Higher Chemistry Atom economy - Education Scotland:原子经济性-苏格兰高等化学教育

合集下载

College Chemistry Chapter 04

College Chemistry Chapter 04

Lead box Gold foil
Tro's "Introductory Chemistry", Chapter 4
Fluorescent screen
15
Rutherford’s Results
• Over 98% of the a particles went straight through. • About 2% of the a particles went through, but were deflected by large angles. • About 0.01% of the a particles bounced off the gold foil.
―...As if you fired a 15‖-canon shell at a piece of tissue paper and it came back and hit you.‖
Tro's "Introductory Chemistry", Chapter 4 16
Rutherford’s Conclusions
Tro's "Introductory Chemistry", Chapter 4 9
The Atom Is Divisible
• Work done by J. J. Thomson and others proved that the atom had pieces called electrons. • Thomson found that electrons are much smaller than atoms and carry a negative charge.
1. Each Element is composed of tiny, indestructible particles called atoms.

沈阳工业大学简介

沈阳工业大学简介

2162 当 代 化 工 2020年10月镜及扫描电子显微镜等手段对蒽醌加氢制双氧水Pd/Al2O3催化剂的核壳厚度、金属宏观分布、粒径及粒径分布、金属分散度、催化活性中心等物化性质进行系统的表征,形成了宏观/微观耦合表征技术,实现了对催化剂多角度的系统表征。

2) Pd/Al2O3催化剂的壳层还分散有几十甚至上百纳米的大尺寸粒径Pd粒子。

催化剂整体具有双重粒径分布,但大尺寸粒子所占比例较低。

3)采用催化剂宏观/微观耦合表征技术可以更为全面地表征贵金属活性中心的分散性质,从而在催化剂的开发过程中起到良好的技术支撑与推动作用。

参考文献:[1]杨卫亚,凌凤香,白红鑫,等.蒽醌加氢法制取H2O2催化剂研究进展[J]. 现代化工,2020, 40(7):69-73.[2]陈群来.蒽醌法制过氧化氢氢化反应动力学研究述评[J].无机盐工业.2001(2):20-22.[3]Yao H, Shen C, Wang Y, et al. Catalytic hydrogenation of 2- ethylanthraquinone using an in situ synthesized Pd catalyst[J]. RSCAdvances, 2016, 6(28):23942-23948.[4]马春景,卢立义,李应成.蛋壳型催化剂结构、制备方法及其催化性能影响因素分析[J].化学反应工程与工艺,2008,24(1):82-88. [5]王芳珠,刘晓燕,叶阑珊,等. 异佛尔酮在蛋壳型Pd/Al2O3催化剂上的选择性加氢[J].精细化工,2015,32(3):337-342.[6]刘秀芳,计扬,李伟,等. 蛋壳型Pd/α-Al2O3催化剂的制备及活性[J]. 催化学报,2009,30(3):213-217.[7]杨卫亚,凌凤香,沈智奇,等. Pd/Al2O3催化剂贵金属分散性质的表征[J]. 石油化工. 2017, 46(8):985-989.[8]杨卫亚,凌凤香,沈智奇,等. 超薄切片与高角环形暗场像联用表征Pd/Al2O3催化剂贵金属的分散性[J]. 精细石油化工,2017,34(4):1-4.[9]MLAKAR J, KORV A M, TUL N, et al. Zika Virus Associated with Microcephaly[J]. New England Journal of Medicine,2016, 374(10): 951-958.[10]BI Q, DU X, LIU Y, et al.Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambientconditions[J]. Journal of the American Chemical Society,2012,134(21): 8926-8933.[11]杨卫亚,凌凤香,刘全杰,等. TEM与HAADF法表征Ru/C催化剂活性中心[J]. 当代化工,2019, 48(6):1136-1139.[12]KOV ARIK L, GENC A, WANG C, et al. Tomography and high-resolution electron microscopy study of surfaces and porosity ina plate-like γ-Al2O3[J]. The Journal of Physical Chemistry C,2013,117(1): 179-186.[13]BATISTA A T F, BAAZIZ W, TALEB A, et al. Atomic scale insight into the formation, size, and location of platinum nanoparticles supported on γ-alumina[J]. ACS Catalysis, 2020, 10(7): 4193-4204.(上接第2157页)[14]KERR R L, MILLER S A, SHOEMAKER R K, et al. New Type of Li Ion Conductor with 3D Interconnected Nanopores viaPolymerization of a Liquid Organic Electrolyte-Filled LyotropicLiquid-Crystal Assembly[J]. J Am Chem Soc, 2009, 131(44):15972-15973.[15]PECINOVSKY C S, NICODEMUS G D, GIN D L. Nanostructured, Solid-State Organic, Chiral Diels−Alder Catalysts via Acid-InducedLiquid Crystal Assembly[J]. Chemistry of Materials, 2005, 17(20):4889-4891.[16]FENG X, IMRAN Q, ZHANG Y, et al. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuoustransport pathways[J]. Science Advances, 2019, 5(8):2375-2548. [17]NIU J, WANG D, QIN H, et al. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathingold membranes[J]. Nature Communications, 2014, 5(1): 3313. [18]ZHANG C, ZHANG C, DING R, et al. New Water Vapor Barrier Film Based on Lamellar Aliphatic-Monoamine-Bridged Polysilsesqu-ioxane[J]. ACS Appl Mater Interfaces, 2016, 8(23): 14766-14775. [19]NAGAI K, OHISHIY, INABA H, et al. Polymerization of surface-active monomers. I. Micellization and polymerization ofhigher alkyl salts of dimethylaminoethyl methacrylate[J]. Journal ofPolymer Science: Polymer Chemistry Edition, 1985, 23(4):1221-1230.[20]ISRAELACHVILI J N, MITCHELL D J, NINHAM B W. Theory of self-assembly of hydrocarbon amphiphiles into micelles andbilayers[J]. Journal of the Chemical Society, Faraday Transactions2: Molecular and Chemical Physics, 1976, 72: 1525-1568.沈阳工业大学简介沈阳工业大学是一所以工为主,涵盖工、理、经、管、文、法、哲、艺术等八大学科门类的多科性教学研究型大学。

协同视域下高职水产类专业人才培养模式研究与实践

协同视域下高职水产类专业人才培养模式研究与实践

协同视域下高职水产类专业人才培养模式研究与实践王玲玲,刘振华,马贵范,李兆河威海海洋职业学院,山东荣成 264300摘要[目的]基于现代水产业“绿色化、智能化、现代化”发展,适应职业教育发展,改革高职水产类专业人才培养模式,提升人才培养质量。

[方法]分析高职水产类专业人才培养需求、现阶段存在问题,基于“协同理论”,以威海海洋职业学院水产养殖技术专业为例,通过构建政、行、校、企、所协同育人与技术服务平台、机制,创新人才培养模式,提出政、行、校、企、所协同培养的实践路径。

[结果]通过创新实践,学生技能大赛获得奖项,职业可持续发展能力、专业技术服务区域经济能力、专业影响力等显著提升。

[结论]深化产教融合,政、行、校、企、所协同培育高职水产类专业人才,为服务“蓝色粮仓”和“乡村振兴”战略集聚了人才,夯实了技术力量,对相关专业发展具有一定的借鉴性和示范性。

关键词协同视域;高职水产类;人才培养模式;渔村振兴;协同育人Study and practice on the model for training talents of aquaculture in higher vocational education with the synergy theoryWANG Lingling, LIU Zhenhua, MA Guifan, LI ZhaoheWeihai Vocational College of Ocean, Rongcheng 264300, ChinaAbstract[Objectives] In order to reform the model for training talents of aquaculture in higher vocational education and improve the quality of talent cultivation based on the "green, intelligent, and modern" development of modern aquaculture industry and the adaptation to the development of voca‐tional education.[Methods] The demands for training talents of aquaculture in higher vocational and the problems were analyzed. A platform and mechanism for collaborative education and technical ser‐vices among government agencies, industry stakeholders, educational institutions, and research organiza‐tions was constructed based on the synergy theory and taking the aquaculture major of Weihai Voca‐tional College of Ocean as an example. The model for training talents were innovated. A practical收稿日期:2023-06-14基金项目:2021 年度山东省教育教学研究课题“协同视域下‘绿色蓝芯、智慧匠能’水产类人才培养模式研究与实践(2021JXY165 );2022年度山东省职业教育教学改革研究项目“‘双高计划’建设背景下专业群‘金课’建设研究与实践”(2020C0350);山东省高水平专业群项目(2021)作者简介:王玲玲,女,1980年生,硕士,教授。

新工科背景下,思政教育在化学分析实验中的应用——以氧化还原滴定实验为例

新工科背景下,思政教育在化学分析实验中的应用——以氧化还原滴定实验为例

大 学 化 学Univ. Chem. 2024, 39 (2), 168收稿:2023-08-01;录用:2023-09-21;网络发表:2023-10-24*通讯作者,Email:*****************.cn基金资助:天津大学第四批课程思政教改项目(天大校教〔2022〕19号);2023–2024年度天津大学实验室建设与管理改革项目(天大校资产〔2023〕3号)•专题• doi: 10.3866/PKU.DXHX202308007 新工科背景下,思政教育在化学分析实验中的应用——以氧化还原滴定实验为例姜婷婷,常静*天津大学理学院,化学化工国家级实验教学示范中心(天津大学),化学化工国家级虚拟仿真实验教学中心(天津大学),天津 300354摘要:分析化学实验是天津大学化学化工基础实验教学示范中心一门重要的专业基础实验课。

将辩证唯物主义理论和社会主义核心价值观等思政元素融入这门课程,有利于帮助学生树立正确的世界观、人生观、价值观,实现高校立德树人的教学目标。

本文以分析化学实验中的两个氧化还原滴定实验为例,通过具体的教学案例,从教学设计、实验内容、教学评价三方面进行教学探索与实践,以课程思政为导向进行专业知识传授,将思想政治教育贯穿于分析化学实验教学全过程,使思想政治教育和专业课教育有机融合,实现课程教学与思政育人的同向同行。

关键词:分析化学;思政教育;氧化还原滴定实验中图分类号:G64;O6Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an ExampleTingting Jiang, Jing Chang *National Virtual Simulation Experimental Teaching Center of Chemistry and Chemical Engineering, National Demonstration Center for Chemistry and Chemical Engineering Education, College of Science, Tianjin University, Tianjin 300354, China.Abstract: Analytical chemistry experiments are important foundational courses in the Chemistry and Chemical Engineering Basic Experimental Teaching Demonstration Center at Tianjin University. Integrating elements of dialectical materialism theory and other ideological and political education into this course is beneficial for helping students establish correct worldviews, life philosophies, and values, and achieve the teaching goal of moral education and character development in higher education institutions. This paper takes two redox titration experiments in analytical chemistry as examples and explores and practices teaching from three aspects: teaching design, experimental content, and teaching evaluation, with the guidance of course ideology and politics. It integrates ideological and political education throughout the entire process of teaching analytical chemistry experiments, combines ideological and political education with professional course education, and achieves the alignment of course teaching and moral education.Key Words: Analytical chemistry; Ideological and political education; Redox titration experiment习近平总书记在全国高校思想政治工作会议上强调:“要坚持把立德树人作为中心环节,把思想政治工作贯穿教育教学全过程,实现全程育人、全方位育人,努力开创我国高等教育事业发展新局面[1]。

以学生为本构建和谐发展的学生工作体系_田波

以学生为本构建和谐发展的学生工作体系_田波

价值工程以学生为本构建和谐发展的学生工作体系To Establish Students-oriented Work System of Harmonious Development田波Tian Bo(哈尔滨工程大学材料科学与化学工程学院,哈尔滨150001)(Harbin Engineering University,Institute of Material Science and Chemical Engineering,Harbin150001,China)摘要:在新形势、新环境的影响下,社会人才需求发生了重大的变化,给高等教育创新带来了更高的要求。

新时期高校的学生工作,必须认清当前所面临的形势和任务,解放思想,实事求是,牢固树立“以学生为本”的科学发展观。

以学生为本是以人为本的科学发展观在高校中的体现,如何把学生培养综合素质高,能适应社会建设需要的毕业生,对高校辅导员提出了新要求。

把科学发展观落实到工作中,树立以学生为本的理念,是构建和谐发展的学生工作体系的根本,是高校为社会培养可靠顶用之才的关键。

Abstract:Social talents have undergone major changes in the new situation and under the influence of the new environment,which has brought ahigher demand on higher education innovation.For students work in College in the new age,we must understand the current situation and tasks,emancipating the mind,seeking truth from facts,and firmly establishing the"student-centered"concept of scientific development.Student-oriented is thescientific concept of people-centered embodied in the college,how to cultivate students into graduate with comprehensive high quality and could adapt tocommunity-building needs propose new requirements on college counselors.Implementing the scientific concept of development work and fosteringstudent-centered philosophy is the fundamental system of harmonious development of student work,is the key for colleges to train application-orientedtalents for society.关键词:科学发展观;以学生为本;高校;辅导员;工作体系Key words:scientific concept of development;student-centered;colleges and universities;counselor;work system中图分类号:G45文献标识码:A文章编号:1006-4311(2011)03-0222-02对策二:充分考虑职校学生实际,任务设计循序渐进。

化学类SCI期刊分区表及影响因子

化学类SCI期刊分区表及影响因子

刊名简称刊名全称ISS J CHEM SCI jo JOURNAL OF CHEMICAL SCIENCES化学科学杂志025ACTA CHIM SLOVac ACTA CHIMICA SLOVENICA 131COLLECT CZECH CHEM C co COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS捷克001QUIM NOVA qu QUIMICA NOVA 010INT J MOL SCI in INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES分子科学国142CHINESE J CHEM ch CHINESE JOURNAL OF CHEMISTRY 100ACTA CHIM SINICA ac ACTA CHIMICA SINICA 056J MACROMOL SCI A jo JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CH 106HIGH PERFORM POLYM hi HIGH PERFORMANCE POLYMERS 095CROAT CHEM ACTA cr CROATICA CHEMICA ACTA 001CENT EUR J CHEM ce CENTRAL EUROPEAN JOURNAL OF CHEMISTRY 189MENDELEEV COMMUN me MENDELEEV COMMUNICATIONS门捷列夫通信095TURK J CHEM tu TURKISH JOURNAL OF CHEMISTRY 130ISR J CHEMis ISRAEL JOURNAL OF CHEMISTRY以色列的化学期刊002CHEM J CHINESE U ch CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE化学期025J CHIN CHEM SOC-TAIP jo JOURNAL OF THE CHINESE CHEMICAL SOCIETY 000CHINESE J POLYM SCI ch CHINESE JOURNAL OF POLYMER SCIENCE 高分子学报025INT J POLYM ANAL CH in INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACT 102SCI CHINA SER Bsc SCIENCE IN CHINA SERIES B-CHEMISTRY中国科学B辑100RES CHEM INTERMEDIAT re RESEARCH ON CHEMICAL INTERMEDIATES研究化学中间体092CHEM LISTYch CHEMICKE LISTY 000J CHIL CHEM SOC jo JOURNAL OF THE CHILEAN CHEMICAL SOCIETY智利化学学会杂071POLYM SCI SER A+po POLYMER SCIENCE SERIES A高分子科学系列096ACTA POLYM SIN ac ACTA POLYMERICA SINICA 高分子学报100J SERB CHEM SOC jo JOURNAL OF THE SERBIAN CHEMICAL SOCIETY塞尔维亚的化学035PROG CHEM pr PROGRESS IN CHEMISTRY化学进展100J CHEM EDUC jo JOURNAL OF CHEMICAL EDUCATION化学教育002RUSS CHEM B+ru RUSSIAN CHEMICAL BULLETIN俄罗斯化学通报106POL J CHEM po POLISH JOURNAL OF CHEMISTRY波兰期刊化学013CHEM PAP ch CHEMICAL PAPERS-CHEMICKE ZVESTI 036STUD CONSERV st STUDIES IN CONSERVATION 003POLYM-KOREA po POLYMER-KOREA聚合物韩037CHEM WORLD-UK ch CHEMISTRY WORLD 147RUSS J GEN CHEM+ru RUSSIAN JOURNAL OF GENERAL CHEMISTRY俄罗斯的《普通化学107S AFR J CHEM-S-AFR T so SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE南非CHEMISTRY-SUID-AFRIKAANSE杂志TYDSKRIF VIR化学037CHIM OGGIch CHIMICA OGGI-CHEMISTRY TODAY 今日化学197CHEM RES CHINESE U ch CHEMICAL RESEARCH IN CHINESE UNIVERSITIES 高等学校化学100CHINESE CHEM LETT ch CHINESE CHEMICAL LETTERS中国化学快报100DOKL CHEMdo DOKLADY CHEMISTRY 001CHEM UNSERER ZEIT ch CHEMIE IN UNSERER ZEIT 000J INDIAN CHEM SOC jo JOURNAL OF THE INDIAN CHEMICAL SOCIETY 001REV CHIM-BUCHAREST re REVISTA DE CHIMIE 003POLYM SCI SER B+po POLYMER SCIENCE SERIES B 156CHEM IND-LONDON ch CHEMISTRY & INDUSTRY000 OXID COMMUN ox OXIDATION COMMUNICATIONS020 REV ROUM CHIM re REVUE ROUMAINE DE CHIMIE003 RUSS J APPL CHEM+ru RUSSIAN JOURNAL OF APPLIED CHEMISTRY107 ASIAN J CHEM as ASIAN JOURNAL OF CHEMISTRY097 B CHEM SOC ETHIOPIA bu BULLETIN OF THE CHEMICAL SOCIETY OF ETHIOPIA101 AFINIDAD af AFINIDAD000 KOBUNSHI RONBUNSHU ko KOBUNSHI RONBUNSHU038 J CHEM SOC PAKISTAN jo JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN025 J CHEM RES-S jo JOURNAL OF CHEMICAL RESEARCH-S030 ACTUAL CHIMIQUE ac ACTUALITE CHIMIQUE015小类名称(中文)小类名称(英文)小类分大类名称大类2008年影2007年影2006年影化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.75 1.03 1.12化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.91 1.090.703化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.780.880.881化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.890.910.72化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.980.750.679化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.950.720.712化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.680.840.783高分子科学POLYMER SCIENCE 4化学40.720.760.8高分子科学POLYMER SCIENCE4化学40.860.680.699化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.830.610.778化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.740.750.561化学综合1.052CHEMISTRY, MULTIDISCIPLINARY 4化学40.610.730.712化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.730.650.646化学综合3.02CHEMISTRY, MULTIDISCIPLINARY 4化学40.470.37 1.174化学综合0.856CHEMISTRY, MULTIDISCIPLINARY 4化学40.590.70.724化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.770.640.577高分子科学POLYMER SCIENCE 4化学40.640.750.506高分子科学POLYMER SCIENCE4化学40.820.390.578化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.550.620.617化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.510.650.555化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.590.680.431化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.560.50.54高分子科学POLYMER SCIENCE 4化学40.540.70.333高分子科学POLYMER SCIENCE4化学40.570.540.466化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.610.540.423化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.510.530.52化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.540.560.439化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.470.540.505化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.520.480.491化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.760.370.36应用化学CHEMISTRY, APPLIED 4化学40.380.460.609高分子科学POLYMER SCIENCE4化学40.610.380.378化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.360.430.547化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.470.470.374化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.440.330.459化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.400化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.410.390.363化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.490.340.266化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.230.440.414化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.280.40.397化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.380.330.34化学综合CHEMISTRY, MULTIDISCIPLINARY 4化学40.390.260.287高分子科学POLYMER SCIENCE4化学40.270.340.273应用化学CHEMISTRY, APPLIED4化学40.220.330.225化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.230.290.262化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.280.260.208应用化学CHEMISTRY, APPLIED4化学40.290.270.187化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.270.290.173化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.20.270.206化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.240.180.188高分子科学POLYMER SCIENCE4化学40.170.170.169化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.220.10.152化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.10.150.21化学综合CHEMISTRY, MULTIDISCIPLINARY4化学40.150.170.0512006-2008年2008年总2007年总2006年总被引频次0.9656672962501550.9016675864703070.8482570260027840.8403331918169910720.8023334223132780.7921503122611770.7696672339223321170.7596671918204419720.7465224785010.7383339189097600.685333223158940.6836678298657630.6756677046264730.67199193410930.6703332687276528030.663333137111019820.6343334073932840.5961541381180.5946679218818700.5725446095560.5694944693310.5326672171641160.5241358201610250.5248237646940.5233337646765050.5196675063923260.5123335005489241300.5042141220517630.4973331315139013250.4955183953750.4836054564640.4553522752060.4453332461611390.4366672532250324260.4086671021081440.404246000.3876673993362870.363333129510559560.3623332332231960.3586671911791720.3513332314217520730.3123336653723890.2953664912660.258667107812801229 0.258667226276221 0.2513336024746110.249143314651246 0.2443331121909515 0.2246677771430.203188168141 0.1693332533303060.156306209188 0.150667160015371715 0.125333959088。

Illumina cBot自动克隆扩增系统说明书

Illumina cBot自动克隆扩增系统说明书

The Best Next-Gen Sequencing Workflow Just Got BettercBot is a revolutionary automated clonal amplification system at the core of the Illumina sequencing workflow (Figure 1, upper panel). cBot replaces a lab full of equipment with a single compact device, deliver-ing unsurpassed efficiency and ease of use for the highest quality sequencing results.With cBot, hands-on time is reduced to less than 10 minutes, com-pared to more than six hours of hands-on effort for emulsion PCR methods. The process of creating sequencing templates is complete in about four hours, compared to more than 24 hours for emulsion PCR-based protocols (Figure 1, lower panel).Breakthrough System for Cluster GenerationThe Illumina sequencing workflow is based on three simple steps: libraries are prepared from virtually any nucleic acid sample, amplified to produce clonal clusters, and sequenced using massively parallel synthesis. The cBot clonal amplification system has innovative features that eliminate user intervention, reduce potential failure points, and increase sequencing productivity.TruSeq Cluster Generation reagents are packaged in ready-to-use96-well plates, completely removing reagent preparation errors, potential sources of contamination, and decreasing storage require-ments. cBot features a single unique, plate-piercing manifold for intervention-free runs. Cluster generation occurs within the sealed, eight-channel Illumina flow cell, bypassing the frequent handling and contamination issues inherent to emulsion PCR-based protocols. cBot is capable of processing > 96 samples within a single flow cell, resulting in substantial cost savings without incremental effort and wasted reagents. Innovative instrument features ensure seamless operation for your sequencing workflow (Figure 2).Better Results with Less EffortcBot software enhancements and user interaction features ensure high productivity:• Integrated 8-inch touch screen provides simplified operation in a small, lab-friendly footprint• On-screen, step-by-step instructions with embedded multimedia help enable user operation with no prior training • Real-time progress indicators provide at-a-glance monitoring • Remote monitoring allows a single user to manage multiple systems from any web browser or phone• Status emails are sent when the run is complete or when intervention is requiredcBot Cluster Generation ProcessPrior to sequencing, single-molecule DNA templates are bridge amplified to form clonal clusters inside the flow cell. (Figure 3).cBotFully automated clonal cluster generation for Illumina sequencing.Illumina cBot Highlights• Fast, Efficient Workflow:Amplify > 96 samples in ~4–5 hours with < 10 minutes ofhands-on time• Easiest to Use:Pre-packaged 96-well TruSeq™ reagents, and simple touch screen interface simplifies operation• Innovative System Design:Real-time fluidic monitoring, integrated system sensors and remote monitoring ensure robust instrument operation• Highest Quality Results:Improved chemistry generates higher density clusters and sequencing accuracy LibraryPreparation SequencingCluster GenerationEight-channel flow cell reduces risk of contamination and eliminates the needfor extra equipment Manifold clamps for leak-free connections and superior thermal contactTouch screen monitor simplifies operation and provides real-timeImmobilization of Single-Molecule DNA TemplatesHundreds of millions of templates are hybridized to a lawn of oligo-nucleotides immobilized on the flow cell surface. The templates are copied from the hybridized primers by 3’ extension using a high-fidelity DNA polymerase to prevent misincorporation errors. The original templates are denatured, leaving the copies immobilized on the flow cell surface.Isothermal Bridge AmplificationImmobilized DNA template copies are amplified by isothermal bridge amplification. The templates loop over to hybridize to adjacent lawn oligonucleotides. DNA polymerase copies the templates from the hybridized oligonucleotides, forming dsDNA bridges, which are dena-tured to form two ssDNA strands. These two strands loop over and hybridize to adjacent oligonucleotides and are extended again to form two new dsDNA loops. The process is repeated on each template by cycles of isothermal denaturation and amplification to create millions of individual, dense clonal clusters containing ~2,000 molecules. Linearization, Blocking, and Primer HybridizationEach cluster of dsDNA bridges is denatured, and the reverse strand is removed by specific base cleavage, leaving the forward DNA strand. The 3’-ends of the DNA strands and flow cell-bound oligonucleotides are blocked to prevent interference with the sequencing reaction. The sequencing primer is hybridized to the complementary sequence on the Illumina adapter on unbound ends of the templates in the clusters. The flow cell now contains >200 million clusters with ~1,000 mol-ecules/cluster, and is ready for sequencing.SummaryIllumina sequencing with cBot automated cluster generation sets the new standard for simplified next- generation sequencing. Ready-to-use reagents, smart instrumentation improvements, and new cluster generation chemistry offers significant advantages over emulsion PCR-based workflows and promotes even higher data density and sequencing accuracy. By streamlining the critical clonal amplification step in the next-generation sequencing workflow, Illumina continues to accelerate your landmark discoveries and publications.Ordering InformationDescriptioncBotCatalog No.HiSeq System Genome AnalyzercBot Instrument Includes cBot, flow cell adapter plate,one year warranty, user manualSY-301-2002cBot Flow Cell Manifold (Optional)SY-301-2014TruSeq Single-Read Cluster Generation Kits include flow cell,reagent plate, manifold, user instructionsGD-401-3001GD-300-2001TruSeq Paired-End Cluster Generation Kits include flow cell,reagent plate, manifold, PE reagents, user instructionsPE-401-3001PE-300-2001Illumina, Inc. •9885TowneCentreDrive,SanDiego,CA92121USA•1.800.809.4566toll-free•1.858.202.4566tel•************************• For research use only© 2011 Illumina, Inc. All rights reserved.Illumina, illuminaDx, BeadArray, BeadXpress, cBot, CSPro, DASL, Eco, Genetic Energy, GAIIx, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, Infinium, iSelect, MiSeq, Nextera, Sentrix, Solexa, TruSeq, VeraCode, the pumpkin orange color, and the Genetic Energy streaming bases design are trademarks or registered trademarks of Illumina, Inc. All other brands and names contained herein are the property of their respective owners. Pub. No. 770-2009-032 Current as of 27 April 2011at the address below.Laser radiationDo not stare into the visible-light beam of the barcode scanner. The barcode scanner is a Class 2 laser product.SY-301-2002Instrument ConfigurationCE Marked and ETL Listed instrument, Installation, setup, and accessoriesInstrument Control ComputerMini-ITX Board with Celeron M Processor 1 GB RAM, 80 GB Hard Drive Windows Embedded OSIntegrated 8” Touch Screen Monitor Operating Environment Temperature: 22°C ± 3°CHumidity: Non-Condensing 20%–80%Altitude: Less than 2,000 m (6,500 ft)Air Quality: Pollution Degree Rating of II For Indoor Use Only LaserClass 2 Laser: 630 –650 nm DimensionsW×D×H: 38 cm × 62 cm × 40 cm Weight: 34 kg Crated Weight: 36 kg Power Requirements100−240V AC 50/60 Hz, 4A, 400 Watts。

基于核心素养的高中化学微课程案例开发研究

基于核心素养的高中化学微课程案例开发研究

2020年03月DANGDAIJIAOYANLUNCONG每门学科都有其学科核心素养,比如语文课强调学生对文字的美的感悟和把握能力,这就是语文学科的核心素养。

高中化学的核心素养主要包括“宏观辨识与微观探析”“变化观念与平衡思想”“证据推理与模型认知”“科学探究与创新意识”与“科学精神与社会责任”等。

高中阶段是学生接触初等化学的阶段,对其以后在科学道路的发展有着重要的奠基作用。

因此,在进行高中化学的教学过程中教师要着重强调培养学生的化学学科核心素养。

本文以此为主题,以近年来兴起的微课程辅助教学案例为主要分析对象,试对其进行简单论述。

一、高中化学学科核心素养的内涵高中化学学科的核心素养主要包含以下方面:第一,科学探究与创新意识。

尊重逻辑规律和客观事物的运行规律是理科学科最基本的要求,高中化学学科也是如此。

教师在教学过程中要强调学生对基本化学科学规律的认识和把握,做到尊重客观规律、逻辑规律,这是培养学生化学核心素养的首要前提。

第二,变化观念与平衡思想。

变化与平衡,是高中化学反应当中的两个重要概念,对这两个概念的理解与把握将直接影响到学生们的化学思维方式和解题方法。

例如“水溶液中的离子平衡”一章,可以说是整个高中化学的重点和难点,其中涉及的最重要的化学思想,就是变化与平衡。

第三,证据推理与模型认知。

作为一门理科学科,证据推理能力是必不可少的。

此外,在高中化学的学习中,各种化学模型的认识与理解也很关键,尤其是在原子与微观化学的结构方面。

第四,宏观辨识与微观探析。

化学主要解决微观方面的问题,例如物质的构成、性质和它们之间的反应等,学生要对这些化学过程做到熟练的理解和掌握。

同时,在宏观上学生也要理解化学学科在具体生活实践中的应用[1]。

第五,科学精神与社会责任。

这是每个学科最基本的核心修养。

一个成就极高的科学研究者如果没有良好的科学修养和道德修养,其研究成果也不利于人类的发展和进步,甚至危害到人类和整个社会。

“课程思政”融入化工技术经济学课程教学改革探索

“课程思政”融入化工技术经济学课程教学改革探索

广东化工2020年第17期· 200 · 第47卷总第427期“课程思政”融入化工技术经济学课程教学改革探索杨付林*,喻鹏(北部湾大学石油与化工学院,广西钦州535011)[摘要]随着工程教育专业认证工作推进,化工技术经济学课程已被列为化工类专业学生的专业必修课程。

基于“大思政”理念,将思政教育贯穿技术经济学课程的全过程,深度挖掘提炼知识体系中蕴含的思政元素,找到专业知识与思政之间的融入点,开展“课程思政”教学改革创新,打造化工类专业“金课”,实现知识传授和价值引领的有机统一,真正实现盐溶入汤式的立德树人效果。

[关键词]化工技术经济学;课程思政;课程改革;思政元素[中图分类号]G4 [文献标识码]A [文章编号]1007-1865(2020)17-0200-02Teaching Reform of Chemical Technology Economics Course Integrated byIdeology and PoliticsYang Fulin*, Yu Peng(College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou535011, China) Abstract: With the advancement of engineering education professional certification, the chemical technology economics course has been listed as a required professional course for students of chemical engineering. Based on the concept of “big ideology and politics”, ideological and political education is run through the entire process of technical economics courses, in-depth digging of ideological and political elements, finding suitable integration points. “Curriculum ideology and politics” teaching reform is carried out to create a “golden course” in chemical engineering, promote the reform and development of the chemical technology economics curriculum, realize the organic unity of knowledge transfer and value leadership, and truly achieve the effect of salt dissolving into soup.Keywords: chemical technology economics;ideology and politics course;course reform;ideological elements1 引言在全国教育大会上,习近平总书记指出,“培养什么样的人、如何培养人、为谁培养人”是中国的大学教育首先要解决的问题,并且强调了“培养德智体美劳全面发展的社会主义建设者和接班人”[1]。

化学制药工艺学“课程思政”教学实践

化学制药工艺学“课程思政”教学实践

广东化工2021年第10期· 250· 第48卷总第444期化学制药工艺学“课程思政”教学实践孟上九,李进京(佳木斯大学,黑龙江佳木斯154007)[摘要]大学教育应把品德培养放在比传授知识、培养专业能力更加重要的位置,以化学制药工艺学课程为例,充分利用课堂讲授和互动教学环节的育人功能,将行业道德规范和正确价值观融入到专业课教学过程,提高地方综合性大学人才培养质量,为“课程思政”建设提供新思路。

[关键词]化学制药工艺学;课程思政;教学改革[中图分类号]G642.0 [文献标识码]A[文章编号]1007-1865(2021)10-0250-01The Practice of Ideological and Political Education in the Course ofPharmaceutical TechnologyMeng Shangjiu,Li Jinjing(College of Pharmacy,Jiamusi University,Jiamusi154007,China)Abstract:Higher education should put moral cultivation in a more important position than imparting knowledge and cultivating professional ability.Taking the course of chemical pharmaceutical technology as an example,we should make full use of the educational function of classroom teaching and interactive teaching, integrate industry ethics and correct values into the teaching process of professional courses,improve the quality of talent cultivation in local comprehensive universities,and provide new ideas for the ideological and political education.Keywords:pharmaceutical technology;ideological and political education;teaching reform随着人们健康意识的逐步提高,药物的有效性和安全性受到极大的重视。

大学应用化学英语教材

大学应用化学英语教材

大学应用化学英语教材The Importance of Applied Chemistry in Modern SocietyIn today's rapidly advancing world, the field of applied chemistry plays a vital role in various industries and everyday life. As technology continues to evolve, the demand for professionals equipped with a solid foundation in applied chemistry grows. For this reason, the development of an effective and comprehensive English textbook tailored specifically for university students studying applied chemistry is necessary. In this article, we will explore the key components and structure that should be included in a top-notch applied chemistry English textbook.1. IntroductionThe textbook should begin with an introduction that highlights the importance of applied chemistry in society. It should emphasize the real-world applications of chemistry, such as drug discovery, materials engineering, environmental protection, and food production. This section should provide students with a clear understanding of the relevance and significance of studying applied chemistry.2. Basic Principles of Applied ChemistryThis section is dedicated to covering the fundamental principles of applied chemistry. It should include topics such as atomic structure, chemical bonding, stoichiometry, and reaction kinetics. The content should be concise and easy to comprehend, with well-organized tables, figures, and diagrams to aid understanding.3. Laboratory TechniquesA vital component of applied chemistry is practical laboratory work. Thus, the textbook should include a section dedicated to laboratory techniques commonly used in the field. This section should cover safety protocols, experimental procedures, data analysis, and proper documentation. It should provide students with the necessary skills to conduct experiments effectively and accurately.4. Organic ChemistryOrganic chemistry is a crucial aspect of applied chemistry, as it deals with the study of carbon-based compounds. This section should cover topics such as functional groups, nomenclature, reaction mechanisms, and synthetic methods. Emphasis should be placed on the application of organic chemistry in pharmaceuticals, polymers, and agricultural chemicals.5. Analytical ChemistryAnalytical chemistry focuses on the identification and quantification of chemical compounds. In this section, students should learn about various analytical techniques such as spectroscopy, chromatography, and electrochemistry. Practical examples and case studies should be included to demonstrate the application of analytical chemistry in environmental analysis, forensic science, and quality control.6. Inorganic ChemistryInorganic chemistry is the study of non-carbon-based compounds. This section should cover topics such as periodic trends, coordination compounds, and transition metals. Students should gain an understanding of theapplications of inorganic chemistry in materials science, catalysis, and energy production.7. Physical ChemistryPhysical chemistry combines the principles of physics and chemistry to study the properties and behavior of matter. This section should cover topics such as thermodynamics, quantum mechanics, and chemical kinetics. Students should learn about the application of physical chemistry in fields like nanotechnology, energy storage, and molecular modeling.8. Environmental ChemistryThe textbook should include a dedicated section on environmental chemistry, as the protection and sustainability of the environment are pressing global concerns. This section should cover topics such as air and water pollution, greenhouse gases, and waste management. Students should gain insights into how chemistry can contribute to environmental conservation and remediation.9. Case Studies and Practical ApplicationsTo enrich students' learning experience, the textbook should incorporate case studies and practical applications throughout the content. These examples should showcase how applied chemistry principles are utilized in real-life scenarios. By analyzing and discussing these case studies, students can better understand the practical implications of their knowledge.10. Review Questions and ExercisesFinally, the textbook should include review questions and exercises at the end of each chapter to reinforce understanding and facilitate self-assessment. These questions should cover a wide range of difficulty levels, allowing students to test their knowledge and apply what they have learned.ConclusionIn conclusion, a high-quality English textbook for university students studying applied chemistry should incorporate an engaging introduction, cover the fundamental principles of chemistry, provide comprehensive laboratory techniques, delve into organic, analytical, inorganic, and physical chemistry, address environmental concerns, include case studies and practical applications, and offer review questions and exercises. By encompassing these components, the textbook can effectively equip students with the knowledge and skills needed to excel in the field of applied chemistry and contribute to the advancement of society.Word Count: 801 words。

211249997_酰胺的制备新创实验——N-二苯甲基乙酰胺

211249997_酰胺的制备新创实验——N-二苯甲基乙酰胺

Univ. Chem. 2023, 38 (4), 277–283 277收稿:2022-10-31;录用:2023-01-04;网络发表:2023-03-01*通讯作者,Emails:*****************(马献涛);*************(曹俊涛)基金资助:国家自然科学基金(22101243);信阳师范学院教育教学改革研究与实践项目(2022030);信阳师范学院大学生科研创新基金项目(2022-DXS-089)•化学实验• doi: 10.3866/PKU.DXHX202210106 酰胺的制备新创实验——N -二苯甲基乙酰胺马献涛*,于静,袁超,杨硕,袁格,曹俊涛*信阳师范学院化学化工学院, 河南 信阳 464000摘要:以二苯甲醇与乙腈为原料、摩尔比5%碘单质或对甲苯磺酸作为催化剂,加热反应2 h ,即可得到~85%分离收率的N-二苯甲基乙酰胺产物。

本新创实验基于绿色化学理念,综合了醇的性质、碳正离子理论、Brønsted 与Lewis 酸碱理论、Ritter 人名反应等基础知识和基本理论,强化了TLC (薄层层析色谱)、重结晶、抽滤、烘干、熔点测定等基本实验操作,涉及到气相色谱-质谱联用、核磁共振等产物分析、表征的科研方法,渗透了单一变量法等基本科研思维,整个实验流程约需3–4 h ,试剂成本~1.2元/人次,便于采用分组对照开展实际教学。

总之,该新创实验既紧扣课本教材,又联系科研前沿,“顶天立地”,符合新课改“高阶性、创新性和挑战度”的要求。

关键词:酰胺;Ritter 反应;原子经济性中图分类号:G64;O6Innovative Experiments of Amide Preparation: N -DiphenylmethylacetamideXiantao Ma *, Jing Yu, Chao Yuan, Shuo Yang, Ge Yuan, Juntao Cao *College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan Province, China.Abstract: Heating the reaction mixture of diphenylmethanol and acetonitrile for 2 h in the presence of 5% (molar ratio) iodine or p -toluenesulfonic acid as the catalyst can yield the target product N -benzyl acetamide in approximately 85% isolated yield. Based on the concept of green chemistry, this innovative experiment integrates basic knowledge and theories such as the properties of alcohols, carbocation theory, organic Brønsted and Lewis acid-base theories, and the Ritter reaction. Additionally, knowledge regarding basic experimental operations such as thin layer chromatography (TLC), recrystallization, extraction filtration, drying and melting point determination can be strengthened by this experiment. The scientific research methods of product analysis and characterization such as gas chromatography-mass spectrometry, nuclear magnetic resonance, and the basic scientific research rules such as the single-variable method are also employed in this experiment. Notably, it takes approximately 3–4 h to complete the experimental process, the cost of reagents is approximately 1.2 yuan per-person, and it is convenient to carry out the control experiments in groups for practical teaching. In summary, the basic knowledge and theories mentioned in the textbook and the frontier of scientific research can be covered in this innovative experiment, while meeting the requirements for “high-order, innovation and challenge” of the new curriculum reform.Key Words: Amide; Ritter reaction; Atomic economy1 引言化学是一门以实验为基础的学科。

煤化工高盐废水分盐结晶残液中锌离子去除探索

煤化工高盐废水分盐结晶残液中锌离子去除探索

文章编号:1006-3080(2022)06-0744-06DOI: 10.14135/ki.1006-3080.20210523001煤化工高盐废水分盐结晶残液中锌离子去除探索张郑珂, 陈 杭, 宋兴福(华东理工大学资源过程工程教育部工程研究中心, 上海200237)摘要:以煤化工高盐废水分盐结晶残液为研究对象,开展高盐体系锌离子赋存状态模拟计算,得到锌的各种形式占比随pH 、温度、NaCl 盐质量浓度的变化趋势,并以Na 2S 为沉淀剂研究了搅拌速度、初始pH 、Na 2S 投加量等工艺条件对深度脱除锌离子的影响。

结果表明,将高盐有机废水初始 pH 调节到中性或碱性有利于硫化沉淀法对锌离子的脱除,在反应温度25 ℃、反应时间20 min 、搅拌速度300 r/min 、初始pH=8.0、 n (Zn 2+)∶n (S 2−)=1.0∶1.0时,残液满足废水排放标准。

关键词:煤化工;高盐废水;重金属;Visual MINTEQ 中图分类号:X703.1文献标志码:A煤化工生产过程中会排放大量高盐废水[1-2],高盐废水“零排放”已成为现代煤化工产业的关注重点[3-4],分质结晶单元是煤化工高盐废水“零排放”工艺的关键环节[5],此过程不可避免产生少量浓缩残液,其盐含量为20%~30%(质量分数),其中含有锌离子等重金属离子,属于危废。

从废水中脱除重金属离子的方法包括吸附[6]、膜过滤[7]、电化学[8]、离子交换[9]、化学沉淀[10]等,其中化学沉淀法在工业上应用最广泛,众多研究人员[11-14]开发了利用不同沉淀剂从废水中脱除重金属离子的工艺流程。

Chen 等[11]以Ca(OH)2、Na 2CO 3和Na 2S 作为沉淀剂,实现了溶液中Zn 2+、Cu 2+、Pb 2+的有效脱除。

Veeken 等[15]采用硫化沉淀法将Zn 2+质量浓度降低到0.03 mg/L 。

但目前重金属离子的脱除多围绕低盐废液开展工作,对高盐浓度溶液体系的研究较少。

高等有机化学

高等有机化学
★ 计算机技术的引入,使有机化学的结构测定、分子设计和合成 设计上如虎添翼,发展得更为迅速。同时,组合化学的发展不 仅为有机合成提出了一个新的研究内容,而且也使高通量的自 动化合成有机化合物成为现实。
在21世纪,有机化学面临着新的发展机遇
● 一方面,随着有机化学自身的发展及新的分析技术、物理方法 及生物学方法的不断涌现,人类在了解有机化合物的性能、反 应及合成方面将有更新的认识和研究手段;
已进入临床应用
2. 结合微量、痕量成分分离和结构鉴定新方法以及药理活性筛选 新模型,建立对中草药和海洋生物资源进行创新性源头研发, 提供创新药物先导物的研究体系。
MeO
HO OO
O
O
O
Me
OH O
HO O
O O
HO OMe
O
Bryostatin 1 抗肿瘤海洋天然产物
其分离和结构鉴定经 历了14年,现已进入临
3. 分子间弱相互作用和超分子化学
包括基元结构的设计和合成,分子间弱相互作用的加和与协同产 生的方向和选择性,分子组装和分子识别,超分子的结构和表征, 超分子体系的信息功能和用途等问题,为物理有机化学创造了新 的机遇。
超分子化学 (Supramolecular Chemistry) 是研究两种 或两种以上的化学物种通过分子间弱相互作用所形成 的复杂有序且具有特定功能体系的化学
绪论 Introduction
有机化学是研究有机化合物的来源、制备、结构、性能、 应用以及有关理论和方法的科学
有机合成化学
C-C键的形成和断裂 C-X键的形



温度,溶剂

中间体 生成
中间体 相互转化
中间体 淬灭
化学键 的形成

Chapter 3 atom economy-201240页PPT

Chapter 3 atom economy-201240页PPT
(Definition by Green Chemistry Theory & Practice, P T Anastas & J C Warner, Oxford University Press)
Green Chemistry Is About...
Green chemistry aims to protect the environment not by cleaning up, but by inventing more environmentally friendly chemical processes that do not pollute.
• Green chemistry looks at pollution prevention on the molecular scale and is an extremely important area of Chemistry due to the importance of Chemistry in our world today and the implications it can show on our environment.
Catalysis
& Reagents
Solvent
Separatio
Replacement
Use of Renewable
Energy
Feedstocks
Efficiency
Process Intensification
Waste Minimisation
The 12 Principles of Green Chemistry
• The fundamental idea of green chemistry is that, the designer of a chemical is responsible for considering what will happen to the world after the chemical agent is put in place.

atomeconomyShen

atomeconomyShen
12、Inherently Safer Chemistry for Accident Prevention
Substances and the form of a substance used in a chemical process should be chosen to minimise the potential for chemical accidents, including releases, explosions, and fires.
Energy requirements of chemical processes should be recognised for their environmental and economic impacts and should be minimised. If possible, synthetic methods should be conducted at ambient temperature and pressure.
Chapter 3
Principles and Concepts of Green Chemistry
MIKE LANCASTER
• Introduction • Sustainable Development and Green Chemistry • Atom Economy • Atom Economic Reactions • Atom Un-economic Reactions • Reducing Toxicity
• 1962 - more widely used, more competition – Denka introduce butene oxidation process
• Late 1960’s - butene prices rise – Denka plant converted to ne

高等高分子化学_第二部分

高等高分子化学_第二部分

高等高分子化学
第二部分 聚合新方法
Advances in living (ionic) polymerization Anionic
D. Baskaran, A. H.E. Müller, Anionic vinyl polymerization—50 years after Michael Szwarc. Prog. Polym. Sci. 2007, 32, 173–219. D. Baskaran, Strategic developments in living anionic polymerization of alkyl (meth)acrylates. Prog. Polym. Sci. 2003, 28, 521–581. A. Hirao, S. Loykulnant, T. Ishizone, Recent advance in living anionic polymerization of functionalized styrene derivatives. Prog. Polym. Sci. 2002, 27, 1399–1471.
2. Lanthanide Triflate Cocatalysts 3. Lewis Acid-Surfactant Combined Catalysts
4. BF3 · OEt2 Cocatalyst
5. Aromatic Borane-Based Cocatalysts Q1: whether it’s possible to polymerize water-soluble monomer in water?
上海大学高分子材料系
研究生课程(10SAK7003)
高等高分子化学
第二部分 聚合新方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 100%
This reaction route has a very high atom economy as all reactant atoms are incorporated into the desired product.
Example 3
Hydrazine (N2H4) is used for rocket fuel. Calculate the atom
final useful product.
A reaction may have a high percentage yield but a low
percentage atom economy, or vice versa.
High atom economy
All reactant atoms included in the desired product.
economy for hydrazine production.
2NH3 + NaOCl N2H4
+
NaCl
+
H2O
NH3 2 mol 34 g
NaOCl 1 mol 74.5 g
N2H4 1 mol
32 g
NaCl 1 mol 58 g
H2O 1 mol 18 g
Total mass of reactants = 34 + 74.5 = 108.5 g
Mass of desired product = 32 g
Example 3 (contd)
% atom economy = mass of desired product × 100
total mass of reactants
= 32 × 100 108.5
= 30%
This reaction route has an atom economy of 30%. The remaining 70% is waste product (NaCl and H2O).
Mass of desired product(s)

% atom economy = Total mass of reactants
x 100
What is green chemistry?

The sustainable design of chemical products and chemical processes.

Can be recovered and re-used.
Allow reactions to run at lower temperatures, cutting energy
requirements.


The green chemical industry
Modern chemists design reactions with the highest possible atom economy in order to minimise environmental impact. Chemists achieve this by reducing raw material and energy consumption.
Chemical processes should aim to incorporate all reactants in the final product. Chemical processes should aim to use and generate substances with minimal toxicity to human health and the environment.
C6H12 Mass of desired product = [(6 × 12) + (12 × 1)] = 84 g
Example 2 (contd)
% atom economy = mass of desired product × 100
total mass of reactants
= 84 × 100 84
C(s)
12 g 12 g
+
2H2O(g) → CO2(g)
2(2 + 16) g 36 g 44 g
+ 2H2(g)
2(2 × 1) g 4g
[12 + (2 × 16)] g
Total mass of reactants = 12 + 36 = 48 g
Mass of desired product =4g
natural resources and create less waste.
Atom economy
Mass of desired product(s) % atom economy = Total mass of reactants x 100
A measure of the proportion of reactant included in the
Atom Economy
Learning outcomes

Atom economy is derived from the principles of green chemistry.

Atom economy is a measure of the proportion of reactants that become useful products.

Gives no indication of the quantity of waste produced.
Atom economy
In an ideal reaction, all reactant atoms end up within the useful product molecule. No waste is produced! Inefficient, wasteful reactions have low atom economy. Efficient processes have high atom economy and are important for sustainable development. They conserve
CatБайду номын сангаасlysts

Have a crucial role in improving atom economy. Allow the development of new reactions requiring fewer
starting materials and producing fewer waste products.
Example 2
Calculate the percentage atom economy for the reaction below.
CH3 H3C C CH3 CH CH2 H3C acid H3C C C CH3 CH3
C6H12 Total mass of reactants = [(6 × 12) + (12 × 1)] = 84 g
Percentage yield
Actual yield % yield = Theoretical yield x 100

Historical method for evaluating reaction efficiency. Measures the proportion of the desired product obtained compared to the theoretical maximum.
Low atom economy
Some reactant atoms not included in the desired product.
Example 1
What is the percentage atom economy for the following reaction
for making hydrogen by reacting coal with steam?

It minimises the use and generation of chemical substances that are hazardous to human health or the environment.
Green chemistry principles

Better to prevent waste than to treat it or clean it up.
Example 1 (contd)
% atom economy = mass of desired product × 100
total mass of reactants
= 4 × 100 48
= 8.3%
This reaction route has a very low atom economy and is an inefficient method of producing hydrogen.
相关文档
最新文档