初二数学一次函数1[人教版]
【初二课件】人教版八年级数学下册第十九章一次函数函数课件
x 1
2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
练一练
填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗? 答: 不是 .
(2)y是x的函数吗?为什么? 关键词:两个变量,
答:不是,因为y的值不是唯一的.
给一个x,得一个y. 易错点:顺序不要反.
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3; y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10, 其中表示y 是x 的函数关系的是 .
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
当堂练习
1.下列说法中,不正确的是( C ) A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是( C )
初二数学人教版八年级下册第十九章《一次函数》教材分析文字讲稿
第十九章《一次函数》教材分析一、本章的地位和作用1.“函数”概念的引入使得数学从“常量数学”转化为“变量数学”,这正是近代数学的一个标志。
2.以函数概念可以统一数学教育内容:以函数为中心,将全部数学教材集中在它的周围,可以进行充分的综合;3. 数学教育改革的重要观点是:一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考问题;4. 初等函数知识是中学数学的固定内容,是引进现代数学的基础和前提,是联系实际生活的重要内容。
在数学教育的现代化中,函数教育的重要性不容分说;5. 本章通过对初等函数“一次函数”的学习,使学生经历学习和探究一个具体函数的一般过程,即从定义、图象、性质、函数与方程及不等式的关系、不同函数之间的关系等方面进行研究。
二、教学要求解读1.课标要求:教学总目标(因用而学、学以致用、以学导用、以用促学)(1)以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;(2)结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法,能利用图像数形结合地分析简单的函数关系;(3)理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;(4)通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系.2.教学要求建议:注重对基本知识和基本技能的掌握,提高基本能力.函数的基本概念、函数的一般表示法和一次函数的概念图象性质等是基础知识,能画一次函数的图象,能结合图象讨论这些函数的基本性质等是基本技能,能利用一次函数解决简单实际问题是基本能力。
基本要求(1)能在简单问题中列出变量之间的关系式;(2)能根据函数的三种表示方法解读自变量和函数值的对应关系;(3)能根据已知的函数解析式,在自变量和函数值中知一求一;(4)能用描点法画出简单函数图象;(5)能结合图像对简单实际问题中的函数关系进行分析;(6)能确定简单代数和实际问题中的函数的自变量取值范围;(7)能根据简单已知条件确定一次函数表达式;(8)会画一次函数的图象,理解一次函数的性质;(9)能用一次函数解决较简单实际问题.略高要求(1)探索问题中的数量关系和变化规律;(2)能根据线段长面积等几何的条件确定一次函数解析式;(3)结合对函数关系的分析,尝试对变量的变化规律进行初步预测;(4)能根据一次函数的图象求二元一次方程组的近似解、一元一次不等式的解集.较高要求(1)能根据复杂的条件完整的求解;(2)能用一次函数解决较复杂实际问题,分析决策方案.三、学情分析1.学生已有的基础学生在小学时已接触到的观察与分析、数字推理、正比例与反比例等内容就渗透了变化的思想;七年级的代数式求值、探索规律等加强了学生对量的变化的“规律意识”,因此相对传统教材的使用者,使用课标教科书的学生在对事物规律的发现和探究上有明显的优势.《一次函数》一章则是在前述基础之上第一次集中的讨论变量间的关系.2.学生学习本章常见错误与不易掌握的内容初次接触函数概念,学生常有一种很“虚”的感觉,常常不知从何入手,思考以往的教学,不断总结中发现,学生接受函数概念困难重要在于(1)没有很好地理解有序实数对,从而也就认识不到:函数不是数,在同一变化过程中,变量之间不是孤立的,而是相互联系,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。
八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版
变量各位领导各位老师,你们好!今天我将要为大家说课的内容九义初中数学人教版的第19章第一节第一课时《变量》首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容的地位和作用:《变量》是本章的第一课,本节知识是理解函数概念的前提知识,是学习正比例函数、一次函数、反比例函数、二次函数的基础。
学好本届知识为过渡到学习本章正比例函数、一次函数起着铺垫作用。
本节内容是第一部分,因此,在本章中,占据重要的地位。
二、教学理念及学情分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识;在新的课改理念的指导下如何调动学生的学习激情和让学生自主学习、合作探究成为课堂教学的主流。
考虑到初二学生已有的认知结构心理特征 ,以及本章知识与生活和生产实践联系非常紧密,教师要抓住这一特点让学生感知数学即生活,生活即数学,同时让学生感受数学的有用性,从而更加热爱数学学习。
三、教学目标1、知识与技能:在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、过程与方法:经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、情感与价值观:在探索的过程中,感知数学即生活,培养学生参与数学活动的积极性和良好的学习态度。
四、重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点重点:能从具体事件中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。
通过让学生自主学习与合作探究的方式突出重点难点:理解两个变量之间的依赖关系。
通过小组交流,课堂展示,和试一试,做一做的习题训练突破难点五、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
我采用了启发式教学法,让学生成为课堂的主人,学生自主学习、合作探究。
从而激活课堂开启学生智慧。
六、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
完整版初二上册数学一次函数知识点总结
初中数学一次函数知识点总结基本见解:1、变量:在一个变化过程中能够取不一样样数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,若是有两个变量x 和 y,并且关于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把 y 称为因变量,y 是 x 的函数。
3、定义域:一般的,一个函数的自变量同意取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实诘责题中,函数定义域还要和本质情况相吻合,使之存心义。
函数性质:1.y 的变化值与对应的x 的变化值成正比率,比值为k.即:y=kx+b(k,b为常数, k≠0)。
2.当 x=0 时, b 为函数在 y 轴上的点 ,坐标为 (0 ,b) 。
3 当 b=0 时 (即 y=kx) ,一次函数图像变为正比率函数,正比率函数是特其他一次函数。
4.在两个一次函数表达式中:当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的当两一次函数表达式中的k 相同, b 也相同时,两一次函数图像重合;k 相同, b 不一样样时,两一次函数图像平行;k 不一样样, b 不一样样时,两一次函数图像订交;k 不一样样,b 相同时,两一次函数图像交于y轴上的同一点(0,b)。
图像性质1.作法与图形:(1)列表 .(2 )描点;一般取两个点两点法”。
一般,依照“两点确定一条直线”的道理,也可叫“的 y=kx+b(k ≠0)的图象过( 0, b )和( -b/k , 0)两点画直线即可。
正比率函数 y=kx(k ≠0)的图象是过坐标原点的一条直线,一般取( 0,0)和(1,k )两点。
2.性质:(1 )在一次函数上的随意一点P (x, y),都知足等式:y=kx+b(k ≠0)。
初二数学《一次函数》课件
进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
八年级数学上人教版《一次函数》教案
《一次函数》教案一、教学目标1.掌握一次函数的概念、性质和图像特点,能够根据给定条件求出一次函数的表达式。
2.理解并掌握一次函数的单调性,能够利用单调性解决实际问题。
3.通过实例分析和小组讨论,培养学生分析和解决问题的能力,发展学生的创新思维。
4.通过与同伴合作、交流,培养积极参与和良好的学习习惯。
二、教学重点与难点重点:一次函数的概念、性质和图像特点,以及一次函数的单调性。
难点:根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。
三、教学方法与手段1.借助实例引入一次函数的概念,通过小组讨论和教师点拨,帮助学生理解并掌握一次函数的概念和性质。
2.利用多媒体技术展示一次函数的图像,通过直观的图像帮助学生理解一次函数的单调性。
3.通过小组讨论和教师点拨,引导学生利用一次函数的单调性解决实际问题。
四、教学环节设计1.导入新课:通过实例引入一次函数的概念,引导学生理解一次函数的意义和实际应用。
2.新课学习:通过小组讨论和教师点拨,帮助学生掌握一次函数的概念、性质和图像特点,并通过实例分析帮助学生理解一次函数的单调性及其应用。
3.练习巩固:通过小组活动和教师点拨,引导学生根据实际问题中的条件求出一次函数的表达式,并利用一次函数的单调性解决实际问题。
4.归纳小结:总结本节课所学的知识点,强调重点和难点内容。
5.作业布置:布置相关练习题,帮助学生巩固所学知识。
五、教学反思1.通过本节课的教学,要达到的教学目标是否达到?对于哪些学生需要加强指导?哪些学生需要给予更多的关注?2.在教学过程中,哪些环节处理得比较好?哪些地方需要改进?如何改进?3.在教学过程中,是否有效地运用了多媒体技术?是否有助于提高教学效果?如果有所改进,效果会更好吗?。
人教版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有答案)
人教版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有答案)〔1〕形如y=kx +b (k,b 是常数,k≠0),那么y 叫做x 的一次函数.由于当b=0时,y=kx ,那么y 叫做x 的正比例函数,所以〝正比例函数是特殊的一次函数〞。
〔2〕正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而失掉〔当b>0时,向上平移;当b<0时,向下平移,〕普通地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数普通方式 y=kx 〔k 不为零〕① k 不为零; ② x 指数为1; ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx 〔k 是常数,k≠0〕(2) 必过点:〔0,0〕、〔1,k 〕(3) 走向:k>0时,图像经过一、三象限; k<0时,•图像经过二、四象限(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴普通地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.注:一次函数普通方式 y=kx+b (k 不为零)① k 不为零; ②x 指数为1; ③ b 取恣意实数一次函数y=kx+b 的图象是经过〔0,b 〕和〔-kb ,0〕两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度失掉.〔当b>0时,向上平移;当b<0时,向下平移〕〔1〕解析式:y=kx+b (k 、b 是常数,k ≠0)〔2〕必过点:〔0,b 〕和〔-kb ,0〕 〔3〕走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 〔4〕增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.〔5〕倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.〔6〕图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.考点1、一次函数〔正比例〕的定义例1、在糖水中继续放入糖x 〔g 〕、水y 〔g 〕,并使糖完全溶解,假设甜度坚持不变,那么y 与x 的函的函数关系一定是〔 〕A 、正比例函数B 、正比例函数C 、图象不经过原点的一次函数D 、二次函数例2、直角三角形两个锐角∠A 与∠B 的函数关系是〔 〕A 、正比例函数B 、一次函数C 、正比例函数D 、二次函数 例3、假定y=〔m -3〕x+1是一次函数,那么〔 〕A 、m=3B 、m=-3C 、m≠3D 、m≠-3例4、以下效果中,是正比例函数的是〔 〕A 、矩形面积固定,长和宽的关系B 、正方形面积和边长之间的关系C 、三角形的面积一定,底边和底边上的高之间的关系D 、匀速运动中,速度固定时,路程和时间的关系例5、假定函数y=-2x m+2+n -2是正比例函数,那么m 的值是_____,n 的值为_____. 例6、我们知道,海拔高度每上升1km ,温度下降6℃.某时辰测量我市空中温度为20℃.设高出空中xkm 处的温度为y ℃,那么y 与x 的函数关系式为 ,y_____x 的一次函数〔填〝是〞或〝不是〞〕.例7、y=〔k -1〕x IkI +〔k 2-4〕是一次函数.〔1〕求k 的值; 〔2〕求x=3时,y 的值; 〔3〕当y=0时,x 的值.例8、红星机械厂有煤80吨,每天需烧煤5吨,求工厂余煤量y 〔吨〕与烧煤天数x 〔天〕之间的函数表达式,指出y 是不是x 的一次函数,并求自变量x 的取值范围. 例9、举一反三:1、以下函数中,是一次函数的有〔 〕A 、xy 2 B 、X -1=0 C 、y=2〔x -1〕 D 、y=x 2+1 2、y=〔m -1〕x |m|+3m 表示一次函数,那么m 等于〔 〕A 、1B 、-1C 、0或-1D 、1或-13、假定函数y=〔k -1〕x+k 2-1是正比例函数,那么k 的值是〔 〕A 、-1B 、1C 、-1或1D 、恣意实数4、当自变量x= 时,正比例函数y=〔n+2〕x n 的函数值为3.5、函数y=3x+1,当自变量添加3时,相应的函数值添加______。
人教版初中八年级数学下册第19章《一次函数》复习ppt课件
(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组
为
x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb
的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.
初二数学一次函数(含答案)
一次函数例题精讲一、函数的相关概念1.常量与变量在某一变化过程中,可以取不同数值的量叫做变量,取值始终保持不变的量叫做常量.如在圆的面积公式2πS R =中,π是常数,是一个常量,而S 随R 的变化而变化,所以S 、R 是变量. 2.自变量、因变量与函数在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系. 注意:⑴对于每一个给定的x 值,y 有一个唯一确定的值与之对应,否则y 就不是x 的函数.例如2y x =就不是函数,因为当4x =时,2y =±,即y 有两个值与x 对应.⑵对于每一个给定的y 值,x 可以有一个值与之对应,也可以有多个值与之对应.例如在函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.二、函数自变量的取值范围函数自变量的取值范围是指是函数有意义的自变量的取值的全体.求自变量的取值范围通常从两方面考虑,一是要使函数的解析式有意义;二是符合客观实际.在初中阶段,自变量的取值范围考虑下面几个方面: ⑴整式:自变量的取值范围是任意实数.⑵分式:自变量的取值范围是使分母不为零的任意实数. ⑶根式:当根指数为偶数时,被开方数为非负数. ⑷零次幂或负整数次幂:使底数不为零的实数.注意:在一个函数关系式中,同时有各种代数式,函数自变量的取值范围是各种代数式中自变量取值范围的公共部分.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.三、函数的表示方法1.函数的三种表示方法:⑴列表法:通过列表表示函数的方法.⑵解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑶图象法:用图象直观、形象地表示一个函数的方法. 2.对函数的关系式(即解析式)的理解:⑴函数关系式是等式.例如4y x =就是一个函数关系式. ⑵函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数.⑶函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数.求y 与x 的函数关系时, 必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.四、函数的图象1.函数图象的概念:对于一个函数,如果把自变量x 和函数y 的每对值分别作为点的横坐标与纵坐标,在平面直角坐标系内描出相应的点,这些点所组成的图形,就是函数的图象. 2.函数图象的画法⑴列表; ⑵描点; ⑶连线. 3.函数解析式与函数图象的关系:由函数图象的定义可知,图象上任意一点(),P x y 中的x ,y 都是解析式方程的一个解.反之,以解析式方程的任意一个解为坐标的点一定在函数的图象上.判断一个点是否在函数图象上的方法是:将这个点的坐标值代入函数的j 解析式,如果满足函数解析式,这个店就在函数的图象上,否则就不在这个函数的图象上.板块一、函数及其自变量取值范围【例1】 下列关系式中不是函数关系的是( )A.y =0x >)B.y x =(0x >)C.y =0x >)D.y =(x <【答案】A【例2】 在函数y =中,自变量x 的值取值范围是( )A.3x <-B.3x ≤-C.3x ≤D.3x >【答案】D【例3】 函数y 的自变量的取值范围是( )A.22x -<≤B.22x -≤≤C.2x ≤且2x ≠D.22x -<<【答案】A【例4】 求下列各函数中自变量x 的取值范围;⑴y =y;⑶0y x =;⑷y =+【答案】⑴32x ≤且1x ≠-;⑵1x ≥且x ≠40x -≤<或04x <≤;⑷102x ≤<或122x <≤【例5】 等腰三角形的周长为30,写出它的底边长y 与腰长x 之间的函数关系,并写出自变量的取值范围?【答案】⑴302y x =-,由三角形的三边关系可得:2x y >,0x >,0y >,可得15152x <<. 【例6】 如图,周长为24的凸五边形ABCDE 被对角线BE 分为等腰ABE ∆及矩形BCDE ,AE DE =,设AB 的长为x ,CD 的长为y ,求y 与x 之间的函数关系式,写出自变量的取值范围.【答案】244y x =-,在ABE ∆中,2244x x >-, 所以4x >,故46x <<.【例7】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟【答案】B【例8】 李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
19.2 方法专题 一次函数的图象与字母系数的关系-2022-2023学年八年级下册初二数学(人教版
19.2 方法专题:一次函数的图象与字母系数的关系引言在初中数学中,我们学习了很多种类型的函数,其中包括一次函数。
一次函数是一种非常基础的函数类型,它的图象呈现出直线的特点。
在本篇文章中,我们将探讨一次函数的图象与字母系数之间的关系。
一次函数的定义一次函数也被称为线性函数,其定义可以表示为:y=ax+b,其中a和b是常数,且a eq0。
其中,a被称为函数的斜率,代表了函数图象的倾斜程度,而b被称为函数的截距,代表了函数与y轴的交点。
字母系数与一次函数图象的关系1.斜率a的关系:–当a>0时,函数图象为向上倾斜的直线。
随着a逐渐增大,直线的倾斜程度越来越大。
–当a<0时,函数图象为向下倾斜的直线。
随着a逐渐减小,直线的倾斜程度越来越大。
–当a=1时,函数图象为斜率为1的直线,与y=x的图象相重合。
–当a=−1时,函数图象为斜率为-1的直线,与y=−x的图象相重合。
2.截距b的关系:–当b>0时,函数图象与y轴交点在y轴的正半轴上。
–当b<0时,函数图象与y轴交点在y轴的负半轴上。
–当b=0时,函数图象与y轴交点在原点上,即经过原点。
综上所述,一次函数的字母系数a和b决定了其图象的斜率和截距,进而影响了函数图象的形状和位置。
实例分析为了更好地理解字母系数与一次函数图象的关系,我们来看一些具体的实例。
实例1考虑一次函数y=2x+3。
根据定义,我们可以得知斜率a=2,截距b=3。
根据前面的分析,我们可以推断得出以下结论: - 斜率为正数,因此图象为向上倾斜的直线。
- 斜率的绝对值为2,说明倾斜程度较大。
- 截距为正数,说明函数图象与y轴交点在y轴的正半轴上。
实例2考虑一次函数y=−0.5x+1。
根据定义,我们可以得知斜率a=−0.5,截距b=1。
根据前面的分析,我们可以推断得出以下结论: - 斜率为负数,因此图象为向下倾斜的直线。
- 斜率的绝对值为0.5,说明倾斜程度较小。
八年级数学上册_一次函数的性质第一课时课件_人教新课标版
y
-1.5 -1 -0.5 0 0.5 1 1.5
y
4
观察:它们图像形状有什么特点? 3
2
●
1
●
●
-4
-3
-2
-●1
●
O
1
2
3
● -1
●
4x
1.一次函数y=kx+b的图像是什么图形?
y=kx+b的图像是一条直线
2.几个点可以确定一条直线? 两点确定一条直线
3.画一次函数图像时,只取几个点就可以了? 画一次函数y=kx+b的图像通过确定 两个点来完成
x
… -2 -1 0 1 2 …
Y=2x+1 … -3 -1 1 3 5 …
y=2x+1
y5
4 3 2 1
-3 -2 -1 0 -1 -2
-3
123
x
知识点二:一次函数图像的形状是什么?
上面,我们已经用描点法画出了一次函数y=2x+1的图像。那 么,你知道一次函数的图像是什么形状的吗?
例二: 在所给的直角坐标系中画出函数 y 1 x 的图像 2
上,则它的图象经过第_二__、__三__、_四__象限.
10.点A(-5,y1)和B(-3,y2)都在直线
y__=_-y_21_x_+_1_上y_2_,.则y1与y2的大小关系:
11.如果一次函数y=kx+b,当x1 < x2时,
y1 > y2,且过点(0,1),则k,b的符号为
( B)
A.k > 0,b > 0
解:(1)随X增大y减小 (2)当x=1时,y=0 (3)当x<1时,y>0
初中数学人教八年级下册(2023年新编)第十九章 一次函数1 函数图像用描点法画函数图像
19.1.2 函数的图象第1课时用描点法画函数的图象一、教学目标1.理解函数图象的意义;2.掌握画函数图像的一般步骤;3.能画出简单的函数图象。
二、教学重难点重点:掌握画函数图象的一般步骤难点:能画出简单的函数图象三、教学准备多媒体课件、三角板、教材、教案四、教学过程(一)情景引入—图片引入1.K线图——记录的是某一种股票上市以来的每天的价格变动情况.2.心电图——记录的是心脏本身的生物电在每一心动周期中发生的电变化情况.(设计意图:从生活中的实际出发,既能使学生体会到数学的美妙,又能培养学生的分析能力)(二)讲授新课例1 画出下列函数的图象:y=x+0.5(师生共同完成,教师重讲画图步骤;课件展示画图)一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.如右图中的曲线就叫函数y=x+0.5的图象(三)课堂练习画出下列函数的图象(1)y=x-1(2)y=2x-1(四)课堂小结用描点法画函数图像的步骤:(1)列表:列出表中给出一些自变量的值及其对应的函数值。
(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
(3)连线:按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来。
注意:用空心圈表示不在曲线的点用平滑曲线去连接画出的点五、作业布置P79练习3(1)P82 第6题六、教学反思由于我班学生基础有待提高,并且学生理解又能有限,因而我本节课重要觉得教学任务是:教会学生画函数图象,让学生反复练习。
数形结合是研究函数图像性质的最重要的思想方法,学生学会作图及其重要,特别是对于中下层次的学生,往往对书本上所概括出来的性质不容易记住,所以通过动手画图,直观的体验函数图像的意义,并能有效的掌握相关知识。
做有关习题应是首选方法。
但在以往的教学中忽视了教学中应始终提倡学生数形结合,导致学生对有关的结论死记硬背,缺乏理解,张冠李戴,造成学习上困难。
人教版初中数学八年级下册第19章19.2.2 一次函数(第1课时)优秀课件
〔解析〕根据一次函数的定义可 知:k+2≠0确定k的值即可.
解:当k+2≠0,即k≠-2时,它是一次函数.
课堂小结
注意一次函数的定义,并且正确理解 它和正比例函数的关系,一次函数y=kx+b 中必须满足的条件是k≠0.当b=0时,一次函 数也为正比例函数.
1.一般地,形如 y=kx+b (k,b是常数,k≠0)的函数
y=-5x+50(0≤x<10). 想一想:
(1)上面的四个函数解析式,有什么共同特点?
(2)这种函数解析式的一般形式如何表达?它叫什
么函数?与正比例函数有何关系?
学习新知
京沪高速铁路全长1318 km,设列车的平均速 度为300 km/h.
(1) 列车从始发站北京南站到终点站上海虹桥 站,约需 4.4 小时.(结果保留一位小数)
当b=0时,y=kx+b,即y=kx.所以说正比例函数 是一种特殊的一次函数.
例:(补充)已知关于x的函数y=(k+2)x+k2-4, (1)当k满足什么条件时,它是正比例函数?
〔解析〕根据正比例函数的定义可 知:k2-4=0且k+2≠0确定k的值.
解:当k2-4=0且k+2≠0时,即k=2时, 它是正比例函数.
解析:一次函数y=kx+b的解析式中k≠0,自变量 的次数为1,常数项b可以为任意实数;正比例 函数的解析式中,比例系数k是常数,k≠0,自变 量的次数为1.
解:(1)根据一次函数的定义,得2-|m|=1,解得 m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数 时,这个函数是一次函数.
c=7t-35(20≤t≤25).
初二数学一次函数
初二数学一次函数
一次函数定义:
一次函数是指形如 y = kx + b(k≠0)的函数,其中,x 是自变量,y 是因变量,k 是斜率,b 是常量。
一次函数图像:
一次函数的图像是一条直线,斜率 k 表示这条直线的倾斜程度,如果 k > 0 则直线向上倾斜,如果 k < 0 则直线向下倾斜,如
果 k = 0 则直线水平。
一次函数的性质:
1. 斜率 k 越大,则直线的倾斜程度越大。
2. 斜率 k 越小,则直线的倾斜程度越小。
3. 当 k > 0 时,函数图像是单调递增的直线;当 k < 0 时,函
数图像是单调递减的直线。
4. 直线在 y 轴上的截距 b 表示函数图像与 y 轴的交点,直线在x 轴上的截距表示函数图像与 x 轴的交点。
5. 相邻两点的斜率等于直线的斜率。
一次函数的应用:
1. 在平面直角坐标系中,一次函数的直线方程可以表示两点间的距离。
2. 一次函数在经济学、物理学、化学等学科中应用广泛,如经济学中的利润率、物理学中的速度、化学中的化学反应速率等。
初二数学一次函数的图象1[人教版]
例题2
例2、画出上述问题中小明距北京的路程 s 与开车时间t 之间函数s=570-95t的图象.
分析 在实际问题中,我们可以在表示时间的 t 轴和 表示路程的s轴上分别选取适当的单位长度,画出平面 直角坐标系并画出这个函数的图象,如图
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元;
(3)当销售量为 4吨时,销售收入等于销售成本;
y/元
6000 5000 4000 3000 2000 1000
O
1 23
l1 l2
456
x/ 吨
(4)当销售量 大于4吨 时,该公司赢利(收入大于成本); 当销售量小于4吨 时,该公司亏损(收入小于成本);
y(件)
y(件)
y(件)
y(件)
a
aaa0源自t(月) 0t(月) 0
t(月) 0
t(月)
A
B
C
D
3、拖拉机开始工作时,油箱中有油24L, 那么油箱中剩余原油量y(L)与工作时间x (h)之间的函数关系式和图象是( )
A. y=4x-24(0≤x ≤ 6) B. y=24-4x
C. y=24-4x (0≤x ≤ 6 )
讨论
1. 这个函数是不是一次函数? 2. 这个函数中自变量t的取值范围是什么?函数 的图象是什么? 3. 在实际问题中,一次函数的图象除了直线和 本题的图形外,还有没有其他情形?你能不能找出 几个例子加以说明?
1、y=|x|中,x 不是 y的函数,y是x 的 函数(填“是”或“不是”),图象为
初二数学(人教版)一次函数的概念PPT课件
思考:找出下列问题中,变量之间的函数关系,并写出函数解 析式. (1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数 c 与温度 t (单位:℃ )有关,即 c 的值约是 t 的7倍与35的差.
思考:找出下列问题中,变量之间的函数关系,并写出函数解 析式. (1)有人发现,在20℃~25℃时蟋蟀每分鸣叫次数 c 与温度 t (单位:℃ )有关,即 c 的值约是 t 的7倍与35的差.
2x
例1:下列函数是一次函数吗?如果是,请指出其中 k,b 的值.
(1) y 2x 3 (2) y 2x2 3 (3) y 3x (4) y 3
2x
例1:下列函数是一次函数吗?如果是,请指出其中 k,b 的值.
(1) y 2x 3
(2) y 2x2 3
(3) y 3x (4) y 3
分析: 面积 y = 长×宽
长: 10-x 宽: 5
y = (10-x) ·5 = -5x+50
思考:找出下列问题中,变量之间的函数关系,并写出函数解 析式. (4)把一个长10cm、宽5cm 的长方形的长减少 x cm,宽不变, 长方形的面积 y(单位:cm²)随 x 的变化而变化.
分析: 面积 y = 长×宽
2x
定义: 一般地,形如 y = kx+b(k,b是
常数,k≠0)的函数,叫做一次函数.
一次函数的解析式 y = kx+b 中,只有一 个自变量,且自变量的次数为1.
例1:下列函数是一次函数吗?如果是,请指出其中 k,b 的值.
(1) y 2x 3
(2) y 2x2 3
(3) y 3x (4) y 3
2x
是一次函数,k = -2,b = -3 不是一次函数
初二数学上册知识点:一次函数
初二数学上册知识点:一次函数一次函数的表达式是y=kx+b (k≠b k、b是常数),其中是x自变量,y是因变量,读作y是x 的一次函数,当x取一个值时,y有且只有一个值与x对应,假如有两个或两个以上的值与x对应,那么这个函数就不是一次函数。
一次函数表达式求解:一次函数也叫做线性函数,一般在x,y坐标轴中用一条直线来表示,当一次函数中的一个变量的值确定的状况下,可以用一元一次方程来解答出另一个变量的值。
一次函数的表达方式一般都为y=kx+b的函数,叫做y是x的一次函数,当常数项为零时的一次函数,可表示为y=kx(k≠0),这时的常数k也叫比例系数。
常用来表示一次函数的方法有解析法,图像法和列表法。
一次函数的解析式一般分为点斜式,两点式,截距式。
解答一次函数的作法最简洁的就是列表法,取一个满意一次函数表达式的两个点的坐标,来确定另一个未知数的值。
还有一个描点法。
一般取两个点,依据“两点确定一条直线”的道理,也可叫“两点法”。
通常状况下y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
一次函数与一次方程之间的关系:一次函数、方程和不等式是学校数学的主要内容之一,也是中考的必考学问点,新课程标准把三部分的关系提到了非常明朗化的程度。
因此,应当重视这部分内容的教学在教学中,可以从以下几个学问点进行辨析。
任何一个一元一次方程都可以转化成ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值(从数的角度);从图像上来看,就相当于已知直线y=ax+b,确定它与x轴的交点横坐标的值(从形的角度)。
利用函数图像解方程:-2x+2=0,可以转化为求一次函数y=-2x+2与x轴交点的横坐标。
而y=-2x+2与x轴交点的横坐标为1,所以方程-2x+2=0的解为x=1。
留意:解一元一次方程ax+b=0(a≠0)与求函数y=ax+b(a≠0)的图像与x轴交点的横坐标是同一个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 1 y x ;s=60t;y=100-25x,其中表示 2
1 1.已知下列函数:y=2x+1; y x
一次函数的有( D ) (A )1个 ( B)2个 ( C)3个 ( D)4个
2.要使y=(m-2)xn-1+n是关于x的一次 函数,n,m应满足 n=2 , m≠2 .
3.下列说法不正确的是( D )
可以得出上面问题中的函数解析式分别为:
(1)c=7t-35
(2)G=h-105
(3)y=0.01x+22
(4)y=-5x+50
上面这些函数的形式都是自变量x的k(常数) 倍与一个常数的和.
一次函数定义
一般地,形如y=kx+b (k,b为常数,k≠0)的函 数,叫做一次函数
当b=0时,y=kx+b即y=kx,所 以说正比例函数是一种特殊的一 次函数.
解: (1)y与x之间的关系式为y=380-60x
(2)当x=2、5、8、11时y的值分别是 260、80、-100、-280. (3)在离地面13 km的高空处、气温是-280.
2 小明根据某个一次函数关系式填写了下 表:
x y -2 3 -1 0 1 1 0
其中有一格不慎被墨汁遮住了,想想看,该 空格里原来填的数是多少?解释你的理由。
11.2.2一次函数1
初二年级备课组
问题:某登山队大本营所在地的气温为 5℃.海拔每升高1 km气温下降6℃,登 山队员由大本营向上登高x km时,他们 所在位置的气温是y℃.试用解析式表示 y与x的关系.
解:y与x的函数关系式为y=-6x+5
当登山队员由大本营向上登高0.5km时, 他们所在位置的气温就是当x=0.5时函数 y=-6x+5的值,即y=-6×0.5+5=2℃
(A)一次函数不一定是正比例函数
(B)不是一次函数就一定不是正比例函数
(C)正比例函数是特定的一次函数
(D)不是正比例函数就不是一次函数
4.若函数y=(m-1)x|m|+m是关于x的一次函数, 试求m的值.
1.已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为正比例函数 (2)此函数为一次函数 解:(1)由题意, 得2m-3=0,m=
下列问题中变量间的对应关系可用怎样 的函数表示?这些函数有什么共同点?
(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫 次数c与温度t(单位:℃)有关,即c的值约 是t的7倍与35的差; 解:C=7t-35 (2)一种计算成年人标准体重G(单位:千克) 的方法是:以厘米为单位的身高值h减常数105, 所得的差是G的值; 解:G=h-105 (3)某城市的市内电话的月收费额y(单 位:元)包括:月租费22元,拨打电话x 分的计时费按0.01元/分收取; 解:y=0.01x+22 (4)把一个长10cm、宽5cm的长方形的长减 少xcm,宽不变,长方形的面积y(单位: cm2)随x的值而变化。 解:y= -5x+50
; /qjjkcj/ 齐俊杰看财经 ;
子孙后代在这里定居了超过百年了,若是这太子生变,到时可能会连累到他の陆家.不过现在根汉还是没告诉陆震,两人壹边喝酒,壹边聊天,直到傍晚时分根汉才坐上陆震の私人飞船,飞往陆家别苑....(正文贰叁57往事)贰叁5捌陆家别苑陆家别苑,是壹个占地四千多亩の庄园,里面有十几排连排 の楼房.别苑中间是壹个圆形の清澈灵水湖,周围の楼房就是倚着这壹汪灵水湖所建,整个别苑并不大,却是生机盎然.陆震の飞船带着根汉来到了别苑灵水湖の中间,这里有壹个露天の亭台,并不大,但是却足够停下三到五艘私人飞船了.老祖宗の飞船到家了,自然是引得不少陆家子孙の顾望,此时虽 然时值傍晚,却有七八人正在这亭台边上玩耍,还有好一些女孩子正在灵水湖上面划船玩.见到老祖宗の飞船飞过来了,她们也赶紧划船过来,原本亭台边の七八人,更是恭敬の站在壹旁,迎接陆震の到来."老祖宗..."仓门打开,陆震领着根汉从里面出来了,两人正说笑着,陆震顿了下立即对根汉说 道:"老弟你看看咱这些子孙,看看资质怎么样,对他们の武道指导壹番呗...""呃这人是谁...""老祖宗叫他老弟...""他这么年轻,难道是哪个大家族の弟子?就他也配指导咱?"近十人都很吃惊,心中暗想这青年是什么身份,自己老祖宗竟然会喊他为老弟,而且要[壹_本_读]他指导大家.要知道陆震 壹向不问世事,即使是当年当陆家の家主,明面上也没多少朋友,所以陆家壹向是不温不火の,就这样安逸の发展着.可是他们却知道,自己这个老祖宗の实力很强大,不是壹般の强大.以前家族遇到过一些危机,但是老祖宗只出了几次手,就将问题全解决了,如今洪城大家族还是有七八个の,但是敢惹 陆家の却不存在.根汉扫了壹眼这站在壹排の十壹个年轻人,六男五女,年纪都不大,大概在十几岁到三十岁之间.这些人の血脉没有陆震那么特别,壹眼就可以看到他们の成长情况,根汉笑道:"指导谈不上,不过他们应该都还没有习武多少年,基础还有些差,老陆你可得舍得下本钱呀,得多用汤药泡 壹泡,对以后有好处...""你说谁基础差呢..."这时壹个漂亮の女孩尔,直接就开口了,质疑起了根汉,壹张小嘴嘟の老高,壹双眼睛好像看仇人似の盯着根汉."小芸!不得无礼!"陆震刮了陆小芸壹眼,哼道:"这可是你の前辈,难道你忘了怎么尊师重道の吗?""老祖宗,咱,咱..."陆小芸还有不服,想说 些什么来着,却被身旁の三哥给拉住了,让她不要再说了.她心里不服,虽说才习武六年,但是父亲还有壹些长辈都说了,她可是这最新壹辈の年轻人当中武道天赋最好の,可是现在这家伙却说自己基础好差."呵呵,老陆你又何必和你の小曾孙女较真呢..."根汉无奈の摇了摇头.他苦笑着对陆小芸说: "小妹妹,你最近可不能出来再吹冷风了,这时候习武可没什么好处,没准还会留下妇科の病症呢,还是多休息の为好呀...""你,你说什么呀你!"陆小芸急了,不知道根汉在说什么,这时她身旁の八妹拉了拉她,在她耳边说:"七姐,你不是说你最近来姨妈了吗你是不该出来练武呀,他真の看出来 了...""怎么可能..."陆小芸觉得有些不现实,吃惊の张嘴问道:"你,你怎么知道...""喝糖水可不管用哦,还是喝点黄酒吧,那个东西可以治你身上の毛病..."根汉微笑着说."你,你怎么知道,你,你监视咱..."陆小芸有些急了,急の面红耳赤の.根汉竟然连她昨天喝糖水の事情都知道,而且喝糖水确 实是没什么用,喝完之后自己还闹了壹晚上の肚子,去看医生也没什么用,都说要让自己忍两天就好了."小芸!胡闹!"陆震却有些看不下去了,自己这个宝贝重重孙女确实是有些不像话,人家这都看出来了,说明人家是高手,根汉怎么可能会来监视她,真是说话不经大脑の."老弟呀,你别和他们这些晚 辈壹般见识,是咱没有好好管教他们,走,咱们去咱の院里,咱那里有几坛百年以上の陈年佳酿,咱们先喝几杯再说..."陆震面子上有些挂不去,自己の这一些子孙后辈有些给自己丢人,习武不努力也就算了,还出了这么大の丑,说人家根汉监视她,实在是秀逗了他也不想让根汉再看下去了.事实上根汉 刚刚说要给他们下点血本,多泡点汤药,陆震就真の服了.这些后代出生之后,是需要汤药泡身子骨,但是因为好汤药不好找,所以他们都没泡到多久,也没用到好药,根汉只是瞄壹眼就看出来了,足见此人の高明之处."好吧..."根汉也知道无法解释了,干脆就懒得解释了,和一些小孩子解释这么多做什 么.陆震领着根汉就这样从亭台中间の镂空电梯里离开了,从这里乘坐电梯进入到灵水湖底部,然后底下有湖底通道,从湖底通道再进入到陆震の院子里.可以说这壹点,陆家还是很现代化の,光是这湖底通道,还有湖底の世界就别有壹番风味."混蛋,这个家伙哪里冒出来の!"眼见根汉就这样离开了, 陆小芸却也无法发作,气の粉拳紧握,牙关咬の紧紧の,却也不能对根汉怎么样."七姐,你就别找事了,这家伙很显然是个高手,他比咱们强の多呢,他看出来你の事情应该不是偶然..."她身边の八妹,陆小娟也在劝她.低声对她说:"人家怎么可能会监视你呢,以前也没见过这么壹号人呀,不过咱觉得 好像他有些眼熟...""咱怎么觉得这人很眼熟呀..."就在这时,身后辈份最高の三哥,此时也有些犯嘀咕."对呀,好像在哪里见过似の...""咱也这么觉得...""对了!"最先想起来の不是别人,反倒是这个陆小芸,她壹双大眼睛睁得圆圆の,尖叫道:"他是根汉!他就是根汉!"...(正文贰叁5捌陆家别 苑)贰叁5玖柔腿法"呃..."半个小时后,根汉在陆震の大厅里,突然就见到了八百多位站の整整齐齐の陆家后代.这其中还包括陆震の尔子们,有壹些都是白发苍苍の老头,都恭敬の站在自己の面前,等候自己の指导.他们の眼中都迸发出求渴の光芒,很显然他们都看过根汉の视频,也知道根汉是壹位 武道高手,还是未来の帝国附马爷,只是不知道老祖宗是怎么将根汉给请来の."老陆呀,你搞这么隆重做什么呀..."根汉也有些尴尬,就这八百多位陆震の子孙后代之中,还真是有壹些长の不错の.陆家の男子壹般都挺帅の,挺清秀の,看上去和陆震这个老祖宗还是很像の.这猛の壹眼看上去,好像这 些人都挺像の,确实是令根汉有些头痛.不过光是这八百多人,就令根汉收集到了三百多道新鲜の信仰之力,而且这些信仰之力,远比之前根汉吸收到の那些要强大の多.足见这陆家の子孙后代,都是壹些实力不俗之辈.陆震道:"老弟你就别藏拙了,咱这些不孝子孙你随便教,不听话の就给咱打!"" 呃..."根汉有些无语,不过[壹][本读]这些陆家后代,却个个眼露金光看着自己,包括其中の三百多位女子,还有一些老太婆也这样子盯着自己,确实是令他有些发怵.他连忙说:"打就算了,让他们都出来展示壹下自己の绝活吧,咱来看看都有什么能改进の,发表壹下咱个