第八单元——长方体再认识
沪教版六年级-长方体的再认识讲义
长方体的再认识知识精要一、长方体的再认识1、长方体的特征。
(1)长方体有6个面,8个顶点,12条棱。
(2)长方体的每个面都是长方形。
(3)长方体的12条棱可以分为三组,每组中四条棱的长度都相等。
(4)长方体的6个面可分为3组,每组中相对的两个面的形状和大小均相同。
2、长方体的直观图画法长方体的直观图有多种画法,通常我们采用斜二侧画法: 水平放置的长方体直观图通常的画法的基本步骤:(4)(3)(2)(1)GHFCGHFCGHFCCDDDEEE3、长方体棱与棱的位置关系二、长方体中棱与平面的位置关系1、直线PQ 垂直于平面ABCD ,记作:直线ABCD PQ 平面⊥,读作:直线PQ 垂直于平面ABCD 。
2、检验直线与平面垂直的方法:(1)铅垂线法:只能用于检验直线与水平面是否垂直; (2)三角尺法:可以检验一般的直线与平面是否垂直; (3)合页型法:可以检验一般的直线与平面是否垂直;3、直线PQ 平行于平面ABCD ,记作:直线ABCD PQ 平面//,读作:直线PQ 平行于平面ABCD 。
4、检验直线与平面平行的方法:(1) 铅垂线法:从被测直线的两个不同的点放下铅垂线,使铅垂线的下端刚好接触地面。
如果从这两个不同点到铅垂线的下端的线段的长度相等,那么说明被测直线平行于水平面。
(2) 长方形纸片法:将长方形纸片的一边贴合于已知平面,另一边靠近被测直线,如果另一边能够紧贴被测直线,则说明被测直线平行于已知平面。
三、长方体中平面与平面的位置关系1、平面α垂直于平面β,记作:βα平面平面⊥,读作:平面α垂直于平面β。
2、检验平面与平面垂直的方法:(1)铅垂线法,(2)三角尺法;(3) 合页型折纸法。
3、平面α平行于平面β,记作:βα平面平面//,读作:平面α平行于平面β。
4、检验平面与平面平行的方法:长方形纸片法:将长方形纸片的一边贴合于已知平面,按交叉的方向分两次放在两个平面之中,如果另一边能够紧贴被测平面,则说明被测平面平行于已知平面。
沪教版(五四制)六年级下册数学第八章 长方体的再认识同步讲义
-------------长方体的再认识(★★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1一个长方体中,有公共点的三条棱的长度的比为2:3:4,最小的一个面的面积为2162cm , (1)求这个长方体的所有棱长的总和;“典例精讲”这一部分的教学,可采用下面的策略:“知识结构”这一部分的教学,可采用下面的策略:(2)求这个长方体的表面积; (3)求这个长方体的体积。
(★★)答案:(1)216cm ;(2)18722cm ;(3)51843cm两条较短的棱为长和宽的长方形的面积,是最小的面积,又知三棱长之比,故可求得三棱长,进而可得其他所求。
第八章 长方体的再认识(能力提升)(原卷版)
第八章长方体的再认识(能力提升)考试时间:90分钟注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(每小题4分,共24分)1.一个长26cm、宽18.5cm、厚0.5cm的物体,最有可能是()A.普通手机B.橡皮C.新华字典D.数学书2.用铁丝焊接一个长8厘米、宽5厘米、高4厘米的长方体框架,至少需要铁丝()厘米.A.160B.68C.34D.173.一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是()厘米.A.12B.8C.7D.94.一张长方形纸长40厘米,宽8厘米,把它对折、再对折。
打开后,围成一个高8厘米的长方体的侧面。
如果为这个长方体配一个底面,面积是()平方厘米。
A.320B.100C.80D.645.小刚要做一个无盖的玻璃鱼缸,已经准备了2块长方形玻璃,其中1块长5dm、宽3dm,1块长4dm、宽3dm,还需再配3块玻璃.从稳定度方面考虑,最合适的是()A.2块长5dm、宽4dm,一块长4dm、宽3dmB.2块长5dm、宽4dm,一块长5dm、宽3dmC.1块长4dm、宽3dm,1块长5dm、宽4dm,1块长5dm、宽3dmD.1块长5dm、宽4dm,2块长5dm、宽3dm6.一个长方体的底面是5平方米的正方形,它的侧面展开图正好是一个正方形.这个长方体的侧面积是()平方米.A.400 B.100 C.80 D.50二、填空题(每小题4分,共48分)7.已知一个长方体的长、宽、高的和是18cm,它的棱长和是cm.8.一个长方体的棱长之和是200厘米,相交于一个项点的三条棱长总和是厘米.9.用长52cm的木条正好做成了一个长6cm、宽4cm的长方体框架,框架高cm.10.如图是妈妈送给丁丁的生日礼物,要用彩带把这个礼物包扎起来,至少需要厘米的彩带(接头处的绑带花长90厘米).11.一个长方体的棱长总和是72厘米,它的长、宽、高的比是4:3:2,它的表面积是平方厘米,它的体积是平方厘米.12.要做一个长6分米、宽4分米、高2分米的无盖玻璃鱼缸,用角钢做它的框架,至少需要角钢分米,把它放在桌面上,占平方分米.13.有一个底面是正方形的纸箱,如果把它的侧面展开后,可以得到一个边长是80厘米的正方形(如图).做这样一个纸箱,至少需要平方厘米的纸板.14.在一个长方体中,相对的面完全,相对的棱长度.正方体一共有个顶点.15.在如图的长方体中,相交于同一顶点的三条棱长之和是12厘米,一只蚂蚁从点A沿着长方体框架的棱爬到点B,至少要爬厘米.16.一个长方体饼干盒的大小如图所示.它前面的面积是平方厘米,左面的面积是平方厘米.(图中单位:厘米)17.用铁丝焊接一个长方体框架,同一个顶点上的三根铁丝分别是:20厘米、15厘米、12厘米,一共用了厘米的铁丝.18.(1)如图所示,这个皮鞋盒的上面是形,长cm,宽cm.和它相同的面是皮鞋盒的.(2)它的左面是形,长cm,宽cm,和它大小相同的面是.(3)有个面的长是30cm,宽是10cm.三、解答题(共78分)19.请在长方体(如图)相应的括号内分别填入“顶点”、“面”和“棱”.20.量一量、算一算.下面是一个长方体前面和上面的图形.(1)量一量,这个长方体的长是厘米、宽是厘米、高是厘米.(2)算一算,这个长方体的体积是立方厘米.21.下面如图是一个长方体的表面展开图,已经标出了三个面,在图上标出另外三个面,这个长方体的长厘米,宽厘米,高厘米.体积是,表面积是.22.今天是妈妈的生日,小红给妈妈购买了一个生日蛋糕,售货员用红色的塑料绳捆扎(如图1,打结部分用去30cm).售货员和小红分别计算了绳子的长度,她们算得对吗?你喜欢哪种?说说她们的解题思路.(如图2)23.一根铁丝,可以做成长8厘米,宽6厘米,高4厘米的长方体框架,如果用它来做一个正方体框架,做成的正方体框架棱长是多少厘米?24.把下面这个展开图折成一个长方体。
08沪教版六年级下长方体的再认识
教师学生上课时间学科数学年级课题名称长方体的再认识综合复习教学目标1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱的位置关系;4.理解长方体中棱与面、面与面的位置关系;5.知道检验直线、平面与平面是否垂直、平行的常用方法;重点难点熟练的掌握长方体中位置关系.长方体的再认识综合复习一.上节回顾二、本节内容(一)知识点讲解1.长方体有个顶点,条棱,个面.2.长方体所有的棱可分为组,每组中的条棱的.3.斜二测画法画长方体的直观图4.长方体中棱与棱的位置关系5.检验直线与平面垂直的方法(1)铅垂线法:只能用于检验直线与水平面是否垂直;(2)三角尺法:可以检验一般的直线与平面是否垂直;(3)合页型法:可以检验一般的直线与平面是否垂直.6. 检验直线与平面平行的方法:(1)铅垂线;(2)长方形纸片.7. 检验平面与平面垂直的方法:(1)铅垂线:检验平面与地面(水平面)是否垂直;(2)合页型折纸;(3)三角尺.8. 检验平面与平面平行的方法:(1)长方形纸片:按交叉的方向检验两次,两边都于被检验的面紧贴;(2)水准仪:(用于检验平面与水平面的平行)按交叉的方向检验两次,水泡都要在中间.【典型例题】例题1:已知一个长方体的宽是6cm,长比宽的3倍多2cm,高是宽的一半,求这个长方体的所有棱长之和.参考答案:长:6×3+2=20cm高:6×12=3cm4×(6+20+3)=116cm答:这个长方体的所有棱长之和是116cm。
试一试:一个长方体的长、宽、高之比为4:3:2,已知这个长方体的棱长之和是108厘米,求这个长方体的表面积和体积.参考答案:设这个长方体的长、宽、高分别为4x厘米,3x厘米,2x厘米则4×(4x+3x+2x)=108 x=3长:4x=12 宽:3x=9 高:2x=6表面积:S=2(12×9+12×6+9×6)=468平方厘米体积:V=12×9×6=648立方厘米答:这个长方体的表面积是468平方厘米,体积是648立方厘米。
上海市松江区六年级数学下册8长方体的再认识复习ppt课件沪教版五四制
H E
D A
G
F
小结:在长方体中,
与1条棱垂直或平行的平面各有_2__个,
C
与1个面垂直或平行的棱各有_4__条。
B
长方体中的位置关 三、面与系面的位置关系: 垂直、平行
33、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。——贝弗里奇 34、生活的道路一旦选定,就要勇敢地走到底,决不回头。——左拉 35、一个有决心的人,将会找到他的道路。——佚名 36、意志坚强,就会战胜恶运。——佚名
37、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。——奥斯特洛夫斯基 38、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头,缓步的骆驼继续向前。——萨迪 39、天行健,君子以自强不息。——文天祥 40、生命里最重要的事情是要有个远大的目标,并借助才能与坚持来完成它——歌德 41、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。——雨果 42、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。——贝多芬 43、成大事不在于力量的大小,而在于能坚持多久。——约翰逊 44、告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。——巴斯德 45、即使遇到了不幸的灾难,已经开始了的事情决不放弃。——佚名
问题2:“斜二侧”画法的关键是
(1)长与宽的夹角应画成__4_5__°
H E
D
沪教版数学六年级下册第八章《长方体的再认识》教学设计
沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。
教材通过丰富的图片和实际例子,帮助学生进一步理解和掌握长方体的特征,提高学生的空间想象能力和抽象思维能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对长方体已经有了一定的了解。
但是在具体操作和解决问题时,部分学生可能会存在一些困难。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.知识与技能:学生能够进一步理解和掌握长方体的特征,提高空间想象能力和抽象思维能力。
2.过程与方法:通过观察、操作、思考、交流等过程,学生能够深化对长方体的认识,培养解决问题的能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强对数学的兴趣。
四. 教学重难点1.教学重点:学生能够进一步理解和掌握长方体的特征。
2.教学难点:学生能够在实际问题中灵活运用长方体的特征,解决问题的能力。
五. 教学方法1.情境教学法:通过丰富的图片和实际例子,激发学生的学习兴趣,提高学生的空间想象能力。
2.引导发现法:教师引导学生观察、操作、思考,发现长方体的特征,培养学生的抽象思维能力。
3.合作交流法:学生通过小组合作、交流,共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.教具准备:长方体模型、图片、实物等。
2.学具准备:学生每人准备一个长方体模型。
七. 教学过程1.导入(5分钟)教师通过展示长方体的图片和生活实例,引导学生回顾长方体的特征,激发学生的学习兴趣。
2.呈现(10分钟)教师通过长方体模型和实物,引导学生观察和操作,让学生直观地感受长方体的特征。
同时,教师引导学生思考:长方体有哪些特征?这些特征是如何体现在实际物体中的?3.操练(10分钟)教师提出一些有关长方体的问题,让学生分组讨论和操作,共同解决问题。
(完整)08-第八章-长方体的再认识-六年级(下)-知识点汇总-沪教版,推荐文档
沪教版数学六年级(下)第八章长方体的再认识知识点汇总
第八章长方体的再认识
1、长方体有六个面,八个顶点,十二条棱。
2、长方体的每个面都是长方形。
3、长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
4、长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同。
5、长方体中棱与棱位置关系的认识:
一条棱与另一条棱所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交。
一条棱与另一条棱所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行。
一条棱与另一条棱所在的直线既不平行,也不相交,我们称这两条棱异面。
6、一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线
的位置关系为相交,读作:直线AB与直线CD相交。
7、如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系
为平行,记作:AB∥CD,读作:直线AB与直线CD平行。
8、如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,
读作:直线AB与直线CD异面。
9、直线PQ垂直于平面ABCD,记住:直线PQ⊥平面ABCD,读作:直线PQ垂直于平
面ABCD。
10、如何检验直线与平面垂直呢?可以用“铅垂线”检验。
如果细棒垂直于墙面,可以用“三角尺”检验。
还可以用“合页型折纸”检验直线是否垂直于平面。
11、直线PQ平行于平面ABCD,记作:直线PQ∥平面ABCD,读作:直线PQ平行于平面ABCD
12、如何检验直线与平面平行呢?可以用“铅垂线”检验。
也可以用“长方形纸片”检验
1/ 1。
沪教版数学六年级下册第八章《长方体的再认识》教学设计
沪教版数学六年级下册第八章《长方体的再认识》教学设计一. 教材分析《长方体的再认识》是沪教版数学六年级下册第八章的内容,本节内容是在学生已经掌握了长方体的特征的基础上进行教学的。
教材通过大量的图片和生活实例,让学生进一步理解长方体的特征,提高学生的空间想象能力,并能运用长方体的特征解决实际问题。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于长方体的特征已经有了一定的了解。
但是,学生在应用长方体的特征解决实际问题时,还存在着一定的困难。
因此,在教学过程中,教师需要结合学生的实际情况,引导学生通过观察、操作、思考、交流等途径,进一步理解和掌握长方体的特征。
三. 教学目标1.让学生通过观察和操作,进一步理解长方体的特征。
2.培养学生空间想象能力和运用长方体的特征解决实际问题的能力。
3.培养学生合作学习的能力和语言表达能力。
四. 教学重难点1.长方体的特征。
2.如何运用长方体的特征解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和图片,引发学生的学习兴趣,提高学生的学习积极性。
2.操作教学法:通过学生的动手操作,培养学生的空间想象能力。
3.问题驱动法:通过提出问题,引导学生思考和交流,进一步理解和掌握长方体的特征。
4.合作学习法:通过小组合作,培养学生的合作意识和团队精神。
六. 教学准备1.教具:长方体模型、正方体模型、多媒体教学设备。
2.学具:每个学生准备一个长方体模型。
七. 教学过程导入(5分钟)教师通过展示一些生活中的长方体物体,如牙膏盒、鞋盒等,引导学生回顾长方体的特征。
同时,教师提出问题:“你们认为长方体有哪些特征呢?”让学生进行思考和交流。
呈现(10分钟)教师通过多媒体展示长方体的三维图像,让学生直观地感受长方体的特征。
同时,教师引导学生观察长方体的六个面、十二条棱和八个顶点,并讲解长方体的名称和定义。
操练(10分钟)教师分发长方体模型给每个学生,让学生亲自操作长方体模型,观察和体验长方体的特征。
新版沪教版六年级下册数学第八章-长方体的再认识(2020新教材)
第八章 长方体的再认识 第二课时一、概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
8.1长方体的再认识
例2: 一只蚂蚁沿一个正方体表面从E点爬到C点,怎样走最近?
长方体和正方体的特征
名称 长方体 正方体
个数
面 棱 形状 条数 长度
6个
每个面都是长方形 (可能有两个面是正方形)
12条棱 每4条棱相等(可能有8条棱相等)
长方体的棱有什么特点?
长方体有12条棱,可以分为3组, 每组中的四条棱的长度相等。
长方体的元素间的关系
1.长方体每个面都是长方形. 2.长方体的十二条棱可以分为三 组,每组中四条棱的长度相等。 3.长方体的六个面,可以分为三组,每 组中的两个面的形状和大小完全相同。
c a
b
⑴ 长方体的表面积的计算; ⑵ 长方体的体积的计算;
—————平面图形
——————立体图形
在立体图形中,有一种形状叫做长方体. 你知道下面哪些物体的形状是长方体吗?
粉笔
8.1 长方体的元素
长方体有几个面? 几个顶点?有几 条棱?
长方体有六个面,八个顶点,十二条棱.
长方体的面有什么特点?
长方形 长方体有6个面,每个面都是( ), 相对的两个面完全相同。
6个
都是 正方形
12条 每条相等
顶bc ac
V abc
讨论: 1.正方体的面有几个?有什么特点? 2.正方体的棱有几条?有什么特点? 3.正方体的顶点有几个?
练习
小明想用一根长度为250厘米的 塑料管和橡皮泥做一个三条棱分别为 10厘米、30厘米、15厘米的长方体架 子,应如何裁剪这根塑料管?
例1 :
8-1长方体的再认识-数学
例题3:如图所示,在长方体ABCD -EFGH 中:
(1)哪些棱与棱AD 平行? (2)哪些棱与棱AD 相交? (3)哪些棱与棱AD 异面?
参考答案:(1)棱BC 、棱GF 、棱EH ; (2)棱AB 、棱DC 、棱AE 、棱DH (3)棱EF 、棱HG 、棱BF 、棱CG
试一试:在如图所示的长方体ABCD -EFGH 中,指出下列各对线段的位置关系:
(1)线段BG 与线段AH ; (2)线段BG 与线段AC ; (3)线段BG 与线段CH ;
参考答案: 平行;异面;异面。
例题4:如图,它是一个正方体六个面的展开图, 那么原正方体中与平面B 互相平行的平面是 .(用图中字母表示)
参考答案:D
试一试:如图是长方体的六面展开图,在原来长方体中,与平面B 垂直的面有_______.
参考答案:A 、F 、C 、E
F
G
H
D
A
B
C E
F
G
H
D
B
A
C
E
A
B
C
D
E
F 第17题图F E D
C B A。
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计一. 教材分析沪教版数学六年级下册第八章《长方体的再认识》复习教学内容主要包括长方体的特征、表面积和体积的计算方法以及长方体在实际生活中的应用。
本章内容是对长方体知识的系统复习和巩固,旨在帮助学生深化对长方体的认识,提高空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习过长方体的相关知识,对长方体的特征、表面积和体积的计算方法有一定的了解。
但在实际应用中,部分学生可能会遇到困难和问题。
因此,在复习教学中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.知识与技能:通过对长方体的再认识,使学生掌握长方体的特征、表面积和体积的计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过复习教学,培养学生自主学习、合作学习的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神,使学生在数学学习中获得成就感。
四. 教学重难点1.教学重点:长方体的特征、表面积和体积的计算方法。
2.教学难点:长方体在实际生活中的应用,空间想象能力的培养。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考,发现长方体的特征和计算方法。
2.案例分析法:教师提供实际生活中的案例,引导学生运用长方体的知识解决问题。
3.小组合作学习法:学生分组讨论,共同完成任务,提高团队协作能力。
六. 教学准备1.教学课件:制作长方体的特征、表面积和体积的计算方法的教学课件。
2.教学案例:收集实际生活中的长方体应用案例。
3.学习任务单:设计学习任务单,引导学生进行自主学习和合作学习。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾长方体的特征、表面积和体积的计算方法,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示长方体的特征和计算方法,让学生直观地感受长方体的结构。
初中数学:长方体的再认识章节知识清单
初中数学:长方体的再认识章节知识清单一.长方体的元素1.长方体的元素长方体有六个面,八个顶点,十二条棱.2.长方体的元素特征(1)长方体的每个面都是长方形.(2)长方体的十二条棱可以分为三组,每组中的四条棱的长度相等.(3)长方体的六个面可以分为三组,每组中的两个面的形状和大小相同.3.正方体是特殊的长方体二.长方体直观图的画法1.长方体的直观图画法:斜二侧画法水平放置的长方体直观图通常画法的基本步骤:第一步:画平行四边形ABCD,使AB等于长方体的长,AD等于长方体宽的二分之一,45∠=︒.(如图1所示)DAB第二步:过AB分别画AB的垂线AE、BF,过C、D分别画CD的垂线CG、DH,使它们的长度都等于长方体的高.(如图2所示)第三步:顺次联结E、F、G、H.(如图3所示)第四步:将被遮住的线段改用虚线(隐藏线)表示.(如图4所示)图4表示的长方体通常表示为ABCD-EFGH.它的六个面通常表示为:平面ABCD、平面ABFE、平面BCGF等.它的十二条棱通常分别表示为:棱AB、棱AE、棱EF等.三.长方体中棱与棱位置关系的认识1.长方体中棱与棱的位置关系如图所示的长方体ABCD-EFGH中:棱EH与棱EF所在的直线在同一平面内,它们有唯一的公共点,我们称这两条棱相交.棱EF与棱AB所在的直线在同一平面内,但它们没有公共点,我们称这两条棱平行.棱EH与棱AB所在的直线既不平行,也不相交,我们称这两条棱异面.空间两条直线有三种位置关系:相交、平行、异面.四.长方体中棱与平面位置关系的认识1.长方体中棱与平面的位置关系如图1,直线PQ垂直于平面ABCD,记作:直线PQ⊥平面ABCD,读作:直线PQ垂直于平面ABCD.如图2,直线PQ平行于平面ABCD,记作:直线PQ // 平面ABCD,读作:直线PQ平行于平面ABCD.如图4所示的长方体ABCD-EFGH中:棱EF与面BCGF,棱FG与面ABFE,棱BF与面ABCD都给我们以直线与平面垂直的形象.棱EF与面ABCD,棱BF与面ADHE,都给我们以直线与平面平行的形象.2.检验直线与平面是否垂直的方法“铅垂线”法、“三角尺法”、“合页型折纸”法.3.检验直线与平面是否平行的方法“铅垂线”法、“长方形纸片”法.五.长方体中平面与平面位置关系的认识1.长方体中平面与平面的位置关系如下左图,平面α垂直于平面β,记作平面α⊥平面β,读作平面α垂直于平面β.如上右图,平面α平行于平面β,记作平面α//平面β,读作平面α平行于平面β. 如图所示的长方体ABCD -EFGH 中:面EFGH ,面ABFE 与面BCGF 三个面中,任意两个都给我们以平面与平面垂直的形象.面ABCD 与面EFGH ,面BCGF 与面ADHE ,面ABFE 与面DCGH ,都给我们以平面与平面平行的形象.2.检验平面与平面是否垂直的方法“铅垂线”法、 “合页型折纸”法、“三角尺”法.3.检验平面与平面是否平行的方法“长方形纸片”法.【考点剖析】1.长方体的元素.α⎧⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩元素:长方体有面,棱,顶点;长方体的每个面都是;特征:长方体的十二条棱可分成,每组四条棱;长方体的六个面可分成三组,每六个十二条八个长方形三组长度相等形状、大小平行四边形平面ABC 组中两个面的都相等.概念:平面是平的,无边无沿平面表示:用表示;记作,D 平或面①②③ 2.长方体的直观图,AD DAB=45A ABCD E BF CG DH ⎧⎪∠⎧⎪⎪⎪⎨⎪⎨⎪⎪︒⎪⎪⎪⎩⎩方法:画使AB 等于长方体的,等于长方体,;画四条高、、、;步骤:顺次联结将被遮住的部分改成(或隐藏线)斜二侧画法长宽.的一半虚线①②④EFGH ③;3.长方体中棱与棱的关系AB AB AB C 2G 4⎧⎪⎨⎪⎩相交:如棱与棱BC 相交;平行:如:棱棱HG;异面:既不也不;如:棱与棱异面.长方体中一共有对异面直线.平行相交∥ 4.长方体中棱与平面的关系AE ABCD EF ABCD ⎧⎧⎪⎪⊥⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;直线与平面垂直:如:棱平面;检验方法;;直铅垂线法三角尺法合页型折纸铅垂线法长方形纸片线与平面平行:如:棱平面;检验方法.①②③.①∥② 5.长方体中平面与平面的位置关系ADHE ABCD EFGH ABCD ⎧⎧⎪⎪⊥⎨⎪⎨⎪⎩⎪⎪⎩;垂直:如:平面平面;检铅垂线法合页型折验;.平行:如:平面平面;检验方法:.纸三角尺长方形纸片①②③∥ DHG F EC B A。
八、长方体的再认识
八、长方体的再认识
内容要目
• 长方体,长方体的画法,直线与直线、直 线与平面、平面与平面的基本位置关系。
基本要求
• (1)认识长方体的顶点、棱、面等元素, 会画长方体的直观图。 • (2)以长方体为载体理解长方体中棱、面 之间的基本位置关系的含义,知道两条直 线之间三种位置关系。 • (3)认识线面、画面的平行和垂直关系, 知道一些简单的检验方法。
例2 已知长方体ABCD-EFGH。 ⑴哪些棱与AB平行? H ⑵哪些棱与AB相交? ⑶哪些棱与AB异面? E F D A B
G
C
例3 如图是小敏拍摄的一张上海弄堂的照片。 图中的墙面、地面所在的平面分别设为平面 M、N、P,电线杆、管道所在的直线 分别设为直线a、b、c。 请你从这张照片中找出 直线a、b、c和平面 M、N、P这些线面 之间的位置关系。
重点和难点
• 重点是长方体的概念、画法,长方体中棱、 面之间的位置关系。 • 难点是利用工具检验空间直线、平面之间 的位置关系。
知识结构
直观图的画法 长 方 体 棱和面的 位置关系
棱和棱的 位置关系
平行、垂直 的检验方法
棱、面的特点 面和面的 CD-A’B’C’D’ 中,AA’=3cm, AB=AD=2cm, 画这个长方体的直观图。
新版沪教版六年级下册数学第八章-长方体的再认识(新教材)
第八章 长方体的再认识 第二课时一、概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
长方体的再认识
长方体的再认识
1、元素
长方体有六个面、八个顶点、十二条棱.
2、特点
(1)长方体的面的特点
长方体的每个面都是长方形,长方体的六个面两两相对可以分为三组,每组中的两个面的形状和大小都相同。
(2)长方体的棱的特点
长方体的十二条棱可以分为三组,每组中相对两面所夹的四条棱长度相等.
(3)正方体是特殊的长方体.
斜二测画法的注意事项:1、先画下底面(平行四边形),并且有一个角为45°,同时宽为实际宽的二分之一;2、作出的长方体的高和长都不变;3、最后在顶点处标好字母,写好结论:长方体ABCD-EFGH 为所作长方体。
1、长方体中棱与棱的位置关系:
长方体中棱与棱得位置关系为:相交、异面和平行.2、长方体中棱与面的位置关系:长方体中棱与面的位置关系为:垂直和平行.2、长方体中面与面的位置关系:长方体中面与面的位置关系为:垂直和平行.
1、检验直线与平面垂直的方:
“铅垂线”检验(铅垂线只能检验直线与水平面的垂直关系)、“三角尺”检验、“合页型折纸”检验.2、检验直线与平面平行的方法:“铅垂线”检验,“长方体纸片”检验.3、检验平面与平面垂直的方法:“铅垂线”检验(铅垂线只能检验侧面与水平面的垂直关系)、“三角尺”检验、“合页型折纸”检验.2、检验平面与平面平行的方法:“长方体纸片”检验.具体实例:。
数学六下第8章:长方体的再认识-知识点
数学六下第8章:长方体的再认识-知识点1、长方体的元素:① 6个面,都是长方形,相对的面形状和大小都相同;② 8个顶点,③ 12条棱,可以分为三组,即 4条长, 4条宽, 4条高。
2、正方体是特殊的长方体:①6个面都是完全相同的正方形,②12条棱的长度也完全相等。
3、熟记公式:①长方体的棱长和 = 4(a+b+h);正方形的棱长和 = 12a 。
②长方体的表面积 = 2(ab+ah+bh);正方形的表面积 = 6a²。
③长方体的体积 = abh ;正方形的体积 = a³。
4、长方体和正方体的展开图都是有 4 类,分别是“ 141 型”、“ 231 型”、“ 222 型”、“ 33 型”,在长方体的展开图中,相对的面一定不相邻,且中间隔着一个面。
5、斜二测画法:①正视可见的棱(一般是长)画成实际的长度,与它们垂直的棱只画实际长度的一半,直角画成 45°,②可见部分画成实线,不可见部分画成虚线,③平行关系及中点位置保持不变。
6、长方体中,棱与棱的位置关系有:平行,相交(垂直),异面。
对于任意一条棱,与之平行的棱有 3 条,垂直的有 4 条,异面的有 4 条。
7、长方体中,棱与平面的位置关系有:在平面上,平行,垂直。
对于任意一条棱,它同时在 2 个面上,与 2 个面平行,与 2 个面垂直。
8、直线与平面垂直的检验:①“铅垂线”检验,用铅垂线可以检验细棒是否垂直水平面,如果铅垂线和细棒紧贴,那么细棒垂直于水平面;②“三角尺”检验,让两把三角尺各有一条直角边紧贴平面且位置相交,如果另一条直角边能紧贴细棒,则细棒垂直于平面。
③“合页型折纸”检验,将一张长方形硬纸片对折,然后张开一定的角度,我们把这个制作称为合页型折纸,如果将合页型折纸立于桌面,则折痕垂直于桌面,若细棒能紧贴折痕,那么细棒垂直于桌面。
19、直线与平面平行的检验:①“铅垂线”检验,可以检验边是否平行于地面,从边的两个不同点放下铅垂线,如果到地面的距离相等,则这条边平行于地面;②“长方形纸片”检验,将长方形纸片的一边贴合在平面上,观察另一边是否与直线重合,若重合,则该直线与平面平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八单元-----长方体的再认识
1.内容要点
长方体,长方体的画法,直线与直线、直线与平面、平面与平面的基本位置关系. 2.基本要求
(1)认识长方体的顶点、棱、面等元素,会画长方体的直观图.
(2)以长方体为载体理解长方体中棱、面之间的基本位置关系的含义,知道两条直线之间三种位置关系.
(3)认识线面、画面的平行和垂直关系,知道一些简单的检验方法.
3.知识结构
4.考试分析
(1)5.4 长方体的元素及棱、面之间的位置关系,画长方体的直观图.这些基本概念直接考核的机会较小.要求学生理解这些基本概念,为后面的学习打下一些基础.
本单元复习课时建议为1单元
第八单元——长方体的再认识课时作业
一、选择题
1.长方体中与一个面平行的面有()
(A)一个;(B)2个;(C) 3个;(D) 4个.
2.铅垂线考研用来检测()
(A)任意两个平面是否垂直;(B)两个平面是否平行;
(C)平面是否与水平面平行;(D)直线是否与水平面垂直.
3.下例说法错误的是()
(A)长方体中任何一个面都和四条棱垂直;(B)长方体中一条棱有两个面和它垂直;(C)长方体中一条棱都和两个面平行;(D)长方体中任何一个面都和另外两个面平行.
4.两条异面直线是指()
(A)在空间不相交的两条直线;(B)分别位于两个不同排名内的直线;
(C)不能同在一个平面内的两条直线;(D)某平面内的一条直线与这个平面外的一条直线.
5.下列说法错误的是()
(A)长方体中相对的两个面的面积相等;(B)长方体中任何一条棱都与两个面垂直;(C)长方体中有8个顶点、12条棱、6个面;(D)长方体中棱与棱不是异面就是相交.
二、填空题
6.长方体的长、宽、高分别为6厘米、5厘米、4厘米,此长方体的体积为 .
7.长方体的长是12厘米,宽是8厘米,高是5厘米,这个长方体的所有的棱长的和为 .
8.三个边长为1厘米的正方体,拼成一个才长方体,表面积减少了 .
9.长方体中与一个平面垂直的棱有条.
10.长方体中与一个平面平行的平面有个.
三、简答题
11.画一个长为3厘米、宽为1厘米、高为1.5厘米的长方体.
12.已知长方体的长、宽、高之比为3:2:4,棱长的和为144厘米,求长方体的体积与表面积.
13.长方形纸片长为8厘米,宽为6厘米,四个角各剪去一个边长为2厘米的小正方形,把这张纸片折成一个无盖盒子,求盒子的体积.。