令4x =得,点Q 纵坐标为()()22000000000000441441444Qx x x y x x x y y y y y y ---+-=-===.··································································· 10分所以()()000000022000008181621222244MN Q x y x y y y x yy y x x x y y ---+=+====+---, ··· 11分 所以Q 为线段MN 的中点,即1MQNQ=. (12)分(21)本小题主要考查导数的几何意义、导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分. 解:(Ⅰ)()1e xf x a -'=-,设切点为0(,0)x , ···················· 1分依题意,00()0,()0,f x f x =⎧⎨'=⎩即00101e 0,e 0,x x ax a --⎧-=⎪⎨-=⎪⎩解得01,1,x a =⎧⎨=⎩···················································· 3分所以()1e 1xf x -'=-.当1x <时,()0f x '<;当1x >时,()0f x '>.故()f x 的单调递减区间为(,1)-∞,单调递增区间为(1,)+∞. 5分 (Ⅱ)令()()(1)ln g x f x m x x =--,0x >.则11()e (ln )1x x g x m x x--'=-+-,令()()h x g x '=,则1211()e ()x h x m x x-'=-+, ······················ 6分(ⅰ)若12m …,因为当1x >时,1e1x ->,211()1m x x+<,所以()0h x '>,所以()h x 即()g x '在(1,)+∞上单调递增. 又因为(1)0g '=,所以当1x >时,()0g x '>, 从而()g x 在[1,)+∞上单调递增,而(1)0g =,所以()0g x >,即()(1)ln f x m x x >-成立. ······· 9分(ⅱ)若12m >,可得1211()e()x h x m x x-'=-+在(0,)+∞上单调递增. 因为(1)120h m '=-<,211(1ln(2))2{}01ln(2)[1ln(2)]h m m m m m '+=-+>++, 所以存在1(1,1ln(2))x m ∈+,使得1()0h x '=,且当1(1,)x x ∈时,()0h x '<,所以()h x 即()g x '在1(1,)x 上单调递减, 又因为(1)0g '=,所以当1(1,)x x ∈时,()0g x '<, 从而()g x 在1(1,)x 上单调递减,而(1)0g =,所以当1(1,)x x ∈时,()0g x <,即()(1)ln f x m x x >-不成立. 纵上所述,k 的取值范围是1(,]2-∞. ················· 12分请考生在第(22),(23),(24)题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. (22)选修41-:几何证明选讲本小题主要考查圆周角定理、相似三角形的判定与性质、切割线定理等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想等.满分10分.解:(Ⅰ)设ABE ∆外接圆的圆心为O ',连结BO '并延长交圆O '于G点,连结GE ,则90BEG ∠=︒,BAE BGE ∠=∠.因为AF 平分∠BAC ,所以 =BFFC ,所以FBE BAE ∠=∠,2分 所以18090FBG FBE EBG BGE EBG BEG ∠=∠+∠=∠+∠=︒-∠=︒, 所以O B BF '⊥,所以BF 是ABE ∆外接圆的切线. ······· 5分(Ⅱ)连接DF ,则DF BC ⊥,所以DF 是圆O 的直径, 因为222BD BF DF +=,222DA AF DF +=,所以2222BD DA AF BF -=-. ································因为AF 平分∠BAC ,所以ABF ∆∽AEC ∆,所以AB AF AE AC=,所以()AB AC AE AF AF EF AF ⋅=⋅=-⋅,因为FBE BAE ∠=∠,所以FBE ∆∽FAB ∆,从而2BF FE FA =⋅, 所以22AB AC AF BF ⋅=-, 所以226BD DA AB AC -=⋅=. ································ 10分(23)选修44-;坐标系与参数方程本小题考查极坐标方程和参数方程、伸缩变换等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想等.满分10分.解:(Ⅰ)将22cos ,2sin x y αα=+⎧⎨=⎩消去参数α,化为普通方程为22(2)4x y -+=, 即221:40C x y x +-=, ················································ 2分 将cos ,sin x y ρθρθ=⎧⎨=⎩代入221:40C x y x +-=,得24cos ρρθ=, ············· 4分 所以1C 的极坐标方程为4cos ρθ=. ···························· 5分(Ⅱ)将2,x x y y'=⎧⎨'=⎩代入2C 得221x y ''+=, 所以3C 的方程为221x y +=. ······································ 7分 3C 的极坐标方程为1ρ=,所以||1OB =. 又π||4cos 23OA ==,所以||||||1AB OA OB =-=. ········································· 10分 (24)选修45-:不等式选讲本小题考查绝对值不等式的解法与性质、不等式的证明等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等. 满分10分. 解:(Ⅰ)由|3|21x x +<+得, 3,(3)21,x x x -⎧⎨-+<+⎩ (3)321,x x x >-⎧⎨+<+⎩ ········································ 2分 解得2x >.依题意2m =. ····················································· 5分(Ⅱ)因为()1111x t x x t x t t tt tt⎛⎫-++--+=+=+ ⎪⎝⎭…,当且仅当()10x t x t⎛⎫-+ ⎪⎝⎭…时取等号, ···························· 7分 因为关于x 的方程1||||2x t x t-++=(0t ≠)有实数根,所以12t t +…. ····················································· 8分 另一方面,12t t+…,所以12+=,·····················································9分tt所以1t=-. ··············································· 10分t=或1。