重庆中考数学专项训练(22题)
中考数学 阅读理解题及答案
阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化. 解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数). 由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x -4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解(1)①60°②AC=CD+CE[解法提示] 由题意,得△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=∠B=60°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠ACE=∠B=60°,BD=CE.∴AC=BC=CD+BD=CD+CE.(2)∠ACE=45°,2AC=CD+CE.理由:由题意,得∠BAC=∠DAE=90°,AB=AC,AD=AE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
重庆中考数学22题应用题练习
1.1.低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受低碳生活的理念已逐步被人们接受..剧相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18kg 18kg;一个人平均一年少买;一个人平均一年少买的衣服,相当于减排二氧化碳约6kg.6kg.甲、乙两校分别对本校师生提出“节约用电”甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议“少买衣服”的倡议.2010.2010年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2010年两校响应本校倡议的人数分别为多少人?(2)2010年到2012年,甲校响应本校倡议的人数每年增加相同的数量,乙校响应本校倡议的人数每年按相同的百分比增长.2011年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍,2012年两校响应本校倡议的总人数比2011年两校响应本校倡议的总人数多100人.求2012年两校响应本校倡议减排二氧化碳的总量年两校响应本校倡议减排二氧化碳的总量. .2.2.为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过为了倡导节能低碳生活,某工厂对集体宿舍用电收费作了如下规定:一间宿舍一个月用电量不超过a 千瓦时,则一个月的电费为20元;若超过a 千瓦时,则除了交20元外,超过部分每千瓦时要交100a 元.某宿舍3月份用电80千瓦时,交电费35元;元;44月份用电45千瓦时,交电费20元.(1)求a 的值;的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?3.3.“六一”“六一”“六一”儿童节前,儿童节前,儿童节前,某玩具商店根据市场调查,某玩具商店根据市场调查,某玩具商店根据市场调查,用用2500元购进一批儿童玩具,元购进一批儿童玩具,上市后很快脱销,上市后很快脱销,上市后很快脱销,接着又用接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)第一批玩具每套的进价为多少元?(2)如果这两批玩具每套售价都相同,且全部售完后总利润不低于25%25%,那么每套售价至少是多少元?,那么每套售价至少是多少元?4.4.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,据某市交通部门统计,20102010年底该市汽车拥有量为75万辆,而截止到2012年底,该市的汽车拥有量已达到108万辆万辆. .(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2014年底全市汽车总量不超过125.48万辆;另据统计,从2013年初起,该市以后每年报废的汽车数量是上年底汽车拥有量的10%10%,假设每年新增汽车数量相同,请你估算出该市从,假设每年新增汽车数量相同,请你估算出该市从2013年出起每年新增汽车数量最多不超过多少万辆年出起每年新增汽车数量最多不超过多少万辆. .5.5.一家蔬菜公司收购到某种绿色蔬菜一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行吨,但两种加工不能同时进行..受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完这批蔬菜全部加工后销售完. .(1)如果要求12天刚好加工完140吨蔬菜,则公司应该安排几天精加工,几天粗加工?几天粗加工?(2)如果先进行精加工,然后进行粗加工)如果先进行精加工,然后进行粗加工. .① 试求出销售利润试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;之间的函数关系式;② 若要求在不超过若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?6.6.为创建和谐社会,为民办实事,市政府决定为创建和谐社会,为民办实事,市政府决定2012年投入10000万元用于改善医疗卫生服务,比2011年增加了2000万元万元..投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),2012年投入“需方”的资金将比2011年提高30%30%,投入“供方”的资金将,投入“供方”的资金将比2011年提高20%.(1)该市政府2011年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2012年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2013年将有12500投入改善医疗卫生服务,若从2011~2013年每年的资金投入按相同的增长率递增,求2011~2013年的年增长率的年增长率. .7.7.随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资随着经济的发展,小张所在的公司每年都在元月一次性的提高员工当年的月工资.小张2010年的月工资为2000元,在2012年时他的月工资增加到2420元,他2013年的月工资按2010到2012年的月工资的平均增长率继续增长年的月工资的平均增长率继续增长. .(1)小张2013年的月工资为多少?年的月工资为多少?(2)小张看了甲、乙两种工具书的单价,认为用自己2013年6月份的工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着他选定的这些工具书去付款时,发现自己计算书款时把这两种工具书的单价弄兑换了,故实际付款比2013年6月份的月工资少了242元,于是他用着242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给了山区的学校.请问,小张一共捐献了多少本工具书?具书?8.8.有一批图形计算器,原售价为每台有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售元,在甲、乙两家公司销售..甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.以此类推,以此类推,即每多买一台各台单价均再减即每多买一台各台单价均再减20元,元,但最低不能低于每台但最低不能低于每台440元;元;乙公司一律按原价的乙公司一律按原价的75%75%促销促销促销..某单位购买一批图形计算器.(1)若此单位需购买6台图形计算器,应去哪家公司购买化肥较少;(2)若此单位恰好花费7500元.在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少? 销售方式销售方式 粗加工后销售粗加工后销售 精加工后销售精加工后销售 每吨获利(元)每吨获利(元) 1000 2000。
2021年重庆中考数学第22题新函数图像题专题训练
2021重庆中考数学第22题新函数图像题专题训练1.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=|2xx−2|的性质及其应用的部分过程,请按要求完成下列各小题:(1)请直接写出表中m,n的值,并在图中补全该函数图象;x…−5−4−3−2−1013234567…y=|2xx−2|…1074365m230266n1033145…(2)结合函数图象,直接写出该函数的一条性质;(3)已知函数y=45x+185的图象如图所示,结合你所画的函数图象,直接写出不等式45x+18 5≥|2xx−2|的解集(保留1位小数,误差不超过0.2).2.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=−6x−6x2−2x+2性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:x…−5−4−3−2−1012345…y=−6x−6x2−2x+2…363715132417______12530−3______ −952417…(2)观察函数图象,写出该函数的一条性质:______ ;(3)已知函数y=−75x+1的图象如图所示,结合你所画的函数图象,直接写出不等式−6x−6x2−2x+2≥−75x+1的解集(保留1位小数,误差不超过0.2).x3−2x的图象与性质进行探究.3.根据我们学习函数的过程和方法,对函数y=14(1)如表是y与x的几组对应值:则m的值为______ ,n的值为______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出该函数的一条性质:______ .x3−2x≥x,结合图象,直接写出x的取值范围______ .(3)若144.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|5xx2+4|性质及其应用的部分过程,请按要求完成下列各小题.(1)补全表:(2)在平面直角坐标系中,补全函数图象,根据函数图象,写出这个函数的一条性质:______ ;(3)已知函数y=52x−1的图象如图所示,结合你所画的函数图象,直接写出关于x的方程|5xx2+4|=52x−1的近似解(保留1位小数,误差不超过0.2).5.探究函数性质时,我们经历了列表,描点,连线画出函数图象,观察分析图象特征,概括函数性质的过程,结合已有的学习经验,请结合表中的数据,画图并探究该函数y=−ax2+2的性质.x…−4−3−2−101234…y…−23−1211−2−4−6−4−2−b−23…(1)根据表中数据可得:a=______ ,b=______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象;(3)观察该函数图象,写出该函数图象的一条性质:______ ;(4)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式−ax2+2≤−23x−103的解集______ .6.某“数学兴趣小组”根据学习函数的经验,对函数y=−4x+6(x−2)2的图象和性质进行了探究,探究过程如下,请补充完整:x…−3−2−10323456…y (18)2574109m0−6−52n−98…(1)m=______ ,n=______ ;(2)同学们先找到y与x的几组对应值,然后在下图的平面直角坐标系xOy中,描出各对应值为坐标的点.请你根据描出的点,画出该函数的图象;(3)根据函数图象,写出该函数的一条性质:______ .(4)结合你所画的函数图象,直接写出不等式−x+2≤−4x+6的解集为______ .(x−2)27.在函数的学习中,我们经历“确定函数表达式--画函数图象--利用函数图象研究函数性质--利用图象解决问题”的学习过程,画函数图象时,我们常通过描点或平移或翻折的方法画函数图象,请根据你学到的函数知识探究函数y 1={2−|x|(x <2)x−2x−1(x ≥2)的图象与性质并利用图象解决如下问题: 列出y 1与x 的几组对应的值如表: x…−3−2−1 01234 5 …y … m 0 1 2 1 0 n 2334…(1)根据表格中x 、y 的对应关系可得m = ______ ,n = ______ ;(2)用你喜欢的方式画出该函数图象:根据函数图象,写出该函数的一条性质:______ ; (3)直接写出当函数y 1的图象与直线y 2=kx +1有三个交点时,k 的取值范围是______ .8.小明结合自己的学习经验,对新函数y=bkx2+1的解析式、图象、性质及应用进行探究:已知当x=0时,y=2;当x=1时,y=1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为:______ .(2)函数图象探究:①根据解析式,补全如表,则m=______ ,n=______ .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.x…−4−3−2−1−121212n4…y (2)171525m8528512515217…(3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质:______ .(4)综合应用:已知函数y=|715x−815|的图象如图所示,结合你所画的函数图象,直接写出不等式|7 15x−815|≤bkx2+1.9.根据我们学习函数的过程与方法,对函数y=x2+bx+2−c|x−1|的图象和性质进行探究,已知该函数图象经过(−1,−2)与(2,1)两点,(1)该函数的解析式为______ ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质:______ .(3)结合你所画的图象与函数y=x的图象,直接写出x2+bx+2−c|x−1|≤x的解集______ .x|ax+b|(a>0)的图象与性质进行探10.小帆根据学习函数的过程与方法,对函数y=14究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而______(在横线上填增大或减小);x|ax+b|的最大值是______;③当x<4时,y=14x|ax+b|有两个交点,则k=______.①直线y=k与函数y=1411.已知函数y=a−b|x−1|(a、b为常数),当x=1时,y=1;当x=2时,y=0;请对该函数及其图象进行如下探究:(1)求函数的解析式;(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:______;根据函数图象解决下列问题:①若A(m,c),B(n,c)为该函数图象上不同的两点,则m+n=______;x+k有两个不相等的实数解x1,x2,且x1⋅x2>0,则k的取②若方程a−b|x−1|=12值范围是______.12.函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y=x+a,探索函数图象和性质过程如下:x(1)上表是该函数y与自变量x的几组对应值,则a=______ ,m=______ ,n=______ ;(2)如图,在平面直角坐标系中,已经描出了表中部分点,请根据描出的点画出该函数图象;(3)由函数图象,写出该函数的一条性质:______ ;(4)请在同一个平面直角坐标系中画出函数y=2x的图象,并直接写出不等式x+ax≤2x 的解集:______ .13.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y={|x+1|(x≤1)2x(x>1)的图象与性质,探究过程如下,请补充完整.(1)列表:x…−4−3−2−101234…y…3m10121n 12…其中,m=______,n=______.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(72,y1),B(5,y2),C(x1,52),D(x2,6)在函数图象上,则y1______y2,x1______x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=−x+b与函数图象有且只有一个交点,请直接写出b的取值范围.14.学习函数时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,下面我们对函数y ={−2x (x <0)x 3−3x 2+2(x ≥0)的图象和性质进行探究,请将以下探究过程补充完整:(1)选取适当的值补全表格;描点、连线,在所给的平面直角坐标系中画出函数的图象:(2)结合图象,写出该函数的一条性质:______ ; (3)结合这个函数的图象与性质,解决下列问题:①若点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)在这个函数的图象上,且0<x 3<3,−1<x 1<x 2<0,请写出y 1,y 2,y 3的大小关系:______ (用“<”连接).②若直线y =2a +1(a 是常数)与该函数图象有且只有三个交点,则a 的取值范围为______ .15. 在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质--运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a ≥0)−a(a <0).小东结合上面的学习过程,对函数y =|32x −3|+12x −5的图象与性质进行了探究.(1)化简函数的表达式:当x ≥2时,y = ______ ,当x <2时,y = ______ ; (2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质:______ ;(3)已知函数y =2x (x >0)的图象如图所示,结合你所画函数图象,直按写出|32x −3|+12x −5=2x 的近似解______ .(精确到0.1)16.已知函数y=a|x−2|+x+b(a,b为常数).当x=3时,y=0,当x=0时,y=−1,请对该函数及其图象进行探究:(1)a=______ ,b=______ ;(2)请在给出的平面直角坐标系中画出该函数图象,并结合所画图象,写出该函数的一条性质.(3)已知函数y=−x2+4x+5的图象如图所示,结合图象,直接写出不等式a|x−2|+x+b≥−x2+4x+5的解集.17.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=|ax+4|−b的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:(1)根据表格,直接写出a=______ ,b=______ ;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质______ ;(3)当函数y1的图象与直线y2=mx−1有两个交点时,直接写出m的取值范围.18.已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=−1时,y=3.(1)a=______ ,b=______ ;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:______ ;(3)已知函数y=25的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+ |2x−2|4|+bx=25的近似解(精确到0.1).|2x−2|。
中考数学第22题解题技巧
中考数学第22题解题技巧中考数学第22题是一道典型的解决实际问题的应用题,要求考生根据给定的条件,通过数学方法解决问题。
接下来,我将结合具体题目以及解题技巧,详细介绍如何解答这道题目。
首先,让我们先来看看这道题目的具体题意。
【题目】某学校有一个小广场,形状是一个边长为10米的正方形。
学校要在小广场的四个角各建一个菜园,然后再在小广场的四条边各种一圈花坛,花坛和小广场都是正方形。
已知小广场的面积是(x+2)平方米,花坛与小广场的面积比是1:3。
求菜园和花坛的面积之和。
【解题思路】这道题目可以用数学方法来解决。
首先,我们需要明确一些基本的数学概念。
正方形是一种特殊的四边形,四条边长度相等,每个内角都是90°。
正方形的面积等于边长的平方。
在解题过程中,我们需要根据已知条件构建方程,并进行求解。
接下来,我将从以下几个步骤出发,详细介绍解答这道题目的思路。
【步骤一:明确已知条件】根据题目给定的信息,我们可以得到以下已知条件:1.小广场的形状是一个边长为10米的正方形;2.小广场的面积是(x+2)平方米;3.花坛与小广场的面积比是1:3。
【步骤二:构建方程】在解题过程中,我们需要根据已知条件构建方程。
根据题目中的信息,我们可以得到以下方程:(1)小广场的面积:10^2 = (x+2)^2;(2)花坛与小广场的面积比:花坛面积/小广场面积= 1 / 3。
【步骤三:求解方程】有了方程后,我们就可以进行求解了。
首先,我们可以解方程(1)来确定小广场的面积。
10^2 = (x+2)^2100 = (x+2)^2开方,得到x+2 = 10x = 8因此,小广场的面积为(8+2)^2 = 10^2 = 100平方米。
接下来,我们可以根据已知条件中的花坛与小广场的面积比来求解菜园和花坛的面积。
花坛面积/小广场面积= 1 / 3花坛面积=小广场面积* (1/3)花坛面积= 100 * (1/3)花坛面积= 100 / 3平方米最后,我们可以计算菜园和花坛的面积之和。
初中数学精品试题:中考专项第21、22、23题训练(1)
1.有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.2.在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).(1)当k=﹣2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.3.已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4,AD3BC4,求CF的长.4.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?5.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.6.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.8.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.9.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).(1)求这两个函数的解析式;(2)当x取何值时,y1>y2.10.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?11.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.12.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=kx(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.13.小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?14.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.15.在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为12时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=-x2,试判断抛物线y=-x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.16.邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.参考答案:1.解:(1)设三角形的第三边为x,∵每个三角形有两条边的长分别为5和7,∴7﹣5<x<5+7,∴2<x<12,∴其中一个三角形的第三边的长可以为10.(2)∵2<x<12,它们的边长均为整数,∴x=3,4,5,6,7,8,9,10,11,∴组中最多有9个三角形,∴n=9;(3)∵当x=4,6,8,10时,该三角形周长为偶数,∴该三角形周长为偶数的概率是.2.解:(1)当k=﹣2时,A(1,﹣2),∵A在反比例函数图象上,∴设反比例函数的解析式为:y=,代入A(1,﹣2)得:﹣2=,解得:m=﹣2,∴反比例函数的解析式为:y=﹣;(2)∵要使反比例函数和二次函数都是y随着x的增大而增大,∴k<0,∵二次函数y=k(x2+x﹣1)=k(x+)2﹣k,的对称轴为:直线x=﹣,要使二次函数y=k(x2+x﹣1)满足上述条件,在k<0的情况下,x必须在对称轴的左边,即x<﹣时,才能使得y随着x的增大而增大,∴综上所述,k<0且x<﹣;(3)由(2)可得:Q(﹣,k),∵△ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)∴原点O平分AB,∴OQ=OA=OB,作AD⊥OC,QC⊥OC,∴OQ==,∵OA==,∴=,解得:k=±.3.(1)证明:∵⊙D与AB相切于点A,∴AB⊥AD。
重庆数学中考试题及答案
重庆数学中考试题及答案****一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -0.5**答案:C**2. 以下哪个选项是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 0**答案:A**3. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 2C. y = 3x^3 - 2D. y = 1/x**答案:A**4. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 抛物线D. 双曲线**答案:A**5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 6**答案:B**6. 下列哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为60°, 60°, 60°D. 三角形内角分别为50°, 70°, 60° **答案:D**7. 以下哪个选项是不等式?A. 2x + 3 = 5B. 3x - 2 > 4C. 5y - 7 = 0D. 4z + 6 ≤ 10**答案:B**8. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2**答案:B**9. 以下哪个选项是相似三角形?A. 三角形ABC和三角形DEF,AB/DE = AC/DF = BC/EFB. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF = BC/EFC. 三角形ABC和三角形DEF,AB/DE = AC/DF ≠ BC/EFD. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF ≠ BC/EF **答案:A**10. 以下哪个选项是圆的标准方程?A. (x - 2)^2 + (y - 3)^2 = 1B. x^2 + y^2 = 4C. (x - 1)^2 + (y + 1)^2 = 9D. x^2 + y^2 - 2x + 4y - 4 = 0**答案:B**二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是 _______。
函数的实际应用最优方案问题22题(24年中考数学二轮复习满分冲刺题型突破(全国通用)(解析版)
类型一最优方案问题(专题训练)1..某文化用品商店出售书包和文具盒,书包每个定价40元,文具盒每个定价10元,该店制定了两种优惠方案:方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买5个书包,文具盒若干(不少于5个).设文具盒个数为x(个),付款金额为y(元).=_________;方案二:(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1y=__________.2(2)若购买20个文具盒,通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品,最多可以买到__________个文具盒(直接回答即可).【答案】(1)10x+150;9x+180;(2)详解见解析;(3)40.【解析】(1)由题意,可得y1=40×5+10(x–5)=10x+150,y2=(40×5+10x)×0.9=9x+180.故答案为:10x+150,9x+180;(2)当x=20时,y1=10×20+150=350,y2=9×20+180=360,因为350<360,所以可看出方案一省钱;(3)如果10x+150≤540,那么x≤39,如果9x+180≤540,那么x≤40,所以学校计划用540元钱购买这两种奖品,最多可以买到40个文具盒.故答案为:40.【名师点睛】(1)根据方案一,买一个书包赠送一个文具盒;方案二:按总价的九折付款,即可得出两种优惠方案中y与x之间的关系式;(2)将x=20分别代入(1)中关系式,通过计算比较两种方案中哪种更省钱即可;(3)根据购买时,顾客只能选用其中的一种方案,所以分别求出y≤540时两种方案中x的最大整数值,比较即可得到答案.2.(2023·浙江·统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y 关于x 的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.【答案】(1)30件;(2)20600y x =+;(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,利用待定系数法即可得到方案二y 关于x 的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论.【详解】(1)解:由图象可知交点坐标为()30,1200,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,把()()0,600,30,1200代入上式,得600,301200.b k b =⎧⎨+=⎩解得20,600.k b =⎧⎨=⎩∴方案二的函数表达式为20600y x =+.(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一.【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信∴当购买A型机器人12台,B型机器人18台时,购买总金额最低是54万元.【点睛】本题主要考查了分式方程的应用、不等式组的应用、一次函数的应用等知识点,理解题意正确列出分式方程、不等式组和一次函数解析式是解答本题的关键.4.为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的1 3,请设计出最省钱的购买方案,并求出最少费用.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5却比甲车早0.5小时到达目的地.下图是两车离开学校的路程(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,25千米.7.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l ,射线2l 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y (单位:元)和2y (单位:元)与其当月鲜花销售量x(单位:千克)(0x ≥)的函数关系.(1)分别求1y ﹑2y 与x 的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?【答案】(1)()1300y x x =≥,()2108000y x x =+≥;(2)【分析】(1)根据图像中l1和l2经过的点,利用待定系数法求解即可;(2)分别根据方案一和方案二列出不等式组,根据解集情况判断即可.【详解】解:(1)根据图像,l1经过点(0,0)和点(40,1200),设1y 的解析式为()1110y k x k =≠,则1120040k =,解得:130k =,∴l1的解析式为()1300y x x =≥,设2y 的解析式为()2220y k x b k =+≠,300600a ≤<时,所需付款为()80a -元,当600900a ≤<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【详解】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.9.某通讯公司就手机流量套餐推出三种方案,如下表:A 方案B 方案C 方案每月基本费用(元)2056266每月免费使用流量(兆)1024m 无限超出后每兆收费(元)n n A,B,C 三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?②设采购A 种饰品x 件时的总利润为w 元.当120150x ≤≤时,()156********w x x =⨯---,即3600w x =-+,10-< ,w ∴随x 的增大而减小.∴当120x =时,w 有最大值3480.当150210x <≤时,()()15600101501060%1509600w x x ⎡⎤=⨯-⨯+⨯---⎣⎦整理得:33000w x =+,30> ,w ∴随x 的增大而增大.∴当210x =时,w 有最大值3630.36303480> ,w ∴的最大值为3630,此时600390x -=.即当采购A 种饰品210件,B 种饰品390件时,商铺获利最大,最大利润为3630元.【点睛】本题考查了分式方程的应用,一元一次不等式组的应用,一次函数利润最大化方案问题,关键是对分段函数的理解和正确求出最大值.11.黔东南州某销售公司准备购进A、B 两种商品,已知购进3件A 商品和2件B 商品,需要1100元;购进5件A 商品和3件B 商品,需要1750元.(1)求A、B 两种商品的进货单价分别是多少元?(2)若该公司购进A 商品200件,B 商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A 商品运往甲、乙两地的运费分别为20元和25元;每件B 商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A 商品为x (件),投资总运费为y (元),请写出y 与x 的函数关系式;②怎样调运A、B 两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)【答案】(1)A 商品的进货单价为200元,B 商品的进货单价为250元;(2)①=4+125040y x ;②最佳调运方案为:调运240件B 商品到甲地,调运200件A 商品、60件B 商品到乙地.最小费用为125040元【分析】(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元列出方程组求解即可;(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,根据投资总运费=运往甲、乙两地运费之和列出函数关系式即可;②根据投资总费用=购买商品的费用+总运费,列出函数关系式,由自变量的取值范围是:0≤x≤200,根据函数的性质判断最佳运输方案并求出最低费用.【详解】解:(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据题意,得321100 531750 x yx y+=⎧⎨+=⎩,解得:200250 xy=⎧⎨=⎩,答:A商品的进货单价为200元,B商品的进货单价为250元;(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,则y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∴y与x的函数关系式为y=4x+10040;②投资总费用w=200×200+300×250+4x+10040=4x+125040,自变量的取值范围是:0≤x≤200,∵k=4>0,∴y随x增大而增大.当x=0时,w取得最小值,w最小=125040(元),∴最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地,最小费用为125040元.答:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地总费用最小,最小费用为125040元.【点睛】本题考查了一次函数的应用和二元一次方程组的应用,关键是根据投资总费用=购进商品的费用+运费列出函数关系式.和不等关系列出方程组和不等式是解题的关键.13.下面图片是七年级教科书中“实际问题与一元一次方程”的探究3电话计费问题月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫方式一581500.25免费方式二883500.19免费考虑下列问题:①设一个月内用移动电话主叫为min(t是正整数)根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费②观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示问题中的__________,y表示问题中的__________.并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)【答案】(1)主叫时间,计费;方式一:580150580.25(150)150x y x x <≤⎧=⎨+->⎩;方式二:880350880.19(350)350x y x x <≤⎧=⎨+->⎩;(2)见解析,当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二【分析】(1)根据题意即可知道x 、y 的实际意义,根据两种方式的计算方式即可列出分段式函数关系式;(2)根据函数表达式,描点法画出函数图像即可.【详解】解:(1)根据题意可知:x 表示主叫时间,y 表示计费,通过表格数据可知两种方式都属于分段函数,主叫超时费即为一次函数“k ”值,即可直接写出函数表达式为:方式一:580150580.25(150)150x y x x <≤⎧=⎨+->⎩方式二:880350880.19(350)350x y x x <≤⎧=⎨+->⎩(2)大致图象如下:88580.25(150)x =+-,解得x=270,由图可知:当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二.【点睛】本题考查了一次函数的表达式求法和函数图像的画法,结合函数图像确定方案选择问题,理解数据与函数的关系是解决问题的关键.14.(2023·湖南怀化·统考中考真题)某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【详解】(1)解:设原计划租用A 种客车x 辆,根据题意得,()4530606x x +=-,解得:26x =所以()602661200⨯-=(人)答:原计划租用A 种客车26辆,这次研学去了1200人;(2)解:设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意,得()2574560251200a a a -≤⎧⎨+-≥⎩解得:1820a ≤≤,∵a 为正整数,则18,19,20a =,∴共有3种租车方案,方案一:租用A种客车18辆,则租用B种客车7辆,方案二:租用A种客车19辆,则租用B种客车6辆,方案三:租用A种客车20辆,则租用B种客车5辆,(3)∵A种客车租金为每辆220元,B种客车租金每辆300元,∴B种客车越少,费用越低,⨯+⨯=元,方案一:租用A种客车18辆,则租用B种客车7辆,费用为1822073006060⨯+⨯=元,方案二:租用A种客车19辆,则租用B种客车6辆,费用为1922063005980⨯+⨯=元,方案三:租用A种客车20辆,则租用B种客车5辆,费用为2022053005900∴租用A种客车20辆,则租用B种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.15.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件;方案一需要资金最少,最少资金是10万元;(3)节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件【分析】(1)设购进1件甲种农机具需x万元,购进1件乙种农机具需y万元,根据题意可直接列出二元一次方程组求解即可;(2)在(1)的基础之上,结合题意,建立关于m 的一元一次不等式组,求解即可得到m 的范围,从而根据实际意义确定出m 的取值,即可确定不同的方案,最后再结合一次函数的性质确定最小值即可;(3)结合(2)的结论,直接求出可节省的资金,然后确定降价后的单价,再建立二元一次方程,并结合实际意义进行求解即可.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元.根据题意,得2 3.533x y x y +=⎧⎨+=⎩,解得: 1.50.5x y =⎧⎨=⎩,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)根据题意,得1.50.5(10)9.81.50.5(10)12m m m m +-≥⎧⎨+-≤⎩,解得:4.87m ≤≤,∵m 为整数,∴m 可取5、6、7,∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件;方案二:购买甲种农机具6件,乙种农机具4件;方案三:购买甲种农机具7件,乙种农机具3件.设总资金为W 万元,则()1.50.5105W m m m =+-=+,∵10k =>,∴W 随m 的增大而增大,∴当5m =时,5510W =+=最小(万元),∴方案一需要资金最少,最少资金是10万元.(3)由(2)可知,购买甲种农机具5件,乙种农机具5件时,费用最小,根据题意,此时,节省的费用为50.750.2 4.5⨯+⨯=(万元),降价后的单价分别为:甲种0.8万元,乙种0.3万元,设节省的资金可购买a 台甲种,b 台乙种,则:0.80.3 4.5a b +=,由题意,a ,b 均为非负整数,∴满足条件的解为:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件;方案二:购买甲种农机具3件,乙种农机具7件.【点睛】本题考查二元一次方程组、一元一次不等式组以及一次函数的实际应用,找准等量关系,理解一次函数的性质是解题关键.16.(2023·四川广安·统考中考真题)“广安盐皮蛋”是小平故里的名优特产,某超市销售A B 、两种品牌的盐皮蛋,若购买9箱A 种盐皮蛋和6箱B 种盐皮蛋共需390元;若购买5箱A 种盐皮蛋和8箱B 种盐皮蛋共需310元.(1)A 种盐皮蛋、B 种盐皮蛋每箱价格分别是多少元?(2)若某公司购买A B 、两种盐皮蛋共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.【答案】(1)A 种盐皮蛋每箱价格是30元,B 种盐皮蛋每箱价格是20元;(2)购买A 种盐皮蛋18箱,B 种盐皮蛋12箱才能使总费用最少,最少费用为780元【分析】(1)设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,根据题意建立方程组,解方程组即可得;(2)设购买A 种盐皮蛋m 箱,则购买B 种盐皮蛋()30m -箱,根据题意建立不等式组,解不等式组可得m 的取值范围,再结合m 为正整数可得m 所有可能的取值,然后根据(1)的结果逐个计算总费用,找出总费用最少的购买方案即可.【详解】(1)解:设A 种盐皮蛋每箱价格是x 元,B 种盐皮蛋每箱价格是y 元,由题意得:9639058310x y x y +=⎧⎨+=⎩,解得3020x y =⎧⎨=⎩,17.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m 件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?【答案】(1)购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元;(2)购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;(3)购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【分析】(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,然后根据题意可得2 3.533x y x y +=⎧⎨+=⎩,进而求解即可;(2)由(1)及题意可得购进乙种农机具为(10-m )件,则可列不等式组为()9.8 1.50.51012m m ≤+-≤,然后求解即可;(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,然后结合一次函数的性质及(2)可直接进行求解.【详解】解:(1)设购进1件甲种农机具需x 万元,购进1件乙种农机具需y 万元,由题意得:2 3.533x y x y +=⎧⎨+=⎩,解得: 1.50.5x y =⎧⎨=⎩,答:购进1件甲种农机具需1.5万元,购进1件乙种农机具需0.5万元.(2)由题意得:购进乙种农机具为(10-m )件,∴()9.8 1.50.51012m m ≤+-≤,解得:4.87m ≤≤,∵m 为正整数,∴m 的值为5、6、7,∴共有三种购买方案:购进甲种农机具5件,乙种农机具5件;购进甲种农机具6件,乙种农机具4件;购进甲种农机具7件,乙种农机具3件;.(3)设购买农机具所需资金为w 万元,则由(2)可得5w m =+,∵1>0,∴w 随m 的增大而增大,∴当m=5时,w 的值最小,最小值为w=5+5=10,答:购进甲种农机具5件,乙种农机具5件所需资金最少,最少资金为10万元.【点睛】本题主要考查一次函数、二元一次方程组及一元一次不等式组的应用,熟练掌握一次函数、二元一次方程组及一元一次不等式组的应用是解题的关键.18.猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A ,B 两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:类别价格A 款玩偶B 款玩偶进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A ,B 两款玩偶共30个,求两款玩偶各购进多少个;(2)第二次小李进货时店规定A 款玩偶进货数量不得超过B 款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率100%=⨯利润成本)【答案】(1)A 款20个,B 款10个;(2)A 款10个,B 款20个,最大利润是460元;(3)第二次更合算.理由见解析【分析】(1)根据题意列二元一次方程组,解方程组即可;(2)根据条件求得利润的解析式,再判断最大利润即可;(3)分别求出第一次和第二次的利润率,比较之后即可知道哪一次更合算.【详解】(1)设A ,B 两款玩偶分别为,x y 个,根据题意得:304030=1100x y x x +=⎧⎨+⎩解得:2010x y =⎧⎨=⎩答:两款玩偶,A 款购进20个,B 款购进10个.(2)设购进A 款玩偶a 个,则购进B 款(30)a -个,设利润为y 元则(5640)(4530)(30)y a a =-+--=1615(30)a a +-=450+a (元)19.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.【分析】(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;(2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x取最小值时,y有最大值,将x=12代入函数解析式求出结果即可.【解析】(1)由题意得:y=(2000﹣1600)x+(3000﹣2500)(20﹣x)=﹣100x+10000,∴全部售出后该商店获利y与x之间函数表达式为y=﹣100x+10000;(2)由题意得:1600x+2500(20−x)≤39200400x+500(20−x)≥8500,解得12≤x≤15,∵x为正整数,∴x=12、13、14、15,共有四种采购方案:①甲型电脑12台,乙型电脑8台,②甲型电脑13台,乙型电脑7台,③甲型电脑14台,乙型电脑6台,④甲型电脑15台,乙型电脑5台,∵y=﹣100x+10000,且﹣100<0,∴y随x的增大而减小,∴当x取最小值时,y有最大值,即x=12时,y最大值=﹣100×12+10000=8800,∴采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.20.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?【分析】(1)设租用一辆轿车的租金为x元,根据“单程租赁2辆商务车和3辆轿车共需付租金1320元”列方程解答即可;21.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y 1(元),且y 1=k 1x+b;按照方案二所需费用为y 2(元),且y 2=k 2x.其函数图象如图所示.。
重庆中考数学应用题训练
重庆中考数学应用题训练22.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.80超过17吨不超过30吨的部分b0.80超过30吨的部分 6.000.80[说明:①每户产生的污水量等于该户的用水量;②水费=自来水费+污水处理费]已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元(1)求a,b的值(2)随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?22. 为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1) 在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2) 若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?23、今年年初以来,受禽流感影响,家禽销量大幅下滑。
为维护家禽养殖户的利益,政府部门出台了一项补贴政策:自4月1日起,按销量向家禽养殖户每千克补偿2元。
3月份,“嘉祥”养鸡场售出了3000千克鸡;4月补贴政策出台后,“嘉祥” 养鸡场按3月份的每千克售价打八折加紧促销,仍然比3月份少销售了500千克鸡,加上政府补贴,3、4月份共获销售收入80000元。
(1)“嘉祥” 养鸡场3月份出售的鸡的售价是每千克多少元?(2)去年5月“嘉祥” 养鸡场销售收入为52000元,今年5月以来,家禽销售形势更严峻,政府进一步出台补贴政策:除现有的政府补贴外,根据家禽养殖户的规模,每月每户再一次性给予一定数量的政府补贴。
中考数学第22题专题训练(圆及平行四边形)
22题如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.娄底市卷(2016)如图,将等腰∠ABC绕顶点B逆时针方向旋转α度到∠A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:∠BCF∠∠BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.邵阳市卷(2016)如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.如图,点O是线段AB和线段CD的中点.第17题图(1)求证:△AOD ≌△BOC ; (2)求证:AD ∥BC .如图,在中,AE ⊥BD 于E ,CF ⊥BD 于F , 连接AF ,CE . 求证:AF =CE .如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE=CD ;(2)连接BF ,若BF∠AE ,∠BEA=60°,AB=4,求平行四边形ABCD 的面积.如图,在菱形ABCD 中,AB=2,∠ABC=60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F。
(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度。
如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O,(1) 求证:△AEO≌△CDO;(2)若∠OCD=30°,AB=3,求△ACO的面积;如图,A,P,B,C是半径为8的∠O上的四点,且满足∠BAC=∠APC=60°,(1)求证:∠ABC是等边三角形;(2)求圆心O到BC的距离OD.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。
2023年重庆市中考数学冲刺专题练—四边形
2023年重庆市中考数学冲刺专题练——四边形一.选择题(共22小题)1.如图,在正方形ABCD内有一点F,连接AF,CF,有AF=AB,若∠BAF 的角平分线交BC于点E,若E为BC中点,CF=2,则AD的长为()A.3√3B.6C.2√5D.52.如图,在正方形ABCD中,点E,F分别在边AB,BC上,点P是DF的中点,连接AP,EP.若AP=AD,BE=BF,则∠BEP的度数为()A.60°B.65°C.75°D.80°3.矩形ABCD中,AB=3,AC=5,则BD的长为()A.5B.4C.3D.24.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若BM=2√2,则线段AB的长为()A.2√2+4B.4√2+2C.4√2+6D.4√25.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=10cm,BD=24cm,则△ABC的周长为()A.52cm B.50cm C.36cm D.30cm6.如图,在菱形ABCD中,∠ABC=40°,点E为对角线BD上一点,F为AD边上一点,连接AE、CE、FE,若AE=FE,∠BEC=56°,则∠DEF 的度数为()A.16°B.15°C.14°D.13°7.如图,在正方形ABCD中,点E、F分别为边AB、AD的中点,连接CE、BF交于点G,连接DG.则tan∠FDG的值为()A.1B.23C.34D.438.如图,点E是正方形对角线AC上一点,过E作EF∥AD交CD于F,连接BE,若BE=7,DF=6,则AC的长为()A.9√2B.6√2+√22C.6√2+2√6D.6√2+√26 9.如图,在正方形ABCD中,对角线AC与BD相交于点O,AE,DF分别是∠OAD与∠ODC的角平分线,AE与OD交于点G,与DF交于点E,连接OE,若OE=√2,则AG的长为()A.√7B.2√2C.3D.√510.如图,菱形ABCD中,对角线AC,BD交于点O,∠ADC=120°,过点O 的直线与AD,BC分别交于点E,F,若四边形BEDF是矩形,则∠DOE的度数是()A.60°B.45°C.30°D.15°11.如图,在正方形ABCD中,E是对角线AC上一点,作EF⊥AB于点F,连接DE,若BC=6,BF=2,则DE=()A.2√5B.4√2C.3√2D.3√512.如图,矩形ABCD中,对角线AC、BD交于O,已知BC=4,AB=3,则OB的长为()A.3B.103C.72D.5213.如图,点E为正方形ABCD的边CD上的一点,DE=1,CD=4,连接AE,F为边CB延长线上一点,且BF=DE,连接AF,EF,过点A作AG⊥FE交EF 于点G ,连接GB ,则线段GB 的长度为( )A .√2B .3√22C .2√2D .5√2214.如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC 于点F ,若CF =3,EF =4,则AE 的长是( )A .3B .4C .5D .715.如图,已知正方形ABCD 的边长为1,P 为正方形内一点,且△PBC 为等边三角形,某同学根据条件得出四个结论:①△PAD 为等腰三角形;②△PBC 的面积为√32;③AP 2=2−√3;④△PBD 的面积为√3−14.其中正确的是( )A .①③B .①④C .①③④D .①②③④16.如图,矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,点G 为AD 上一点,连接AE 、BG 交于点F ,连接CF ,当∠BCF =∠GBA 时,线段CF 的长度是( )A.4√5B.3√5C.16√55D.12√5517.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为()A.8B.16C.24D.3218.如图,在矩形ABCD中,对角线AC,BD相交于点O.DF垂直平分OC,交AC于点E,交BC于点F,连接AF.若CD=√3,则AF的长为()A.3B.√7C.√6D.√519.如图,正方形ABCD的边长为6,点E,F分别在DC,BC上,BF=CE=4,连接AE、DF,AE与DF相交于点G,连接AF,取AF的中点H,连接HG,则HG的长为()A.52B.√13C.5D.2√1320.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E在BC的延长线上,连接DE,点F是DE的中点,连接OF交CD于点G,连接CF,若CE=4,OF=6.则点D到CF的距离为()A.5√34B.8√35C.4√55D.8√5521.如图,点E、F分别在菱形ABCD的BC、DC边上,添加以下条件不能证明△ABE≌△ADF的是()A.CE=CF B.∠BAF=∠DAE C.AE=AF D.∠AEC=∠AFC 22.如图,在矩形ABCD中,AB=3,AD=4,对角线AC、BD相交于点O,点P是AD上一动点(不与A、D重合),过点P作AC和BD的垂线,垂足分别为E、F,则PE+PF的值是()A.125B.65C.35D.3二.填空题(共1小题)23.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点B、点D为圆心,OA长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为(结果保留π).三.解答题(共5小题)24.在△ABC中,AB=BC,将△ABC绕点A旋转,得到△AED.(1)如图①,当∠BAC=∠CAE时,四边形ABCE是什么四边形?并说明理由;(2)将△ADE绕点A由图①的位置开始顺时针旋转,AC的延长线交直线DE于点F.①△ADE旋转至如图②,用等式表示∠AFD与∠BAD的数量关系,并证明你的结论;②△ADE旋转至如图③,在①的结论下,BC的延长线交DE于点H,E为DF的中点,且AC=2,ABCF =√104,直接写出DH的长.25.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.26.已知四边形ABCD为平行四边形.(I)尺规作图:作线段CD的垂直平分线,垂足为点E,交AD于点F,交BA的延长线于点G,连接CF.在线段AB上取一点H,使FH=FC,连接HF;(保留作图痕迹,不写作法)(2)在(1)问的条件下,若∠GFH=∠D,求证:GF=CE.证明:∵EF垂直平分CD∴∠FEC =90°,( )∴∠FCD =∠D .∵∠GFH =∠D ,∴ .∵四边形ABCD 为平行四边形,∴ .∴∠HGF +∠FEC =180°.∴∠HGF =∠FEC =90°.在△FGH 和△CEF 中,{∠HGF =∠FEC∠GFH =∠FCD ()∴△FGH ≌△CEF (AAS ).∴GF =CE .27.如图,已知正方形ABCD ,点E 在边BC 上,连接AE .(1)尺规作图:在正方形内部作∠ADF ,使∠ADF =∠BAE ,边DF 交线段AE 于点T ,交AB 边于点F (不写作法,保留作图痕迹);(2)要探究AE ,DF 的位置关系和数量关系,请将下列过程补充完整. 解:AB =DE ,AE ⊥DF ,理由如下.∵四边形ABCD 是正方形,∴ ①,∠DAF =∠B =90°,在△DAF 和△ABE 中{∠DAF =∠BDA =AB (②)∴△DAF ≌△ABE ,∴ ③∵∠BAE +∠DAT =90°,∠BAE =∠ADF ,∴④∴∠ATD=90°,∴AE⊥DF.∴AE=DF,AE⊥DF.28.菱形ABCD的对角线AC,BD交于点O.(1)如图1,过菱形ABCD的顶点A作AE⊥BC于点E,交OB于点H,若AB=AC=6,求OH的长;(2)如图2,过菱形ABCD的顶点A作AF⊥AD,且AF=AD.线段AF交OB于点H.交BC于点E.当D,C,F三点在同一直线上时.求证:OH+OA=√2BH;2(3)如图3,菱形ABCD中,∠ABC=45°.点P为直线AD上的动点,连接BP,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ,当线段AQ的长度最小时,直接写出∠BAQ的度数.。
(完整)初中数学计算题专项训练
中考数学计算题专项训练 一、训练一(代数计算) 1. 计算:(1)3082145+-Sin(2)(3)2×(-5)+23-3÷12(4)22+(-1)4+(5-2)0-|-3|; (6)︒+-+-30sin 2)2(20 (8)()()022161-+--2.计算:345tan 3231211-︒-⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-- 3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()0112230sin 4260cos 18-+︒-÷︒--- 5.计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯-- 二、训练二(分式化简)注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.. 2。
21422---x x x 3.(a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎪⎫1+ 1 x -2÷x 2-2x +1x 2-4,其中x =-5.(2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a++-⋅+,其中a =2-1. (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值.(6)22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值7、先化简:再求值:⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a<2.9、先化简,再求值:222211yxy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程)1. 解方程x 2﹣4x+1=0. 2。
(完整版)初中数学计算题专项训练
中考数学计算题专项训练 一、训练一(代数计算) 1. 计算:(1)3082145+-Sin(2)(3)2×(-5)+23-3÷12(4)22+(-1)4+(5-2)0-|-3|; (6)︒+-+-30sin 2)2(20 (8)()()022161-+--2.计算:345tan 3231211-︒-⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-- 3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()0112230sin 4260cos 18-+︒-÷︒--- 5.计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯-- 二、训练二(分式化简)注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.. 2。
21422---x x x 3.(a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎪⎫1+ 1 x -2÷x 2-2x +1x 2-4,其中x =-5.(2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a++-⋅+,其中a =2-1. (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值.(6)22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值7、先化简:再求值:⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a<2.9、先化简,再求值:222211yxy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程)1. 解方程x 2﹣4x+1=0. 2。
中考数学计算题专项训练(全)
1 / 4中考专项训练——计算题集训一(计算)1. 计算:3082145+-Sin2.计算:3.计算:2×(-5)+23-3÷12 .4.计算:22+(-1)4+(5-2)0-|-3|;5.计算:22+|﹣1|﹣.6.计算:︒+-+-30sin 2)2(20.7.计算,8.计算:(1)()()022161-+--(2)a(a-3)+(2-a)(2+a)9. 计算:(3)0- (12)-2 +tan45°10. 计算:()()0332011422---+÷-2 / 4集训二(分式化简)1. (2011.南京)计算.2. (2011.常州)化简:21422---x x x3.(2011.淮安)化简:(a+b )2+b (a ﹣b ).4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.5. (2011.苏州)先化简,再求值:(a ﹣1+)÷(a 2+1),其中a=﹣1.6.(2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.7. (2011.泰州)化简.8.(2011.无锡)a(a-3)+(2-a)(2+a)9.(2011.徐州)化简:11()a a a a--÷;10.(2011.扬州)化简2111x x x -⎛⎫+÷ ⎪⎝⎭集训三(解方程)3 / 41. (2011•南京)解方程x 2﹣4x+1=0.2. (2011.常州)解分式方程2322-=+x x3.(2011.连云港)解方程:3x = 2x -1 .4. (2011.苏州)已知|a ﹣1|+=0,求方裎+bx=1的解.5. (2011.无锡)解方程:x 2+4x -2=06.(2011.盐城)解方程:x x -1 - 31-x= 2.7.(2011.泰州)解方程组,并求的值.集训四(解不等式)4 / 41.(2011.南京)解不等式组,并写出不等式组的整数解.2.(2011.常州)解不等式组()()()⎩⎨⎧+≥--+-14615362x x x x3.(2011.连云港)解不等式组:⎩⎨⎧2x +3<9-x ,2x -5>3x .4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1)的解集,并写出它的整数解.5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.6. (2011.宿迁)解不等式组⎪⎩⎪⎨⎧<+>+.221,12x x8.解不等式组:102(2)3x x x -≥⎧⎨+>⎩9. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
重庆中考数学22题专项训练
重庆中考数学22题专项训练1. 若反比例函数xky =1过面积为9的正方形AMON 的顶点A ,且过点A 的直线n mx y -=2的图象与反比例函数的另一交点为B (a ,1-)(1)求出反比例函数与一次函数的解析式; (2)求∆AOB 的面积;2. 如图,反比例函数xky =的图象与一次函数b mx y +=的图象交于点(1,3)(,1).A B n -、 (1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.3. 已知点A 与点B(-3,2)关于y 轴对称,反比例函数ky x=与一次函数y mx b =+的图象都经过点A ,xyNAM OB且点C(2,0)在一次函数y mx b =+的图象上.(1)求反比例函数和一次函数的解析式;(2)若两个函数图象的另一个交点为D ,求△AOD 的面积.4. 如图,已知反比例函数y =xm的图象经过点A (1,-3),一次函数y = kx + b 的图象经过点A 与点C (0,-4),且与反比例函数的图象相交于另一点B(3,n ).(1)试确定这两个函数的解析式; (2)求△AOB 的面积;(3)根据图形直接写出反比例函数值大于一次函数值时自变量的取值范围.5. 如图,O 是坐标原点,直线OA 与双曲线)0(≠=k xk y 在第一象限内交于点A ,过点A 作AB ⊥x 轴,垂足为B ,若OB=4,21=OB AB . ⑴求双曲线的解析式;⑵直线AC 与y 轴交于点C (0,1),与x 轴交于点D ,求△AOD 的面积.6. 已知:如图,一次函数的图象与反比例函数的图象交于A B 、两点,过A 作x AC ⊥轴于点.C 已知,2,5AC OC OA ==且点B 的纵坐标为-3.(1)求点A 的坐标及该反比例函数的解析式; (2)求直线AB 的解析式.7. 如图,一次函数的图象与反比例函数的图象在第一象限只有—个交点A ,一次函数的图象与x 轴、y5题图轴分别交于B 、C 两点,AD 垂直平分OB ,垂足为D ,OA=5, ABAD =552. (1)求点A 的坐标及反比例函数解析式; (2)求一次函数的的解析式.8. 如图,已知反比例函数my x=的图象经过点(1,3),A -一次函数y kx b =+的图象经过点A 与点(0,4),C -且与反比例函数的图象相交于另一点(3,).B n(1)试确定这两个函数的解析式; (2)求AOB ∆的面积;(3)根据图象直接写出反比例函数值大于一次函数值时 自变量的取值范围.9. 如图,在直角坐标系中,点A 是反比例函数1ky x=的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点,一次函数2y ax b =+的图象经过A C 、两点,并交y 轴于点(0,2),D -且AOD ∆的8题图面积为4.(1)求反比例函数和一次函数的解析式;(2)请直接写出在y 轴的右侧,当12y y >时,x第9题图10. 如图,已知一次函数12y kx=+的图象与y 轴交于点,C 与反比例函数2my x=的图象相交于点,A 点A 的横坐标为1. 过A 作AD y ⊥轴于点,D 且1=CDAD(1)求这两个函数的解析式及两图象的另一交点B 的坐标;(2)观察图象,直接写出使函数值12y y ≥的自变量x11. 如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(3,1),(2,)A B n -两点,直线AB 分别交x 轴、y 轴于,D C 两点.(1)求上述反比例函数和一次函数的解析式;(2)连接,AO BO 、 求出AOB ∆的面积; (3)请由图象直接写出....,当x 满足什么条件时, 一次函数的值小于反比例函数的值?12. 如图,已知一次函数1y k x b =+的图象分别与x 轴、y 轴的正半轴交于A B 、两点,且与反比例函数2k y x=交于C E 、两点,点C 在第二象限,过点C 作CD x ⊥轴于点,D 1.OA OB OD === (1)求反比例函数与一次函数的解析式; (2)求OCE ∆的面积.13. 如图,一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于,A B两点,已知OA =A 点的纵坐标与横之比为1:3, 点B 的坐标为3(,).2m -(1)求反比例函数的解析式和一次函数的解析式;(2)观察图象,直接写出使函数值12y y <成立的自变量x 的取值范围12题图14. 已知如图,AOB ∆的OB 边在x 轴上,︒=∠90OAB ,23==AB OA ,反比例函数xky =1过A 点,一次函数b ax y -=2的图象过A 点且与反比例函数图象的另一交点为C ),1(m -连结OC (1)求出反比例函数与一次函数的解析式; (2)求OAC ∆的面积(3)根据图象,直接写出当21y y ≥时,x 的取值范围15、已知:如图,在平面直角坐标系xoy 中,直线AB y mx n =+与反比例函数ky x=交于A 、B 两点,过点A 作AC ⊥x 轴于C ,OA=5,OC=4,点B 的纵坐标为4- (1)求反比例函数和一次函数的解析式; (2)求AOB ∆的面积。
中考数学22题三问评分标准
中考数学22题三问评分标准
中考数学22题一般是三问,十分左右。
一、二问比较简单,五至六分。
第三问就难了,不过分值不大,四到五分左右。
解题思路和答案是必须要有,中间的计算过程可省略。
1、解答只列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;
2、第一、二大题若无特别说明,每题评分只有满分或零分;
3、第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;
4、评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅,如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后续部分的给分,但原则上不超过后继部分应得分数的一半;
5、评分时,给分或扣分均已1分为基本单位。
重庆中考数学22题专题训练
重庆市2019年中考22题专题训练
1.小邱同学根据学习函数的经验,研究函数y=的图象与性质.通过分析,该函数y与自变量x的几组对应值如下表,并画出了部分函数图象如图所示.
x13456…
y﹣1﹣2﹣3.4﹣7.5 2.4 1.410.8…
(1)函数y=的自变量x的取值范围是;
(2)在图中补全当1≤x<2的函数图象;
(3)观察图象,写出该函数的一条性质:;
(4)若关于x的方程=x+b有两个不相等的实数根,
结合图象,可知实数b的取值范围是.
2.根据我们学习函数的过程与方法,对函数的图象和性质进行探究。
已知该函数图
象经过与两点。
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中:①请用你喜欢的方法补全这个函数的图象并写出这个函数的一条性质;②
直线与函数图象有三个交点,则______.
(3)结合你所画得图象与函数的图象,直接写出不等式
的解集。
3.
4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y O
A
B
P
Q
1. 如图,在平面直角坐标系xOy 中,一次函数1(0)y kx b k =+=/与反比例函 数)0(2<=
m x
m
y 交于),2(n A -及另一点B ,与两坐标轴分别交于点D C 、. 过A 作AH x ⊥轴于H ,若OH OC 2=,且ACH ∆的面积为9. (1)求一次函数与反比例函数的解析式及另一交点B 的坐标; (2)根据函数图象,直接写出当21y y >时自变量x 的取值范围.
2.一个反比例函数x
m
y =与一次函数b kx y +=的图像有一个交点为
A (1,3),一次函数b kx y +=的图像与x 轴相交于
B ,且2
10
=OB OA . (1)求两个函数的解析式;
(2)求两个函数图像另一个交点的坐标; (3)直接写出不等式0m
kx b x
+-
≤的解集. 3、如图,在平面直角坐标系中,一次函数
(0)y kx b k =+≠与反比例函数(0)m
y m x
=
≠ 的图象分别交于一、三象限的A 、B 两点, 与x 轴交于点C ,与y 轴交于点D ,
线段2,OC A =点坐标为(,3)n ,且4cos 5
ACO ∠=。
(1)求该反比例函数和一次函数的解析式; (2)求AOB ∆的面积。
4. 如图,已知反比例函数(0)k y k x
=≠的图象经过点(1
2,8),
直线y x b =-+经过该反比例函数图象上的点Q(4,m). (1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与 反比例函数图象的另一个交点为P ,连结0P 、OQ , 求△OPQ 的面积. 5如图,直线1:(0)AD y kx b k =+=/交坐标轴于点B 和点C , 交双曲线2(0)m
y m x
=
=/于点A 和点D ,OB =OC =2,AB =BC . (1)求直线和双曲线的解析式;
(2)请你连接AO 和DO ,并求出△AOD 的面积. x
y
A 5 B
O
b
kx y += x
m y =
6.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于 点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,
2,4,5
5
sin ===
∠OE OB ABO . (1)求该反比例函数和一次函数的解析式; (2)连接OC 、OD ,求三角形COD 的面积. 7、如图,在平面直角坐标系中,一次函数()0y kx b
k =+≠
的图象与反比例函数(0)m y x x
=<的图象交于第二象限内
的A 、B 两点,过点A 作AC x ⊥轴于点C ,5,4OA OC ==, 点B 的纵坐标为6。
(1)求反比例函数和一次函数的解析式; (2)求AOB ∆的面积。
8如图, 已知在平面直角坐标系xOy 中, A B ⊥x 轴于B ,直线AD 的 解析式为:1y ax =+与反比例函数m
y x
=
(0,0a m ≠≠)交于A 、D 两点,已知23
tan 3
AOB ∠=,三角形ABO 的面积3=∆ABO S .
求:(1)求反比例函数与一次函数的解析式; (2) 求△AOD 的面积;
9.如图,经过点,
(10)A -的一次函数)0(=/+=a b ax y 与 反比例函数)0(=/=
k x
k
y 的图象相交于P 和Q 两点,过点P 作PB x ⊥轴于点B.已知3
2
tan PAB ∠=点B 的坐标为(2,0).
(1)求反比例函数和一次函数的解析式;
(2)求PQB ∆面积.
10. 如图, 已知在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的
图象与反比例函数
(0)m
y m x
=
≠的图象相交于 A 、 B 两点,且点 B 的纵坐标 为6-,过点A 作AE x ⊥轴于点 E , tan∠AOE = 1
3
,AE =2.
求:(1)求反比例函数与一次函数的解析式;
(2)求△AOB 的面积;
A
B
O
C
D
y。