[推荐]2019-2020年人教版九年级上册期末数学模拟试卷(有答案)

合集下载

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

浙江省宁波市实验学校2019-2020学年九年级数学上册期末模拟试卷(含解析)

2019-2020浙江省宁波市实验学校九年级数学上册期末模拟试卷解析版一、选择题(共10题;共20分)1.如图是由5个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A. B. C. D. 2.小华、小强和小彬三位同学随机地站成一排做游戏,小华站在排头的概率是( ) A. 12 B. 13 C. 23 D. 1 3.如图,直线a ∥b ∥c ,点A ,B 在直线a 上,点C ,D 在直线c 上,线段AC ,BD 分别交直线b 于点E ,F ,则下列线段的比与 AE AC 一定相等的是( )A. CE ACB. BF BDC. BF FDD. ABCD4.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan ∠APD 的值是( )A. 2B. √2C. 12D. √22 5.对于函数y=(x-2)2+5,下列结论错误的是( )A. 图象顶点是(2,5)B. 图象开口向上C. 图象关于直线x=2对称D. 函数最大值为5 6.如图,等腰直角三角形ABC 的直角边AB 的长为 √3 ,将△ABC 绕点A 逆时针旋转15°后得到△AB′C′,AC 与B′C′相交于点D ,则图中阴影△ADC′的面积等于( )A. 3√32cm 2B. 3−√32cm 2C. 2√3cm 2D. 6cm 2 7.如图等腰三角形的顶角 ∠A =45°,以AB 为直径的半圆O 与BC ,AC 相较于点D ,E 两点,则弧AE 所对的圆心角的度数为( )A. 40°B. 50°C. 90°D. 100°8.如图,点A 的坐标为(-3,-2),⊙A 的半径为1,P 为坐标轴上一动点,PQ 切⊙A 于点Q ,在所有P 点中,使得PQ 长最小时,点P 的坐标为( )A. (0,-2)B. (0,-3)C. (-3,0)或(0,-2)D. (-3,0) 9.如图,在矩形ABCD 中,AB=4,AD=a ,点P 在AD 上,且AP=2,点E 是边AB 上的动点,以PE 为边作直角∠EPF ,射线PF 交BC 于点F ,连接EF ,给出下列结论:①tan ∠PFE= 12 ;②a 的最小值为10.则下列说法正确的是( )A. ①②都对B. ①②都错C. ①对②错D. ①错②对 10.已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论:①abc >0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是________.12.如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.14.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.15.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。

2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

2019-2020年湖北省武汉市九年级上册期末数学试卷(含详细解析)

湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【解答】解:∵(﹣5)=0∴2﹣5=0,∴方程(﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程2+2+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程2+2+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD =70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣2﹣2+c在﹣3≤≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣2﹣2+c转化成顶点坐标式为y=﹣(+1)2+c+1,又知二次函数的开口向下,对称轴为=﹣1,故当=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程2﹣a=0的一个根是2,则a的值是4.【解答】解:把=2代入方程2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=22先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(+2)2﹣1.【解答】解:由“左加右减”的原则可知,二次函数y=22的图象向下平移1个单位得到y=22﹣1,由“上加下减”的原则可知,将二次函数y=22﹣1的图象向左平移2个单位可得到函数y=2(+2)2﹣1,故答案是:y=2(+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高m,列方程,并化成一般形式是2﹣6+4=0.【解答】解:设雕像的上部高m,则题意得:,整理得:2﹣6+4=0,故答案为:2﹣6+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=27°时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:2+﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴=,∴1=,2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移2个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为m(1)设垂直于墙的一边长为y m,直接写出y与之间的函数关系式;(2)若菜园面积为384m2,求的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣+;(2)根据题意,得:(﹣+)=384,解得:=18或=32,∵墙的长度为24m,∴=18;(3)设菜园的面积是S,则S=(﹣+)=﹣2+=﹣(﹣25)2+∵﹣<0,∴当<25时,S随的增大而增大,∵≤24,∴当=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=,则AE=2,AH=,∵AE=EC,∴AC=2AH=2,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2,∴DC=CE=2,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,一次函数y =+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求的值;(3)若=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c与轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣2+2+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=+b的图象l经过抛物线上的点C(m,n),∴3+b=0,∴b=﹣3,∴一次函数的解析式为y=﹣3,∵直线l与抛物线只有一个公共点,∴方程﹣3=﹣2+2+3有两个相等的实数根,∴(﹣2)2+4(3+3)=0,解得=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

2019-2020学年人教版九年级数学上学期同步测试专题24-1:圆的有关性质(含解析)

专题24.1圆的有关性质(测试)一、单选题1.下列各角中,是圆心角的是( )A .B .C .D .【答案】D 【解析】顶点在圆心,两边和圆相交的角是圆心角,选项D 中,是圆心角, 故选D .2.一个周长是l 的半圆,它的半径是( ) A .l π÷ B .2l π÷C .()2l π÷+D .()1l π÷+【答案】C 【解析】半圆的周长为半径的π倍加上半径的2倍,所以一个周长是l 的半圆,它的半径是()2l π÷+,所以选C. 3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .B .4C .D .4.8【答案】C【解析】∵AB 为直径, ∴90ACB ︒∠=,∴6BC =, ∵OD AC ⊥, ∴142CD AD AC ===,故选C . 4.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D【解析】解:如图,∵30ADC ∠=︒, ∴260AOC ADC ∠=∠=︒. ∵AB 是O 的弦,OC AB ⊥交O 于点C ,∴AC BC =.∴60AOC BOC ∠=∠=︒. 故选:D ..5.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.A .3B .4C .5D .6【答案】A【解析】设需要安装n (n 是正整数)台同样的监控器,由题意,得:65°×2×n ≥360°, 解得n ≥3613,∴至少要安装3台这样的监控器,才能监控整个展厅.故选:A .且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【解析】解:OC AB ⊥,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+, 设半径为r 得:()2221020r r =-+, 解得:25r m =,∴这段弯路的半径为25m故选:A .7.若AB 和CD 的度数相等,则下列命题中正确的是( ) A .AB =CDB .AB 和CD 的长度相等C .AB 所对的弦和CD 所对的弦相等D .AB 所对的圆心角与CD 所对的圆心角相等 【答案】D【解析】如图,AB 与CD 的度数相等,A 、根据度数相等,不能推出弧相等,故本选项错误;B 、根据度数相等,不能推出两弧的长度相等,故本选项错误;C 、根据度数相等,不能推出所对应的弦相等,故本选项错误;D 、根据度数相等,能推出弧所对的两个圆心角相等,故本选项正确;8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD =CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个【答案】A【解析】∵C、D为半圆上三等分点,∴»»»AD CD BC==,故①正确,∵在同圆或等圆中,等弧对的圆心角相等,等弧对的弦相,∴AD=CD=OC,∠AOD=∠DOC=∠BOC=60°,故②③正确,∵OA=OD=OC=OB,∴△AOD≌△COD≌△COB,且都是等边三角形,∴△AOD沿OD翻折与△COD重合.故④正确,∴正确的说法有:①②③④共4个,故选A.9.下列说法:①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.其中不正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.10.如图所示,AB 是半圆O 的直径。

四川省眉山市仁寿县2019-2020年九年级(上)期末数学试卷 解析版

四川省眉山市仁寿县2019-2020年九年级(上)期末数学试卷  解析版

2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣22.下列计算正确的是()A.B.C.÷D.3.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 4.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.45.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:16.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.B.C.D.7.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.38.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5)B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小D.图象与x轴的两个交点之间的距离为59.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A.B.1 C.D.10.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%11.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣2 12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH•PC;④FE:BC=,其中正确的个数为()A.1 B.2 C.3 D.4二.填空题(共6小题)13.方程x2=x的解是.14.已知:a,b在数轴上的位置如图所示,化简代数式:=.15.如图,在△ABC中,AB>AC,D、E分别为边AB、AC上的一点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件使△FDB与△ADE相似,则添加的一个条件是.16.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为米.17.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为.18.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为.三.解答题(共8小题)19.计算:20.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?21.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF =∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.22.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.23.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)24.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?25.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.26.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC,若存在,请求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣2【分析】根据二次根式有意义的条件即可求出x的范围.【解答】解:由题意可知:x+2≥0,∴x≥﹣2,故选:A.2.下列计算正确的是()A.B.C.÷D.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据完全平方公式对D进行判断.【解答】解:A、原式=2﹣,所以A选项错误;B、3与不能合并,所以B选项错误;C、原式==2,所以C选项正确;D、原式=3+4+4=7+4,所以D选项错误.故选:C.3.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 【分析】方程有实数根,则根的判别式△≥0,且二次项系数不为零.【解答】解:∵△=b2﹣4ac=22﹣4×k×(﹣1)≥0,解上式得,k≥﹣1,∵二次项系数k≠0,∴k≥﹣1且k≠0.故选:D.4.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.4【分析】根据三角形中位线定理和三角形的面积即可得到结论.【解答】解:∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.5.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:1【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.6.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()A.B.C.D.【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【解答】解:设AC=m,在Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC=AC=m,∴BD=AB=2m,DC=2m+m,∴tan∠ADC===2﹣.故选:D.7.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.3【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.8.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5)B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小D.图象与x轴的两个交点之间的距离为5【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【解答】解:A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.9.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为()A.B.1 C.D.【分析】连接BC,由勾股定理得AC2=BC2=12+22=5,AB2=12+32=10,则AC=BC,AC2+BC2=AB2,得出△ABC是等腰直角三角形,则∠BAC=45°,即可得出结果.【解答】解:连接BC,如图3所示;由勾股定理得:AC2=BC2=12+22=5,AB2=12+32=10,∴AC=BC,AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠BAC=45°,∴sin∠BAC=,故选:A.10.为解决群众看病贵的问题,有关部门决定降低药价,原价为30元的药品经过连续两次降价,价格变为24.3元,则平均每次降价的百分率为()A.10% B.15% C.20% D.25%【分析】设平均每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设平均每次降价的百分率为x,依题意,得:30(1﹣x)2=24.3,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故选:A.11.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣2 【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故选:C.12.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE②△DFP∽△BPH③DP2=PH •PC;④FE:BC=,其中正确的个数为()A.1 B.2 C.3 D.4【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°∴AE=AB=BC,∵∠DCF=30°,∴DF=DC=BC,∴EF=AE+DF﹣BC=﹣BC,∴FE:BC=(2﹣3):3故④正确,故选:D.二.填空题(共6小题)13.方程x2=x的解是x1=0,x2=1 .【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=114.已知:a,b在数轴上的位置如图所示,化简代数式:=2 .【分析】根据二次根式的性质=|a|开平方,再结合数轴确定a﹣1,a+b,1﹣b的正负性,然后去绝对值,最后合并同类项即可.【解答】解:原式=|a﹣1|﹣|a+b|+|1﹣b|,=1﹣a﹣(﹣a﹣b)+(1﹣b),=1﹣a+a+b+1﹣b,=2,故答案为:2.15.如图,在△ABC中,AB>AC,D、E分别为边AB、AC上的一点,AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件使△FDB与△ADE相似,则添加的一个条件是DF∥AC,或∠BFD=∠A.【分析】结论:DF∥AC,或∠BFD=∠A.根据相似三角形的判定方法一一证明即可.【解答】解:DF∥AC,或∠BFD=∠A.理由:∵∠A=∠A,==,∴△ADE∽△ACB,∴①当DF∥AC时,△BDF∽△BAC,∴△BDF∽△EAD.②当∠BFD=∠A时,∵∠B=∠AED,∴△FBD∽△AED.故答案为:DF∥AC,或∠BFD=∠A.16.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为50米.【分析】作CD⊥直线l,由∠ACB=∠CAB=30°,AB=50m知AB=BC=50m,∠CBD=60°,根据CD=BC sin∠CBD计算可得.【解答】解:如图,过点C作CD⊥直线l于点D,∵∠BCD=30°,∠ACD=60°,∴∠ACB=∠CAB=30°,∵AB=100m,∴AB=BC=100m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BC sin∠CBD=100×=50(m),故答案是:50.17.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为﹣1 .【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x1+x2=3,x1x2=﹣m,∵,∴﹣3x1+x1+x2=2x1x2,∴m+3=﹣2m,∴m=﹣1,故答案为:﹣118.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【解答】解:由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b >0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.三.解答题(共8小题)19.计算:【分析】利用特殊角的三角函数值、二次根式的性质和二次根式的除法法则运算.【解答】解:原式=4×﹣(﹣)+2﹣+2×=2﹣3++2﹣+2=4﹣1.20.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.21.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF =∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【分析】(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的内角和和平角的定义得到∠BDE=∠CEF,于是得到结论;(2)根据相似三角形的性质得到,等量代换得到,根据相似三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.22.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为72 度,并将条形统计图补充完整.(2)此次比赛有三名同学得满分,分别是甲、乙、丙,现从这三名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丙的概率.【分析】(1)先画出条形统计图,再求出圆心角即可;(2)先画出树状图,再求出概率即可.【解答】解:(1)条形统计图为;;扇形统计图中“优秀”所对应的扇形的圆心角是(1﹣15%﹣25%﹣40%)×360°=72°,故答案为:72;(2)画树状图:由树状图可知:所有等可能的结果有6种,其中符合条件的有2种,所有P(甲、丙)==,即选中的两名同学恰好是甲、丙的概率是.23.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF 的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.24.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?【分析】①根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式.②根据①中的函数关系式求得利润最大值.【解答】解:①设每件售价定为x元时,才能使每天利润为640元,(x﹣8)[200﹣20(x﹣10)]=640,解得:x1=12,x2=16.答:应将每件售价定为12元或16元时,能使每天利润为640元.②设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200=﹣20(x﹣14)2+720,∴当售价定为14元时,获得最大利润;最大利润为720元.25.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF =∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠PGC=90°,∴∠GEF+∠PGC=180°,∴BF∥PG∵BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.26.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC,若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),可以求得该抛物线的解析式,然后将解析式化为顶点式,即可得到顶点坐标;(2)根据两点之间线段最短,找到点A关于对称轴的对称点是点B,然后连接CB与对称轴的交点,即为所求的点P,然后根据点P在直线BC上,即可求得点P的坐标,进而求得三角形PAC的周长;(3)根据S△PAM=S△PAC,可知以PA为底边时,只要两个三角形等高即可,然后根据题目中的条件,画出相应的图形,利用分类讨论的方法可以求得点M的坐标,本题得以解决.【解答】解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△PAC的周长是:AC+CP+PA=AC+CB=,即点P的坐标为(1,2),△PAC的周长是;(3)存在点M(不与C点重合),使得S△PAM=S△PAC,∵S△PAM=S△PAC,∴当以PA为底边时,只要两个三角形等高即可,即点M和点C到PA的距离相等,当点M在点C的上方时,则CM∥PA时,点M和点C到PA的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).。

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。

人教版2019-2020九年级数学上册期末模拟试卷解析版

人教版2019-2020九年级数学上册期末模拟试卷解析版

人教版2019-2020九年级数学上册期末模拟试卷解析版一、选择题(每小题3分,共30分)1.从分别写有数字1,2,3,4,5,6的6张质地、大小完全一样的卡片中随机抽取一张,抽取的卡片上的数是3的倍数的概率是 ( )A. 16B. 12C. 13D. 232.二次函数 y =ax 2+bx +c 经过点 A(−4,0) 、 B(−1,0) 和 C(−2,−2) ,则下列说法正确的是( )A. 抛物线的开口向下B. 当 x >−3 时, y 随 x 的增大而增大C. 二次函数的最小值是 −2D. 抛物线的对称轴是直线 x =−52 3.如图, ⊙O 是 ΔABC 的外接圆, ∠ACO =45° ,则 ∠B 的度数为 ( )A. 30°B. 35°C. 45°D. 60°4.在学习图案与设计这一节课时,老师要求同学们利用图形变化设计图案,下列设计的图案中是中心对称图形但是不是轴对称图形的是( )A. B. C. D.5.关于x 的一元二次方程kx 2-2x-1=0有实数根,则k 的取值范围是( )A. k>-1或k≠0B. k≥-1C. k≤-1或k≠0D. k≥-1且k≠06.如图,点C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分的面积是( )A. 4π3-√3B. 4π3-2√3C. 2π3-√3D. 2π3-√327.如图,小明在某次投篮中,球的运动路线是抛物线y =﹣0.2x 2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l 是( )A. 3mB. 3.5mC. 4mD. 4.5m8.如图,在等边三角形ABC 中,D是边AC上一点,连接BD,将ΔBCD绕点B逆时针旋转60°,得到ΔBAE,连接ED.若BC=5,BD=4.5,则下列结论错误的是( )A. AE∥BCB. ∠ADE=∠BDCC. ΔBDE是等边三角形D. ΔADE的周长是9.59.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A. B. C. D.10.已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;≥2.④ a+b+cb其中,符合题意结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分,共24分)11.如图,将ΔABC绕点A顺时针旋转一定的角度至ΔADE处,使得点C恰好在线段DE上,若∠ACB=75°,则旋转角度数为________.12.如图,四边形ABCD内接于圆O,E为边AD延长线上一点,已知弧AC的度数为120°,则∠CDE=________.13.如图,AB是半圆0的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心0,则图中阴影部分的面积是________。

二次函数-【期末试题汇编-人教版】厦门市5年(2019-2023)九年级数学上学期期末统考试题共八页

二次函数-【期末试题汇编-人教版】厦门市5年(2019-2023)九年级数学上学期期末统考试题共八页

第22章-二次函数-【期末试题汇编-人教版】厦门市5年(2019-2023)九年级数学上学期期末统考试题一.二次函数选择题1.(2023秋•厦门期末)关于y= (x-2}2-1{x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是22.(2023秋•厦门期末)某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间1(单位:s)的函数解析式是t2+60t,则t的取值范围是A.0≤r≤600B.20≤t≤40C.0≤t≤40D.0≤t≤203.(2021秋•厦门期末)在平面直角坐标系中,点M的坐标为(m,m2﹣bm),b为常数且b>3.若m2﹣bm>2﹣b,m<,则点M的横坐标m的取值范围是()A.0<m<B.m<C.<m<D.m<4.(2021秋•厦门期末)抛物线y=ax2+bx+c的对称轴是()A.x=B.x=﹣C.x=D.x=﹣5.(2021秋•厦门期末)如图是抛物线y=ax2+bx+c的示意图,则a的值可以是()A.1 B.0C.﹣1 D.﹣26.(2019秋•厦门期末)已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值8.设该函数图象与x轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是()A.﹣3<a<﹣1B.﹣2<a<0C.﹣1<a<1D.2<a<47.(2022秋•厦门期末)点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是A.(2,5) B. (2,4) C. (5,2) D.(4,2)8.(2023秋•厦门期末)抛物线y=3 (x-1)2 +4的对称轴是______9.(2023秋•厦门期末)已知x=1是方程x²+mx-3=0的根,则m的值为_____.10.(2022秋•厦门期末)已知b>0,抛物线y1=ax2-bx+c与x轴交于A,B两点(A在B的左侧),抛物线y2= ax2+bx+c与x轴交于C,D两点(C在D的左侧),其中A,B,C,D的横坐标分别为x A,x B,x C,x D若当0<x<x B时,0<y1<y2,则当0<y2<y1时。

2019-2020年最新人教版九年级上学期期末模拟数学试卷及答案解析-精编试题

2019-2020年最新人教版九年级上学期期末模拟数学试卷及答案解析-精编试题

第一学期期末模拟考试九年级数学试题一、精心选一选(将唯一正确答案的代号填在题后的答题卡中36分)1.(3分)下列图形是中心对称图形的是( )B C .2.(3分)(2011•滨州)二次根式有意义时,x 的取值范围是( ) x≤﹣ ≥﹣≤3.(3分)平面直角坐标系内一点P (﹣2,3)关于原点对称的点的坐标是( )4.(3分)已知⊙O 1、⊙O 2的半径分别是1cm 、4cm ,O1O 2=cm ,则⊙O 1和⊙O 2的位置关系是( )5.(3分)(2008•荆州)下列根式中属最简二次根式的是( )B C .6.(3分)(2012•孝感)下列事件中,属于随机事件的是()7.(3分)(2003•新疆)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为()9.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()10.(3分)(2010•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是()11.(3分)(2009•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为()B C.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()二、细心填一填(每小题3分,共18分)13.(3分)计算:= _________ .14.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_________ 个飞机场.15.(3分)(2010•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为_________ .16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有_________ 种.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是_________ .18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是_________ (把正确说法的序号都填上).三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.20.(8分)先化简,再求值:,其中,.21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.22.(10分)(2011•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(10分)(2012•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中12&#215;3分=36分)1.(3分)下列图形是中心对称图形的是()B C.2.(3分)(2011•滨州)二次根式有意义时,x的取值范围是()x≤﹣≥﹣≤:∵二次根式x≥﹣.3.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()4.(3分)已知⊙O 1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()=cm 又∵1+4>5.(3分)(2008•荆州)下列根式中属最简二次根式的是()B C.=,可化简;==2,可化简;==3,可化简;6.(3分)(2012•孝感)下列事件中,属于随机事件的是()7.(3分)(2003•新疆)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为()9.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()﹣(10.(3分)(2010•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是()=6π.S=11.(3分)(2009•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为()B C.的概率为.故选12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()二、细心填一填(每小题3分,共18分)13.(3分)计算:= 14.=42+12=141414.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 5 个飞机场.15.(3分)(2010•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为(﹣b,a).16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有13 种.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是.∴AE=22πr=r=故答案为:18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是①②③(把正确说法的序号都填上).b=3a+,则三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.=1+﹣20.(8分)先化简,再求值:,其中,.a=3+﹣=a+b,然后计算(+b(:∵a=3+>﹣=a+﹣+b=a+b+b)b+2ab a+b+26+2)=(.21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.∴PP′=4∴PC==π.22.(10分)(2011•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.,求解即可.,.23.(10分)(2012•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.∴CD=BD=根据勾股定理得:AC•ED=AD•CD,×5×ED=×4×3,.…(24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.;(∴CD===),﹣,,﹣25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.<,所以抛物线有最大值,最大值为,代入得.x)∵y=﹣x<∴抛物线有最大值,最大值为=;x×2∴BD==2.y=,),。

2019-2020年人教版九年级上册期末数学模拟试卷(有答案)【优质版】

2019-2020年人教版九年级上册期末数学模拟试卷(有答案)【优质版】

九年级(上)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.关于的方程(a﹣1)2++2=0是一元二次方程,则a的取值范围是()A.a≠1B.a≥﹣1且a≠1C.a>﹣1且a≠1D.a≠±12.已知点P(﹣1,m2+1)与点Q关于原点对称,则点Q一定在()A.第一象限B.第二象限C.第三象限D.第四象限3.用配方法解一元二次方程2+2﹣1=0时,此方程可变形为()A.(+1)2=1B.(﹣1)2=1C.(+1)2=2D.(﹣1)2=24.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°5.二次函数图象上部分点的坐标对应值列表如下:…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A.=﹣3B.=﹣2C.=﹣1D.=06.已知圆的直径是13cm,如果圆心到某直线的距离是 6.5cm,则此直线与这个圆的位置关系是()A.相交B.相切C.相离D.无法确定7.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上8.下列命题中,逆命题为真命题的是()A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b9.已知点A(1,y1),(2,y2)是反比例函数y=图象上的点,若1>0>2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y110.已知边长为4的等边△ABC,E,F分别是AB、BC的中点,将△BEF绕点B顺时针旋转α°,AE与CF交于P.当α=60°时,点P运动的路径长是()A.πB.πC.πD.π二.填空题(共6小题,满分18分,每小题3分)11.若关于的一元二次方程(﹣1)2+﹣2=0的一个根为1,则的值为.12.四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=2:1:4,则∠D=度.13.一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是.14.如果关于的方程22﹣3+=0有两个相等的实数根,那么实数的值是.15.如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC的外接圆半径是.16.如图,某大桥有一段抛物线型的拱梁,抛物线的表达式是y=a2+b.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三.解答题(共9小题,满分102分)17.(13分)解下列一元二次方程:(1)2+4+2=0(2)22﹣5﹣3=0.18.(9分)已知反比例函数y=的图象经过点A(2,﹣3).(1)求的值;(2)函数的图象在哪几个象限?y随的增大怎样变化?(3)画出函数的图象;(4)点B(,﹣12),C(﹣2,4)在这个函数的图象上吗?19.(9分)小美周末到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,CD,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.20.(11分)二次函数y=a2﹣6+21可以由y=平移得到.(1)指出a的值,并将解析式改写成顶点式;(2)抛物线的开口方向、对称轴、和顶点分别是什么?(3)当为何值时二次函数的函数值y随的增大而减小.21.(10分)如图,8×8网格中,每个小正方形边长为1.(1)分别画出△ABC绕O点逆时针旋转90°所得△A1B1C1及△ABC关于O点的中心对称图形;(2)连结A2B,BB2,判断△A2B2B形状并证明;(3)证明C2不在线段A2B上.22.(10分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.23.(12分)如图,已知双曲线y=(m>0)与直线y=交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为,的值为,点B的坐标为;(2)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;(3)在(2)小题的条件下:如果M为轴上一点,N为y轴上一点,以点P、A、M、N为顶点的四边形是平行四边形,试求出点M的坐标.24.(14分)已知抛物线y=﹣2++(1)指出抛物线的开口方向和对称轴;(2)若抛物线与轴的两个交点A(1,0),B(2,0),且1<0<2,与y轴交于点C,求的取值范围.25.(14分)已知菱形ABCD,∠DAB=60°.(1)若菱形ABCD的边长为2cm,如图(a)所示,点P从A点出发,以cm/s的速度沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动,设P点的运动时间为t秒①当P异于A、C时,请说明PQ∥BC;②以P为圆心,PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?(2)如图(b)所示,菱形ABCD对角线交于点O,AE=,BE=1,连接OE,请直接写出OE的最大值.九年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵关于的方程(a﹣1)2++2=0是一元二次方程,∴a﹣1≠0,a+1≥0,解得:a≥﹣1,且a≠1.故选:B.2.【解答】解:∵点P(﹣1,m2+1)与点Q关于原点对称,∴Q(1,﹣m2﹣1),∴点Q一定在第四象限,故选:D.3.【解答】解:2+2﹣1=0,2+2=1,2+2+1=1+1,(+1)2=2,故选:C.4.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.5.【解答】解:∵当=﹣3与=﹣1时,y值相等,∴二次函数图象的对称轴为直线==﹣2.故选:B.6.【解答】解:∵圆的直径为13 cm,∴圆的半径为 6.5 cm,∵圆心到直线的距离 6.5cm,∴圆的半径=圆心到直线的距离,∴直线于圆相切,故选:B.7.【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.8.【解答】解:A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选:C.9.【解答】解:∵=2>0,∴函数为减函数,又∵1>0>2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.10.【解答】解:如图,作△ABC的外接圆⊙O,OM⊥BC于M交⊙O于N,连接OB,PB.∵△ABC和△EBF是等边三角形,∴AB=BC,BE=BF,∠ABC=∠BAC=∠EBF=60°,∴∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF,∴∠BAE=∠BCP,∴A、B、P、C四点共圆,∴∠BPC+∠BAC=180°,∴∠BPC=120°,∴点P的运动轨迹是,∵等边三角形的边长为4,∴OB=,的长==π,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1是(﹣1)2+﹣2=0的根,∴﹣1+1﹣2=0,解得=0或1,∵﹣1≠0,∴≠1,∴=0.故答案为:0.12.【解答】解:设∠A、∠B、∠C分别为2、、4,则2+4=180°,解得,=30°,则∠B=30°,∴∠D=180°﹣∠B=150°,故答案为:150.13.【解答】解:球的总数为:2+3+5=10,∵绿球的球的个数为3,∴随机地从中摸出一个球是绿球的概率是.故答案为:.14.【解答】解:∵关于的方程22﹣3+=0有两个相等的实数根,∴△=(﹣3)2﹣4×2×=9﹣8=0,解得:=.故答案为:.15.【解答】解:由图可知:△ABC的外接圆半径==.16.【解答】解:∵当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,∴其抛物线的对称轴为直线=(8+28)÷2=18,故CO=36,则小强骑自行车通过拱梁部分的桥面OC共需36秒.故答案为:36.三.解答题(共9小题,满分102分)17.【解答】解:(1)2+4+2=0,b2﹣4ac=42﹣4×1×2=8,=,1=﹣2+,2=﹣2﹣;(2)22﹣5﹣3=0,(2+1)(﹣3)=0,2+1=0,﹣3=0,=﹣,2=3.118.【解答】解:(1)∵反比例函数y=的图象经过点A(2,﹣3),∴代入得:=﹣3×2=﹣6;(2)∵反比例函数的解析式为y=﹣,=﹣6<0,∴函数的图象在第二、四象限,在每个象限内,y随增大而增大;(3)函数的图象为:;(4)点B在函数图象上,C不在函数的图象上.19.【解答】解:(1)画树状图为:(2)由树状图知,共有10种等可能的结果数,其中从开始进入的出入口离开的结果数为2,所以小美玩一次“守株待兔”游戏能得到小兔玩具的概率==;(2)125×0.8×3﹣125×0.2×4=200,所以估计游戏设计者可赚200元.20.【解答】解:(1)∵次函数y=a2﹣6+21可以由y=平移得到,∴a=,∴y=a2﹣6+21=2﹣6+21=(﹣6)2+3.综上所述,a的值是,抛物线的顶点式方程为:y=(﹣6)2+3;(2)由(1)知,抛物线的方程为:y=(﹣6)2+3,因为a=>0,所以抛物线开口方向向上.由y=(﹣6)2+3得到对称轴是直线=6,顶点坐标是(6,3);(3)由(2)知,抛物线开口方向向上,对称轴是直线=6,则当>6时,二次函数的函数值y随的增大而减小.21.【解答】(1)解:如图,△A1B1C1和△A2B2C2为所作;(2)解:△A2B2B为直角三角形.理由如下:∵B2B2=22+42=20,A2B22=22+12=5,A2B2=32+42=25,∴B2B2+A2B22=A2B2,∴△A2B2B为直角三角形;(3)证明:∵A2C2==,BC2==,A2B=5,∴A2C2+BC2≠A2B,∴C2不在线段A2B上22.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.23.【解答】解:(1)把A(3,2)代入反比例解析式得:m=6;把A(3,2)代入直线解析式得:=,由对称性得:B(﹣3,﹣2);故答案为:6;;(﹣3,﹣2);(2)把P(n﹣2,n+3)代入y=中得:(n﹣2)(n+3)=6,整理得:n2+n﹣12=0,即(n﹣3)(n+4)=0,解得:n=3或n=﹣4(舍去),则P(1,6);(3)分两种情况考虑:当M1在轴正半轴,N1在y轴上半轴时,如图1所示,过P作PQ∥y轴,过A作AQ∥轴,交于点Q,∵A(3,2),P(1,6),∴AQ=3﹣1=2,由平移及平行四边形性质得到OM1=2,即M1(2,0);当M2在轴负半轴,N2在y轴下半轴时,如图2所示,同理得到OM2=2,即M2(﹣2,0).24.【解答】解:(1)由二次函数的解析式可知:开口方向向下,对称轴为=1;(2)抛物线与轴的两个交点A(1,0),B(2,0),且1<0<2,∴∴,解得:>0.25.【解答】解:(1)①∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,∴AB=BC=2,∠BAC=∠DAB,又∵∠DAB=60°(已知),∴∠BAC=∠BCA=30°;如图1,连接BD交AC于O.∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,∴OB=AB=1(30°角所对的直角边是斜边的一半),∴OA=(cm),AC=2OA=2(cm),运动ts后,,∴又∵∠PAQ=∠CAB,∴△PAQ∽△CAB,∴∠APQ=∠ACB(相似三角形的对应角相等),∴PQ∥BC(同位角相等,两直线平行)②如图2,⊙P与BC切于点M,连接PM,则PM⊥BC.在Rt△CPM中,∵∠PCM=30°,∴PM=PC=,由PM=PQ=AQ=t,即=t解得t=4﹣6,此时⊙P与边BC有一个公共点;如图3,⊙P过点B,此时PQ=PB,∵∠PQB=∠PAQ+∠APQ=60°∴△PQB为等边三角形,∴QB=PQ=AQ=t,∴t=1∴时,⊙P与边BC有2个公共点.如图4,⊙P过点C,此时PC=PQ,即=t,∴t=3﹣.∴当1<t≤3﹣时,⊙P与边BC有一个公共点,当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P与边BC有一个公共点,∴当t=4﹣6或1<t≤3﹣或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当4﹣6<t≤1时,⊙P与边BC有2个公共点;(2)当OE⊥AB时,OE取最大值,OE=.。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:120分答题时间:120分钟)一、选择题(共8小题,每小题3分,满分24分)1.下列事件中,必然事件是()A.抛出一枚硬币,落地后正面向上B.打开电视,正在播放广告C.篮球队员在罚球线投篮一次,未投中D.实心铁球投入水中会沉入水底2.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACD B.∠ADB C.∠AED D.∠ACB3.已知四条线段满足,将它改写成为比例式,下面正确的是()A.B.C.D.4.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)5.已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4 B.0 C.2 D.36.一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.20πcm2D.30πcm27.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=98.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1二、填空题(本大题共有8小题,每小题3分,共24分)9.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.10.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.11.方程x2﹣4x+c=0有两个不相等的实数根,则c的取值范围是.12.在某一时刻,测得一根高为 1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.题号一二三总分得分13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).15.一元二次方程x2+px﹣2=0的一个根为2,则p的值.16.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.三、解答题(本大题共有4小题,共24分)17.(6分)解方程:(1)x(x﹣2)+x﹣2=0.(2)x2﹣4x+1=0;18.(6分)一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.19.(6分)如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.20.(6分)如图,四边形ABCD内接于⊙O,E为AB延长线上一点,若∠AOC=140°.求∠EBC的度数.四、解答题(本大题共有4小题,共28分)21.(7分)如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E 为AB的延长线上一点,且∠ECB=∠CAD.(1)①填空:∠ACB= ,理由是;②求证:CE与⊙O相切;(2)若AB=6,CE=4,求AD的长.22.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S 关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S关于x的函数关系式,并写出x的取值范围;(3)请直接写出△PCQ为等腰三角形时x的值.23.(7分)如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.24.(7分)如图,进行绿地的长、宽各增加xm.(1)写出扩充后的绿地的面积y(m2)与x(m)之间的函数关系式;(2)若扩充后的绿地面积y是原矩形面积的2倍,求x的值.五、解答题(本大题共有2小题,共20分)25.如图,抛物线y=a(x﹣m)2﹣m(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m).点A关于直线l的对称点为B,作BC⊥x轴于点C,连接PC、PB,与抛物线、x轴分别相交于点D、E,连接DE.将△PBC沿直线PB 翻折,得到△PBC′.(1)该抛物线的解析式为(用含m的式子表示);(2)探究线段DE、BC的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m的式子表示).26.如图(1),将线段AB绕点A逆时针旋转2α(0°<α<90°)至AC,P 是过A,B,C的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(共8小题,每小题3分,满分24分)1.D.2. A.3.C.4. A.5.B.6.B.7.D.8.C.二、填空题(本大题共有8小题,每小题3分,共24分)9.70.10..11.c<4.12.15.13.∠C=∠BAD.14.y3<y2<y.15.﹣1.16.3 三、解答题(本大题共有4小题,共24分)17.解:(1)(x+1)(x﹣2)=0,(x+1)(x﹣2)=0,解得x1=﹣1,x2=2;(2)方程变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.18.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为.19.解:(1)如图所示:.(2)根据上图可知,B1(2,2),C1(5,﹣1).20.解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.四、解答题(本大题共有4小题,共28分)21.解:①∵AB为⊙O的直径,∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角;②连接OC,则∠CAO=∠ACO,∵AC平分∠BAB,∴∠BAC=∠CAD,∵∠ECB=∠CAD.∴∠BAC=∠ECB.∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴CE2=BE?AE,∵AB=6,CE=4,∴42=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴=,即=,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.22.解:(1)如图1中,作AM⊥BC,PN⊥BC,垂足分别为M,N.由题意AB=AC=8,∠A=120°,∴∠BAM=∠CAM=60°,∠B=∠C=30°,∴AM=AB=4,BM=CM=4,∴BC=8,∴m=BC=8,故答案为8.(2)①当0≤m≤8时,如图1中,在RT△PBN中,∵∠PNB=90°,∠B=30°,PB=x,∴PN=x.s=?BQ?PN=?x??x=x2.②当8<x≤16,如图2中,在RT△PBN中,∵PC=16﹣x,∠PNC=90°,∠C=30°,∴PN=PC=8﹣x,∴s=?BQ?PN=?x?(8﹣x)=﹣x2+4x.③当8<x≤16时,s=?8?(8﹣?x)=﹣2x+32.(3)①当点P在AB上,点Q在BC上时,△PQC不可能是等腰三角形.②当点P在AC上,点Q在BC上时,PQ=QC,∵PC=QC,∴16﹣x=(8﹣x),∴x=4+4.③当点P在AC上,点Q在BC的延长线时,PC=CQ,即16﹣x=x﹣8,∴x=8+4.∴△PCQ为等腰三角形时x的值为4+4或8+4.23.(1)证明:∵DE⊥AB,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A,∴△ACB∽△ADE;(2)解:∵△ACB∽△ADE,∴=,∴=,∴AD=4.24. 解:(1)由图可得,扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=(30xm+m)(20xm+m)=600x2m2+50xm2+m2,即扩充后的绿地的面积y(m2)与x(m)之间的函数关系式是:y=600x2m2+50xm2+m2;(2)∵扩充后的绿地面积y是原矩形面积的2倍,∴600x2m2+50xm2+m2=2×30xm×20xm,解得(舍去),即扩充后的绿地面积y是原矩形面积的2倍,x的值是.五、解答题(本大题共有2小题,共20分)25.解:(1)把点A(0,m)代入y=,得:2am2﹣m=m,am﹣1=0,∵am>1,∴a=,∴y=,故答案为:y=;(2)DE=BC.理由:又抛物线y=,可得抛物线的顶点坐标P(m,﹣m),由l:x=m,可得:点B(2m,m),∴点C(2m,0).设直线BP的解析式为y=kx+b,点P(m,﹣m)和点B(2m,m)在这条直线上,得:,解得:,∴直线BP的解析式为:y=x﹣3m,令y=0, x﹣3m=0,解得:x=,∴点D(,0);设直线CP的解析式为y=k1x+b1,点P(m,﹣m)和点C(2m,0)在这条直线上,得:,解得:,∴直线CP的解析式为:y=x﹣2m;抛物线与直线CP相交于点E,可得:,解得:,(舍去),∴点E(,﹣);∵x D=x E,∴DE⊥x轴,∴DE=y D﹣y E=,BC=y B﹣y C=m=2DE,即DE=BC;(3)C′(,).连接CC′,交直线BP于点F,∵BC′=BC,∠C′BF=∠CBF,∴CC′⊥BP,CF=C′F,设直线BP的解析式为y=kx+b,点B(2m,m),P(m,﹣m)在直线上,∴,解得:,∴直线BP的解析式为:y=x﹣3m,∵CC′⊥BP,∴设直线CC′的解析式为:y=x+b1,∴,解得:b1=2m,联立①②,得:,解得:,∴点F(,),∴CF==,设点C′的坐标为(a,),∴C′F==,解得:a=,∴,∴C′(,).26.证明:(1)如图(1),在PA上截取PD=PA,∵AB=AC,∠CAB=60°,∴△ABC为等边三角形,∴∠APC=∠CPB=60°,∴△APD为等边三角形,∴AP=AD=PD,∴∠ADC=∠APB=120°,在△ACD和△ABP中,,∴△ACD≌△ABP(AAS),∴CD=PB,∵PC=PD+DC,∴PC=PA+PB;(2)PC=PA+PB,如图(2),作AD⊥AP与PC交于一点D,∵∠BAC=90°,∴∠CAD=∠BAP,在△ACD和△ABP中,,∴△ACD≌△ABP,∴CD=PB,AD=AP,根据勾股定理PD=PA,∴PC=PD+CD=PA+PB.。

2019-2020学年山东省济南市历城区九年级(上)期末数学试卷解析版

2019-2020学年山东省济南市历城区九年级(上)期末数学试卷解析版

2019-2020学年山东省济南市历城区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)如图所示的几何体的俯视图是()A.B.C.D.2.(4分)一元二次方程x2+x=0的根的是()A.x1=0,x2=1B.x1=0,x2=﹣1C.x1=x2=0D.x1=x2=13.(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则cos B的值为()A.B.C.D.4.(4分)如果用线段a、b、c,求作线段x,使a:b=c:x,那么下列作图正确的是()A.B.C.D.5.(4分)若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)6.(4分)在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()A.34个B.30个C.10个D.6个7.(4分)如图,活动课小明利用一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为9m,AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是()A.3m B.27m C.(3+)m D.(27+)m8.(4分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.9.(4分)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF =1,则GF的长为()A.B.C.D.10.(4分)二次函数γ=ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y>0时,x的取值范围是()x﹣3﹣2﹣1012y﹣12﹣50343A.0<x<2B.x<0或x>2C.﹣1<x<3D.x<﹣1或x>311.(4分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4B.4C.﹣2D.212.(4分)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN,沿着CM折叠,点D 的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论,其中正确的个数为()①△CMP是直角三角形②AB=BP③PN=PG④PM=PF⑤若连接PE,则△PEG∽△CMDA.5个B.4个C.3个D.2个二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)若=2,则=.14.(4分)已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是.15.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=.16.(4分)如图,等腰直角三角形AOC中,点C在y轴的正半轴上,OC=AC=4,AC交反比例函数y=的图象于点F,过点F作FD⊥OA,交OA与点E,交反比例函数与另一点D,则点D的坐标为.17.(4分)在平面直角坐标系中,抛物线y=x2如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,过点A4作A4A5∥x轴交抛物线于点A5,则点A5的坐标为.18.(4分)如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点,若扇形的半径为,则图中阴影部分的面积等于.三、解答题(本大题共7个小题,共78分.解答应写出文字说明、19.(8分)(1)解方程:x2﹣4x﹣3=0(2)计算:tan30°+(π+4)0﹣|﹣|20.(6分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.21.(6分)近年来,无人机航拍测量的应用越来越广泛.如图,拍无人机从A处观测得某建筑物顶点O时俯角为30°,继续水平前行10米到达B处,测得俯角为45°,已知无人机的水平飞行高度为45米,则这栋楼的高度是多少米?(结果保留根号)22.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC 边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.23.(8分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?24.(10分)为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14b%舞蹈816%书法1632%摄影a24%合计m100%根据以上信息,解答下列问题:(1)m=,b=.(2)求出a的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.25.(10分)如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.26.(10分)如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直按写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BE=BA时,其他条件不变,△EBF绕点B顺时针旋转,设旋转角为α(0°<α<360°),当α为何值时,EA=ED?在图3或备用图中画出图形,并直接写出此时α=.27.(12分)若二次函数y=ax2+bx﹣2的图象与x轴交于点A(4,0),与y轴交于点B,且过点C(3,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=5,求点P的坐标;(3)在AB下方的抛物线上是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.2019-2020学年山东省济南市历城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.【解答】解:从上往下看,得两个长方形的组合体.故选:D.2.【解答】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,故选:B.3.【解答】解:由勾股定理得,AB===13,则cos B==,故选:B.4.【解答】解:A、a:b=x:c与已知a:b=c:x不符合,故选项A不正确;B、a:b=c:x与已知a:b=c:x符合,故选项B正确;C、a:c=x:b与已知a:b=c:x不符合,故选项C不正确;D、a:x=b:c与已知a:b=c:x不符合,故选项D不正确;故选:B.5.【解答】解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.6.【解答】解:∵摸到白色球的频率稳定在85%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选:D.7.【解答】解:∵AB⊥BE,DE⊥BE,AD∥BE,∴四边形ABED是矩形,∵BE=9m,AB=1.5m,∴AD=BE=9m,DE=AB=1.5m,在Rt△ACD中,∵∠CAD=30°,AD=9m,∴CD=AD•tan30°=9×=3,∴CE=CD+DE=3+1.5故选:C.8.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.9.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.10.【解答】解:∵抛物线经过点(0,3),(2,3),∴抛物线的对称轴为直线x=1,∴抛物线的顶点坐标为(1,4),抛物线开口向下,∵抛物线与x轴的一个交点坐标为(﹣1,0),∴抛物线与x轴的一个交点坐标为(3,0),∴当﹣1<x<3时,y>0.故选:C.11.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.12.【解答】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=×180°=90°,∴△CMP是直角三角形;故①符合题意;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴AM=DM=AD=x=BN=NC,∴CM==x,∵∠PMC=90°=∠CNM,∠MCP=∠MCN,∴△MCN∽△NCP,∴CM2=CN•CP,∴3x2=x×CP,∴CP=x,∴BP=x∴AB=BP,故②符合题意;∵PN=CP﹣CN=x,∵沿着MP折叠,使得AM与EM重合,∴BP=PG=x,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=x,∠B=∠G=90°∴=,∵==,∴,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:∵=2,∴x=2y,∴==2;故答案为:2.14.【解答】解:∵函数y=﹣(x+1)2+2的对称轴为x=﹣1,∴A(3,y1)、B(2,y2)在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,3>2,∴y1<y2.故答案为:y1<y2.15.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=6.故答案为6.16.【解答】解:∵OC=AC=4,AC交反比例函数y=的图象于点F,∴F的纵坐标为4,代入y=求得x=,∴F(,4),∵等腰直角三角形AOC中,∠AOC=45°,∴直线OA的解析式为y=x,∴F关于直线OA的对称点是D点,∴点D的坐标为(4,),故答案为(4,)17.【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9),故答案为(﹣3,9).18.【解答】解:两扇形的面积和为:=π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:××=1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故答案为:π﹣2.三、解答题(本大题共7个小题,共78分.解答应写出文字说明、19.【解答】解:(1)方程整理得:x2﹣4x=3,配方得:x2﹣4x+4=7,即(x﹣2)2=7,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)原式=3×+1﹣=1.20.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.21.【解答】解:过O点作OC⊥AB的延长线于C点,垂足为C,根据题意可知,∠OAC=30°,∠OBC=45°,AB=10米,AD=45米,在Rt△BCO中,∠OBC=45°,∴BC=OC,设OC=BC=x,则AC=10+x,在Rt△ACO中,tan30°===,解得x=5+5,则这栋楼的高度h=AD﹣CO=45﹣5﹣5=(40﹣5)(米).22.【解答】(1)证明:连接AD,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD=BD,∴∠BAD=∠B=30°,∴∠ADC=60°,∴∠DAC=180°﹣60°﹣30°=90°,∴AC是⊙D的切线;(2)解:连接AE,∵AD=DE,∠ADE=60°,∴△ADE是等边三角形,∴AE=DE,∠AED=60°,∴∠EAC=∠AED﹣∠C=30°,∴∠EAC=∠C,∴AE=CE=2,∴⊙D的半径AD=2.23.【解答】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,,解得.∴y1=﹣x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=.∴y2=(x﹣6)2+1,即y2=x2﹣4x+13.(2)收益W=y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣(x﹣5)2+,∵a=﹣<0,∴当x=5时,W最大值=.故5月出售每千克收益最大,最大为.24.【解答】解:(1)m=8÷16%=50,b%=×100%=28%,即b=28,故答案为:50、28;(2)a=50×24%=12,补全图形如下:(3)估计选修“声乐”课程的学生有1500×28%=420(人).(4)画树状图为:共有12种等可能的结果数,其中抽取的2名学生恰好来自同一个班级的结果数为4,则所抽取的2人恰好来自同一个班级的概率为=.25.【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,∴S△ABC=×3×2=3;②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.26.【解答】解:(1)∵∵BD是正方形ABCD的对角线,∴∠ABD=45°,BD=AB,∵EF⊥AB,∴∠BEF=90°,∴∠BFE=∠ABD=45°,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴=,故答案为;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∴,由旋转知,∠ABE=∠DBF,∴△ABE∽△DBF,∴=,∴DF=AE;(3)如图3,连接DE,CE,∵EA=ED,∴点E在AD的中垂线上,∴AE=DE,BE=CE,∵AB=BE,∴CE=BE,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90°,AB=BC,∴BE=CE=BC,∴△BCE是等边三角形,∴∠CBE=60°,如图3,∠ABE=∠ABC﹣∠CBE=90°﹣60°=30°,即:α=30°,如图4,∠ABE=∠ABC+∠CBE=90°+60°=150°,即:α=150°,故答案为30°或150°.27.【解答】解:(1)∵二次函数y=ax2+bx﹣2的图象过点A(4,0),点C(3,﹣2),∴解得:∴二次函数表达式为:y=x2﹣x﹣2;(2)设直线BP与x轴交于点E,过点P作PD⊥OA于D,设点P(a,a2﹣a﹣2),则PD=a2﹣a﹣2,∵二次函数y=x2﹣x﹣2与y轴交于点B,∴点B(0,﹣2),设BP解析式为:y=kx﹣2,∴a2﹣a﹣2=ka﹣2,∴k=a﹣,∴BP解析式为:y=(a﹣)x﹣2,∴y=0时,x=,∴点E(,0),∵S△PBA=5,∴×(4﹣)×(a2﹣a﹣2+2)=5,∴a=﹣1(不合题意舍去),a=5,∴点P(5,3)(3)如图2,延长BM到N,使BN=BO,连接ON交AB于H,过点H作HF⊥AO于F,∵BN=BO,∠ABO=∠ABM,AB=AB,∴△ABO≌△ABN(SAS)∴AO=AN,且BN=BO,∴AB垂直平分ON,∴OH=HN,AB⊥ON,∵AO=4,BO=2,∴AB===2,∵S△AOB=×OA×OB=×AB×OH,∴OH==,∴AH===,∵cos∠BAO=,∴=,∴AF=,∴HF===,OF=AO﹣AF=,∴点H(,﹣),∵OH=HN,∴点N(,﹣)设直线BN解析式为:y=mx﹣2,∴﹣=m﹣2,∴m=﹣,∴直线BN解析式为:y=﹣x﹣2,∴x2﹣x﹣2=﹣x﹣2,∴x=0(不合题意舍去),x=,∴点M坐标(,﹣),∴点M到y轴的距离为.。

2019-2020年临沂市临沭县九年级上册期末数学模拟试卷(有答案)

2019-2020年临沂市临沭县九年级上册期末数学模拟试卷(有答案)

山东省临沂市临沭县九年级(上)期末数学模拟试卷一.选择题(共14 小题,满分42 分,每小题 3 分)1.一元二次方程2﹣2=0 的解是()A.1=2=0 B.1=2=2 C.1=0 或2=2 D.无实数解2.若P1(1,y1),P2(2,y2)是函数y=图象上的两点,当1>2>0时,下列结论正确的是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<0 3.在Rt△ABC 中,∠C=90°,BC=3,AB=5,则sin A 的值为()A.B.C.D.4.如图,AB∥CD,OH 分别与AB、CD 交于点F、H,OG 分别与AB、CD 交于点E、G,若,OF=12,则OH 的长为()A.39 B.27 C.12 D.265.如图,四边形ABCD 内接于⊙O,E 为AD 延长线上一点,若∠CDE=80°,则∠B 等于()A.60°B.70°C.80°D.90°6.如图,在6×4 的正方形网格中,△ABC 的顶点均为格点,则sin∠ACB=()A.B.2 C.D.7.二次函数y=(﹣4)2+3 的最小值是()A.2 B.3 C.4 D.58.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3 的倍数的概率等于()A.B.C.D.9.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.当<0 时,图象在第二象限C.无论取何值时,y 随的增大而增大D.图象是轴对称图形,但不是中心对称图形10.如图,将△ABC 沿角平分线BD 所在直线翻折,顶点A 恰好落在边BC 的中点E 处,AE=BD,那么tan∠ABD=()A.B.C.D.11.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为()A.6cm B.3cm C.5 cm D.3 cm12.如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,tan∠ABD=,则线段AB 的长为()A.B.2 C.5 D.1013.如图,在△ABC 中,点D 在AB 边上,DE∥BC,与边AC 交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S214.函数y=a2+2a+m(a<0)的图象过点(2,0),则使函数值y<0成立的的取值范围是()A.<﹣4 或>2 B.﹣4<<2 C.<0 或>2 D.0<<2二.填空题(共5 小题,满分15 分,每小题 3 分)15.若△ABC∽△A′B′C′,且△ABC 与△A′B′C′的面积之比为1:3,则相似比为.16.若关于的一元二次方程a2+b﹣2019=0 有一个根为1,则a+b=.17.林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).18.如图,在△ABC 中,AD 平分∠BAC,DE∥AC,EF∥BC,若AB=15,AF=4,则DE=.19.如图,在平面直角坐标系中,反比例函数y=(>0)的图象与正比例函数y=、y=(>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB 的面积是.三.解答题(共7 小题,满分63 分)20.计算:sin30°•tan60°+ .21.解方程.(1)2﹣5=0;(2)2﹣3=1;(3)(﹣3)(+3)=2.22.如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A 点测得∠MAB=60°,在B 点测得∠MBA=45°,AB=600 米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AE 为⊙O 的切线,过点B 作BD⊥ AE 于D.(1)求证:∠DBA=∠ABC;(2)如果BD=1,tan∠BAD=,求⊙O 的半径.24.如图,在平面直角坐标系Oy 中,已知直线y=与反比例函数y=(≠0)的图象交于点A,且点A 的横坐标为1,点B 是轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B 的坐标;(3)先在∠AOB 的内部求作点P,使点P 到∠AOB 的两边OA、OB 的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)25.如图,在平面直角坐标系中,直线y=﹣+3 与抛物线y=﹣2+b+c 交于A、B 两点,点A在轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P 作y 轴的平行线,交直线AB 于点Q,当PQ 不与y 轴重合时,以PQ 为边作正方形PQMN,使MN 与y 轴在PQ 的同侧,连结PM.设点P 的横坐标为m.(1)求b、c 的值.(2)当点N 落在直线AB 上时,直接写出m 的取值范围.(3)当点P 在A、B 两点之间的抛物线上运动时,设正方形PQMN 周长为c,求c 与m 之间的函数关系式,并写出c 随m 增大而增大时m 的取值范围.(4)当△PQM 与y 轴只有1 个公共点时,直接写出m 的值.26.已知四边形ABCD 中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN 绕B 点旋转到AE≠CF 时,在图2 和图3 这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF 又有怎样的数量关系?请写出你的猜想,不需证明.参考答案一.选择题(共14 小题,满分42 分,每小题3 分)1.【解答】解:∵2﹣2=0,∴(﹣2)=0,解得,1=0,2=2,故选:C.2.【解答】解:把点P1(1,y1)、P2(2,y2)代入y=得y1=,y2=,则y 1﹣y2=﹣=,∵1>2>0,∴12>0,2﹣1<0,∴y1﹣y2=<0,即y1<y2.故选:A.3.【解答】解:∵Rt△ABC 中,∠C=90°,BC=3,AB=5,∴sin A==.故选:A.4.【解答】解:∵EF∥GH,∴==,∴=,∴FH=27,∴OH=OF+FH=12+27=39,故选:A.5.【解答】解:∵四边形ABCD 内接于⊙O,∴∠B=∠CDE=80°,故选:C.6.【解答】解:如图所示,∵BD=2、CD=1,∴BC===,则sin∠BCA===,故选:C.7.【解答】解:二次函数y=(﹣4)2+3 的最小值是:3.故选:B.8.【解答】解:根据题意,得到的两位数有31、32、33、34、35、36 这6 种等可能结果,其中两位数是3 的倍数的有33、36 这2 种结果,∴得到的两位数是3 的倍数的概率等于故选:B.9.【解答】解:当=﹣1 时,y=﹣=4≠﹣4,故点(﹣1,﹣4)不在函数图象上,故A 不正确;在y=﹣中,=﹣4<0,∴当<0 时,其图象在第二象限,在每个象限内y 随的增大而增大,图象既是轴对称图形也是中心对称图形,故B 正确,C、D 不正确;故选:B.10【解答】解:如图,作CM⊥AE 交AE 的延长线于M,作DN⊥AB 于N,DF⊥BC 于F,AE 与BD 交于点,设D=a.∵AB=BE=EC,∴BC=2AB,∵DB 平分∠ABC,∵,∴,,∵DB⊥AM,CM⊥AM,∴D∥CM,∴,∠BE=∠MCE,∴CM=3a,在△BE 和△CME 中,,∴△BE≌△CME,∴B=CM=3a,∴BD=AE=4a,∴A=E=2a,∴tan∠ABD=.故选:B.11【解答】解:设圆锥的底面圆半径为r,∵半径为9cm 的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=•2π•9=12π,∴r=6.故选:A.12【解答】解:∵四边形ABCD 是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB 中,由勾股定理得:AB===5,故选:C.13【解答】解:∵如图,在△ABC 中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A 不符合题意,选项B 不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C 不符合题意,选项D 符合题意.故选:D.14【解答】解:抛物线y=a2+2a+m 的对称轴为直线=﹣=﹣1,而抛物线与轴的一个交点坐标为(2,0),∴抛物线与轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当<﹣4 或>2 时,y<0.故选:A.二.填空题(共5 小题,满分15 分,每小题 3 分)15【解答】解:∵△ABC∽△A′B′C′,△ABC 与△A′B′C′的面积之比为1:3,∴△ABC 与△A′B′C′的相似比为1:.故答案为:1:.16【解答】解:根据题意,一元二次方程a2+b﹣2019=0 有一个根为1,即=1 时,a2+b﹣2019=0 成立,即a+b=2019,故答案为:2019.17【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.18【解答】解:∵AD 平分∠BAC,∴∠1=∠2,∵DE∥AC,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE∥AC,EF∥BC,∴四边形DEFC 为平行四边形,∴DE=CF,设DE=,则AE=CF=,∵EF∥BC,∴=,即=,整理得2+4﹣60=0,解得1=6,2=﹣10(舍去),∴DE =6. 故答案为 6.19【解答】解:如图,过 B 作 BD ⊥ 轴于点 D ,过 A 作 AC ⊥y 轴于点 C设点 A 横坐标为 a ,则 A (a ,)∵A 在正比例函数 y = 图象上∴ =a∴=同理,设点 B 横坐标为 b ,则 B (b ,)∴∴∴∴ab =2当点 A 坐标为(a ,)时,点 B 坐标为(,a )∴OC =OD=将△AOC 绕点O 顺时针旋转90°,得到△ODA′∵BD⊥轴+∴B 、D 、A ′共线∵∠AOB =45°,∠AOA ′=90°∴∠BOA ′=45°∵OA =OA ′,OB =OB∴△AOB ≌△A ′OB∵S △BOD =S △AOC =2×=1∴S △AOB =2 故答案为:2三.解答题(共 7 小题,满分 63 分)20【解答】解:sin30°•tan60°+= ×+= ﹣2 =﹣2.21.【解答】解:(1)∵2﹣5=0,∴(﹣5)=0, 则 =0 或 ﹣5=0,∴=0 或 =5;(2)∵2﹣3=1,∴2﹣3﹣1=0,∵a =1、b =﹣3、c =﹣1,∴△=9﹣4×1×(﹣1)=13>0, 则 =;(3)方程整理可得 2﹣2﹣9=0,∵a =1、b =﹣2、c =﹣9,∴△=4﹣4×1×(﹣9)=40>0,则==1±.22【解答】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM 中,;在Rt△BDM 中,,∴,∵AB=600m,∴AD+BD=600m,∴,∴,∴,∴点M 到AB 的距离.(2)过点N 作NE⊥AB 于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN 为平行四边形,∴,MN=DE,∵∠NBA=53°,∴在Rt△NEB 中,,∴,∴.23【解答】(1)证明:如图,连接OA,∵AE 为⊙O 的切线,BD⊥AE,∴∠DAO=∠EDB=90°,∴DB∥AO,∴∠DBA=∠BAO,又∵OA=OB,∴∠ABC=∠BAO,∴∠DBA=∠ABC;(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O 的半径为2.5.24【解答】解:(1)由题意,设点A的坐标为(1,m),∵点A 在正比例函数y=的图象上,∴m=.∴点A的坐标(1,),∵点A 在反比例函数y=的图象上,∴=,解得=,∴反比例函数的解析式为y=.(2)过点A 作AC⊥OB⊥,垂足为点C,可得OC=1,AC=.∵AC⊥OB,∴∠ACO=90°.由勾股定理,得AO=2,∴OC=AO,∴∠OAC=30°,∴∠ACO=60°,∵AB⊥OA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴点B的坐标是(4,0).(3)如图作∠AOB 的平分线OM,AB 的垂直平分线EF,OM 与EF 的交点就是所求的点P,∵∠POB=30°,∴可以设点P坐标(m,m),∵PA2=PB2,∴(m﹣1)2+(m﹣)2=(m﹣4)2+(m)2,解得m=3,∴点P的坐标是(3,).25.【解答】(1)把y=0代入y=﹣+3,得=3.∴点A的坐标为(0,3),把=﹣1 代入y=﹣+3,得y=4.∴点B的坐标为(﹣1,4),把(0,3)、(﹣1,4)代入y=﹣2+b+c,解得:b=1,c=6;(2)当0<m<3 时,以PQ 为边作正方形PQMN,使MN 与y 轴在PQ 的同侧,此时,N 点在直线AB 上,同样,当m<﹣1,此时,N 点也在直线AB 上,故:m 的取值范围为:0<m<3 或m<﹣1;(3)当﹣1<m<3 且m≠0 时,PQ=﹣m2+m+6﹣(﹣m+3)=﹣m2+2m+3,∴c=4PQ=﹣4m2+8m+12;c 随m 增大而增大时m 的取值范围为﹣1<m≤1 且m≠0,(4)点P(m,﹣m2+m+6),则Q(m,﹣m+3),①当﹣1<m≤3 时,当△PQM 与y 轴只有1 个公共点时,PQ=P,即:﹣m2+m+6+m﹣3=m,解得:(舍去负值);②当m≤﹣1 时,△PQM 与y 轴只有1 个公共点时,PQ=Q,即﹣m+3+m2﹣m﹣6=m,整理得:m2﹣3m﹣3=0,解得:m=(不合题意,均舍去),故:m 的值为:.26 .【解答】解:∵ AB ⊥ AD ,BC ⊥ CD ,AB =BC ,AE =CF ,在△ABE 和△CBF 中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF 为等边三角形;∴AE+CF=BE+ BF=BE=EF;图2 成立,图3 不成立.证明图2.延长DC 至点,使C=AE,连接B,在△BAE 和△BC 中,则△BAE≌△BC,∴BE=B,∠ABE=∠BC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠BC=60°,∴∠BF=∠FBE=60°,在△BF 和△EBF 中,∴△BF≌△EBF,∴F=EF,∴C+CF=EF,即AE+CF=EF.图3 不成立,AE、CF、EF 的关系是AE﹣CF=EF.。

2019 2020人教版九年级上册数学期末试卷及答案

2019 2020人教版九年级上册数学期末试卷及答案

人教版九年级上册数学期末试卷分)满分120(考试时间:120分考号姓名分)3分,共36一.选择题(每题)1.下列事件中,是必然发生的事件的是(B、父亲的年龄比儿子的年龄大A、打开电视机,正在播放新闻D、下雨天,每个人都打着雨伞C、通过长期努力学习,你会成为数学家60 3.下列图形中,旋转)后可以和原图形重合的是(D、正三角形B、正五边形C、正方形A、正六边形OMOM)厘米,则的长为4.过⊙内一点(的最长的弦长为6厘米,最短的弦长为453厘米C.2厘米 D.5A.厘米厘米 B.5.已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是()A. 12πB. 15πC. 30πD. 24π22)?(2x?3y?、对于)的图象下列叙述正确的是(6y=3B、对称轴为-3,2)(A、顶点坐标为x y时增大而增大随D、当x>3C、开口向下除颜色外其它完全相同。

个,黑色、白色的玻璃球共有807.有一个不透明的布袋中,红色、,则口袋中45%小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和)白色球的个数很可能是(24.32 C.48 D A.12 B.2) 个单位,得到的抛物线是( 8.将抛物线y=5x向右平移2个单位,再向上平移32222-3C.y=5(x-2) .y=5(x+2)D. y=5(x-2)+3 B. y=5(x+2)+3 -3 A2-2x的方程x+x,点P到圆心O的距离为d,若关于19.已知⊙O的半径为.)d=0有实根,则点P (上.在⊙DO 的外部C.在⊙O上 B A.在⊙O的内部.在⊙O O的内部或⊙2c?ax?bxy?0ab?;的图象,给出下列说法:、如图,为二次函数10 ①23?1,x?x?0c???axbx1xc??0?ba?值x;④当②方程y的根为;③时,随21 1y?0?1?x?3.其中,正确的说法有(的增大而增大⑤当)时,个5 D. B. 3 C. 4 A. 2分)分,共18二.填空题(每题3___________ 关于原点中心对称的点的坐标为,-4)11.与点P(22_____________的最大值为+4x+512.已知二次函数y=-x 2=28O的直径,∠1=46°,∠°,则∠BCD=______.13.如图,AC是⊙? A CB? C (第题)16题)(第15题)(第17???C,A,BCBRt△ABCARt△B在同一条绕是由点顺时针旋转而得,且点14、如图,?90C?∠2BCRt△ABC?BABAAB?4所扫直线上,在,,则斜边,中,若旋转到,点A在旋转过程中走过的路线长是过的扇形面积为1为半径画弧,、、BC为圆心,以AC15.如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A2)π所围成的阴影部分的面积是。

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019--2020学年度第一学期九年级数学上册期末考试题及答案

人教版2019—2020学年度第一学期九年级数学期末试卷及答案(满分:150分答题时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣42.设a=2﹣1,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和53.在﹣2,0,2,﹣3这四个数中,最小的数是()A.2 B.0 C.﹣2 D.﹣34.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为()A.30.1×108B.3.01×108C.3.01×109D.0.301×10105.如图为抛物线y=ax2+bx+c的图象,A、B、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.ac<0 B.a﹣b=1 C.a+b=﹣1 D.b>2a6.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S27.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个8.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是()A.99.60,99.70 B.99.60,99.60 C.99.60,98.80 D.99.70,99.60 9.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A 作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.10.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.12二、填空题(本大题共4小题,每小题5分,满分20分.)11.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.12.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是.13.的平方根是.14.因式分解:a2b+2ab+b= .三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.16.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n(n>2).(1)求AB1和AB2的长.(2)若AB n的长为56,求n.18.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?五、(本大题共2小题,每小题10分,满分20分)19.一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ与BE的位置关系是,BQ的长是dm;(2)求液体的体积;(参考算法:直棱柱体积V液=底面积S△BCQ×高AB);(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果;(2)求滨湖湿地公园被选中的概率.六、(本题共2小题,满分24分)21.某省实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价﹣进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?22.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.七、(本题满分14分)23.如图,在菱形ABCD中,AB=6,∠ABC=60°,动点E、F同时从顶点B出发,其中点E从点B向点A以每秒1个单位的速度运动,点F从点B出发沿B﹣C﹣A的路线向终点A以每秒2个单位的速度运动,以EF为边向上(或向右)作等边三角形EFG,AH是△ABC中BC边上的高,两点运动时间为t秒,△EFG和△AHC 的重合部分面积为S.(1)用含t的代数式表示线段CF的长;(2)求点G落在AC上时t的值;(3)求S关于t的函数关系式;(4)动点P在点E、F出发的同时从点A出发沿A﹣H﹣A以每秒2单位的速度作循环往复运动,当点E、F到达终点时,点P随之运动,直接写出点P在△EFG 内部时t的取值范围.2019-2020学年九年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1. D.2.B.3. D.4.C.5.D.6.C.7.B.8.B.9.C.10.B.二、填空题(本大题共4小题,每小题5分,满分20分.11..12.①②④.13.±.14.b(a+1)2.三、(本大题共2小题,每小题8分,满分16分)15.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).16.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1﹣A1A2=6﹣5=1,∴AB1=AA1+A1A2+A2B1=5+5+1=11,∴AB2的长为:5+5+6=16;(2)∵AB1=2×5+1=11,AB2=3×5+1=16,∴AB n=(n+1)×5+1=56,解得:n=10.18.解:设该飞机在失去联系后能航行x千米,1:30﹣0:00=1.5(小时),由题意得:1.5×400×5+5x≤15000解得:x≤2400.答:该飞机在失去联系后最多能航行2400千米.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.20.解:(1)CQ∥BE,BQ==3dm;故答案为:平行,3;(2)V液=×3×4×4=24(dm3);(3)过点B作BF⊥CQ,垂足为F,∵×3×4=×5×BF,∴BF=,∴液面到桌面的高度;∵在Rt△BCQ中,tan∠BCQ=,∴α=∠BCQ=37°.六、(本题共2小题,满分24分)21.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x)=100x+24000商场所获利润:W=400x+300x+400(100﹣2x)=﹣100x+40000.(2)根据题意得,解得30≤x≤35,因为x为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000,∵k=﹣100<0,30≤x≤35,∴当x=30时,W有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元.22.(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC ∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得∴⊙O的半径为.七、(本题满分14分)23.解:(1)根据题意得:BF=2t,∵四边形ABCD是菱形,∴BC=AB=6,∴CF=BC﹣BF=6﹣2t;(2)点G落在线段AC上时,如图1所示:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵△EFG是等边三角形,∴∠GFE=60°,GE=EF=BF•sin60°=t,∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.。

人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A(能力提升 附答案详解)

人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A(能力提升 附答案详解)
(0°<β<180°),得到△A′B′C
(1)设A′B′与CB相交于点D,
①当旋转角为β=25°,∠B′DB=°;
②当AB∥CB′时,求证:D是A′B′的中点;
(2)如图2,E是AC边上的点,且 ,P是A′B′边上的点,且∠A′PC=60°,连接EP、CP,已知AC=10,①当β=°时,EP长度最大,最大值为;
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.
21.计算: cos45°.
22.(1)用计算器求图中∠A的正弦值、余弦值、正切值.
即S=y2﹣y1.
故选C.
点睛:本题是一道二次函数综合题,主要考查了二次函数的图象和性质.解题的关键在于要利用二次函数图象上的点并结合梯形面积公式由题意得: , ,故选答案B.
考点:函数的综合运用.
9.C
【解析】
∵直角△ABC中,∠C=90°,
∴tan∠BAC= ,
人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A
(能力提升附答案详解)
1.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是( )
A. B. C. D.
2.投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。将上述事件按可能性的大小从大到小排列为()
又∵AC=30cm,tan∠BAC= ,
∴BC=AC⋅tan∠BAC=30× = (cm).

人教版2019-2020学年九年级上期末数学模拟试卷(解析版)

人教版2019-2020学年九年级上期末数学模拟试卷(解析版)

人教版2019-2020学年九年级上期末数学模拟试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的. 1.如图,将绕点逆时针旋转70°到的位置,若,则( )A. 45°B. 40°C. 35°D. 30°2.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则劣弧BC 的长是( )A .πB .31兀C .21兀D .61兀3.若关于的一元二次方程 有两个不相等的实数根,则的取值范围是( ) A.B. 且C.D.且4.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A. 20°B. 35°C. 40°D. 55°5.二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-4,0),对称轴为直线x=-1,下列结论: ①abc>0;②2a-b=0;③一元二次方程ax 2+bx+c=0的解是x 1=-4,x 2=1;④当y>0时,-4<x<2. 其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个 6.下列函数关系式中,y 是x 的反比例函数的是 A.x y 3= B.13+=x y C.xy 3=D.23x y = 7.若如图所示的两个四边形相似,则α∠的度数是A.75°B.60°C.87°D.120°8.如图,在直角坐标系中,有两点A(6,3)、B(6,0),以原点O 为位似中心,相似比为,31在第一象限内把线段AB 缩小后得到线段CD,则点C 的坐标为A.(2,1)B.(2,0)C.(3,3)D.(3,1) 9.在平行四边形ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F,则EF:FC 等于 A.3:2 B.3:1 C.1:1 D.1:210.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC=3O °,弧AD=弧CD.则∠DAC 等于A.70°B.45°C.35°D.25°二、填空题(本大题共7小题,每小题4分,共28分) 11.方程(x +5)2=4的两个根分别为 .12.△ABC 与△DEF 的相似比为1:4.则△ABC 与△DEF 的周长比为________. 13.在ABC 中,∠A 、∠B 都是锐角,若,,21cos 23sin ==B A 则∠C=________. 14.如图,在Rt △OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°到,△11B OA 则=∠OB A 1_______°.15.已知,一个小球由地面沿着坡度2:1=i 的坡面向上前进10cm,则此时小球距离地面的高度为______cm.16.若二次函数()()12412≠+--=a a x x a y 的图象与x 轴且只有一个交点,则a 的值为__.17.双曲线21y y 、在第一象限的图象如图所示,,xy 41=过1y 上的任意一点A,作x 轴的平行线交2y 于点B ,交y 轴于点C,若,△1=OAB S 则2y 的解析式是________.三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:()︒-+--︒45cos 28201930tan 30π.19.如图,在平面直角坐标系中,点A 、B 的坐标分别是(0,3)、(-4,0).(1)将△AOB 绕点A 逆时针旋转90°得到△AEF,点O 、B 对应点分别是E 、F,请在图中面出△AEF ;(2)以点O 为位似中心,将三角形AEF 作位似变换且缩小为原来的,32在网格内画出一个符合条件的.111F E A △20.如图,在某广场上空飘着一只气球P,A 、B 是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠PAB=45°,仰角∠PBA=30°,求气球P 的高度.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.已知AB ⊥BC 于B ,CD ⊥BC 于C ,AB=4,CD=6,BC=14,点P 在BC 上移边,当以P 、C 、D 为顶点的三角形与△ABP 相似时,求PB 的长.22.某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中x 的值是________;(2)被查的200名生中最喜欢球运动的学生有________人;(3)若由3名最喜欢篮球运动的学生(记为321A A A 、、),1名最喜欢乒乓球运动的学生(记为B ),1名最喜欢足球运动的学生(记为C )组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率. 23.如图,抛物线()0232≠++=a c x ax y 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知点A 的坐标为(-1,0),点C 的坐标为(0,2). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;标如果不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,已知CE 是图圆O 的直径,点B 在圆O 上,从点E 顺时针向点C 运动(点B 不与点E 、C 重合),弦BD 交CE 于点F ,且BD=BC ,过点B 作弦CD 的平行线与CE 的延长线交于点A.(1)若圆O 的半径为2,且点D 为弧BC 的中点时,求圆心O 到弦CD 的距离; (2)当2CD DB DF =⋅时,求∠CBD 的大小;(3)若AB=2AE ,且CD=12,求△BCD 的面积。

2019-2020学年内蒙古呼和浩特市赛罕区人教版九年级(上)期末数学试卷(解析版)

2019-2020学年内蒙古呼和浩特市赛罕区人教版九年级(上)期末数学试卷(解析版)

2019-2020学年内蒙古呼和浩特市赛罕区九年级(上)期末数学试卷一、选择题(每题3分,共30分)1.(3分)已知点A(a,1)与点B(5,b)是关于原点O的对称点,则()A.a=﹣5,b=﹣1B.a=﹣5,b=1C.a=5,b=﹣1D.a=5,b=1 2.(3分)抛物线y=﹣2(x﹣1)2+2的对称轴是()A.y=1B.x=﹣1C.x=l D.y=﹣13.(3分)向高为10cm的下列容器注水,注满为止,若注水量V(cm3)与水深h(cm)之间的函数关系的图象大致如图,则这个容器是()A.B.C.D.4.(3分)关于对应关系y=,下列说法正确的是()A.不是函数B.是函数C.与函数y=x是同一函数D.以上选项都不对5.(3分)AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD 间的距离为()A.1B.7C.1或7D.3或46.(3分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.从分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率B.掷一枚质地均匀的骰子,向上的点数是偶数的概率C.同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率7.(3分)已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)8.(3分)若关于x的方程mx2﹣2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<﹣B.m≤,且m≠0C.m<,且m≠0D.m>9.(3分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+2=0的两个实数根为x1和x2,设t=,则t的最大值为()A.﹣4B.4C.﹣6D.610.(3分)如图,在△AOB中,∠ABO=90°,=2,反比例函数y=在第一象限的图象分别交OA、AB于点C、D,且S△BOD=2,则C的坐标为()A.(2,4)B.(,2)C.(1,2)D.(,)二、填空(每题3分,共18分)11.(3分)一元二次方程x2+2x﹣3=0的解为.12.(3分)如图,点A、B、C在⊙O上,弦AC与半径OB互相平分,那么∠OAC的度数为度.13.(3分)二次函数y=﹣2x2﹣4x+3(x≤﹣2)的最大值为.14.(3分)圆锥的高为2cm,母线长为8cm,则侧面展开图扇形圆心角为度.15.(3分)对于二次函数y=x2﹣4x+3,当自变量x满足a≤x≤3时,函数值y的取值范围为﹣1≤y<0,则a的取值范围为.16.(3分)下列命题:①试验次数越多频率就越接近概率;②汽车是轴对称图形;③直径是圆中最长的弦;④反比例函数y=(x>0)的图象是中心对称图形.正确的序号是.三、解答题(共72分)17.(8分)解方程:(1)用配方法解一元二次方程:x2+4x﹣2=2x+3;(2)解方程:3x(x﹣1)=2(x﹣1).18.(7分)甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由19.(7分)已知二次函数的解析式是y=2x2﹣4x+3.(1)用配方法将解析式化成y=a(x﹣h)2+k的形式,并写出顶点C的坐标;(2)在直角坐标系中,画出它的大致图象;(3)若点A(1﹣a,y1)和B(2+a,y2)(a>0)在二次函数图象上,请利用图象直接写出y1与y2的大小关系.20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.21.(8分)某市某楼盘准备以每平方米12100元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后(每次降价的百分率相同),决定以每平方米10000元的均价开盘销售.(1)求平均每次下调的百分率(精确到0.01);(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月2元,请问哪种方案更优惠?22.(8分)如图,对角线长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(a,)时,求a的值和反比例函数的解析式;(2)一次函数y=mx+n的图象过D、E两点,连接OD、OE,求△ODE的面积,并利用图象直接写出不等式mx+n﹣<0的解集.23.(9分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.24.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O 于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.25.(9分)如图,已知:直线y=﹣2x+m(m为常数),抛物线y=ax2﹣2ax+3的最大值为4,抛物线的顶点为A.(1)当直线经过A点时,求m的值;(2)当直线和抛物线在x轴上方的部分只有一个公共点时,求m的取值范围.(3)当直线与抛物线只有一个公共点D时,设点P是y轴上一动点,求|P A﹣PD|的最大值,并求取得最大值时P点的坐标.2019-2020学年内蒙古呼和浩特市赛罕区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)已知点A(a,1)与点B(5,b)是关于原点O的对称点,则()A.a=﹣5,b=﹣1B.a=﹣5,b=1C.a=5,b=﹣1D.a=5,b=1【分析】本题比较容易,根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.就可以求出a、b的值.【解答】解:根据题意得a=﹣5,b=﹣1,故选:A.2.(3分)抛物线y=﹣2(x﹣1)2+2的对称轴是()A.y=1B.x=﹣1C.x=l D.y=﹣1【分析】根据二次函数顶点式得出对称轴即可,注意与对点坐标区分.【解答】解:∵抛物线y=﹣2(x﹣1)2+2,∴抛物线y=﹣2(x﹣1)2+2的对称轴是:x=1.故选:C.3.(3分)向高为10cm的下列容器注水,注满为止,若注水量V(cm3)与水深h(cm)之间的函数关系的图象大致如图,则这个容器是()A.B.C.D.【分析】根据函数的图象可知,注水量与水深之间是随着水的深度越大增加的速度越慢的关系进行的.【解答】解:根据函数图象可知,注水量Vcm3与水深hcm之间的关系是注水量Vcm3随着h的增大而增加的速度逐渐减慢,可以得出开始容器由小逐渐变大,即开口越来越大,从图形容器可以看出C符合,故选:C.4.(3分)关于对应关系y=,下列说法正确的是()A.不是函数B.是函数C.与函数y=x是同一函数D.以上选项都不对【分析】利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【解答】解:A、根据函数的定义,y是x的函数,故A错误;B、根据函数的定义,y是x的函数,故B正确;C、与函数y=x不是同一函数,自变量一个不可以取0,一个可以取0,故C错误;D、根据函数的定义,y是x的函数,故D错误;故选:B.5.(3分)AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD 间的距离为()A.1B.7C.1或7D.3或4【分析】过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,由题意可得:OA=OC=5,AF=FB=3,CE=ED=4,E、F、O在一条直线上,EF为AB、CD之间的距离,再分别解Rt△OEC、Rt△OF A,即可得OE、OF的长,然后分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.6.(3分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.从分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率B.掷一枚质地均匀的骰子,向上的点数是偶数的概率C.同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、分别写者数字1,2,3的三个纸团中随机抽取一个,抽中2的概率为≈0.33,故此选项符合题意;B、掷一枚质地均匀的骰子,向上的点数是偶数的概率为,故此选项不符合题意;C、同时抛掷两枚质地均匀的硬币,一枚正面向上、一枚反面向上的概率,故此选项不符合题意;D、从一副去掉大小王的扑克牌,任意抽取一张,抽到红桃的概率是,故此选项不符合题意.故选:A.7.(3分)已知点A(﹣1,),O为坐标原点,连结OA.将线段OA绕点O按逆时针方向旋转30°得到线段OA′,则点A′的坐标为()A.(1,﹣)B.(﹣2,)C.(﹣,2)D.(﹣,1)【分析】如图,作AH⊥x轴于H,作A′E⊥x轴于E.解直角三角形求出A′E,OE即可.【解答】解:如图,作AH⊥x轴于H,作A′E⊥x轴于E.∵A(﹣1,),∴OH=1,AH=,∴tan∠AOH==,∴∠AOH=60°,∠OAH=30°,∴OA=OA′=2OH=2,∵∠AOA′=30°,∴∠A′OE=30°,∴A′E=OA′=1,OE=A′E=,∴A′(﹣,1),故选:D.8.(3分)若关于x的方程mx2﹣2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<﹣B.m≤,且m≠0C.m<,且m≠0D.m>【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=4﹣12m>0,m<,∵m≠0,∴m<且m≠0,故选:C.9.(3分)已知关于x的一元二次方程x2﹣2(k﹣1)x+k2+2=0的两个实数根为x1和x2,设t=,则t的最大值为()A.﹣4B.4C.﹣6D.6【分析】根据判别式可求出k的范围,然后将两根之和化简原式即可求出t的最大值.【解答】解:由题意可知:△=4(k﹣1)2﹣4(k2+2)=﹣8k﹣4≥0,∴k≤,由根与系数的关系可知:x1+x2=2(k﹣1),∴t==2﹣,∴t≤6,故选:D.10.(3分)如图,在△AOB中,∠ABO=90°,=2,反比例函数y=在第一象限的图象分别交OA、AB于点C、D,且S△BOD=2,则C的坐标为()A.(2,4)B.(,2)C.(1,2)D.(,)【分析】由=2,可知点A的纵坐标是横坐标的2倍,因此可知点A在直线y=2x上,由S△BOD=2,可以确定反比例函数的关系式,两个函数的关系式联立求出交点坐标即可.【解答】解:∵∠ABO=90°,=2,设OB=a,则AB=2a,∴A(a,2a)∴直线OA的关系式为y=2x,∵S△BOD=2,∴|k|=2,k>0,∴k=4,∴反比例函数的关系式为y=,由题意得,,解得:,(舍去)∴C(,2),故选:B.二、填空(每题3分,共18分)11.(3分)一元二次方程x2+2x﹣3=0的解为x1=﹣3,x2=1.【分析】先把方程左边分解,然后把原方程化为两个一次方程x+3=0或x﹣1=0,再解一次方程即可.【解答】解:(x+3)(x﹣1)=0,x+3=0或x﹣1=0,所以x1=﹣3,x2=1.故答案为x1=﹣3,x2=1.12.(3分)如图,点A、B、C在⊙O上,弦AC与半径OB互相平分,那么∠OAC的度数为30度.【分析】首先根据垂径定理得到OA=AB,结合等边三角形的性质即可求出∠AOC的度数,进而可求出∠OAC的度数.【解答】解:∵弦AC与半径OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AOC=120°,∴∠OAC=∠OCA=30°,故答案为30.13.(3分)二次函数y=﹣2x2﹣4x+3(x≤﹣2)的最大值为3.【分析】直接利用二次函数的性质结合最值求法进而得出答案.【解答】解:y=﹣2x2﹣4x+3=﹣2(x+1)2+5,即x=﹣1时,二次函数最大,∵x≤﹣2,且抛物线开口向下,∴x=﹣2时,二次函数最大为:y=﹣2×(﹣2)2﹣4×(﹣2)+3=3.故答案为:3.14.(3分)圆锥的高为2cm,母线长为8cm,则侧面展开图扇形圆心角为90度.【分析】首先利用勾股定理求得圆锥的母线长,然后利用圆锥的底面周长等于扇形的弧长求得圆心角的度数即可.【解答】解:∵高为2cm,母线长为8cm,∴圆锥的底面周长为=2cm,∴=2×2π,解得:n=90,故答案为:90.15.(3分)对于二次函数y=x2﹣4x+3,当自变量x满足a≤x≤3时,函数值y的取值范围为﹣1≤y<0,则a的取值范围为1<a≤2.【分析】函数的顶点D坐标为:(2,﹣1),则点A、B的坐标分别为:(1,0)、(3,0),从图象可以看出:y的取值范围为﹣1≤y<0时,1<a≤2;即可求解.【解答】解:函数图象如下,函数的对称轴为:x=2,顶点D坐标为:(2,﹣1),则点A、B的坐标分别为:(1,0)、(3,0),从图象可以看出:y的取值范围为﹣1≤y<0时,1<a≤2;故答案为:1<a≤2.16.(3分)下列命题:①试验次数越多频率就越接近概率;②汽车是轴对称图形;③直径是圆中最长的弦;④反比例函数y=(x>0)的图象是中心对称图形.正确的序号是①③④.【分析】根据频率估计概率、轴对称图形的概念、弦的概念、反比例函数的图象判断.【解答】解:①试验次数越多频率就越接近概率,本说法正确;②汽车样式各异,不一定是轴对称图形,本说法错误;③直径是圆中最长的弦,本说法正确;④反比例函数y=(x>0)的图象是中心对称图形,本说法正确;故答案为:①③④.三、解答题(共72分)17.(8分)解方程:(1)用配方法解一元二次方程:x2+4x﹣2=2x+3;(2)解方程:3x(x﹣1)=2(x﹣1).【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)方程整理,得:x2+2x﹣5=0,则x2+2x=5,∴x2+2x+1=5+1,即(x+1)2=6,∴x+1=±,∴x=﹣1±;(2)∵3x(x﹣1)﹣2(x﹣1)=0,∴(x﹣1)(3x﹣2)=0,则x﹣1=0或3x﹣2=0,解得x=1或x=.18.(7分)甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由【分析】(1)画树状图展示所有6种等可能的结果数,找出指针所在区域的数字之积为偶数的结果数,然后根据概率公式计算;(2)利用甲胜的概率=,乙胜的概率=,从而可判断这个游戏规则对甲、乙双方不公平.【解答】解:(1)画树状图为:共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,所以甲胜的概率==;(2)这个游戏规则对甲、乙双方不公平.理由如下:∵甲胜的概率=,乙胜的概率=,而≠,∴这个游戏规则对甲、乙双方不公平.19.(7分)已知二次函数的解析式是y=2x2﹣4x+3.(1)用配方法将解析式化成y=a(x﹣h)2+k的形式,并写出顶点C的坐标;(2)在直角坐标系中,画出它的大致图象;(3)若点A(1﹣a,y1)和B(2+a,y2)(a>0)在二次函数图象上,请利用图象直接写出y1与y2的大小关系.【分析】(1)直接利用配方法求出二次函数定点坐标即可;(2)求出二次函数与y轴交点,进而画出其图象;(3)直接利用二次函数的增减性进而得出答案.【解答】解:(1)y=2x2﹣4x+3=2(x2﹣2x)+3=2(x2﹣2x+1﹣1)+3=2(x﹣1)2+1,顶点C的坐标(1,1);(2)当x=0时,y=3,图象如图所示:(3)由(1)得抛物线的对称轴为x=1,∵1﹣(1﹣a)=a,2+a﹣1=1+a,且a>0,∴2+a距离对称轴x=1的距离远,又∵a>0,∴y2>y1.20.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且=.(1)求证:△ADF∽△ACG;(2)若=,求的值.【分析】(1)由∠AED=∠B、∠DAE=∠CAB利用三角形内角和定理可得出∠ADF=∠C,结合=,即可证出△ADF∽△ACG;(2)根据相似三角形的性质可得出=,由=可得出=,再结合FG=AG﹣AF即可求出的值.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠CAB,∴∠ADF=∠C.又∵=,∴△ADF∽△ACG.(2)∵△ADF∽△ACG,∴=.∵=,∴=,∴==1.21.(8分)某市某楼盘准备以每平方米12100元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后(每次降价的百分率相同),决定以每平方米10000元的均价开盘销售.(1)求平均每次下调的百分率(精确到0.01);(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月2元,请问哪种方案更优惠?【分析】(1)设平均每次下调的百分率为x,则12100(1﹣x)2=10000,即可求解;(2)①优惠:10000(1﹣0.98)×100=20000;②优惠:2×100×2×12=4800,即可求解.【解答】解:(1)设平均每次下调的百分率为x,则12100(1﹣x)2=10000,解得:x=9.09%;(2)①优惠:10000(1﹣0.98)×100=20000;②优惠:2×100×2×12=4800,故方案①更优惠.22.(8分)如图,对角线长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(a,)时,求a的值和反比例函数的解析式;(2)一次函数y=mx+n的图象过D、E两点,连接OD、OE,求△ODE的面积,并利用图象直接写出不等式mx+n﹣<0的解集.【分析】(1)根据正方形的性质得到AB=AD=BC=2,则利用点E的坐标为(a,)可表示出点D的坐标为(a﹣2,2),根据反比例函数图象上点的坐标特征得到a=2(a ﹣2),解得a=3,则D(1,2),E(3,),易得k=2,从而得到反比例函数解析式;(2)利用S△ODE=S△OAD+S梯形ABED﹣S△OBE=S梯形ABED进行计算,然后几何函数图象,写出反比例函数在一次函数图象上方所对应的自变量的范围得到不等式的解集.【解答】解:(1)∵四方形ABCD的对角线长为2,∴AB=AD=BC=2,∵点E的坐标为(a,),∴点D的坐标为(a﹣2,2),∵D点和E点都在反比例函数y=上,∴a=2(a﹣2),解得a=3,∴D(1,2),E(3,),∴k=1×2=2,∴反比例函数解析式为y=;(2)S△ODE=S△OAD+S梯形ABED﹣S△OBE=S梯形ABED=×(+2)×2=.当0<x<1或x>3时,反比例函数的函数值比一次函数的函数值大,所以不等式mx+n﹣<0的解集为0<x<1或x>3.23.(9分)某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大.【分析】设每件涨价x元,则每件的利润是(60﹣40+x)元,所售件数是(300﹣10x)件,总利润为y;设每件降价a元,则每件的利润是(60﹣40﹣a)元,所售件数是(300+20a)件,总利润为w;根据利润=每件的利润×所售的件数,即可列出函数解析式,根据函数的性质即可求得如何定价才能使利润最大.【解答】解:设涨价x元,利润为y,则y=(60﹣40+x)(300﹣10x)=﹣10x2+100x+6000=﹣10(x﹣5)2+6250因此当x=5时,y有最大值6250.60+5=65元每件定价为65元时利润最大.设每件降价a元,总利润为w,则w=(60﹣40﹣a)(300+20a)=﹣20a2+100a+6000=﹣20(a﹣2.5)2+6125因此当a=2.5时,w有最大值6125.每件定价为57.5元时利润最大.综上所知每件定价为65元时利润最大.24.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O 于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.25.(9分)如图,已知:直线y=﹣2x+m(m为常数),抛物线y=ax2﹣2ax+3的最大值为4,抛物线的顶点为A.(1)当直线经过A点时,求m的值;(2)当直线和抛物线在x轴上方的部分只有一个公共点时,求m的取值范围.(3)当直线与抛物线只有一个公共点D时,设点P是y轴上一动点,求|P A﹣PD|的最大值,并求取得最大值时P点的坐标.【分析】(1)抛物线y=ax2﹣2ax+3的最大值为4,函数的对称轴为:x=1,此时y=a ﹣2a+3=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,即可求解;(2)①当直线过(﹣1,0)时,则0=2+m,解得:m=﹣2;②当直线过(3,0)时,即0=﹣6+m,解得:m=6;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:x2﹣4x+m﹣3=0,△=(﹣4)2﹣4(m﹣3)=0,解得:m=7,此时交点坐标为:(2,3),即可求解;(3)由(2)知,点D(2,3),连接D、A交y轴于点P,则此时|P A﹣PD|有最大值,即点P为所求点,即可求解.【解答】解:(1)抛物线y=ax2﹣2ax+3的最大值为4,函数的对称轴为:x=1,此时y=a﹣2a+3=4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;顶点A的坐标为:(1,4);将点A的坐标代入直线表达式并解得:m=6;(2)抛物线于x轴的交点坐标为:(﹣1,0)和(3,0);①当直线过(﹣1,0)时,则0=2+m,解得:m=﹣2;②当直线过(3,0)时,即0=﹣6+m,解得:m=6;③当直线和抛物线只有一个交点时,联立直线和抛物线的表达式并整理得:x2﹣4x+m﹣3=0,△=(﹣4)2﹣4(m﹣3)=0,解得:m=7,此时交点坐标为:(2,3),当直线过(3,0)时,直线和抛物线在x轴上方的部分有两个公共点,故﹣2≤m<6或6<m≤7;(3)由(2)知,点D(2,3),连接D、A交y轴于点P,则此时|P A﹣PD|有最大值,即点P为所求点,由点A、D的坐标得,直线AD的表达式为:y=﹣x+5,故点P(0,5).。

2019-2020年人教版九年级上学期数学期末模拟达标测试题及答案解析-精编试题

2019-2020年人教版九年级上学期数学期末模拟达标测试题及答案解析-精编试题

九年级(上)期末数学模拟试卷一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.下列图形是中心对称图形的是()A.B.C.D.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A .40°B .50°C .80°D .100°6.下列图象中是反比例函数y=﹣图象的是( )A .B .C .D .7.如图,二次函数y=ax 2+bx+c 的图象与x 轴交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .x >4C .﹣2<x <4D .x >08.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为( )A .B .C .D .9.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .10.如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B′位置,A 点落在A′位置,若AC ⊥A′B′,则∠BAC 的度数是( )A .50°B .60°C .70°D .80°11.边长为a 的正三角形的内切圆的半径为( )A . aB . aC . aD . a12.反比例函数y 1=(x >0)的图象与一次函数y 2=﹣x+b 的图象交于A ,B 两点,其中A (1,2),当y 2>y 1时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >213.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A .2:5B .2:3C .3:5D .3:214.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x 名同学,则根据题意列出的方程是( )A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×215.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.18.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=1,则弦AB 的长是 .19.如图,点A 在双曲线上,点B 在双曲线y=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .20.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,4),则点B 2016的坐标为 .三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m ﹣1)x 2+7mx+m 2+3m ﹣4=0有一个根为零,求m的值.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y 轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.参考答案与试题解析一、选择题(共16小题,每小题3分,满分48分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.=2C.x2+2x=x2﹣1D.3(x+1)2=2(x+1)【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.3.下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形是中心对称图形,正确,B、该图形不是中心对称图形,错误;C、该图形不是中心对称图形,错误;D、该图形是轴对称图形,错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.下列说法中,正确的是()A.不可能事件发生的概率是0B.打开电视机正在播放动画片,是必然事件C.随机事件发生的概率是D.对“梦想的声音”节目收视率的调查,宜采用普查【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、不可能事件发生的概率是0,故A符合题意;B、打开电视机正在播放动画片,是随机事件,故B不符合题意;C、随机事件发生的概率是0<P<1,故C不符合题意;D、对“梦想的声音”节目收视率的调查,宜采用抽样调查,故D不符合题意;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.【点评】本题考查了圆周角定理,属于基础题,掌握圆周角定理的内容是解答本题的关键.6.下列图象中是反比例函数y=﹣图象的是()A .B .C .D .【分析】利用反比例函数图象是双曲线进而判断得出即可.【解答】解:反比例函数y=﹣图象的是C .故选:C .【点评】此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.7.如图,二次函数y=ax 2+bx+c 的图象与x 轴交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .x >4C .﹣2<x <4D .x >0【分析】由抛物线与x 轴的交点坐标,结合图象即可解决问题.【解答】解:∵二次函数y=ax 2+bx+c 的图象与x 轴交于(﹣2,0)和(4,0)两点,函数开口向下,∴函数值y >0时,自变量x 的取值范围是﹣2<x <4,故选:C .【点评】本题考查抛物线与x轴的交点,解题的关键是学会根据图象确定自变量的取值范围,属于中考常考题型.8.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为()A.B.C.D.【分析】由在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,直接利用概率公式求解即可求得答案.【解答】解:∵在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,∴从中随机摸出一个小球,其标号小于4的概率为:.故选:C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC的度数可求.【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选:C .【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.边长为a 的正三角形的内切圆的半径为( )A . aB . aC . aD . a【分析】根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=,∴tan ∠BOD==,∴内切圆半径OD=×=a . 故选:D .【点评】此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.12.反比例函数y 1=(x >0)的图象与一次函数y 2=﹣x+b 的图象交于A ,B 两点,其中A (1,2),当y 2>y 1时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >2【分析】根据函数解析式画出函数的大致图象,根据图象作出选择.【解答】解:根据双曲线关于直线y=x 对称易求B (2,1).依题意得:如图所示,当1<x <2时,y 2>y 1.故选:B .【点评】本题考查了反比例函数与一次函数的交点问题.此题利用了双曲线的对称性求得点B 的坐标是解题的关键.13.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A .2:5B .2:3C .3:5D .3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:25即可得出其相似比,由相似三角形的性质即可求出 DE :AB 的值,由AB=CD 即可得出结论.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB=∠DEF ,∠AFB=∠DFE ,∴△DEF ∽△BAF ,∵S △DEF :S △ABF =4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.14.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件.如果全组共有x名同学,则根据题意列出的方程是()A.x(x+1)=182B.x(x+1)=182×C.x(x﹣1)=182D.x(x﹣1)=182×2【分析】先求每名同学赠的标本,再求x名同学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程.【解答】解:设全组有x名同学,则每名同学所赠的标本为:(x﹣1)件,那么x名同学共赠:x(x﹣1)件,所以,x(x﹣1)=182.故选:C.【点评】本题考查一元二次方程的实际运用:要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.15.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.16.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线可知当﹣1<x<2时,y<0,故错误;C、当x=1时,y<0,即a+b+c<0,故正确;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.故选:B.【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.二、填空题(共4小题,每小题3分,满分12分)17.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6 .【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.18.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 6 .【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.19.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 2 .【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S 的关系S=|k|即可判断.【解答】解:过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线上,∴四边形AEOD 的面积为1,∵点B 在双曲线y=上,且AB ∥x 轴,∴四边形BEOC 的面积为3,∴矩形ABCD 的面积为3﹣1=2.故答案为:2.【点评】本题主要考查了反比例函数中k 的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.20.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A (,0),B (0,4),则点B 2016的坐标为 (10080,4) .【分析】根据图形和旋转规律可得出B n 点坐标的变换规律,结合三角形的周长,即可得出结论.【解答】解:在直角三角形OAB 中,OA=,OB=4,由勾股定理可得:AB=,△OAB 的周长为:OA+OB+AB=+4+=10, 研究三角形旋转可知,当n 为偶数时B n 在最高点,当n 为奇数时B n 在x 轴上,横坐标规律为:,∵2016为偶数,∴B 2016(×10,4).故答案为:(10080,4).【点评】本题考查的坐标与图形的变换,解题的关键是在变换中找到规律,结合图形得出结论.三、解答题(共6小题,满分60分)21.(8分)已知一元二次方程(m ﹣1)x 2+7mx+m 2+3m ﹣4=0有一个根为零,求m的值.【分析】由于一元二次方程(m ﹣1)x 2+7mx+m 2+3m ﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m 的方程,解这个方程即可求出m 的值.【解答】解:∵一元二次方程(m ﹣1)x 2+7mx+m 2+3m ﹣4=0有一个根为零, ∴把x=0代入方程中得m 2+3m ﹣4=0,∴m 1=﹣4,m 2=1.由于在一元二次方程中m ﹣1≠0,故m ≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.22.(10分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.【分析】(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2)列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数即为所求的概率.【解答】解:(1)画出树状图来说明评委给出A 选手的所有可能结果:;(2)∵由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,对于A选手,晋级的可能有4种情况,∴对于A选手,晋级的概率是:.【点评】本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP.【分析】(1)连接OE,如图,利用圆周角定理得到∠CED=90°,即∠CEO+∠OED=90°,加上∠C=∠CEO,∠PED=∠C.则∠PED+∠OED=90°,即∠OEP=90°,然后根据切线的性质定理可判定PE是⊙O的切线;(2)利用圆周角定理得到∠AEB=90°,再利用AE∥CD得到∠EFD=90°,接着利用等角的余角相等可判断∠FED=∠C,所以∠PED=∠FED.【解答】证明:(1)连接OE,如图,∵CD为直径,∴∠CED=90°,即∠CEO+∠OED=90°,∵OC=OE,∴∠C=∠CEO,∴∠C+∠OED=90°,∵∠PED=∠C.∴∠PED+∠OED=90°,即∠OEP=90°,∴OE⊥PE,∴PE是⊙O的切线;(2)∵AB为直径,∴∠AEB=90°,而AE∥CD,∴∠EFD=90°,∴∠FED+∠EDF=90°,而∠C+∠EDC=90°,∴∠FED=∠C,∴∠PED=∠FED,∴ED平分∠BEP.【点评】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线.当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了圆周角定理.24.(10分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【分析】(1)设每绿地面积的年平均增长率为x ,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x 的值即可;(2)根据(1)求出的年增长率就可以求出结论.【解答】解:(1)设绿地面积的年平均增长率为x ,根据意,得57.5(1+x )2=82.8解得:x 1=0.2,x 2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.【点评】本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键.25.(10分)如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y 轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).(1)求k的值;(2)直接写出阴影部分面积之和.【分析】(1)根据点A和点E的坐标求得直线AE的解析式,然后设出点D的纵坐标,代入直线AE的解析式即可求得点D的坐标,从而求得k值;(2)根据中心对称的性质得到阴影部分的面积等于平行四边形CDGF的面积即可.【解答】解:(1)∵A(3,5)、E(﹣2,0),∴设直线AE的解析式为y=kx+b,则,解得:,∴直线AE的解析式为y=x+2,∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=(0<k<15)的图象经过点D,∴k=﹣3×(﹣1)=3;(2)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S=4×3=12.阴影【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是能够确定点D的坐标,难度不大.26.(12分)如图,已知抛物线y=ax2+bx﹣3与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C,其顶点为D,对称轴为直线x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ACM是以AC为一腰的等腰三角形时,求点M的坐标.【分析】(1)利用对称性可得B (3,0),则利用交点式得抛物线解析式为y=a (x+1)(x ﹣3)=ax 2﹣2ax ﹣3a ,所以﹣3a=3,解得a=1,于是得到抛物线解析式为y=x 2﹣2x ﹣3;(2)分类讨论:当AC=AM 时,易得点M 1(0,3),如图;②当CM=CA 时,先计算出AC=,再以C 点为圆心,CA 为半径画弧交y 轴于M2,M 3,如图,易得M2(0,﹣3),M 3(0,﹣﹣3).【解答】解:(1)∵点A (﹣1,0)和点B 关于直线x=1对称,∴B (3,0),∴抛物线解析式为y=a (x+1)(x ﹣3)=ax 2﹣2ax ﹣3a ,∴﹣3a=3,解得a=1,∴抛物线解析式为y=x 2﹣2x ﹣3;(2)当AC=AM 时,点M 1与点C 关于x 轴对称,则M 1(0,3),如图;②当CM=CA 时,AC==,以C 点为圆心,CA 为半径画弧交y 轴于M2,M 3,如图,则OM 2=﹣1,OM3=OC+CM 3=3+,则M 2(0,﹣3),M 3(0,﹣﹣3).综上所述,满足条件的点M 的坐标为(0,3),(0,﹣3),(0,﹣﹣3).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决(2)小题的关键是利用等腰三角形的性质画出点M的坐标.。

人教版2019-2020学年九年级(上)期末数学模拟试卷解析版

人教版2019-2020学年九年级(上)期末数学模拟试卷解析版

人教版2019-2020学年九年级(上)期末数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的三视图,该几何体是()A.圆锥B.圆柱C.棱柱D.正方体2.(2分)下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB等于()A.20°B.25°C.35°D.45°4.(2分)下列事件中,是随机事件的是()A.⊙O的半径为5,OP=3,点P在⊙O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角5.(2分)如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sin A的值为()A.B.C.D.6.(2分)已知近视眼镜的度数y(度)与镜片焦距x(米)之间成如图所示的反比例函数关系,则眼镜度数y与镜片焦距x之间的函数解析式为()A.y=200x B.y=C.y=100x D.y=7.(2分)一个扇形的圆心角为120°,半径为3,则这个扇形的弧长是()A.4πB.3πC.2πD.π8.(2分)心理学家发现:课堂上,学生对概念的接受能力s与提出概念的时间t(单位:min)之间近似满足函数关系s=at2+bt+c(a≠0),s值越大,表示接受能力越强.如图记录了学生学习某概念时t与s的三组数据,根据上述函数模型和数据,可推断出当学生接受能力最强时,提出概念的时间为()A.8min B.13min C.20min D.25min二、填空题(本题共16分,每小题2分)9.(2分)点P(4,3)关于原点的对称点P′的坐标是.10.(2分)写出一个反比例函数y=(k≠0),使它的图象在其每一分支上,y随x的增大而减小,这个函数的解析式为.11.(2分)如图标记了△ABC和△DEF的边,角的一些数据,请你添加一个条件,使△ABC∽△DEF,这个条件可以是.(只填一个即可)12.(2分)如图所示的网格是正方形网格,则tanαtanβ.(填“>”,“=”或“<”)13.(2分)如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是.14.(2分)如图,小芸用灯泡O照射一个矩形相框ABCD,在墙上形成影子A′B′C′D′.现测得OA=20cm,OA′=50cm,相框ABCD的面积为80cm2,则影子A′B′C′D′的面积为cm2.15.(2分)在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为m2.16.(2分)下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.下面有三个推断:①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769. 其中合理的推断的序号是: .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明,演算步骤或证明过程. 17.(5分)计算:tan60°﹣cos45°+sin30°.18.(5分)如图,△ABC 中,点D 在边AC 上,且∠ABD =∠C . (1)求证:△ADB ∽△ABC ; (2)若AD =4,AC =9,求AB 的长.19.(5分)如图,在平面直角坐标系中,△AOB 的三个顶点坐标分别为A (1,0),O (0,0),B (2,2).以点O 为旋转中心,将△AOB 逆时针旋转90°,得到△A 1OB 1. (1)画出△A 1OB 1;(2)直接写出点A 1和点B 1的坐标; (3)求线段OB 1的长度.20.(5分)下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:⊙O的一条切线,使这条切线经过点P.作法:①连接OP,作OP的垂直平分线l,交OP于点A;②以A为圆心,AO为半径作圆,交⊙O于点M;③作直线PM,则直线PM即为⊙O的切线.根据小芸设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接OM,由作图可知,A为OP中点,∴OP为⊙A直径,∴∠OMP=°,()(填推理的依据)即OM⊥PM.又∵点M在⊙O上,∴PM是⊙O的切线.()(填推理的依据)21.(5分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.22.(5分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=2,AC=2.(1)求∠B的度数;(2)求AB和BC的长.23.(6分)如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB为12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m?下面给出了解决这个问题的两种方法,请补充完整:方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy,此时点B的坐标为(,),抛物线的顶点坐标为(,),可求这条抛物线所表示的二次函数的解析式为.当y=6时,求出此时自变量x的取值,即可解决这个问题.方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy,这时这条抛物线所表示的二次函数的解析式为.当y=时,求出此时自变量x的取值为,即可解决这个问题.24.(6分)如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)已知点P(a,0),过点P作平行于y轴的直线,交直线y=2x+2于点M,交函数y=(k≠0)的图象于点N.①当a=2时,求线段MN的长;②若PM>PN,结合函数的图象,直接写出a的取值范围.25.(6分)如图,AB是⊙O的直径,C为⊙O上一点,过点C作⊙O的切线交AB的延长线于点P,过点A作AD⊥PC于点D,AD与⊙O交于点E.(1)求证:AC平分∠DAB.(2)若AB=10,sin∠CAB=,请写出求DE长的思路.26.(6分)如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)确定自变量x的取值范围是;(2)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:(3)如图,建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为cm.27.(7分)正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.(1)当0°<α<45°时,设AM交BC于点F,①如图1,若α=35°,则∠BCE=°;②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.28.(7分)对于平面直角坐标系xOy中的点P,Q和图形G,给出如下定义:点P,Q都在图形G上,且将点P的横坐标与纵坐标互换后得到点Q,则称点P,Q是图形G的一对“关联点”.例如,点P(1,2)和点Q(2,1)是直线y=﹣x+3的一对关联点.(1)请写出反比例函数y=的图象上的一对关联点的坐标:;(2)抛物线y=x2+bx+c的对称轴为直线x=1,与y轴交于点C(0,﹣1).点A,B是抛物线y =x2+bx+c的一对关联点,直线AB与x轴交于点D(1,0).求A,B两点坐标.(3)⊙T的半径为3,点M,N是⊙T的一对关联点,且点M的坐标为(1,m)(m>1),请直接写出m的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱.故选:B.2.解:A、既是轴对称图形又是对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,选项错误;C、是轴对称图形,不是中心对称图形,选项错误;D、是轴对称图形,不是中心对称图形,选项错误.故选:A.3.解:∵OA⊥OB,∴∠AOB=90°,由圆周角定理得,∠ACB=∠AOB=45°,故选:D.4.解:A、因为OP<⊙O的半径,所以点P在⊙O内,所以点P在⊙O外为不可能事件;B、相似三角形的对应角相等为必然事件;C、任意画两个直角三角形,这两个三角形可能相似,也可能不相似,所以它为随机事件;D、直径所对的圆周角为直角为必然事件.故选:C.5.解:在Rt△ABC中,∵∠C=90°,AB=3,BC=2,∴sin A==,故选:A.6.解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.5,200)在此函数解析式上,∴k=0.5×200=100,∴y=,故选:D.7.解:根据弧长的公式l=,得到:l==2π,故选:C.8.解:由题意得:函数过点(0,43)、(20,55)、(30,31),把以上三点坐标代入s=at2+bt+c得:,解得:,则函数的表达式为:s=﹣t2+t+43,∵a=﹣,则函数有最大值,当t=﹣=13时,s有最大值,即学生接受能力最强,故选:B.二、填空题(本题共16分,每小题2分)9.解:∵关于原点对称的点的坐标关系,即横坐标与纵坐标都互为相反数,∴点P(4,3)关于原点的对称点P′的坐标是(﹣4,﹣3).10.解:∵图象在其每一分支上,y随x的增大而减小,∴k>0∴这个函数的解析式为y=,故答案为y=(答案不唯一).11.解:根据两角对应相等两三角形相似,可以添加:∠C=60°或∠B=35°,根据两边成比例夹角相等两三角形相似,可以添加:DF=6.故答案为DF=6或∠C=60°或∠B=35°12.解:由图知∠β>∠α,∵锐角的正切值随角度的增大而增大,∴tanα<tanβ,故答案为:<.13.解:连接OA,∵OC⊥AB,∴C为AB的中点,即AC=BC,在Rt△AOC中,OA=5cm,OC=3cm,根据勾股定理得:AC==4cm,则AB=2AC=8cm.故答案为:8cm14.解:∵OA:OA′=2:5,可知OB:OB′=2:5,∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB:A′B′=2:5,∴矩形ABCD的面积:矩形A′B′C′D′的面积为4:25,又矩形ABCD的面积为80cm2,则矩形A′B′C′D′的面积为500cm2.故答案为:500cm2.15.解:设:AB=x,则BC=24﹣x,S=AB•CD=x(24﹣x)=﹣x2+24x,矩形花园ABCD此函数的对称轴为:x=﹣=﹣=12,∵a=﹣1,故函数有最大值,当x=12时,函数取得最大值,=AB•CD=x(24﹣x)=﹣x2+24x=﹣144+24×12=144,则:S矩形花园ABCD故:答案是144.16.解:①投掷1000次时,针与直线相交的次数是454,可以估计针与直线相交的概率是0.454,错误;②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477,正确;③若再次用计算机模拟此实验,则当投掷次数为10000时,可以估计针与直线相交的频率是0.4769,错误;故答案为:②三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明,演算步骤或证明过程.17.解:原式=×﹣×+=3﹣1+=.18.(1)证明:∵∠ABD=∠C,∠A=∠A,∴△ADB∽△ABC;(2)解:∵△ADB∽△ABC,∴=,即AB2=AC•AD,∵AD=4,AC=9,∴AB2=4×9=36,∴AB=6.19.解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.20.解:(1)补全图形,如图所示:(2)证明:连接OM ,由作图可知,A 为OP 中点,∴OP 为⊙A 直径,∴∠OMP =90°,(直径所对的圆周角是直角),即OM ⊥PM .又∵点M 在⊙O 上,∴PM 是⊙O 的切线.(经过半径的外端并且垂直于这条半径的直线是圆的切线),故答案为:90,直径所对的圆周角是直角,经过半径的外端并且垂直于这条半径的直线是圆的切线.21.解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为. 故答案为;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A ,B ,C ,D ,记恰好选中《九章算术》和《孙子算经》为事件M .方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)==.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)==.22.解:(1)∵在Rt△ACD中,∠C=90°,CD=2,AC=2,∴tan∠CAD===,∴∠CAD=30°,∵AD平分∠CAB,∴∠CAB=2∠CAD=60°,∵∠C=90°,∴∠B=90°﹣60°=30°;(2)∵在Rt△ABC中,∠C=90°,∠B=30°,∴AB=2AC=4,∴BC==6.23.解:方法一:B(12,0),O(6,8),设二次函数的解析式为y=a(x﹣6)2+8,把B点的坐标代入得,a=﹣,∴二次函数的解析式为y=﹣x2+x;方法二:设二次函数的解析式为y=ax2,把B(6,﹣8)代入得,a=﹣,∴二次函数的解析式为y=﹣x2;y=﹣2时,求出此时自变量x的取值为±3,故答案为:12,0,6,8,y=﹣x2+x,y=﹣x2;﹣2,±3.24.解:(1)∵点A(1,m)在直线y=2x+2上,∴m=2×1+2=4,∴点A的坐标为(1,4),代入函数y=中,得∴k=1×4=4.(2)①当a=2时,P(2,0).∵直线y=2x+2,反比例函数的解析式为y=.∴M(2,6),N(2,2),∴MN=4.②如图,可得:当a<﹣2,或a>1时,PM>PN.25.(1)证明:连接OC,∵PD切⊙O于点C,∴OC⊥PC,∵AD⊥PC于点D,∴OC∥AD,∴∠EAC=∠ACO.又∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠CAO,即AC平分∠DAB.(2)解:连接CE,可证:Rt△CDE∽Rt△ACB,∴=,在Rt△ABC中,由AB=10,sin∠CAB=,∴BC=4,由∠EAC=∠CAB,得=,∴EC=BC=4.故DE=可求.26.解:(1)由题意:0≤x≤4;故答案为:0≤x≤4.(2)当x=2时,点C与点O重合,此时DE是直径,y=×4×2=4.故答案为4.(3)函数图象如图所示:(4)观察图象可知:当△ADE的面积为4cm2时,AC的长度约为2.0或3.7cm 故答案为2.0或3.7.27.(1)①∵四边形ABCD是正方形,∴∠ABC=90°,∵∠BAF=35°,∴∠AFB=90°﹣∠BAF=55°,∴∠CFE=∠AFB=55°,∵CE⊥AM,∴∠CEF=90°,∴∠ECF=90°﹣∠CFE=35°,即:∠BCE=35°,故答案为:35;②AE=CE+BE.证明:如图2,过点B作BG⊥BE,交AM于点G,∴∠GBE=∠GBC+∠CBE=90°.∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠ABG+∠GBC=90°,∴∠ABG=∠CBE.∴∠α+∠AFB=90°,∵∠CFE=∠AFB,∴∠α+∠CFE=90°,∵∠CEF=90°,∴∠BCE+∠CFE=90°,∴∠α=∠BCE.在△ABG和△CBE中,∠ABG=∠CBE,AB=BC,∠α=∠BCE,∴△ABG≌△CBE(ASA),∴AG=CE,BG=BE.∵在Rt△BEG中,BG=BE,∴GE=BE,∴AE=AG+GE=CE+BE.(2)AE+CE=BE.理由:如图3,过点B作BG⊥BE,交AM于点G,∴∠GBE=∠GBA+∠ABE=90°.∵四边形ABCD为正方形,∴AB=BC,∠D=∠ABC=∠ABE+∠EBC=90°,∴∠ABG=∠CBE.∵∠D=90°,∴∠DAH+∠AHD=90°,∵∠AHD=∠CHE,∴∠DAH+∠CHE=90°,∵∠CEA=90°,∴∠DCE+∠CHE=90°,∴∠DAH=∠DCE.延长DA交BG于N,∵∠NAG=∠DAH,∴∠NAG=∠DCE,∴∠NAG+90°=∠DCE+90°,在△ABG和△CBE中,∠ABG=∠CBE,AB=BC,∠BAG=∠BCE,∴△ABG≌△CBE(ASA),∴AG=CE,BG=BE.∵在Rt△BEG中,BG=BE,∴GE=BE,∴AE=GE﹣AG=BE﹣CE.即:AE+CE=BE.28.解:(1)∵2×3=3×2=6,∴点(2,3),(3,2)是反比例函数y=的图象上的一对关联点.故答案为:(2,3),(3,2).(2)∵抛物线y=x2+bx+c的对称轴为直线x=1,∴﹣=1,解得:b=﹣2.∵抛物线y=x2+bx+c与y轴交于点C(0,﹣1),∴c=﹣1,∴抛物线的解析式为y=x2﹣2x﹣1.由关联点定义,可知:点A,B关于直线y=x对称.又∵直线AB与x轴交于点D(1,0),∴直线AB的解析式为y=﹣x+1.联立直线AB及抛物线解析式成方程组,得:,解得:,,∴A,B两点坐标为(﹣1,2)和(2,﹣1).(3)由关联点定义,可知:点M,N关于直线y=x对称,∴⊙T的圆心在直线y=x上.∵⊙T的半径为3,∴M1M2=×2×3=3,∴m的取值范围为1<m≤1+3.。

2019-2020人教版九年级上学期数学期末模拟试卷(含答案解析)

2019-2020人教版九年级上学期数学期末模拟试卷(含答案解析)

人教版九年级(上)期末数学模拟试卷4如图'皿中'DE 曲詈詩—则M 的长是<5.如图所示是一个直角三角形的苗圃.由一个正方形花坛和两块直角三角形的草皮组成.如 果两个直角三角形的两条斜边长分别为4米和6米.则草皮的总面积为( )平方米.A. 3“13B. 9C. 12D. 24 6. 在平面直角坐标系中•平移二次换数y=xWx+3的图彖能够与二次换数y=^的图彖重 合.则平移方式为( )A.向左平移2个单位.向下平移1个单位 L tan30°的值为( )A.丄B.C. “3D.V3 2 322.若・则斗的值为 a 5 a+b ( )A. —B. 3 c.色 D. 1 4 7 53 3・抛物线y= Cr-2)坤3的顶点坐标是( ) 一.选择通(共16小题,満分42分)B.(3)C. (2, -3)D. ( -2, -3)B. 4cmC. 6cmB. 向左平移2个单位.C. 向右平移2个单位,D. 向右平移2个单位. 7. 如图.的三个顶点分别在正方形网格的格点上•则tanC 的值是(向上平移1个单位向下平据:这购岡弧形门所在的岡与水平地面是相切的.AB=CD=0.25m. BD=\.5m.CQ 与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇阀弧形门的虽高点离 9. 对干抛物线y=・(x+2)2+3・下列结论中正确结论的个数为( )① 抛物线的开口向下: ②对称轴是直线兀=・2:③图彖不经过第一象限: ④当x>2时,y^&x 的增大而减小.A. 4B. 3C. 2D. 110. 如图,钓鱼竿/K?长爲在水面上的鱼线BC & 辺恢 某钓者想看看鱼钓上的惜况. 把鱼竿XC 转动到/C 的位置.此时露在水面上的鱼线C 为呎3叫 则鱼竿转过的 2“10 T 刘10V・小红到影视城游玩,她了解到这扇门的相关数 B.2.5mC. 2.4m 8.如图是“明淸影视城”地而的距离是( A. 2/«角度是()C. 15°D. 90°11.如图.在0O中.AB. /C为互相垂直且相等的两条弦.则下列说法中正确的有()焉的值为(①点G O.〃一定在一条直线上:②若点&点Q分别是CA.川?的中点.则OE=OD:③若点£是C4的中点.连接CO.则△CEO是等腰直角三角形.12•用一条长40<泗的绳产怎样閑成一个面积为75“*的矩形?设矩形的一边为x米.根按题意,可列方程为()A. x (40-X)=75B. x (20-x) =75C. x (x+40) =75D. x (x+20) =75 13.二次函数y=ax^hx^c(o^O)的图彖如图所示.下列结论:©/- 4ar>0:②2o+b>0:③abcVS④4a・2b+c<0:®a+b+c>0.其中正确的个数是()14•已知一个半例的闕心O在坐标原点.直径在x轴上,且与y轴交于点(0. 1),该半岡的任意一条半径与半岡交于点几过P作PN垂直于x轴.N为垂足.则ZOPN的平分线定经过点()D. (0,・ 1)15.如图,已知〃是双曲线v=^(x>0)上一点•过点月作/8〃灭轴・交双曲线y=--X XB. 2个C. I个D. 0个B. 3个C. 4个D. 5A. (b 0)16•已知正方形MNOK 和正六边形ABCDEF 边长均为L 把正方形放在正六边形中•使OK 边 与虫B 边垂合.如图所示.按下列步骤操作:将正方形在正六边形中绕点8顺时针旋转. ft KM 边与BC 边重合.完成第一次旋转:再绕点C 顺时针旋转.使MN 边与CD 边重 合.完成第二次旋转:……在这样连续6次旋转的过程中•点乩M 间的距离不可能是二填空jB (共3小鳳満分10分)17. _____________________________________________________________ 如V6 D ・甞 A(O) B(K) B. 0.6D. 0.8图.zlB是0O的直径.点D在岡上.ZD=65° ,则ZBAC等于__________________________ 度.D18.__________________________________________________________________ 已知关于x的函数丿=(加・1)严2廿”图象与坐标轴只有2个交点.则加= _________________19.如图,£是正方形ABCD边M的中点.连接3.过点B作射/丄CE于F.交XC于G. 交AD J //・卜列说法:①耍:②点F是GB的中点:③AG=^AB:®S^HG=•解答JB (共7小満分68分)20.(1)解方程:2X2 - 4x - 1 =0(2)计算cos45° +3tan30° - 2sin60* •3在“三爱三节"活动中.小明准备从一张废弃的三角形铁片上剪出一个正方形做一个岡柱侧面.如图,四边形DEFG是△MC的内接正方形.D、G分别在AB、AC上,£、F在BC上.AH是J^ABC的高.已知BC=20・AH=\6.求正方形DEFG的边长.2 已知抛物线的顶点是川(2,・3〉,且交y轴于点B(0, 5).求此抛物线的解析式.3如图,半岡O的直從肋=1加”,射线〃M从与线段M重合的位置起.以毎杪6°的旋转速度绕〃点按顺时针方向旋转至BP的位置.交半岡于E,设旋转时间为佰(0 </<15),(1)求£点在岡弧上的运动速度(即每秒走过的弧长),结果保留亿⑵设点C始终为近的中点,过C作CD丄AB干D, AE交CD、C8分别于G、F,过F 牝FN"CD、过C作岡的切线交FN于N.求证:Q)CN〃AE:②四边形CGFN为菱宠:③是否存在这样的f值,使BD=CF・CB2若存在,求/值:若不存在,说明理由.3如图所示,二次函数『=・2+4贰加的图彖与x轴的一个交点为/ (3. 0).另一个交点为B,且与y 轴交于点C.(1)求加的值及点〃的坐标:(2)求ZUBC的面枳:(3)该二次函数图彖上有一点D (x.八便S XBD=S&BC・请求出D点的坐标.为半径作06 0O恰好经过边BC的中点D.并与边相交于另一点F.(1)求证:是0O的切线:(2)若BC=2“3, E是半圆盍上一动点,连接/£、AD. DE.填空:①当缸的长度是 _____ 时,四边形ABDE是菱形:②当加的氏度是 _____ 时.是克角三角形.Gi 服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y (元/件)与批发数址X (件)(x为正整数)之间所满足的换数关系如图所示.(1)求y与x之间所满足的函数关系式.并写出x的取值范围:(2)设脱装厂所获利润为w (元几若1O0W5O (x为正整数).求批发该种服装多少件时.服装厂获得利润垠大?最大利润是多少元?一・选(共16小題,満分42分)【解答】解:tan30・=故选:B.【解答】解:因为-4* 所以h=i^a b b把匸訊代入则無=佥』故选:B.a+y a 了【解答】解:v= (x・2〉却3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2, 3).故选:A.【解答】解:•:DE〃BC.•AD_ AE••丽一疋’V AE=2cm・AB 3・2 _1•• ■ ■ •AC 3.\AC=6 (cm)f 故选:C.【解答】解:7AA/DE是直角三角形.四边形.4BCD是正方形. :・ZMAB=ZBCE=W , ZAf+Z/4AW=9O° , ZABM+ZCBE=%° •:.ZM=ZCBE.:.yMBsHCBE.•胆=坐••矿貳•:MB=6・ BE=4・•胆=坐=丄3ee BE_CE_T 7•: AB=BC ・• BC_3•丽 设 CE=2x ・则 BC=3X 9 在 RtAC^E 中,BE 2=BC 2+CE 2.即 42= dr) 2+ (2x) 2> 解得x=翌亘.13・・・CE=迴AB=BC=^,核仝吩应.13 13 2 13・・・S 沪S4+SM 今述X 昨 R 2 13 13 2 13 13= 12.【解答】解:二次换数y=F+4・r+3=(卅2) ?・1.将其向右平移2个单位•再向上平移 1个眠位得到二次函数),=*・故选:D.故选:A.【解答】解:连接OF.交AC^E.•••BD 是0O 的切线. :・OFIBD ・•・•四边形ABDC 是矩形,:.AC//BD.:.OE 丄代 EF=AB.tanC= BD =-6CD _?故选:C. M / n设囲0的半径为乩在RtZU(9E中.肚=专=专=0・75米.OE=R-AB=R-025.9:AE2-OE2=OA29AO.75^ (R-0.25)2=R2.解得/f=L25.1.25X2=2.5 (米)・答:这扇岡弧形门的最高点离地面的距离是2.5米.•••>・=・(x+2)斗3・・•・抛物线开口向下、对称轴为直线x=・2,顶点坐标为(・2, 3)・故①、②都正确: 在y=・(jr+Z〉2^^中.令>=0 nJ求得x=・2+“3V0・或x=・2・V3<0,・••拋物线图象不经过第一象限.故③正确:•・•抛物线开口向下,对称轴为x=・2, ・••当x>・2时.y随x的增大而减小,・••当x>2时,y随x的壞大而减小,故④正确:综上可知正确的结论有4个.故选:A.【解答】解:VsinZC.^=孚■=¥?=¥■,Av 0 ZC z ^3V3^V3VsinZC z AB'AC:.ZC AB f=60° •:.^CAC9 =60° -45° =15° •鱼竿转过的角度是15・.故选:c.11.【解答】解:®VZJ=90- •AZJ所对的弦是直径.•••点C、O.〃一定在一条直线上.故正确: ②根据相等的弦所对的弦心距也相等可知当点取点D分别是CA.的中点时.则OE=0D正确: ③・:0D丄川?于D. OELAC于E.•••心訥代詳’"""亦=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(上)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.关于的方程(a﹣1)2++2=0是一元二次方程,则a的取值范围是()A.a≠1B.a≥﹣1且a≠1C.a>﹣1且a≠1D.a≠±12.已知点P(﹣1,m2+1)与点Q关于原点对称,则点Q一定在()A.第一象限B.第二象限C.第三象限D.第四象限3.用配方法解一元二次方程2+2﹣1=0时,此方程可变形为()A.(+1)2=1B.(﹣1)2=1C.(+1)2=2D.(﹣1)2=24.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30°B.35°C.40°D.50°5.二次函数图象上部分点的坐标对应值列表如下:A.=﹣3B.=﹣2C.=﹣1D.=06.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是()A.相交B.相切C.相离D.无法确定7.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上8.下列命题中,逆命题为真命题的是()A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b9.已知点A(1,y1),(2,y2)是反比例函数y=图象上的点,若1>0>2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y110.已知边长为4的等边△ABC,E,F分别是AB、BC的中点,将△BEF绕点B顺时针旋转α°,AE与CF交于P.当α=60°时,点P运动的路径长是()A.πB.πC.πD.π二.填空题(共6小题,满分18分,每小题3分)11.若关于的一元二次方程(﹣1)2+﹣2=0的一个根为1,则的值为.12.四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=2:1:4,则∠D=度.13.一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是.14.如果关于的方程22﹣3+=0有两个相等的实数根,那么实数的值是.15.如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC的外接圆半径是.16.如图,某大桥有一段抛物线型的拱梁,抛物线的表达式是y=a2+b.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三.解答题(共9小题,满分102分)17.(13分)解下列一元二次方程:(1)2+4+2=0(2)22﹣5﹣3=0.18.(9分)已知反比例函数y=的图象经过点A(2,﹣3).(1)求的值;(2)函数的图象在哪几个象限?y随的增大怎样变化?(3)画出函数的图象;(4)点B(,﹣12),C(﹣2,4)在这个函数的图象上吗?19.(9分)小美周末到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,CD,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法,列举出该游戏的所有可能情况;(2)小美得到小兔玩具的机会有多大?(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.20.(11分)二次函数y=a2﹣6+21可以由y=平移得到.(1)指出a的值,并将解析式改写成顶点式;(2)抛物线的开口方向、对称轴、和顶点分别是什么?(3)当为何值时二次函数的函数值y随的增大而减小.21.(10分)如图,8×8网格中,每个小正方形边长为1.(1)分别画出△ABC绕O点逆时针旋转90°所得△A1B1C1及△ABC关于O点的中心对称图形;(2)连结A2B,BB2,判断△A2B2B形状并证明;(3)证明C2不在线段A2B上.22.(10分)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.23.(12分)如图,已知双曲线y=(m>0)与直线y=交于A、B两点,点A的坐标为(3,2).(1)由题意可得m的值为,的值为,点B的坐标为;(2)若点P(n﹣2,n+3)在第一象限的双曲线上,试求出n的值及点P的坐标;(3)在(2)小题的条件下:如果M为轴上一点,N为y轴上一点,以点P、A、M、N为顶点的四边形是平行四边形,试求出点M的坐标.24.(14分)已知抛物线y=﹣2++(1)指出抛物线的开口方向和对称轴;(2)若抛物线与轴的两个交点A(1,0),B(2,0),且1<0<2,与y轴交于点C,求的取值范围.25.(14分)已知菱形ABCD,∠DAB=60°.(1)若菱形ABCD的边长为2cm,如图(a)所示,点P从A点出发,以cm/s的速度沿AC 向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动,设P点的运动时间为t秒①当P异于A、C时,请说明PQ∥BC;②以P为圆心,PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?(2)如图(b)所示,菱形ABCD对角线交于点O,AE=,BE=1,连接OE,请直接写出OE 的最大值.九年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵关于的方程(a﹣1)2++2=0是一元二次方程,∴a﹣1≠0,a+1≥0,解得:a≥﹣1,且a≠1.故选:B.2.【解答】解:∵点P(﹣1,m2+1)与点Q关于原点对称,∴Q(1,﹣m2﹣1),∴点Q一定在第四象限,故选:D.3.【解答】解:2+2﹣1=0,2+2=1,2+2+1=1+1,(+1)2=2,故选:C.4.【解答】解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.5.【解答】解:∵当=﹣3与=﹣1时,y值相等,∴二次函数图象的对称轴为直线==﹣2.故选:B.6.【解答】解:∵圆的直径为13 cm,∴圆的半径为6.5 cm,∵圆心到直线的距离6.5cm,∴圆的半径=圆心到直线的距离,∴直线于圆相切,故选:B.7.【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.8.【解答】解:A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选:C.9.【解答】解:∵=2>0,∴函数为减函数,又∵1>0>2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.10.【解答】解:如图,作△ABC的外接圆⊙O,OM⊥BC于M交⊙O于N,连接OB,PB.∵△ABC和△EBF是等边三角形,∴AB=BC,BE=BF,∠ABC=∠BAC=∠EBF=60°,∴∠ABE=∠CBF,在△ABE和△CBF中,,∴△ABE≌△CBF,∴∠BAE=∠BCP,∴A、B、P、C四点共圆,∴∠BPC+∠BAC=180°,∴∠BPC=120°,∴点P的运动轨迹是,∵等边三角形的边长为4,∴OB=,的长==π,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:∵=1是(﹣1)2+﹣2=0的根,∴﹣1+1﹣2=0,解得=0或1,∵﹣1≠0,∴≠1,∴=0.故答案为:0.12.【解答】解:设∠A、∠B、∠C分别为2、、4,则2+4=180°,解得,=30°,则∠B=30°,∴∠D=180°﹣∠B=150°,故答案为:150.13.【解答】解:球的总数为:2+3+5=10,∵绿球的球的个数为3,∴随机地从中摸出一个球是绿球的概率是.故答案为:.14.【解答】解:∵关于的方程22﹣3+=0有两个相等的实数根,∴△=(﹣3)2﹣4×2×=9﹣8=0,解得:=.故答案为:.15.【解答】解:由图可知:△ABC的外接圆半径==.16.【解答】解:∵当小强骑自行车行驶8秒时和28秒时拱梁的高度相同,∴其抛物线的对称轴为直线=(8+28)÷2=18,故CO=36,则小强骑自行车通过拱梁部分的桥面OC共需36秒.故答案为:36.三.解答题(共9小题,满分102分)17.【解答】解:(1)2+4+2=0,b2﹣4ac=42﹣4×1×2=8,=,=﹣2+,2=﹣2﹣;1(2)22﹣5﹣3=0,(2+1)(﹣3)=0,2+1=0,﹣3=0,=﹣,2=3.118.【解答】解:(1)∵反比例函数y=的图象经过点A(2,﹣3),∴代入得:=﹣3×2=﹣6;(2)∵反比例函数的解析式为y=﹣,=﹣6<0,∴函数的图象在第二、四象限,在每个象限内,y随增大而增大;(3)函数的图象为:;(4)点B在函数图象上,C不在函数的图象上.19.【解答】解:(1)画树状图为:(2)由树状图知,共有10种等可能的结果数,其中从开始进入的出入口离开的结果数为2,所以小美玩一次“守株待兔”游戏能得到小兔玩具的概率==;(2)125×0.8×3﹣125×0.2×4=200,所以估计游戏设计者可赚200元.20.【解答】解:(1)∵次函数y=a2﹣6+21可以由y=平移得到,∴a=,∴y=a2﹣6+21=2﹣6+21=(﹣6)2+3.综上所述,a的值是,抛物线的顶点式方程为:y=(﹣6)2+3;(2)由(1)知,抛物线的方程为:y=(﹣6)2+3,因为a=>0,所以抛物线开口方向向上.由y=(﹣6)2+3得到对称轴是直线=6,顶点坐标是(6,3);(3)由(2)知,抛物线开口方向向上,对称轴是直线=6,则当>6时,二次函数的函数值y 随的增大而减小.21.【解答】(1)解:如图,△A1B1C1和△A2B2C2为所作;(2)解:△A2B2B为直角三角形.理由如下:∵B2B2=22+42=20,A2B22=22+12=5,A2B2=32+42=25,∴B2B2+A2B22=A2B2,∴△A2B2B为直角三角形;(3)证明:∵A2C2==,BC2==,A2B=5,∴A2C2+BC2≠A2B,∴C2不在线段A2B上22.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为3.23.【解答】解:(1)把A(3,2)代入反比例解析式得:m=6;把A(3,2)代入直线解析式得:=,由对称性得:B(﹣3,﹣2);故答案为:6;;(﹣3,﹣2);(2)把P(n﹣2,n+3)代入y=中得:(n﹣2)(n+3)=6,整理得:n2+n﹣12=0,即(n﹣3)(n+4)=0,解得:n=3或n=﹣4(舍去),则P(1,6);(3)分两种情况考虑:当M1在轴正半轴,N1在y轴上半轴时,如图1所示,过P作PQ∥y轴,过A作AQ∥轴,交于点Q,∵A(3,2),P(1,6),∴AQ=3﹣1=2,由平移及平行四边形性质得到OM1=2,即M1(2,0);当M2在轴负半轴,N2在y轴下半轴时,如图2所示,同理得到OM2=2,即M2(﹣2,0).24.【解答】解:(1)由二次函数的解析式可知:开口方向向下,对称轴为=1;(2)抛物线与轴的两个交点A(1,0),B(2,0),且1<0<2,∴∴,解得:>0.25.【解答】解:(1)①∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,∴AB=BC=2,∠BAC=∠DAB,又∵∠DAB=60°(已知),∴∠BAC=∠BCA=30°;如图1,连接BD交AC于O.∵四边形ABCD是菱形,∴AC⊥BD,OA=AC,∴OB=AB=1(30°角所对的直角边是斜边的一半),∴OA=(cm),AC=2OA=2(cm),运动ts后,,∴又∵∠PAQ=∠CAB,∴△PAQ∽△CAB,∴∠APQ=∠ACB(相似三角形的对应角相等),∴PQ∥BC(同位角相等,两直线平行)②如图2,⊙P与BC切于点M,连接PM,则PM⊥BC.在Rt△CPM中,∵∠PCM=30°,∴PM=PC=,由PM=PQ=AQ=t,即=t解得t=4﹣6,此时⊙P与边BC有一个公共点;如图3,⊙P过点B,此时PQ=PB,∵∠PQB=∠PAQ+∠APQ=60°∴△PQB为等边三角形,∴QB=PQ=AQ=t,∴t=1∴时,⊙P与边BC有2个公共点.如图4,⊙P过点C,此时PC=PQ,即=t,∴t=3﹣.∴当1<t≤3﹣时,⊙P与边BC有一个公共点,当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P与边BC 有一个公共点,∴当t=4﹣6或1<t≤3﹣或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当4﹣6<t≤1时,⊙P与边BC有2个公共点;(2)当OE⊥AB时,OE取最大值,OE=.。

相关文档
最新文档