课后作业_函数

合集下载

冀教版初二数学下学期课后作业题:一次函数的图像和性质

冀教版初二数学下学期课后作业题:一次函数的图像和性质

书山有路勤为径;学海无涯苦作舟
冀教版初二数学下学期课后作业题:一次函数的图像
和性质
数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点
都会影响最后的结果。

下文就为大家送上了初二数学下学期课后作业题,希
望大家认真对待。

第1 题. 对于任何实数x,点M(x,x-3)一定不在第几象限?
答案:点M(x,x-3)在直线y=x-3 上,而直线y=x-3 不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.
第2 题. 一次函数,如果,则x 的取值范围是()
A. B. C. D.
答案:B.
第3 题. 已知直线y=kx+b(k≠0)与x 轴的交点在x 轴的正半轴,下列结论:①k 大于0,b 大于0;②k 大于0,b 小于0;③k 小于0,b 大于0;④k 小于0,b 小于0.其中正确的结论的个数是()
A.1
B.2
C.3
D.4
答案:B
第4 题. 如图所示,函数y=mx+m 的图像中可能是()
答案:D
第5 题. 当自变量x 增大时,下列函数值反而减小的是()
A.y=
B.y=2x
C.y=
D.y=-2+5x
答案:C
第6 题. 正比例函数的图像如图,则这个函数的解析式为( )
今天的努力是为了明天的幸福。

函数的概念与性质教案

函数的概念与性质教案

函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。

2. 掌握函数的性质,包括单调性、奇偶性、周期性等。

3. 能够运用函数的性质解决问题。

二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。

2. 函数的性质:单调性、奇偶性、周期性。

3. 函数性质的应用:解决实际问题。

三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。

2. 难点:函数的单调性、奇偶性、周期性的理解和应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。

2. 利用数形结合法,直观展示函数的性质。

3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。

五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。

2. 教学素材:包括函数图象、实际问题等。

3. 学生用书、练习题。

【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。

)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。

(2)讲解函数的表示方法:列表法、解析法、图象法。

2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。

(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。

(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。

【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。

2. 选取部分学生进行答案展示,并讲解答案的得出过程。

【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。

2. 引导学生总结解题思路和方法,并进行讲解。

【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。

2. 强调函数在实际问题中的重要性。

【作业布置】1. 让学生完成课后作业,巩固所学内容。

2. 鼓励学生进行自主学习,提前预习下一节课的内容。

2020年高考数学(文科)复习课后作业 第15讲导数与函数的极值 最值

2020年高考数学(文科)复习课后作业  第15讲导数与函数的极值 最值

第15讲 导数与函数的极值 最值1.当函数y=x ·2x 取极小值时,x= ( )A .1ln2B .-1ln2C .-ln 2D .ln 22.已知函数f (x )=13x 3-12x 2+cx+d 有极值,则c 的取值范围为( ) A .c<14B .c ≤14C .c ≥14D .c>143.函数f (x )=12x 2-ln x 的最小值为 ( )A .12B .1C .0D .不存在4.[2018·烟台模拟] 若函数f (x )=x 3-3x+m 的极小值为-1,则函数f (x )的极大值为 .5.若函数f (x )=x 3+ax 2+bx+a 2在x=1处取得极值10,则a+b 的值为 .6.[2018·杭州模拟] 如果函数y=f (x )的导函数y=f'(x )的图像如图K15-1所示,给出下列说法: ①函数f (x )在区间(-3,-1)内单调递增;②函数f (x )在x=2处取得极小值;③函数f (x )在区间(4,5)内单调递增;④函数f (x )在x=-12处取得极大值.则上述说法中正确的是 ( )图K15-1A .①②B .②③C .③④D .③7.[2018·河南驻马店模拟] 已知函数f (x )=2e f'(e )·ln x-x e (e 是自然对数的底数),则f (x )的极大值为 ( )A .2e -1B .-1eC .1D .2ln 28.[2018·郑州三模]已知函数f(x)=a x+x2-x ln a,若对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2恒成立,则a的取值范围为()A.[e2,+∞)B.[e,+∞)C.[2,e]D.[e,e2]9.[2018·湖北八市联考]已知函数f(x)=lnxx,下列说法正确的有()①f(x)在x=e处取得极大值1e;②f(x)有两个不同的零点;③f(4)<f(π)<f(3);④π4<4π.A.4个B.3个C.2个D.1个10.已知f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>12),当x∈(-2,0)时,f(x)的最小值为1,则a= ()A.1B.2C.1 2D.2311.已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图像在x=1处的切线平行于直线6x+2y+5=0,则f(x)的极大值与极小值之差的绝对值为.12.若函数f(x)=x2-12ln x+1在其定义域内的一个子区间(a-1,a+1)内存在极值,则实数a的取值范围为.13.已知函数f(x)=a ln x+x2+bx+1的图像在点(1,f(1))处的切线方程为4x-y-12=0.(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值.14.[2018·滁州模拟]已知函数f(x)=12x2+a ln x.(1)若a=-1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图像在g(x)=2x3的图像下方.315.[2018·成都二诊]已知函数f(x)=x ln x+ax+1,a∈R.(1)当x>0时,若关于x的不等式f(x)≥0恒成立,求a的取值范围;(2)当x∈(1,+∞)时,证明:e(x-1)<ln x<x2-x.e x。

高三数学__选修部分__课后作业及详细解答(3)

高三数学__选修部分__课后作业及详细解答(3)

课后作业基础巩固强化一、选择题={x |x -2x -1<1},则M ∩N 等于( )A .{x |1<x <32} B .{x |12<x <1}C .{x |-12<x <32} D .{x |-12<x <32,且x ≠1}[答案] A[解析] 由|2x -1|<2得-2<2x -1<2,则-12<x <32;由x -2x -1<1得(x -2)-(x -1)x -1<0,即-1x -1<0,则x >1.所以M ∩N ={x |1<x <32},选A.2.不等式|x -2|-|x -1|>0的解集为( ) A .(-∞,32) B .(-∞,-32) C .(32,+∞) D .(-32,+∞) [答案] A[解析] 原不等式等价于|x -2|>|x -1|,则(x -2)2>(x -1)2,解得x <32.3.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a 、b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3[答案] D[解析] 由题意可得集合A ={x |a -1<x <a +1},集合B ={x |x <b -2或x >b +2},又因为A ⊆B ,所以有a +1≤b -2或b +2≤a -1,即a -b ≤-3或a -b ≥3.所以选D.4.(文)若不等式|ax +2|<4的解集为(-1,3),则实数a 等于( ) A .8 B .2 C .-4 D .-2[答案] D[解析] 由-4<ax +2<4,得-6<ax <2. ∴(ax -2)(ax +6)<0,其解集为(-1,3),∴a =-2. [点评] 可用方程的根与不等式解集的关系求解.(理)对于实数x 、y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( )A .5B .4C .8D .7 [答案] A[解析] 由题易得,|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+|2(y -2)|+2≤5,即|x -2y +1|的最大值为5.二、填空题5.(2013·天津)设a +b =2,b >0,则12|a |+|a |b 的最小值为________. [答案] 34[解析] 因为12|a |+|a |b =a +b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a 4|a |+1≥-14+1=34,当且仅当b 4|a |=|a |b ,a <0,即a =-2,b =4时取等号,故12|a |+|a |b 的最小值是34.6.(文)不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.[答案] (-∞,2)[解析] 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.(理)(2013·昆明重点中学检测)已知不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立,则实数a 的取值范围是________.[答案] [-1,2][解析] 设y =2x -1,x ∈[2,6],则y ′=-2(x -1)2<0,则y =2x -1在区间[2,6]上单调递减,则y min =26-1=25,故不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立等价于15|a 2-a |≤25成立,等价于⎩⎨⎧a 2-a -2≤0,a 2-a +2≥0.解得-1≤a ≤2,故a 的取值范围是[-1,2].7.(2013·陕西)设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是________.[答案] (-∞,+∞)[解析] ∵|x -a |+|x -b |≥|a -b |>2, ∴|x -a |+|x -b |>2恒成立,则解集为R .8.(2012·陕西)若存有实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[答案] -2≤a ≤4[解析] |x -a |+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.9.若a >0,b >0,则p =(ab )a +b 2,q =a b ·b a 的大小关系是________. [答案] p ≥q[解析] ∵a >0,b >0,∴p =(ab )a +b2>0,q =a b ·b a >0, p q =(ab )a +b 2a b b a=a a -b 2·b b -a 2=⎝ ⎛⎭⎪⎫a b a -b 2.若a >b ,则ab >1,a -b 2>0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1;若a <b ,则0<ab <1,a -b 2<0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1;若a =b ,则ab =1,a -b 2=0,∴⎝ ⎛⎭⎪⎫a b a -b 2=1.∴⎝ ⎛⎭⎪⎫a b a -b 2≥1,即pq ≥1.∵q >0,∴p ≥q . [点评] 可使用特值法,令a =1,b =1,则p =1,q =1,有p=q ;令a =2,b =4,有p =83=512,q =24×42=256,∴p >q ,故填p ≥q . 三、解答题10.(文)已知函数f (x )=|x -7|-|x -3|. (1)作出函数f (x )的图象;(2)当x <5时,不等式|x -8|-|x -a |>2恒成立,求a 的取值范围. [解析] (1)∵f (x )=⎩⎪⎨⎪⎧4,(x ≤3),10-2x ,(3<x <7),-4(x ≥7),图象如图所示:(2)∵x <5,∴|x -8|-|x -a |>2,即8-x -|x -a |>2, 即|x -a |<6-x ,对x <5恒成立. 即x -6<x -a <6-x 对x <5恒成立,∴⎩⎨⎧a <6,a >2x -6.对x <5恒成立.又∵x <5时,2x -6<4,∴4≤a <6. ∴a 的取值范围为[4,6).(理)已知函数f (x )=|x +1|+|x -3|. (1)作出函数y =f (x )的图象;(2)若对任意x ∈R ,f (x )≥a 2-3a 恒成立,求实数a 的取值范围. [解析] (1)①当x ≤-1时,f (x )=-x -1-x +3=-2x +2; ②当-1<x <3时,f (x )=x +1+3-x =4; ③当x ≥3时,f (x )=x +1+x -3=2x -2. ∴f (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3.∴y =f (x )的图象如图所示.(2)由(1)知f (x )的最小值为4,由题意可知a 2-3a ≤4,即a 2-3a -4≤0,解得-1≤a ≤4.故实数a 的取值范围为[-1,4].水平拓展提升一、填空题11.(文)(2013·石家庄模拟)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.[答案] (5,7)[解析] ∵|3x -b |<4,∴b -43<x <b +43. 由题意得⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得5<b <7,∴b 的取值范围是(5,7).(理)若a 、b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时上式取等号.利用以上结论,能够得到函数f (x )=2x +91-2x(x ∈(0,12))的最小值为________. [答案] 25[解析] 依据给出的结论可知f (x )=42x +91-2x ≥(2+3)22x +(1-2x )=25等号在22x =31-2x,即x =15时成立.12.(文)(2013·山东师大附中三模)不等式|2x +1|+|x -1|<2的解集为________.[答案] (-23,0)[解析] 当x ≤-12时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-23,此时-23<x ≤-12.当-12<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,此时-12<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <23,此时不等式无解.综上,不等式的解集为-23<x <0.(理)不等式|x +log 3x |<|x |+|log 3x |的解集为________. [答案] {x |0<x <1}[解析] 由对数函数定义得x >0,又由绝对值不等式的性质知,|x +log 3x |≤|x |+|log 3x |,当且仅当x 与log 3x 同号时等号成立,∵x >0,∴log 3x >0,∴x >1,故原不等式的解集为{x |0<x <1}.二、解答题13.(文)(2013·福建理,21)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.[解析] (1)因为32∈A ,且12∉A ,所以|32-2|<a ,且|12-2|≥a , 解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号.所以f (x )的最小值为3.(理)(2013·福建龙岩模拟)已知函数f (x )=|x -3|,g (x )=-|x +4|+m .(1)已知常数a <2,解关于x 的不等式f (x )+a -2>0;(2)若函数f (x )的图象恒在函数g (x )图象的上方,求实数m 的取值范围.[解析] (1)由f (x )+a -2>0得|x -3|>2-a , ∴x -3>2-a 或x -3<a -2,∴x >5-a 或x <a +1. 故不等式的解集为(-∞,a +1)∪(5-a ,+∞) (2)∵函数f (x )的图象恒在函数g (x )图象的上方, ∴f (x )>g (x )恒成立,即m <|x -3|+|x +4|恒成立. ∵|x -3|+|x +4|≥|(x -3)-(x -4)|=7, ∴m 的取值范围为m <7.14.(2013·新课标Ⅱ理,24)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[解析] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得,a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1. 15.(文)设不等式|2x -1|<1的解集是M ,a 、b ∈M . (1)试比较ab +1与a +b 的大小;(2)设max 表示数集A 中的最大数.h =max{2a ,a 2+b 2ab ,2b },求证:h ≥2.[解析] 由|2x -1|<1得-1<2x -1<1,解得0<x <1. 所以M ={x |0<x <1}.(1)由a 、b ∈M ,得0<a <1,0<b <1, 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .(2)由h =max{2a ,a 2+b 2ab ,2b},得h ≥2a ,h ≥a 2+b 2ab ,h ≥2b, 所以h 3≥2a ·a 2+b 2ab ·2b=4(a 2+b 2)ab ≥8,故h ≥2. (理)已知a 、b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x +x 21-x(0<x <1)的最小值. [解析] (1)证法一:∵a >0,b >0, ∴(a +b )(a 2b +b 2a )=a 2+b 2+a 3b +b 3a≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a ≥a +b ,当且仅当a =b 时等号成立. 证法二:∵a 2b +b 2a -(a +b )=a 3+b 3-a 2b -ab 2ab=a 3-a 2b -(ab 2-b 3)ab =a 2(a -b )-b 2(a -b )ab=(a -b )2(a +b )ab. 又∵a >0,b >0,∴(a -b )2(a +b )ab≥0, 当且仅当a =b 时等号成立.∴a 2b +b 2a ≥a +b .(2)解:∵0<x <1,∴1-x >0,由(1)的结论,函数y =(1-x )2x +x 21-x≥(1-x )+x =1. 当且仅当1-x =x 即x =12时等号成立.∴函数y =(1-x )2x +x 21-x(0<x <1)的最小值为1.考纲要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法.补充说明1.证明不等式常用的方法(1)比较法:依据a >b ⇔a -b >0,a <b ⇔a -b <0来证明不等式的方法称作比较法.其基本步骤:作差→配方或因式分解→判断符号→得出结论.(2)综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理论证得出命题成立的方法.它是由因导果法.(3)分析法:从要证明结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明过的定理、性质等),从而得出要证明的命题成立的方法,它是执果索因的方法.分析法与综合法常常结合起来运用,看由已知条件能产生什么结果,待证命题需要什么条件,两边凑一凑找出证明途径.常常是分析找思路,综合写过程.(4)反证法:证明不等式时,首先假设要证明的命题不成立,把它作为条件和其它条件结合在一起,利用已知定义、定理、公理、性质等基本原理进行正确推理,逐步推证出一个与命题的条件或已证明过的定理、性质,或公认的简单事实相矛盾的结论,以此说明原假设不正确,从而肯定原命题成立的方法称为反证法.(5)放缩法:证明不等式时,根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明目的,这种方法称为放缩法.2.柯西不等式(1)一般形式:设a1、a2、…、a n、b1、b2、…、b n为实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2.当且仅当b i=0,或存在一个实数k,使得a i=kb i(i=1、2、…、n)时,等号成立.(2)二维形式的柯西不等式:①代数形式:设a、b、c、d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2.上式等号成立⇔ad =bc .②向量形式:设α、β为平面上的两个向量,则|α||β|≥|α·β|.当且仅当β是零向量或存在实数k ,使α=k β时,等号成立.③三角形式:设x 1、x 2、y 1、y 2∈R ,则x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2,其几何意义是三角形两边之和大于第三边.3.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1、c 2、…、c n 为b 1、b 2、…、b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,且反序和等于顺序和⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .即反序和≤乱序和≤顺序和.4.贝努利不等式设x >-1,且x ≠0,n 为大于1的自然数,则(1+x )n >1+nx . 备选习题1.设a 、b 、c 为正数,且a +2b +3c =13,则3a +2b +c 的最大值为( )A.1693B.133C.1333D.13[答案] C[解析] (a +2b +3c )[(3)2+12+(13)2] ≥(3a +2b +c )2,∵a +2b +2c =13,∴(3a +2b +c )2≤1693, ∴3a +2b +c ≤1333, 当且仅当a 3=2b 1=3c 13取等号, 又∵a +2b +3c =13,∴a =9,b =32,c =13时,3a +2b +c 取最大值1333.2.(2013·陕西检测)若不等式|x +1|+|x -m |<6的解集为∅,则实数m 的取值范围为________.[答案] [5,+∞)∪(-∞,-7][解析] ∵不等式的解集为空集,|x +1|+|x -m |≥|m +1|,∴只需|m +1|≥6,∴m 的取值范围为[5,+∞)∪(-∞,-7].3.(2013·云南玉溪一中月考)已知函数f (x )=|x +1|+|x -2|-m .(1)当m =5时,求f (x )>0的解集;(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围.[解析] (1)由题设知|x +1|+|x -2|>5,⎩⎨⎧ x ≥2,x +1+x -2>5,或⎩⎨⎧ -1≤x <2,x +1-x +2>5,或⎩⎨⎧ x <-1,-x -1-x +2>5.解得原不等式的解集为(-∞,-2)∪(3,+∞).(2)不等式f (x )≥2即|x +1|+|x -2|≥m +2,∵x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,m 的取值范围是(-∞,1].4.(1)解关于x 的不等式x +|x -1|≤3;(2)若关于x 的不等式x +|x -1|≤a 有解,求实数a 的取值范围.[解析] 设f (x )=x +|x -1|,则f (x )=⎩⎪⎨⎪⎧2x -1(x ≥1),1 (x <1). (1)当x ≥1时,2x -1≤3,∴1≤x ≤2,又x <1时,不等式显然成立,∴原不等式的解集为{x |x ≤2}.(2)由于x ≥1时,函数y =2x -1是增函数,其最小值为f (1)=1; 当x <1时,f (x )=1,∴f (x )的最小值为1.因为x +|x -1|≤a 有解,即f (x )≤a 有解,所以a ≥1.5.(2013·辽宁理,24)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.[解析] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a .2a ,x ≥a .∵a >1,∴x ≤0时,h (x )=-2a <-2,x ≥a 时,h (x )=2a >2,而已知不等式|h (x )|≤2的解集为{x |1≤x ≤2}, ∴不等式|h (x )|≤2化为⎩⎨⎧ -2≤4x -2a ≤2,0<x <a ,即⎩⎪⎨⎪⎧ a -12≤x ≤a +12,0<x <a ,∵a >1,∴a -12>0,a +12<a ,∴由|h (x )|≤2,解得a -12≤x ≤a +12.又∵|h (x )|≤2的解集为{x |1≤x ≤2},∴⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.[点评] 第(2)问是求解的难点,可借助图象帮助理解.作出h (x )的图象如图.∵a >1,|h (x )|≤2的解集为{x |1≤x ≤2},∴|h (x )|≤2,即|4x -2a |≤2.此不等式的解集为{x |1≤x ≤2}.。

人教版九年级数学上典中点课后作业22.1.1二次函数(A)(含答案)

人教版九年级数学上典中点课后作业22.1.1二次函数(A)(含答案)

22.1.1 二次函数课后作业:方案(A)一、教材题目:P41复习巩固T1、T2、T81.一个矩形的长是宽的2倍,写出这个矩形的面积关于宽的函数解析式,2.某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,y与x之间的关系可以用怎样的函数来表示?8.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向点B以2 mm/s的速度移动,动点Q从点B开始沿边BC向点C以4 mm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,那么△PBQ的面积S随出发时间t如何变化?写出S关于t的函数解析式及t的取值范围.(第8题)二、补充题目:来源于《典中点》6.下列说法中,正确的是( )A .二次函数中两个变量的值是非零实数B .二次函数中自变量的值可以是所有实数C .形如y =ax 2+bx +c 的函数叫二次函数D .二次函数y =ax 2+bx +c 中a ,b ,c 的值均不能为零 7.对于任意实数m ,下列函数一定是二次函数的是( ) A .y =mx 2+3x -1 B .y =(m -1)x 2 C .y =(m -1)2x 2 D .y =(-m 2-1)x 210.(2015·温州)如图,∠AOB =90°,在∠AOB 的平分线ON 上依次取点C ,F ,M ,过点C 作DE ⊥OC ,分别交OA ,OB 于点D ,E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE.设OC =x ,图中阴影部分面积为y ,则y 与x 之间的函数关系式是( )(第10题)A .y =32x 2B .y =3x 2C .y =23x 2D .y =33x 211.下列函数关系中,不是二次函数的是( ) A .边长为x 的正方形的面积y 与边长x 的函数关系B .一个直角三角形两条直角边长的和是6,则这个直角三角形的面积y 与一条直角边长x的函数关系C.在边长为5的正方形内挖去一个边长为t的小正方形,剩余面积S与t的函数关系D.多边形的内角和m与边数n的函数关系13.已知函数y=(m2-m)x2+(m-1)x+m+1.(1)若这个函数是关于x的一次函数,求m的值;(2)若这个函数是关于x的二次函数,则m的值应是多少?14.一直角三角形两直角边长之和为15,其中一条直角边长为x,求它的面积S关于x 的函数关系式,并写出自变量的取值范围.17.某广告公司设计一幅周长为12 m的矩形广告牌,设计费为每平方米1 000元,设矩形一边的长为x m,面积为S m2.(1)求S与x之间的函数关系式,并确定自变量x的取值范围;(2)若要求设计的广告牌边长为整数,请你填写下表,并探究当x取何值时,广告牌的设计费最多.18.如图,正方形ABCD的边长为4 cm,动点P,Q同时从点A出发,以1 cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动.设运动时间为x s,由点P,B,D,Q 确定的图形的面积为y cm2,求y与x(0≤x≤8)之间的函数关系式.(第18题)答案一、教材1.解:设矩形的面积为S ,宽为x ,矩形的面积关于宽的函数解析式为S =2x·x ,即S =2x 2. 2.解:y =2(1-x)2.8.解:动点P 从点A 到点B 所需时间为:122=6(s ),动点Q 从点B 到点C 所需时间为:244=6(s ),所以0<t <6.因为AP =2t ,所以BP =12-2t.又因为BQ =4t ,所以S =12·BP·BQ =12×(12-2t)·4t =-4t 2+24t(0<t <6). 点拨:本题注意时间t 的取值范围. 二、典中点6.B7.D 10.B 11.D13.解:(1)若y =(m 2-m)x 2+(m -1)x +m +1是关于x 的一次函数,则⎩⎪⎨⎪⎧m 2-m =0,m -1≠0,解得m =0. (2)若y =(m 2-m)x 2+(m -1)x +m +1是关于x 的二次函数,则m 2-m≠0,解得m≠0且m≠1.∴m 可以是除了1和0的所有实数. 14.解:S =12x(15-x)=-12x 2+152x.自变量的取值范围为0<x <15.点拨:最终的结果要化成二次函数的一般形式,且自变量的取值要符合题意. 17.解:(1)S =x ⎝⎛⎭⎫122-x =-x 2+6x(0<x <6). (2)18.解:由题意可知,当0≤x≤4时,AP =AQ =x cm , y =4×4-12×4×4-12x 2,即y =8-12x 2;当4<x≤8时,CQ =CP =(8-x)cm ,y =4×4-12×4×4-12(8-x)2,即y =-12x 2+8x -24.综上可知,所求的函数关系式为y =2218(04),21824(48).2x x x x x ⎧-≤≤⎪⎪⎨⎪-+-<≤⎪⎩。

二次函数性质基础练习

二次函数性质基础练习

A .0212=-+x yB.022=+y x C.22-=-x x D.0422=+-y x 2.若函数()4331-++=-x x m y m 是二次函数,则m 的值为( )A .3或3- B.3 C.3- D.2或2-3.对于二次函数2432+-=x x y ,当1-=x 时,y 的值为( )A .9 B.1 C.3 D.3-4.二次函数c bx ax y ++=2,若2-=x 时,0=y ,则下列式子成立的是( )A .024=++c b a B.024=+-c b a C.024=++-c b a D.024=+--c b a5.二次函数42-=x y 与x 轴交点的坐标为( )A .(0,4-) B.(2,0) C.(2,0)和(2-,0) D.(2-,0)6.二次函数4322-+=x x a y 经过点(2,6),则a 的值为( )A .1 B.1- C.1或1- D.2或2-7.将下列二次函数化成一般形式.⑴()()232+--=x x y ⑵()2423--=x x y课后作业(二) 1.将二次函数()()x x y 323--=化为一般形式为 .2.对于二次函数6432---=x x y 来说,a = ,b = ,c = .3.若二次函数()21x m y -=的图象的开口方向向上,则m 的取值范围为 .4.二次函数241x y -=的顶点坐标为 ,对称轴为 . 5.若点A (2,8)与点B (2-,m )都在二次函数2ax y =的图象上,则m 的值为 .6.已知点(m ,4-)在二次函数221x y -=的图象上,则m 的值为 . 7.请你写出一个顶点为原点,且开口方向向下的二次函数表达式为: .8.若二次函数()23x m y -=在对称轴右边的图象上,y 随x 的增大而减小,则m 的取值范围为 .9.二次函数2ax y =的图象必经过的一点的坐标为 .10.若点A (4-,n )与点B (m ,8-)都在二次函数2ax y =的图象上,且关于对称轴对称,则n m +的值为 .11. 将函数下列各函数化成()k h x a y +-=2的形式A .132+-=x yB .32-=ax yC .2312-=x y D .()512--=x a y 2.若二次函数()1632--=x m y 的开口方向向下,则m 的取值范围为( )A .2>mB .2<mC .2≠mD .2->m3.若二次函数1211-=x a y 与二次函数3222+=x a y 图象的形状完全相同,则1a 与2a 的关系为( )A .1a =2aB .1a =2a -C .1a =2a ±D .无法判断4.将二次函数22x y -=的图象向下平移5个单位,得到的抛物线的解析式为( )A .522+=x yB .522--=x yC .522+-=x yD .522-=x y5.若二次函数()2622--=x m y 由二次函数25x y -=平移得到的,则m 的值为( )A .1B .1-C .1 或1-D .0或1-6.二次函数3312--=x y 图象的顶点坐标为( ) A .(0,3) B .(0,3-) C .(31-,3) D .(31-,3-) 7.将二次函数122--=x y 图象向下平移5个单位得到的抛物线的顶点坐标为( )A .(0,6-)B .(0,4)C .(5,1-)D .(2-,6-)8.将二次函数12+-=x y 图象向左平移3个单位得到的抛物线的对称轴为( )A .直线0=xB .直线4=xC .直线3-=xD .直线3=x2.抛物线322+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线231x y =沿y 轴向下平移2个单位得到的抛物线的解析式为 ,再沿y 轴向上平移3个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移7个单位得到的抛物线的解析式为432-=x y ,则=a , =c .5.抛物线()232+-=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线25x y -=沿x 轴向左平移6个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数1422--=x x y⑴将其化成()k h x a y +-=2的形式;⑵说明⑴中抛物线是由22x y =的图象经过怎样的图形变换得到的?⑶写出⑴中抛物线的顶点坐标,对称轴.⑷求⑴中抛物线与x 轴、y 轴的交点坐标.10.二次函数()222--=x y⑴将此函数化成一般形式为 ,其中_______=a ,_______=b ,_______=c ⑵当__________=x 时,函数值y 有最 (填大或小)值为2.抛物线2212--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .3.将抛物线22x y -=沿y 轴向下平移5个单位得到的抛物线的解析式为 ,再沿y 轴向上平移2个单位得到的抛物线的解析式为 .4.把抛物线c ax y +=2沿y 轴向下平移4个单位得到的抛物线的解析式为432-=x y ,则=a , =c .5.抛物线()2221--=x y 的开口方向 ,对称轴是 ,顶点坐标是 ,其顶点坐标的意义为 .6.将抛物线24x y =沿x 轴向左平移3个单位长度得到的新的二次函数解析式为 .此时函数的顶点坐标为 ,对称轴为 .7.把抛物线()2h x a y -=沿x 轴向右平移3个单位长度得到的新的二次函数解析式为()255--=x y ,则=a , =h .8.把抛物线221x y =向左平移3个单位,再向上平移2个单位,得到的抛物线的解析式为 ,此时抛物线的开口方向 ,顶点坐标为 ,对称轴为 .9.二次函数3422+--=x x y⑴利用配方法将一般形式化为顶点式⑵此函数的开口方向 ;顶点坐标为 ,意义为 ;对称轴为 .⑶其图象是由22x y -=的图象经过怎样的图形变换得到的?二 次 函 数(6)一.二次函数的性质:1.表达式:①一般式:c bx ax y ++=2(0≠a ); ②顶点式:()k h x a y +-=2(0≠a )2.顶点坐标:①(a b 2-,ab ac 442-) ②(h ,k ) 3.意义:①当a b x 2-=时,0>a ,y 有最小值为a b ac 442-;0<a ,y 有最大值为ab ac 442- ②当h x =时,0>a ,y 有最小值为k ;0<a ,y 有最大值为k4.a 的意义:0>a ,图象开口向上;0<a ,图象开口向下;21a a ±=说明两函数图象大小形状相同.5.对称轴:①ab x 2-=;②h x = 6.对称轴位置分析:①0=b ,对称轴为y 轴; ②0<ab ,对称轴在y 轴的右侧;③0>ab ,对称轴在y 轴的左侧;(左同右异)7.增减性:①0>a ,a b x 2->时,y 随x 的增大而增大;a b x 2-<时,y 随x 的增大而减小 ②0<a ,a b x 2->时,y 随x 的增大而减小;ab x 2-<时,y 随x 的增大而增大 8.与y 轴的交点为(0,c )9.与x 轴的交点:02=++c bx ax①042=-=∆ac b ,有一个交点; ②042>-=∆ac b ,有两个交点; ③042<-=∆ac b ,没有交点10.平移:化成顶点式()k h x a y +-=2,上加下减:m k ±;左加右减:m h ±课 后 作 业(6)1.已知二次函数()12322--+=x x m y 的图象的开口方向向上,则m 的取值范围为( )A .23>mB .23->mC .32->m D .23-<m 2.二次函数c bx ax y ++=2的图象如图,则下列结论错误的是( )A .0>aB .0<bC .0>abD .0=c3.将二次函数22x y -=向右平移2个单位,在向下平移3个单位得到的二次函数的解析式为( )A .()3222+--=x yB .()2322---=x yC .()3222---=x yD .()3222-+-=x y4.二次函数()k h x a y +-=2,当2-=x 时,y 有最大值为5,则下列结论错误的是( )A .0<aB .顶点坐标为(2-,5)C .对称轴为直线2-=xD .2=h5.抛物线c bx ax y ++=2的对称轴为直线0=x ,则下列结论一定正确的是( )6.下列点在二次函数42--=x y 的图象上的是( )A .(1,3-)B .(1-,3-)C .(1-,5-)D .(0,4)7.二次函数11211c x b x a y ++=与22222c x b x a y ++=的图象关于x 轴对称,则1a 与2a 的关系为( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数8.已知点A (2,m )与点B (3,n )在二次函数()312+--=x y 的图象上,则m 与n 的关系为( )A .n m > B .n m = C .n m < D .无法判断9.已知二次函数c bx ax y ++=2的图象如图.⑴请你写出一元二次方程02=++c bx ax 的根;⑵请你写出不等式02>++c bx ax 的解集;⑶请你再写出3条从图象中得出的结论.二 次 函 数(7)二次函数解析式的确定: 一般形式:c bx ax y ++=2(0≠a )一.例题与练习:例题1.已知二次函数32++=bx ax y 的图象经过点(1,6)和点(1-,2),求此函数的解析式练习1.已知二次函数c bx x y ++=221的图象经过点(3-,6)和点(1-,0),求此函数的解析式练习2.已知二次函数c x ax y +-=52的图象如图,求此函数的解析式例题2.已知二次函数的图象与x 轴的交点为(1-,0)和(3,0),且交y 轴于(0,4),求此函数的解析式练习1.已知二次函数与x 轴的交点为(2,0)和(6-,0),且经过点(3,9),求此函数的解析式练习2.已知二次函数的图象如图,求此函数的解析式二 次 函 数(8)二次函数解析式的确定:顶点式:()k h x a y +-=2(0≠a )一.例题与练习:例题1.已知二次函数的图象顶点为(2-,3),且图象经过点(1-,5),求此函数的解析式练习1.已知二次函数的图象顶点为(1,4),且图象经过点(0,3),求此函数的解析式练习2.已知二次函数c bx ax y ++=2的图象如图,求此函数的解析式例题2.已知二次函数的图象的对称轴为直线2=x ,且图象经过点(1,0)和(0,3-),求此函数的解析式练习1.已知二次函数的图象的对称轴为直线1-=x ,,且图象经过点(0,4)和(2,12),求此函数的解析式练习2.已知二次函数c bx ax y ++=2,当1=x 时,y 有最大值为2,且图象经过点(2,6),求此函数的解析式。

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。

(2) 无理数是不能表示为有理数的数。

(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。

(4) √2、π、e等都是无理数。

2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。

(2) 无理数是指不能表示为有理数的数,如√2、π、e等。

(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。

循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。

(4) 在实数轴上,0与正数、负数之间是有间隔的。

(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。

3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。

证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。

如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。

所以d=b,即a和b的最大公约数是b的约数。

(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。

证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。

则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。

同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。

(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。

因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。

二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。

教学设计3:3.1.2 函数的表示法

教学设计3:3.1.2 函数的表示法

20分钟2、学以致用定义域:t∈{0≤t≤24}(2)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.如3.1.1 问题4所说的恩格尔系数变化情况表:上表中r是y的函数,所以自变量y的定义域:y∈{2006,2007,2008,2009,2010,2011,2012,2013,2014,2015},可知,定义域也可以是离散型的.(3)解析法:用数学表达式表示两个变量之间的函数关系.如3.1.1问题1:某“复兴号”高速列车加速到350km/h后保持匀速运行半小时.这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为:S=350t.(对应法则)其中,定义域:t∈{0≤t≤0.5},值域S∈{0≤S≤175}.因为有定义域和对应法则就可以求出值域,所以,我们一般用解析法表示函数时只要写出对应法则和定义域.二、学以致用接下来我们通过三道例题来进一步掌握函数的三种表示法及其特点.例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).提问1:审题是理清思路的前提,也是成功解题的关键,所以仔细审题,题中有哪些关键点?如何准确又快速地把这道题数学化?讨论后回答:因为x∈{1,2,3,4,5},属于离散型,有限集,学生最直观的想法就是用列对应值表的方法表示函数y=f(x).(若x有1000个取值呢?)如下表所示:其中定义域:x∈{1,2,3,4,5}追问:通过列表的过程,我们发现,一方面,表格一目了然地把x和y的对应关系表示出来;另一方面,在得到表中第二行钱数y的值的时候,也是需要通过题意简单计算的.所以,我们思考一下,得到这个表格之后,我们如何进一步阐发这一道题呢?回答追问1:从表格两行的结构看,我们不妨以x为横轴,y为纵轴,建立直角坐标系,这样,上述表格中的每一列的(x,y)的值就可以表示为x−o−y坐标系中的点.如下图所示:这就是图象法表示函数y=f(x).(定义域:x∈{1,2,3,4,5})研究图象可知,和列表法相比,图象法虽然能直观反映x和y的对应关系,但是其横纵坐标不够精准,另一方面,图象法还能反映x和y的变化趋势,如图,反映了x越大,y越大,也就是买的笔记本越多,花的钱越多。

2020高考数学 课后作业 4-2 同角三角函数的基本关系及诱导公式

2020高考数学 课后作业 4-2 同角三角函数的基本关系及诱导公式

4-2 同角三角函数的基本关系及诱导公式1.(2020·青岛市质检)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为( )A .-12B .-32C.12D.32 [答案] A[解析] 由条件知,π=a 1+a 5+a 9=3a 5,∴a 5=π3,∴cos(a 2+a 8)=cos2a 5=cos 2π3=-cos π3=-12,故选A.2.(文)(2020·山东淄博一模)已知sin2α=-2425,α∈(-π4,0),则sin α+cos α=( )A .-15B.15 C .-75D.75[答案] B[解析] (sin α+cos α)2=1+2sin αcos α=1+sin2α=125,又α∈(-π4,0),sin α+cos α>0,所以sin α+cos α=15.(理)(2020·河北石家庄一模)已知α∈(0,π),且sin α+cos α=22,则sin α-cos α的值为( )A .- 2B .-62C. 2D.62[答案] D[解析] ∵sin α+cos α=22,0<22<1,0<α<π,∴π2<α<π,∴sin α-cos α>0. ∴(sin α+cos α)2=1+2sin αcos α=12,∴2sin αcos α=-12;∴(sin α-cos α)2=1-2sin αcos α=32,∴sin α-cos α=62. 3.(文)(2020·杭州二检)若a =(32,sin α),b =(cos α,13),且a ∥b ,则锐角α=( )A .15°B .30°C .45°D .60° [答案] C[解析] 依题意得32×13-sin αcos α=0,即sin2α=1.又α为锐角,故2α=90°,α=45°,选C.(理)已知向量a =(tan α,1),b =(3,-1),α∈(π,2π)且a ∥b ,则点P ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+α,sin π-α在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] D[解析] ∵a ∥b ,∴tan α=-3, ∵α∈(π,2π),∴α=5π3,∴cos ⎝ ⎛⎭⎪⎫π2+α=cos 13π6=cos π6>0, sin(π-α)=sin ⎝ ⎛⎭⎪⎫-2π3=-sin 2π3<0,∴点P 在第四象限.4.(2020·绵阳二诊、长春模拟)已知tan θ>1,且sin θ+cos θ<0,则cos θ的取值范围是( )A .(-22,0) B .(-1,-22) C .(0,22) D .(22,1)[答案] A[解析] 如图,依题意结合三角函数线进行分析可知,2k π+5π4<θ<2k π+3π2,k ∈Z ,因此-22<cos θ<0.选A.5.(2020·河南南阳调研)在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于( )A .30°B .150°C .30°或150°D .60°或120°[答案] A[解析] 两式平方后相加得sin(A +B )=12,∴A +B =30°或150°,又∵3sin A =6-4cos B >2,∴sin A >23>12,∴A >30°,∴A +B =150°,此时C =30°.6.(文)(2020·湖北联考)已知tan x =sin(x +π2),则sin x =( )A.-1±52B.3+12 C.5-12 D.3-12[答案] C[解析] ∵tan x =sin(x +π2),∴tan x =cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =-1±52,∵-1≤sin x ≤1,∴sin x =5-12.故选C. (理)(2020·重庆诊断)已知2tan α·sin α=3,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π6的值是( ) A .0 B.32C .1 D.12[答案] A[解析] ∵2tan αsin α=3,∴2sin 2αcos α=3,即21-cos 2αcos α=3,∴2cos 2α+3cos α-2=0, ∵|cos α|≤1,∴cos α=12,∵-π2<α<0,∴sin α=-32,∴cos ⎝ ⎛⎭⎪⎫α-π6 =cos αcos π6+sin αsin π6=12×32-32×12=0.7.(文)(2020·山东烟台模拟)若sin(π+α)=12,α∈(-π2,0),则tan α=________.[答案] -33[解析] 由已知得sin α=-12,又α∈(-π2,0),所以cos α=1-sin 2α=32,因此tan α=sin αcos α=-33.(理)(2020·盐城模拟)已知cos(5π12+α)=13,且-π<α<-π2,则cos (π12-α)=________.[答案] - 223[解析] ∵-π<α<-π2,∴-7π12<5π12+α<-π12,∵cos(5π12+α)=13,∴sin(5π12+α)=-223,∴cos(π12-α)=cos[π2-(5π12+α)]=sin(5π12+α)=-223.8.设a =12cos16°-32sin16°,b =2tan14°1+tan 214°,c =1-cos50°2,则a 、b 、c 的大小关系为________(从小到大排列).[答案] a <c <b[解析] a =sin14°,b =2sin14°cos14°cos 214°+sin 214°=sin28°, c =sin25°,∵y =sin x 在(0°,90°)上单调递增,∴a <c <b .9.(2020·江西上饶四校联考)对任意的a ∈(-∞,0),总存在x 0使得a cos x 0+a ≥0成立,则sin(2x 0-π6)的值为________.[答案] -12[解析] 若对任意的a ∈(-∞,0),总存在x 0使得a cos x 0+a ≥0成立,则cos x 0+1≤0, 又cos x 0+1≥0,所以cos x 0+1=0, 所以cos x 0=-1,则x 0=2k π+π(k ∈Z), 所以sin(2x 0-π6)=sin(4k π+2π-π6)=sin(-π6)=-sin π6=-12.10.(文)已知sin α=2sin β,tan α=3tan β,求证:cos 2α=38.[解析] 由题设知,sin 2α=4sin 2β, ① tan 2α=9tan 2β, ② ①②,得9cos 2α=4cos 2β, ③ ①+③,得sin 2α+9cos 2α=4, 即1-cos 2α+9cos 2α=4,∴cos 2α=38.(理)(2020·南充市)已知三点:A (4,0),B (0,4),C (3cos α,3sin α). (1)若α∈(-π,0),且|AC →|=|BC →|,求角α的值; (2)若AC →·BC →=0,求2sin 2α+sin2α1+tan α的值.[解析] (1)由题得AC →=(3cos α-4,3sin α),BC →=(3cos α,3sin α-4) 由|AC →|=|BC →|得,(3cos α-4)2+9sin 2α=9cos 2α+(3sin α-4)2⇒sin α=cos α∵α∈(-π,0),∴α=-3π4. (2)由AC →·BC →=0得,3cos α(3cos α-4)+3sin α(3sin α-4)=0, 解得sin α+cos α=34,两边平方得2sin αcos α=-716∴2sin 2α+sin2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α=-716.11.若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] B[解析] ∵A 、B 是锐角三角形的两个内角,∴A +B >90°,∴B >90°-A ,∴cos B <sin A ,sin B >cos A ,故cos B -sin A <0,sin B -cos A >0,选B.12.(2020·安徽铜陵一中)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且a +c =3,tan B =73,则△ABC 的面积为( ) A.74 B.54 C.72 D.52[解析] ∵a 、b 、c 成等比数列,∴b 2=ac , ∵tan B =73,∴sin B =74,cos B =34, ∵a +c =3,b 2=a 2+c 2-2ac cos B ,∴ac =2, ∴S △ABC =12ac sin B =74.13.(文)(2020·哈师大附中、东北师大附中、辽宁实验中学联考)已知cos α=45,α∈(-π4,0),则sin α+cos α等于( ) A.15 B .-15 C .-75D.75[答案] A[解析] 由于cos α=45,α∈(-π4,0),所以sin α=-35,所以sin α+cos α=15,故选A.(理)已知函数f (x )=sin x -cos x 且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin2x=( ) A .- 195 B.195C.113 D .- 113[答案] A[解析] f ′(x )=cos x +sin x ,∵f ′(x )=2f (x ),∴cos x +sin x =2(sin x -cos x ),∴tan x =3,∴1+sin 2x cos 2x -sin2x =1+sin 2xcos 2x -2sin x cos x =2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195. 14.已知函数f (x )=⎩⎪⎨⎪⎧2cos π3x x ≤2000x -102 x >2000,则f [f (2020)]=________.[解析] 由f (x )=⎩⎪⎨⎪⎧2cos π3x x ≤2000x -102 x >2000得,f (2020)=2020-102=1910,f (1910)=2cos ⎝ ⎛⎭⎪⎫π3×1910=2cos(636π+2π3)=2cos 2π3=-1,故f [f (2020)]=-1.15.已知sin(A +π4)=7210,A ∈(π4,π2),求cos A .[解析] 解法一:∵π4<A <π2,∴π2<A +π4<3π4,∵sin(A +π4)=7210,∴cos(A +π4)=-1-sin2A +π4=-210. ∴cos A =cos[(A +π4)-π4]=cos(A +π4)cos π4+sin(A +π4)sin π4=-210×22+7210×22=35.解法二:∵sin(A +π4)=7210,∴sin A +cos A =75,∴sin A =75-cos A ,代入sin 2A +cos 2A =1中得 2cos 2A -145cos A +4925=1,∵π4<A <π2,∴0<cos A <22,∴cos A =35.16.(2020·潍坊质检)如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45. (1)求sin2α+cos2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).[解析] (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2·⎝ ⎛⎭⎪⎫-352=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos ⎝ ⎛⎭⎪⎫α-π2=sin α=45. ∴sin(α+β)=sin αcos β+cos αsin β =45·45+⎝ ⎛⎭⎪⎫-35·35=725.1.设f (x )=a sin(πx +α)+b cos(πx +α),其中a ,b ,α∈R ,且ab ≠0,α≠k π (k ∈Z).若f (2020)=5,则f (2020)等于( )A .4B .3C .-5D .5[答案] C[解析] ∵f (2020)=a sin(2020π+α)+b cos(2020π+α)=-a sin α-b cos α=5, ∴a sin α+b cos α=-5.∴f (2020)=a sin α+b cos α=-5.2.(2020·全国卷Ⅰ理,2)设cos(-80°)=k ,那么tan100°=( ) A.1-k2k B .-1-k2k C.k1-k2D .-k1-k2[答案] B[解析] sin80°=1-cos 280° =1-cos2-80°=1-k 2,所以tan100°=-tan80°=-sin80°cos80°=-1-k2k.3.(2020·山东济南模考、烟台市诊断)已知△ABC 中,tan A =-512,则cos A =( )A.1213 B.513C .-513D .-1213[答案] D[解析] 在△ABC 中,由tan A =-512<0知,∠A 为钝角,所以cos A <0,1+tan 2A =sin 2A +cos 2A cos 2A =1cos 2A =169144,所以cos A =-1213,故选D. [点评] 学习数学要加强多思少算的训练,以提高思维能力,尤其是选择题,要注意结合其特点选取.本题中,tan A =-512,A 为三角形内角,即知A 为钝角,∴cos A <0,排除A 、B ;又由勾股数组5,12,13及tan A =sin A cos A 知,|cos A |=1213,故选D.4.(2020·山东临沂一模)已知cos(π2-φ)=32,且|φ|<π2,则tan φ=( )A .-33 B.33C .- 3 D. 3 [答案] D[解析] cos(π2-φ)=sin φ=32,又|φ|<π2,则cos φ=12,所以tan φ= 3.5.(2020·福建省福州市)已知sin10°=a ,则sin70°等于( ) A .1-2a 2B .1+2a 2C .1-a 2D .a 2-1 [答案] A[解析] 由题意可知,sin70°=cos20°=1-2sin 210°=1-2a 2,故选A. 6.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°[答案] C[解析] ∵sin11°=cos79°,sin168°=cos78°,又∵y =cos x 在[0°,90°]上单调递减,90°>79°>78°>10°,∴cos79°<cos78°<cos10°,∴sin11°<sin168°<cos10°,选C.7.化简sin k π-α·cos[k -1π-α]sin[k +1π+α]·cos k π+α=______(k ∈Z).[答案] -1[解析] 对参数k 分奇数、偶数讨论.当k =2n +1(n ∈Z)时,原式=sin 2n π+π-α·cos 2n π-αsin 2n π+2π+α·cos 2n π+π+α=sin π-α·cos αsin α·cos π+α=sin α·cos αsin α·-cos α=-1.当k =2n (n ∈Z)时,原式=sin 2n π-α·cos 2n π-π-αsin 2n π+π+α·cos 2n π+α=-sin α·-cos α-sin α·cos α=-1.所以sin k π-α·cos[k -1π-α]sin[k +1π+α]·cos k π+α=-1.。

课后作业——19.2.4 一次函数的图象与性质

课后作业——19.2.4  一次函数的图象与性质

4 3
.
(2)当a>0时,y随x的增大而增大,所以当x=2时,y
有最大值2,所以有2=2a-a+1,解得a=1.
当a<0时,y随x的增大而减小,所以当x=-1时,
y有最大值2,
所以有2=-a-a+1,解得a=-
1 2
.
综上所述,a=1或a=-
1 2
.
16.【 2017·泰州】平面直角坐标系xOy中,点P的坐标为 (m+1,m-1). (1)试判断点P是否在一次函数y=x-2的图象上,并 说明理由; (2)如图,一次函数y=- 1 x+3的图象与x轴、y轴分 2 别相交于A、B,若点P在△AOB的内部,求m的取
值范围.
解:(1)∵当x=m+1时,y=m+1-2=m-1,
∴点P(m+1,m-1)在函数y=x-2的图象上.
(2)∵函数y=-
1 2
x+3,∴A(6,0),B(0,3).
∵点P在△AOB的内部,
∴0<m+1<6,0<m-1<3,m-1<-
1 2
(m+
1)+3.
∴1<m<
7 3.
15.一次函数的解析式为y=Hale Waihona Puke x-a+1(a为常数,且a≠0).
(1)若点


1 2
,
3

在一次函数y=ax-a+1的图象上,
求a的值;
(2)当-1≤x≤2时,函数有最大值2,请求出a的值.
解:(1)将点


1 2
,
3

的坐标代入y=ax-a+1中,得3=

1 2
a-a+1,解得a=-
19.2 一次函数
第4课时 一次函数的图象与性质

人教B版必修一课后作业:第三章 基本初等函数(Ⅰ) 3.4 Word版含答案

人教B版必修一课后作业:第三章 基本初等函数(Ⅰ) 3.4 Word版含答案

学习目标 1.尝试将实际问题转化为函数模型.2.了解指数函数、对数函数及幂函数等函数模型的增长差异.3.会根据函数的增长差异选择函数模型.知识点一函数模型思考自由落体速度公式v=gt是一种函数模型.类比这个公式的发现过程,说说什么是函数模型?它怎么来的?有什么用?答案函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选择函数(假说)来拟合,这个函数即为函数模型.函数模型通常用来解释已有数据和预测.梳理一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.知识点二三种常见函数模型的增长差异比较三种函数模型的性质,填写下表.类型一几类函数模型的增长差异例1 (1)下列函数中,随x 的增大,增长速度最快的是( ) A .y =50x B .y =x 50C .y =50xD .y =log 50x (x ∈N +)答案 C解析 四个函数中,增长速度由慢到快依次是y =log 50x ,y =50x ,y =x 50,y =50x . (2)函数y =2x -x 2的大致图象为( )答案 A解析 在同一平面直角坐标系内作出y 1=2x ,y 2=x 2的图象(图略).易知在区间(0,+∞)上,当x ∈(0,2)时,2x >x 2,即此时y >0;当x ∈(2,4)时,2x <x 2,即y <0;当x ∈(4,+∞)时,2x >x 2,即y >0;当x =-1时,y =2-1-1<0.据此可知只有选项A 中的图象符合条件. 反思与感悟 在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢.因此,总会存在一个x 0,当x >x 0时,就有log a x <x n <a x . 跟踪训练1 函数f (x )=lg|x |x2的大致图象为( )答案 D解析 f (x )为偶函数,排除A 、B.当x >1时,y =lg|x |=lg x >0,且增长速度小于y =x 2,所以随着x 的逐渐增大,lg|x |x 2越来越接近0且函数值为正数,故选D.类型二 函数模型应用 命题角度1 选择函数模型例2 某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y 与售出商品的数量x 的关系,则可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数答案 D解析 四个函数中,A 的增长速度不变,B 、C 增长速度越来越快,其中C 增长速度比B 更快,D 增长速度越来越慢,故只有D 能反映y 与x 的关系.反思与感悟 根据实际问题提供的两个变量的数量关系可构建和选择正确的函数模型.同时,要注意利用函数图象的直观性来确定适合题意的函数模型.跟踪训练2 某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年的年产量保持不变,将该厂6年来这种产品的总产量C 与时间t (年)的函数关系用图象表示,则正确的是( )答案 A命题角度2 用函数模型决策例3 某公司预投资100万元,有两种投资可供选择: 甲方案年利率10%,按单利计算,5年后收回本金和利息; 乙方案年利率9%,按每年复利一次计算,5年后收回本金和利息.哪种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元) 解 按甲,每年利息100×10%=10,5年后本息合计150万元;按乙,第一年本息合计100×1.09,第二年本息合计100×1.092,…,5年后本息合计100×1.095≈153.86(万元).故按乙方案投资5年可多得利3.86万元,乙方案投资更有利.反思与感悟 建立函数模型是为了预测和决策,预测准不准主要靠建立的函数模型与实际的拟合程度.而要获得好的拟合度,就需要丰富、详实的数据.跟踪训练3 一家庭(父亲、母亲和孩子们)去某地旅游,甲旅行社说:“如果父亲买全票一张,其余人可享受半票优惠.”乙旅行社说:“家庭旅行为集体票,按原价23优惠.”这两家旅行社的原价是一样的.试就家庭里不同的孩子数,分别建立表达式,计算两家旅行社的收费,并讨论哪家旅行社更优惠.解 设家庭中孩子数为x (x ≥1,x ∈N +),旅游收费为y ,旅游原价为a . 甲旅行社收费:y =a +a 2(x +1)=a2(x +3);乙旅行社收费:y =2a3(x +2).∵2a 3(x +2)-a 2(x +3)=a6(x -1), ∴当x =1时,两家旅行社收费相等. 当x >1时,甲旅行社更优惠.1.下列函数中随x 的增长而增长最快的是( ) A .y =e x B .y =ln x C .y =x 100 D .y =2x答案 A2.能使不等式log 2x <x 2<2x 一定成立的x 的取值区间是( ) A .(0,+∞) B .(2,+∞) C .(-∞,2) D .(4,+∞)答案 D3.某物体一天中的温度T (单位:℃)是时间t (单位:h)的函数:T (t )=t 3-3t +60,t =0表示中午12:00,其后t 取正值,则下午3时温度为( ) A .8℃ B .78℃ C .112℃ D .18℃答案 B4.下面选项是四种生意预期的收益y 关于时间x 的函数,从足够长远的角度看,更为有前途的生意是( ) A .y =10×1.05xB .y =20+x 1.5C .y =30+lg(x -1)D .y =50 答案 A5.我们处在一个有声的世界里,不同场合人们对声音的音量会有不同的要求.音量大小的单位是分贝(dB).对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg II 0(其中I 0是人耳能听到的声音的最低声波强度).设η1=70 dB 的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( ) A.76倍 B .10倍 C .1076倍 D .ln 76倍答案 B解析 由题意,令70=10lg I 1I 0,则有I 1=I 0×107.同理得I 2=I 0×106,所以I 1I 2=10.1.四类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型. (3)增长速度较慢的函数模型是对数型函数模型. (4)增长速度平稳的函数模型是幂函数模型. 2.函数模型的应用(1)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(2)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.课时作业一、选择题1.下列函数中,增长速度越来越慢的是( )A.y=6x B.y=log6xC.y=x6D.y=6x答案 B解析D增长速度不变,A、C增长速度越来越快,只有D符合题意.2.以下四种说法中,正确的是()A.幂函数增长的速度比一次函数增长的速度快B.对任意的x>0,x a>log a xC.对任意的x>0,a x>log a xD.不一定存在x0,当x>x0时,总有a x>x a>log a x答案 D解析对于A,幂函数与一次函数的增长速度分别受幂指数及一次项系数的影响,幂指数与一次项系数不确定,增长速度不能比较;对于B,C,显然不成立;对于D,当a>1时,一定存在x0,使得当x>x0时,总有a x>x a>log a x,但若去掉限制条件“a>1”,则结论不成立.3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是()答案 D解析设该林区的森林原有蓄积量为a,由题意,ax=a(1+0.104)y,故y=log1.104x(x≥1),∴y=f(x)的图象大致为D中图象.4.下面给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是()A .指数函数:y =2tB .对数函数:y =log 2tC .幂函数:y =t 3D .二次函数:y =2t 2答案 A解析 由题干中的图象可知,该函数模型应为指数函数.5.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系式为:P =P 0e -kt (k ,P 0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%,那么,至少还需要过滤的时间为( ) A.12小时 B.59小时 C .5小时 D .10小时答案 C解析 由题意知前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k ,∴0.1=e -5k ,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,∴-kt =ln 0.01,∴⎝⎛⎭⎫15ln 0.1t =ln 0.01,∴t =10.∴至少还需要过滤5小时才可以排放. 6.向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )答案 B解析 水深h 为自变量,随着h 增大,A 中V 增长速度越来越快,C 中先慢后快,D 增长速度不变,只有B 中V 增长速度越来越慢. 二、填空题7.某厂日产手套总成本y (元)与手套日产量x (双)的关系式为y =5x +4 000,而手套出厂价格为每双10元,则该厂为了不亏本,日产手套至少为________双. 答案 800解析 要使该厂不亏本,只需10x -y ≥0, 即10x -(5x +4 000)≥0,解得x ≥800.8.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料质量M kg 、火箭(除燃料外)质量m kg 的关系是v =2 000ln ⎝⎛⎭⎫1+Mm ,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 答案 e 6-1解析 由题意2 000ln ⎝⎛⎭⎫1+Mm =12 000. ∴ln ⎝⎛⎭⎫1+M m =6,从而Mm=e 6-1. 9.某种动物繁殖数量y (只)与时间x (年)的关系式为y =a log 2(x +1),设这种动物第一年有100只,则到第7年这种动物发展到________只. 答案 300解析 把x =1,y =100代入y =a log 2(x +1), 得a =100,故函数关系式为y =100log 2(x +1), 所以当x =7时,y =100log 2(7+1)=300. 所以到第7年这种动物发展到300只.10.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y 元,则本利和y 随存期x 变化的函数关系式是________. 答案 y =a (1+r )x ,x ∈N +解析 已知本金为a 元,利率为r ,则1期后本利和为y =a +ar =a (1+r ), 2期后本利和为y =a (1+r )+a (1+r )r =a (1+r )2, 3期后本利和为y =a (1+r )3,…x 期后本利和为y =a (1+r )x ,x ∈N +. 三、解答题11.在制造纯净水的过程中,如果每增加一次过滤可减少水中杂质的20%,那么要使水中杂质减少到原来的5%以下,则至少要过滤几次.(lg 2≈0.301 0,lg 3≈0.477 1) 解 设原有杂质为a ,经过x 次过滤后杂质为y ,则y =a ×(1-20%)x =a 0.8x . 由题意得ya<5%,即0.8x <5%,所以x lg 0.8<lg 0.05,即x >lg 0.05lg 0.8≈13.4,因此至少需要经过14次过滤才能使水中杂质减少到原来的5%以下.12.某企业生产A ,B 两种产品.根据市场调查与市场预测知A 产品的利润与投资成正比,其关系如图(1)所示,B 产品的利润与投资的算术平方根成正比,其关系如图(2)所示.(注:图中的横坐标表示投资金额,单位为万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系式;(2)该企业已筹集10万元资金,并全部投入A ,B 两种产品的生产.问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润为多少万元?解 (1)设投资了x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元. 由题意知f (x )=k 1x (k 1≠0),g (x )=k 2x (k 2≠0). 由题图可知f (2)=1,所以k 1=12,由g (4)=4,得k 2=2.故f (x )=12x (x ≥0),g (x )=2x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入(10-x )万元. 设企业利润为y 万元, 则y =f (x )+g (10-x )=12x +210-x (0≤x ≤10).令10-x =t ,则y =10-t 22+2t =-12(t -2)2+7(0≤t ≤10).当t =2时,y max =7,此时x =10-4=6.所以当A 产品投入6万元,B 产品投入4万元时,该企业获得最大利润,最大利润为7万元. 13.某纪念章从2015年1月6日起开始上市.通过市场调查,得到该纪念章每枚的市场价y (单位:元)与上市时间x (单元:天)的数据如下:(1)根据上表数据结合散点图,从下列函数中选取一个恰当的函数描述该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①y =ax +b ;②y =ax 2+bx +c ;③y =a log b x . (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.解 (1)∵随着时间x 的增加,y 的值先减后增,而所给的三个函数中y =ax +b 和y =a log b x 显然都是单调函数,不满足题意,∴函数y =ax 2+bx +c 满足该纪念章的市场价y 与上市时间x 的变化关系. (2)把点(4,90),(10,51),(36,90)分别代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧16a +4b +c =90,100a +10b +c =51,1 296a +36b +c =90,解得⎩⎪⎨⎪⎧a =14,b =-10,c =126,∴y =14x 2-10x +126=14(x -20)2+26.∴当x =20时,y 有最小值26.故该纪念章市场价最低时的上市天数为20天,最低的价格为26元. 四、探究与拓展14.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( ) A .甲食堂的营业额较高 B .乙食堂的营业额较高 C .甲、乙两食堂的营业额相同11 D .不能确定甲、乙哪个食堂的营业额较高答案 A解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.15.众所周知,大包装商品的成本要比小包装商品的成本低.某种品牌的饼干,其100克装的售价为1.6元,其200克装的售价为3元.假定该商品的售价由三部分组成:生产成本(a 元)、包装成本(b 元)、利润,生产成本(a 元)与饼干质量成正比,包装成本(b 元)与饼干质量的算术平方根(估计值)成正比,利润率为20%,试求出该种饼干1 000克装的合理售价. 解 设饼干的质量为x 克,则其售价y (元)与质量x (克)之间的函数解析式为y =(mx +n x )(1+0.2),由题意得1.6=(100m +100n )(1+0.2),即43=100m +10n . 又3=(200m +200n )(1+0.2).即2.5≈200m +14.14n ,∴0.167≈5.86n ,∴⎩⎪⎨⎪⎧n ≈0.028 4,m ≈1.05×10-2, ∴y ≈(1.05×10-2x +0.028 4x )×1.2,当x =1 000时,y ≈13.7.∴估计这种饼干1 000克装的售价为13.7元.。

2020高考数学 课后作业 3-3 三角函数的图象与性质 新人教A版

2020高考数学 课后作业 3-3 三角函数的图象与性质 新人教A版

2020高考数学人教A 版课后作业1.(文)(2020·四川文)将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎪⎫2x -π10 B .y =sin ⎝⎛⎭⎪⎫2x -π5C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π20[答案] C[解析] ∵向右平移π10个单位,∴用x -π10代替y =sin x 中的x ;∵各点横坐标伸长到原来的2倍,∴用12x 代替y =sin ⎝ ⎛⎭⎪⎫x -π10中的x ,∴得y =sin ⎝ ⎛⎭⎪⎫12x -π10.(理)(2020·大纲全国卷理,5)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 [答案] C[解析] 由题意知,π3=2πω·k (k ∈Z),∴ω=6k ,令k =1,∴ω=6.2.(文)函数f (x )=sin 2x 的最小正周期和最小值分别为( ) A .2π,-1 B .2π,0 C .π,0 D .π,1 [答案] C[解析] ∵f (x )=sin 2x =1-cos2x 2,∴周期T =2π2=π,又f (x )=sin 2x ≥0,∴最小值为0,故选C.(理)(2020·济南模拟)函数f (x )=2cos 2x -3sin2x (x ∈R)的最小正周期和最大值分别为 ( )A .2π,3B .2π,1C .π,3D .π,1 [答案] C[解析] 由题可知,f (x )=2cos 2x -3sin2x =cos2x -3sin2x +1=2sin(π6-2x )+1,所以函数f (x )的最小正周期为T =π,最大值为3,故选C.3.(2020·衡水市高考模拟)设a =log 12tan70°,b =log 12sin25°,c =log 12cos25°,则它们的大小关系为( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c [答案] A[解析] ∵tan70°>tan45°=1>cos25°>sin25°>0,log 12x 为减函数,∴a <c <b .4.(2020·衡水质检)函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则φ的可能取值是( )A.3π4 B .-3π4 C.π4 D.π2[答案] A[解析] ∵y =cos x 的对称轴为x =k π(k ∈Z),∴x +φ=k π,即x =k π-φ,令π4=k π-φ得φ=k π-π4(k ∈Z),显然在四个选项中,只有3π4满足题意.故正确答案为A.5.(文)为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值是( )A .98π B.1972π C.1992π D .100π [答案] B[解析] 由题意至少出现50次最大值即至少需用4914个周期,∴4914·T =1974·2πω≤1,∴ω≥1972π,故选B.(理)有一种波,其波形为函数y =sin ⎝ ⎛⎭⎪⎫π2x 的图象,若在区间[0,t ](t >0)上至少有2个波峰(图象的最高点),则正整数t 的最小值是( )A .3B .4C .5D .6[答案] C[解析] ∵y =sin ⎝ ⎛⎭⎪⎫π2x 的图象在[0,t ]上至少有2个波峰,函数y =sin ⎝ ⎛⎭⎪⎫π2x 的周期T =4,∴t ≥54T =5,故选C.6.(2020·安徽巢湖质检)函数f (x )=sin ⎝⎛⎭⎪⎫ωx -π3(ω>0)的最小正周期为π,则函数f (x )的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤k π-π6,k π+5π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤k π+5π6,k π+11π6(k ∈Z)C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z) [答案] C[解析] 由条件知,T =2πω=π,∴ω=2,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z 得,k π-π12≤x ≤k π+5π12,k ∈Z ,故选C. 7.(2020·福建质检)已知将函数f (x )=2sin π3x 的图象向左平移1个单位长度,然后向上平移2个单位长度后得到的图象与函数y =g (x )的图象关于直线x =1对称,则函数g (x )=________.[答案] 2sin π3x +2[解析] 将f (x )=2sin π3x 的图象向左平移1个单位长度后得到y =2sin[π3(x +1)]的图象,向上平移2个单位长度后得到y =2sin[π3(x +1)]+2的图象,又因为其与函数y =g (x )的图象关于直线x =1对称,所以y =g (x )=2sin[π3(2-x +1)]+2=2sin(π-π3x )+2=2sin π3x +2.8.(2011·济南调研)设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.[答案] -π6[解析] ∵函数y =2sin(2x +π3)的对称中心是函数图象与x 轴的交点,∴2sin(2x 0+π3)=0,∵x 0∈[-π2,0]∴x 0=-π6.1.(文)(2020·湖南张家界月考)若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1 D.3+2 [答案] B[解析] f (x )=(1+3tan x )cos x=cos x +3sin x =2sin ⎝⎛⎭⎪⎫x +π6,∵0≤x <π2,∴π6≤x +π6<2π3,∴12≤sin ⎝⎛⎭⎪⎫x +π6≤1,∴f (x )的最大值为2.(理)(2020·湖北文,6)已知函数f (x )=3sin x -cos x ,x ∈R.若f (x )≥1,则x 的取值范围为( )A .{x |2k π+π3≤x ≤2k π+π,k ∈Z}B .{x |k π+π3≤x ≤k π+π,k ∈Z}C .{x |2k π+π6≤x ≤2k π+5π6,k ∈Z}D .{x |k π+π6≤x ≤k π+5π6,k ∈Z}[答案] A[解析] f (x )=3sin x -cos x =2sin(x -π6)≥1,即sin(x -π6)≥12,∴2k π+π6≤x -π6≤2k π+5π6k ∈Z , ∴2k π+π3≤x ≤2k π+π(k ∈Z).2.(文)(2020·北京大兴区模拟)已知函数f (x )=3sin πxR图象上相邻的一个最大值点与一个最小值点恰好都在圆x 2+y 2=R 2上,则f (x )的最小正周期为( )A .1B .2C .3D .4 [答案] D[解析] f (x )的周期T =2ππR=2R ,f (x )的最大值是3,结合图形分析知R >3,则2R >23>3,只有2R =4这一种可能,故选D.(理)(2020·北京西城模拟)函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,则tan ∠APB =( )A .10B .8 C.87 D.47 [答案] B[分析] 利用正弦函数的周期、最值等性质求解.[解析] 如图,过P 作PC ⊥x 轴,垂足为C ,设∠APC =α,∠BPC =β,∴∠APB =α+β,y =sin(πx +φ),T =2ππ=2,tan α=ACPC=121=12,tanβ=BCPC=321=32,则tan(α+β)=tanα+tanβ1-tanα·tanβ=12+321-12×32=8,∴选B.3.(文)(2020·湖南长沙一中月考)下列函数中,图象的一部分如图所示的是( ) A.y=sin(2x+π6)B.y=sin(2x-π6)C.y=cos(2x+π3)D.y=cos(2x-π6)[答案] D[解析] 将(-π6,0)代入选项逐一验证,对A项,y=sin(-π3+π6)≠0,A错;对B 项,y=sin(-π2)=-1≠0,B错;对C项y=cos0=1≠0,C错;对D项,y=cos(-π3-π6)=cosπ2=0符合,故选D.(理)(2020·吉林一中月考)函数y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分图象如图,则( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4[答案] C[解析] ∵T 4=3-1=2,∴T =8,∴ω=2πT =π4.令π4×1+φ=π2,得φ=π4,∴选C. 4.(2020·北京海淀期中)如果存在正整数ω和实数φ,使得函数f (x )=cos 2(ωx +φ)的图象如图所示(图象经过点(1,0)),那么ω的值为( )A .1B .2C .3D .4 [答案] B[解析] f (x )=12+12cos(2ωx +2φ),由图可知T2<1<34T ,∴43<T <2,43<2π2ω<2,π2<ω<34π, 又ω∈N *,∴ω=2.故选B.5.(2020·安徽百校论坛联考)已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.[答案] [1,2)[解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝ ⎛⎭⎪⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点,∴1≤m <2. 6.(2020·长沙一中月考)已知f (x )=sin x +sin(π2-x ).(1)若α∈[0,π],且sin2α=13,求f (α)的值;(2)若x ∈[0,π],求f (x )的单调递增区间. [解析] (1)由题设知f (α)=sin α+cos α. ∵sin2α=13=2sin α·cos α>0,α∈[0,π],∴α∈(0,π2),sin α+cos α>0.由(sin α+cos α)2=1+2sin α·cos α=43,得sin α+cos α=233,∴f (α)=23 3.(2)由(1)知f (x )=2sin(x +π4),又0≤x ≤π, ∴f (x )的单调递增区间为[0,π4].7.(文)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量m =(b,2a -c ),n =(cos B ,cos C ),且m ∥n .(1)求角B 的大小;(2)设f (x )=cos ⎝ ⎛⎭⎪⎫ωx -B 2+sin ωx (ω>0),且f (x )的最小正周期为π,求f (x )在区间[0,π2]上的最大值和最小值. [解析] (1)由m ∥n 得,b cos C =(2a -c )cos B , ∴b cos C +c cos B =2a cos B .由正弦定理得,sin B cos C +sin C cos B =2sin A cos B , 即sin(B +C )=2sin A cos B .又B +C =π-A ,∴sin A =2sin A cos B . 又sin A ≠0,∴cos B =12.又B ∈(0,π),∴B =π3.(2)由题知f (x )=cos(ωx -π6)+sin ωx =32cos ωx +32sin ωx =3sin(ωx +π6), 由已知得2πω=π,∴ω=2,f (x )=3sin(2x +π6),当x ∈[0,π2]时,(2x +π6)∈[π6,7π6],sin(2x +π6)∈[-12,1].因此,当2x +π6=π2,即x =π6时,f (x )取得最大值 3.当2x +π6=7π6,即x =π2时,f (x )取得最小值-32.(理)(2020·湖北黄冈)已知a =(3,cos x ),b =(cos 2x ,sin x ),函数f (x )=a ·b -32. (1)求函数f (x )的单调递增区间;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π4,求函数f (x )的取值范围;(3)函数f (x )的图象经过怎样的平移可使其对应的函数成为奇函数? [解析] (1)函数f (x )=3cos 2x +sin x cos x -32=3⎝ ⎛⎭⎪⎫1+cos2x 2+12sin2x -32=32cos2x +12sin2x =sin ⎝⎛⎭⎪⎫2x +π3∴由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z 得-5π12+k π≤x ≤π12+k π,k ∈Z 所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,(k ∈Z)(2)∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6∴当2x +π3=π2即x =π12时f (x )max =1当2x +π3=5π6即x =π4时,f (x )min =12,∴12≤f (x )≤1.(3)将f (x )的图象上所有的点向右平移π6个单位长度得到y =sin2x 的图象,则其对应的函数即为奇函数.(答案不唯一)1.(2020·合肥质检)对任意x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=1+sin x 1x 1,y 2=1+sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 [答案] B[解析] 取函数y =1+sin x ,则1+sin x 1x 1的几何意义为过原点及点(x 1,1+sin x 1)的直线斜率,1+sin x 2x 2的几何意义为过原点及点(x 2,1+sin x 2)的直线斜率,由x 1<x 2,观察函数y =1+sin x 的图象可得y 1>y 2.选B.2.已知函数f (x )=A sin(ωx +φ),x ∈R(其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.则f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6B .f (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6C .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3D .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 [答案] A[解析] 由最低点为M ⎝⎛⎭⎪⎫2π3,-2得A =2.由x 轴上相邻两个交点之间的距离为π2得,T 2=π2,即T =π,∴ω=2πT =2ππ=2.由点M ⎝⎛⎭⎪⎫2π3,-2在函数图象上得,2sin ⎝ ⎛⎭⎪⎫2×2π3+φ=-2,即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1,故4π3+φ=2k π-π2,k ∈Z ,∴φ=2k π-11π6.又φ∈⎝⎛⎭⎪⎫0,π2,∴φ=π6,故f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.3.(2020·安徽马鞍山二中)函数f (x )=A sin(ωx +φ)+b 的图象如图所示,则f (1)+f (2)+…+f (2020)的值为( )A .2020 B.40172 C .2020 D.40192[答案] D[解析] 由f (x )的图象可以得到A =12,b =1,T =4,所以ω=π2,故f (x )=12sin(π2x +φ)+1,再由点⎝ ⎛⎭⎪⎫1,32在f (x )的图象上,可得φ=2k π,k ∈Z , 所以f (x )=12sin πx2+1.所以f (1)=12+1,f (2)=0+1,f (3)=-12+1,f (4)=0+1,所以f (1)+f (2)+f (3)+f (4)=4,所以f (1)+f (2)+…+f (2020)=2020+f (2020)=2020+f (1)=40192.4.(2020·浙江金华十校)M 、N 是曲线y =πsin x 与曲线y =πcos x 的两个不同的交点,则|MN |的最小值为( )A .π B.2π C.3π D .2π[答案] C[解析] 其中与原点最近的两交点M ⎝ ⎛⎭⎪⎫π4,2π2,N ⎝ ⎛⎭⎪⎫5π4,-2π2,∴|MN |=3π.5.已知函数f (x )=x ·sin x ,x ∈R.则f ⎝ ⎛⎭⎪⎫-π4,f (1)及f ⎝ ⎛⎭⎪⎫π3的大小关系为( ) A .f ⎝ ⎛⎭⎪⎫-π4>f (1)>f ⎝ ⎛⎭⎪⎫π3B .f (1)>f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫-π4C .f ⎝ ⎛⎭⎪⎫π3>f (1)>f ⎝ ⎛⎭⎪⎫-π4D .f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫-π4>f (1) [答案] C[解析] ∵f (x )为偶函数,且在⎣⎢⎡⎦⎥⎤0,π2上为增函数,∴f ⎝ ⎛⎭⎪⎫-π4=f ⎝ ⎛⎭⎪⎫π4,由于π3>1>π4,∴f ⎝ ⎛⎭⎪⎫π3>f (1)>f ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫-π4,故选C.6.(2020·山东肥城联考)函数f (x )=2sin(ωx +φ)(其中ω>0,-π2<φ<π2)的图象如图所示,若点A 是函数f (x )的图象与x 轴的交点,点B 、D 分别是函数f (x )的图象的最高点和最低点,点C ⎝⎛⎭⎪⎫π12,0是点B 在x 轴上的射影,则AB →·BD →的值是( )A .8B .-8C.π28-8 D .-π28+8 [答案] C[解析] 由图可知T 4=π3-π12=π4,∴T =π,∴ω=2,由2·π3+φ=π知,φ=π3,从而A ⎝ ⎛⎭⎪⎫-π6,0,B ⎝ ⎛⎭⎪⎫π12,2,D ⎝ ⎛⎭⎪⎫7π12,-2,AB →=⎝ ⎛⎭⎪⎫π4,2,BD →=⎝ ⎛⎭⎪⎫π2,-4,∴AB →·BD →=π28-8.7.(2020·福建莆田市质检)某同学利用描点法画函数y =A sin(ωx +φ)(其中A >0,0<ω<2,-π2<φ<π2)的图象,列出的部分数据如下表:x 0 1 2 3 4 y11-1-2y =A sin(ωx +φ)的解析式应是________.[答案] y =2sin ⎝ ⎛⎭⎪⎫π3x +π6[解析] ∵(0,1)和(2,1)关于直线x =1对称,故x =1与函数图象的交点应是最高点或最低点,故数据(1,0)错误,从而由(4,-2)在图象上知A =2,由过(0,1)点知2sin φ=1,∵-π2<φ<π2,∴φ=π6,∴y =2sin ⎝ ⎛⎭⎪⎫ωx +π6,再将点(2,1)代入得,2sin ⎝⎛⎭⎪⎫2ω+π6=1, ∴2ω+π6=π6+2k π或2ω+π6=5π6+2k π,k ∈Z ,∵0<ω<2,∴ω=π3,∴解析式为y =2sin ⎝⎛⎭⎪⎫π3x +π6.8.(2020·福建四地六校联考)已知函数f (x )=-1+23sin x cos x +2cos 2x . (1)求f (x )的单调递减区间;(2)求f (x )图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f (α)=f (β),求tan(α+β)的值. [解析] f (x )=3sin2x +cos2x =2sin(2x +π6),(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z),(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z), ∴f (x )图象上与原点最近的对称中心坐标是(-π12,0).(3)由f (α)=f (β)得:2sin(2α+π6)=2sin(2β+π6),又∵角α与β的终边不共线,∴(2α+π6)+(2β+π6)=2k π+π(k ∈Z),即α+β=k π+π3(k ∈Z),∴tan(α+β)= 3.。

高考数学一轮复习 第二章 函数概念与基本初等函数I 第四节 二次函数与幂函数课后作业 理-人教版高三

高考数学一轮复习 第二章 函数概念与基本初等函数I 第四节 二次函数与幂函数课后作业 理-人教版高三

【创新方案】2017届高考数学一轮复习 第二章 函数概念与基本初等函数I 第四节 二次函数与幂函数课后作业 理[全盘巩固]一、选择题1.(2016·枣庄模拟)已知函数f (x )=x 2+2|x |,若f (-a )+f (a )≤2f (2),则实数a 的取值X 围是( )A .[-2,2]B .(-2,2]C .[-4,2]D .[-4,4]2.(2016·某某模拟)已知f (x )=ax 2-x -c ,若f (x )>0的解集为(-2,1),则函数y =f (-x )的大致图象是( )A B C D3.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值X 围是( )A .[0,+∞) B.(-∞,0] C .[0,4] D .(-∞,0]∪[4,+∞)4.方程x 2+ax -2=0在区间[1,5]上有根,则实数a 的取值X 围为( )A.⎝ ⎛⎭⎪⎫-235,+∞B .(1,+∞) C.⎣⎢⎡⎦⎥⎤-235,1 D.⎝⎛⎦⎥⎤-∞,-2355.(2016·某某模拟)若函数f (x )=ax 2+b |x |+c (a ≠0)有四个单调区间,则实数a ,b ,c 满足( )A .b 2-4ac >0,a >0 B .b 2-4ac >0 C .-b 2a >0 D .-b2a <0二、填空题6.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是________.7.已知二次函数f (x )是偶函数,且f (4)=4f (2)=16,则函数f (x )的解析式为________. 8.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2若对任意的x ∈[t ,t +2],不等式f (x +t )≥2f (x )恒成立,则实数t 的取值X 围是________.三、解答题9.已知函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值X 围. 10.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,某某数a 的取值X 围.[冲击名校]1.已知y =f (x )为偶函数,当x ≥0时,f (x )=-x 2+2x ,则满足f (f (a ))=12的实数a的个数为( )A .8B .6C .4D .22.已知函数f (x )满足f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max(p ,q )表示p ,q 中的较大值,min(p ,q )表示p ,q 中的较小值),记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =()A .a 2-2a -16 B .a 2+2a -16 C .-16 D .163.已知函数f (x )=x 2-2x ,g (x )=ax +2(a >0),若∀x 1∈[-1,2],∃x 2∈[-1,2],f (x 1)=g (x 2),则实数a 的取值X 围是________.4.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值X 围.5.已知函数f (x )=x 2-2ax +5(a >1).若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,某某数a 的取值X 围.答 案 [全盘巩固]一、选择题1.解析:选A 由f (x )=x 2+2|x |,f (2)=8知,f (-a )+f (a )=2a 2+4|a |≤16,解得a ∈[-2,2].2.解析:选C 法一:由f (x )>0的解集为(-2,1),可得a =-1,c =-2,所以f (x )=-x 2-x +2,f (-x )=-x 2+x +2=-(x +1)(x -2),故选C.法二:由f (x )>0的解集为(-2,1),可知函数f (x )的大致图象为选项D ,又函数f (x )与f (-x )的图象关于y 轴对称,所以f (-x )的大致图象为选项C.3.解析:选C 由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,所以由f (a )≥f (0)可得0≤a ≤4.4.解析:选C 法一:令f (x )=x 2+ax -2,由题意知f (x )的图象与x 轴在[1,5]上有交点,又f (0)=-2<0,∴⎩⎪⎨⎪⎧f 1≤0,f 5≥0,即⎩⎪⎨⎪⎧a -1≤0,5a +23≥0,∴-235≤a ≤1.法二:方程x 2+ax -2=0在区间[1,5]上有根,即方程x +a -2x =0,也即方程a =2x-x在区间[1,5]上有根,而函数y =2x -x 在区间[1,5]上是减函数,所以-235≤y ≤1,则-235≤a ≤1.5.解析:选C x >0时,f (x )=ax 2+bx +c ,此时f (x )应该有两个单调区间,∴对称轴x =-b 2a >0;x <0时,f (x )=ax 2-bx +c ,对称轴x =b2a<0,∴此时f (x )有两个单调区间,∴当-b2a>0时,f (x )有四个单调区间. 二、填空题6.解析:由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.答案:1或27.解析:由题意可设函数f (x )=ax 2+c (a ≠0),则f (4)=16a +c =16,4f (2)=4(4a +c )=16a +4c =16,解得a =1,c =0,故f (x )=x 2.答案:f (x )=x 28.解析:∵当x ≥0时,f (x )=x 2,且f (x )是定义在R 上的奇函数,∴f (x )在R 上是增函数,又f (x +t )≥2f (x )=f (2x ),∴x +t ≥2x ,∴t ≥(2-1)x .∵x ∈[t ,t +2],∴t ≥(2-1)(t +2),∴t ≥ 2.答案:[2,+∞) 三、解答题9.解:(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1],单调增区间为[-1,+∞). (2)f (x )>x +k 在区间[-3,-1]上恒成立, 转化为x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1,即k 的取值X 围为(-∞,1). 10.解:2ax 2+2x -3<0在[-1,1]上恒成立. 当a =0时,适合;当a ≠0时,x =0时,有-3<0恒成立;x ≠0时,a <32⎝ ⎛⎭⎪⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12,且a ≠0.综上,实数a 的取值X 围是⎝⎛⎭⎪⎫-∞,12. [冲击名校]1.解析:选A 由题意知, f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,-x 2-2x ,x <0,其图象如图所示.令t =f (a ),则t ≤1,令f (t )=12,解得t =1-22或t =-1±22,即f (a )=1-22或f (a )=-1±22,由数形结合得,共有8个交点. .2.解析:选C 取a =-2,则f (x )=x 2+4,g (x )=-x 2-8x +4,画出它们的图象,如图所示.则H 1(x )的最小值为两图象右边交点的纵坐标,H 2(x )的最大值为两图象左边交点的纵坐标,由⎩⎪⎨⎪⎧x 2+4=y ,-x 2-8x +4=y ,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =-4,y =20,∴A =4,B =20,A -B =-16.3.解析:由题意得g (x )min ≤f (x )min 且g (x )max ≥f (x ) max ,f (x )在区间[-1,2]上的最大值f (x ) max =f (-1)=3,f (x )在区间[-1,2]上的最小值f (x ) min =f (1)=-1.由于g (x )=ax +2(a >0)在区间[-1,2]上单调递增,则g (x ) min =g (-1)=-a +2,g (x ) max =g (2)=2a +2,故⎩⎪⎨⎪⎧-a +2≤-1,2a +2≥3,解得a ≥3.答案:[3,+∞)4.解:(1)f (x )=a (x -1) 2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f 3=5,f 2=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0.当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧f3=2,f 2=5,⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2.g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.故m 的取值X 围为(-∞,2]∪[6,+∞).5.解:∵f (x )在区间(-∞,2]上是减函数,∴a ≥2. 又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2. ∵对任意的x 1,x 2∈[1,a +1], 总有|f (x 1)-f (x 2)|≤4,∴f (x ) max -f (x ) min ≤4,得-1≤a ≤3. 又a ≥2,∴2≤a ≤3.故实数a 的取值X 围是[2,3].。

【走向高考】2020年高考数学总复习 4-6二倍角的三角函数课后作业 北师大版

【走向高考】2020年高考数学总复习 4-6二倍角的三角函数课后作业 北师大版

【走向高考】2020年高考数学总复习 4-6二倍角的三角函数课后作业北师大版一、选择题1.(文)若sin2θ=14,则tanθ+cosθsinθ的值是( )A.-8 B.8 C.±8 D.2 [答案] B[解析]tanθ+cosθsinθ=sinθcosθ+cosθsinθ=sin2θ+cos2θsinθcosθ=112sin2θ=214=8,故选B.(理)已知sinα=23,则cos(π-2α)=( )A.-53B.-19C.19D.53[答案] B[解析]本题考查了诱导公式、三角恒等变形及倍半角公式的应用.由诱导公式得cos(π-2α)=-cos2α,∴cos2α=1-2sin2α=1-2×49=19,∴cos(π-2α)=-1 9 .2.已知sinα=35,且α∈⎝⎛⎭⎪⎫π2,π,则sin2αcos2α的值为( )A.-34B.-32C.34D.32[答案] B[解析]∵sinα=35,α∈⎝⎛⎭⎪⎫π2,π,∴cosα=-45,∴sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2×35-45=-32. 3.2+2cos8+21-sin8的化简结果是( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4 D .-2sin4[答案] C [解析]2+2cos8+21-sin8=2|cos4|+2|sin4-cos4|, ∵π<4<5π4,∴cos4<sin4<0.∴原式=-2cos4+2(sin4-cos4)=2sin4-4cos4.故选C. 4.(文)已知sin α=55,则sin 4α-cos 4α的值为( ) A .-35B .-15C.15D.35[答案] A[解析] sin 4α-cos 4α=sin 2α-cos 2α=2sin 2α-1 =2×15-1=-35,故选A.(理)设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a2B.1-a2C .-1+a2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0, ∵a =cos θ2=1-2sin 2θ4,∴sin θ4=-1-a2. 5.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是( )A .1B.1+32C.32 D .1+ 3[答案] C [解析] f (x )=1-cos2x 2+32sin2x =sin ⎝⎛⎭⎪⎫2x -π6+12, 又x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,f (x )max =1+12=32,故选C.6.已知tan2α=-22,且满足π4<α<π2,则2cos2α2-sin α-12sin ⎝ ⎛⎭⎪⎫π4+α 的值为( )A. 2 B .- 2 C .-3+2 2 D .3-2 2[答案] C[解析]2cos2α2-sin α-12sin π4+α=cos α-sin αsin α+cos α=1-tan αtan α+1.又tan2α=-22=2tan α1-tan 2α∴22tan 2α-2tan α-22=0.解得tan α=-22或 2. 又π4<α<π2,∴tan α= 2. 原式=1-22+1=-3+2 2.故选C.二、填空题7.设a =12cos6°-32sin6°,b =2tan13°1+tan 213°,c =1-cos50°2,则a 、b 、c 的大小关系为______(由小到大排列).[答案] a <c <b[解析] a =sin24°,b =sin26°,c =sin25°, ∵y =sin x 在(0°,90°)上单增,∴a <c <b .8.已知π2<α<π,化简12-1212-12cos2α=______. [答案] sin ⎝ ⎛⎭⎪⎫α2-π4 [解析] 原式=12-12|sin α| =12-12sin α=sin α2-cosα222=22⎝ ⎛⎭⎪⎫sin α2-cos α2=sin ⎝ ⎛⎭⎪⎫α2-π4. 三、解答题9.(2020·天津理,15)已知函数f (x )=tan(2x +π4),(1)求f (x )的定义域与最小正周期;(2)设α∈(0,π4),若f (α2)=2cos2α,求α的大小.[解析] (1)由2x +π4≠π2+kπ,k ∈Z ,得x ≠π8+kπ2,k ∈Z ,所以f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x ≠π8+kπ2,k ∈Z .f (x )的最小正周期为π2.(2)由f ⎝ ⎛⎭⎪⎫α2=2cos2α,得tan ⎝ ⎛⎭⎪⎫α+π4=2cos2α,sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝ ⎛⎭⎪⎫0,π4,所以sin α+cos α≠0.因此(cos α-sin α)2=12,即sin2α=12.由α∈⎝ ⎛⎭⎪⎫0,π4,得2α∈⎝ ⎛⎭⎪⎫0,π2.所以2α=π6,即α=π12.一、选择题1.函数f(x)=(3sin x-4cos x)·cos x的最大值为( )A.5 B.9 2C.12D.52[答案] C[解析]f(x)=(3sin x-4cos x)cos x=3sin x cos x-4cos2x=32sin2x-2cos2x-2=52sin(2x-θ)-2,其中tanθ=43,所以f(x)的最大值是52-2=12.故选C.2.若cosα=-45,α是第三象限的角,则1+tanα21-tanα2=( )A.-12B.12C.2 D.-2[答案] A[解析]本题综合考查了同角三角函数的基本公式以及二倍角公式的逆运用.∵cosα=-45且α是第三象限的角,∴sinα=-35,∴1+tanα21-tanα2=cosα2+sinα2cosα2cosα2-sinα2cosα2=cosα2+sinα2cosα2-sinα2=⎝⎛⎭⎪⎫cosα2+sinα22⎝⎛⎭⎪⎫cosα2-sinα2⎝⎛⎭⎪⎫cosα2+sinα2=1+sinαcos2α2-sin2α2=1+sin αcos α=1-35-45=-12,故选A.二、填空题3.(2020·江苏,7)已知tan(x +π4)=2,则tan xtan2x 的值为______.[答案] 49[解析] 由tan(x +π4)=2,可得tan x =13,从而tan2x =2tan x 1-tan 2x =34,则tan x tan2x =49. 4.若sin α·cos β=12,则cos α·sin β的取值范围是________.[答案] ⎣⎢⎡⎦⎥⎤-12,12 [解析] 解法一:设t =cos α·sin β,又sin α·cos β=12,∴sin α·cos β·sin β·cos α=12t ,即sin2α·si n2β=2t ,|sin2α·sin2β|≤1. ∴2|t |≤1,即-12≤t ≤12.∴cos α·sin β的取值范围是⎣⎢⎡⎦⎥⎤-12,12.解法二:由sin α·cos β=12知sin 2α·cos 2β=14.则cos 2α·sin 2β=(1-sin 2α)(1-cos 2β)=1-(sin 2α+cos 2β)+sin 2αcos 2β=54-(sin 2α+cos 2β)≤54-2sin 2αcos 2β=14,所以-12≤cos α·sin β≤12.三、解答题5.已知函数f (x )=a sin x ·cos x -3a cos 2x +32a +b .(a >0) (1)x ∈R ,写出函数的单调递减区间;(2)设x ∈[0,π2],f (x )的最小值是-2,最大值是3,求实数a ,b 的值.[解析] (1)f (x )=a (sin x ·cos x -3cos 2x +32)+b =a ×(12sin2x -3×1+cos2x 2+32)+b=a·sin(2x-π3)+b∵a>0,x∈R,∴由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)得,f(x)的递减区间是[kπ+512π,kπ+1112π](k∈Z)(2)∵x∈[0,π2],∴2x-π3∈[-π3,2π3]∴sin(2x-π3)∈[-32,1]∴函数f(x)的最小值是-32a+b=-2最大值a+b=3,解得a=2,b=3-2.6.(2020·重庆文,18)设函数f(x)=sin x cos x-3cos(x+π)cos x(x∈R).(1)求f(x)的最小正周期;(2)若函数y=f(x)的图像沿b=(π4,32)平移后得到函数y=g(x)的图像,求y=g(x)在[0,π4]上的最大值.[解析](1)f(x)=12sin2x+3cos2x=12sin2x+3×(1+cos2x2)=12sin2x+32cos2x+32=sin(2x+π3)+32∴f(x)的最小正周期为π.(2)依题意g(x)=f(x-π4)+32=sin(2x-π2+π3)+32+32=sin(2x-π6)+ 3当x∈[0,π4]时,2x-π6∈[-π6,π3]sin(2x-π6)∈[-12,32]∴g(x)在[0,π4]上的最大值为32+3=332.7.已知向量a=(cos x+2sin x,sin x),b=(cos x-sin x,2cos x).设函数f(x)=a·b+1 2 .(1)求函数f(x)的单调递减区间;(2)若函数y=f(x+φ)为偶函数,试求符合题意的φ的值.[分析] 写出y=f(x)的表达式是解题的关键.对于(1),结合题意,利用数量积的坐标运算及三角变换公式得到函数y=f(x)的表达式,进而求出函数的单调减区间;对于(2),函数y=f(x+φ)为偶函数的实质就是求y轴是函数y=f(x+φ)的一条对称轴.考虑到y=sin x的对称轴为x=kπ+π2(k∈Z),故可利用整体思想来解决.[解析](1)由已知可得f(x)=(cos x+2sin x)(cos x-sin x)+2sin x cos x+12=cos2x-sin x cos x+2sin x cos x-2sin2x+2sin x cos x+12=cos2x+3sin x cos x-2sin2x+12=12(1+cos2x)+32sin2x+(cos2x-1)+12=32(sin2x+cos2x)=322sin⎝⎛⎭⎪⎫2x+π4.由2kπ+π2<2x+π4<2kπ+3π2(k∈Z)得:kπ+π8<x<kπ+5π8(k∈Z),所以函数f(x)的单调递减区间为⎝⎛⎭⎪⎫kπ+π8,kπ+5π8(k∈Z).(2)由(1)知y=f(x+φ)=322sin⎝⎛⎭⎪⎫2x+2φ+π4.由于y=sin x的对称轴为x=kπ+π2(k∈Z),令2x+2φ+π4=kπ+π2(k∈Z),得x=kπ+π4-2φ2(k∈Z).因为y=f(x+φ)为偶函数,所以令x=kπ+π4-2φ2=0,解得φ=kπ2+π8(k∈Z).故符合题意的φ=kπ2+π8(k∈Z).[点评] 注重向量与三角函数的交汇是近几年新课标高考命题的一个特色.熟练掌握数量积的定义及运算法则、三角函数的诱导公式、两角和与差的公式等是解决这类题目的一个前提.复习时要将上述知识融会贯通,有针对性地加强训练.。

《第4章生产理论》课后作业(参考答案-新)

《第4章生产理论》课后作业(参考答案-新)

《第四章生产理论》课后作业(参考答案)P152~154.3、解:(1)由生产函数Q=2KL-0.5L2-0.5K2,且K=10,可得短期生产函数为:Q=20L-0.5L2-0.5×102=20L-0.5L2-50于是,根据总产量、平均产量和边际产量的定义,有以下函数:劳动的总产量函数TP L=20L-0.5L2-50劳动的平均产量函数AP L=TP L/L=20-0.5L-50/L劳动的边际产量函数MP L=dTP L/dL=20-L(2)关于总产量的最大值:令dTP L/dL=0,即:dTP L/dL=20-L=0,解得:L=20,且d2TP L/dL2=-1<0,所以,当劳动投入量L=20时,劳动的总产量TP L达到极大值。

关于平均产量的最大值:令dAP L/dL=0,即:dAP L/dL=-0.5L-50L-2=0,解得:L=10(负值舍去),且d2AP L/dL2=-100L-3<0,所以,当当劳动投入量L=10时,劳动的平均产量AP L达到极大值。

关于边际产量的最大值:由劳动的边际产量函数MP L=20-L可知,边际产量曲线是一条斜率为负的直线。

考虑到劳动投入量总是非负的,所以,当劳动投入量L=0时,劳动的边际产量MP L达到极大值。

(3)当劳动的平均产量AP L达到最大值时,一定有AP L=MP L。

由(2)已知,当L=10时,劳动的平均产量AP L达到最大值,即相应的最大值为:AP L(max)=20-0.5×10-50/10=10以L=10代入劳动的边际产量函数MP L=20-L,得:MP L=20-10=10。

很显然,当AP L=MP L时,AP L一定达到其自身的极大值,此时劳动投入量为L=10。

4、解:(1)生产函数Q=min(2L,3K)表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,总有Q=2L=3K。

因为已知产量Q=36,所以,相应地有L=18,K=12。

【走向高考】高考数学总复习 34 两角和与差的三角函数课后作业 新人教A版

【走向高考】高考数学总复习 34 两角和与差的三角函数课后作业 新人教A版

"【走向高考】高考数学总复习 3-4 两角和与差的三角函数课后作业 新人教A 版 "1.(·北京东城区期末)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( ) A.14 B.13 C.12 D.53 [答案] B[解析] ∵C =120°,∴A +B =60°, ∴tan(A +B )=tan A +tan B1-tan A tan B=3,∵tan A +tan B =233,∴tan A tan B =13. 2.在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665 B.5665 C.1665或5665 D .-1665[答案] A[解析] 在△ABC 中,0<A <π,0<B <π,cos A =45,cos B =513,∴sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A +B ) =sin A ·sin B -cos A ·cos B =35×1213-45×513=1665,故选A. 3.(·吉林省质检)对于函数f (x )=sin x +cos x ,下列命题中正确的是( ) A .∀x ∈R ,f (x )< 2 B .∃x ∈R ,f (x )< 2 C .∀x ∈R ,f (x )> 2 D .∃x ∈R ,f (x )> 2[答案] B[解析] ∵f (x )=2sin ⎝⎛⎭⎪⎫x +π4≤2,∴不存在x ∈R 使f (x )>2且存在x ∈R ,使f (x )=2,故A 、C 、D 均错.4.(文)(·北京东城区)在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( ) A .30° B .45° C .60° D .120° [答案] D[解析] ∵△ABC 中,B =30°,∴C =150°-A , ∴sin A =3sin(150°-A )=32cos A +32sin A , ∴tan A =-3,∴A =120°. (理)已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6[答案] C[解析] ∵α、β均为锐角,∴-π2<α-β<π2,∴cos(α-β)=1-sin2α-β=31010, ∴sin α=55,∴cos α=1-⎝⎛⎭⎪⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C. 5.(文)(·广东惠州一中)函数y =sin ⎝ ⎛⎭⎪⎫π3-2x +sin2x 的最小正周期是( ) A.π2B .πC .2πD .4π [答案] B [解析] y =32cos2x -12sin2x +sin2x =sin ⎝⎛⎭⎪⎫2x +π3, ∴周期T =π.(理)函数f (x )=(3sin x -4cos x )·cos x 的最大值为( ) A .5 B.92 C.12 D.52[答案] C[解析] f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(·温州中学)已知向量a =(sin75°,-cos75°),b =(-cos15°,sin15°),则|a -b |的值为( )A .0B .1 C. 2 D .2 [答案] D[解析] ∵|a -b |2=(sin75°+cos15°)2+(-cos75°-sin15°)2=2+2sin75°cos15°+2cos75°sin15°=2+2sin90°=4,∴|a -b |=2.(理)(·鞍山一中)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎪⎫α-π4=( ) A.17 B .- 17 C.27 D .-27 [答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=35,∴tan α=34,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17.7.要使sin α-3cos α=4m -64-m有意义,则m 的取值范围是________. [答案] [-1,73][解析] ∵sin α-3cos α=2(sin αcos π3-sin π3cos α) =2sin(α-π3)∈[-2,2],∴-2≤4m -64-m≤2.由4m -64-m ≥-2得,-1≤m <4; 由4m -64-m ≤2得,m ≤73或m >4,∴-1≤m ≤73. 8.(·上海奉贤区调研)已知α,β∈(0,π2),且tan α·tan β<1,比较α+β与π2的大小,用“<”连接起来为________.[答案] α+β<π2[解析] ∵tan α·tan β<1,α,β∈⎝⎛⎭⎪⎫0,π2, ∴sin α·sin βcos α·cos β<1,∴sin α·sin β<cos α·cos β,∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2.1.(·潍坊月考)若sin(π6-α)=13,则cos(2π3+2α)的值为( )A.13 B .-13 C.79 D .-79 [答案] D [解析] cos(2π3+2α)=2cos 2(π3+α)-1 =2cos 2[π2-(π6-α)]-1=2sin 2(π6-α)-1=2×(13)2-1=-79.2.(文)(·河南许昌调研)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[答案] C[解析] ∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2. (理)(·杭州模拟)已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x -y )=( )A.2145B .-2145C .±2145D .±51428[答案] B[解析] 两式平方相加得:cos(x -y )=59,∵x 、y 为锐角,sin x -sin y <0,∴x <y , ∴sin(x -y )=-1-cos 2x -y =-2149,∴tan(x -y )=sin x -y cosx -y =-2145.3.(·温州月考)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于( )A .-34 B .- 14 C.34 D.14[答案] B[解析] a ·b =4sin ⎝ ⎛⎭⎪⎫α+π6+4cos α- 3 =23sin α+6cos α-3=43sin ⎝⎛⎭⎪⎫α+π3-3=0, ∴sin(α+π3)=14.∴sin(α+4π3)=-sin ⎝⎛⎭⎪⎫α+π3=-14,故选B.4.已知tan α、tan β是关于x 的一元二次方程x 2-3x +2=0的两实根,则sin α+βcos α-β=________.[答案] 1[解析] 因为sin α+βcos α-β=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β; ∵tan α,tan β为方程的两根,∴⎩⎪⎨⎪⎧tan α+tan β=3tan α·tan β=2,∴sin α+βcos α-β=31+2=1.5.(文)已知sin(2α-β)=35,sin β=-1213,且α∈(π2,π),β∈(-π2,0),则sin α=________.[答案] 3130130[解析] ∵π2<α<π,∴π<2α<2π. 又-π2<β<0,∴0<-β<π2,π<2α-β<5π2, 而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45. 又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β =45×513-35×(-1213)=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130. 又α∈(π2,π),∴sin α=3130130. (理)求值:2cos10°-sin20°cos20°=________.[答案]3[解析] 原式=2cos30°-20°-sin20°cos20°=2cos30°cos20°+2sin30°sin20°-sin20°cos20°=3cos20°+sin20°-sin20°cos20°= 3.6.(文)(·珠海模拟)已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值. [解析] ∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A sin B =-255×(-31010)-55×1010=22,又∵π2<A <π,π2<B <π, ∴π<A +B <2π,∴A +B =7π4.(理)(·北京延庆县模考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+sin ⎝ ⎛⎭⎪⎫2x -π6-2cos 2x .(1)求函数f (x )的值域及最小正周期; (2)求函数y =f (x )的单调增区间.[解析] (1)f (x )=32sin2x +12cos2x +32sin2x -12cos2x -(cos2x +1)=2⎝ ⎛⎭⎪⎫32sin2x -12cos2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π6-1. 由-1≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1得,-3≤2sin ⎝ ⎛⎭⎪⎫2x -π6-1≤1. 可知函数f (x )的值域为[-3,1]. 且函数f (x )的最小正周期为π.(2)由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)解得,k π-π6≤x ≤k π+π3(k ∈Z).所以y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z).7.(文)(·成都二诊)已知函数f (x )=2sin x cos(x +π6)-cos2x +m .(1)求函数f (x )的最小正周期; (2)当x ∈[-π4,π4]时,函数f (x )的最小值为-3,求实数m 的值. [解析] (1)∵f (x )=2sin x cos(x +π6)-cos2x +m=2sin x (32cos x -12sin x )-cos2x +m =3sin x cos x -sin 2x -cos2x +m =32sin2x -1-cos2x2-cos2x +m =32sin2x -12cos2x -12+m =sin(2x -π6)-12+m . ∴f (x )的最小正周期T =2π2=π.(2)∵-π4≤x ≤π4,∴-π2≤2x ≤π2,∴-2π3≤2x -π6≤π3. ∴-1≤sin(2x -π6)≤32. ∴ f (x )的最小值为-1-12+m .由已知,有-1-12+m =-3.∴m =-32.(理)(·晋中一模)已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2). (1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.[解析] (1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈(0,π2),∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43. (2)∵β∈(π4,π2),β-π4∈(0,π4), ∴cos(β-π4)=45, 于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425.又sin2(β-π4)=-cos2β,∴cos2β=-2425. 又2β∈(π2,π),∴sin2β=725.又cos 2α=1+cos2α2=45, ∴cos α=255,sin α=55(α∈(0,π4)).∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.1.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1 C. 3 D .不存在 [答案] B [解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ⎝ ⎛⎭⎪⎫π4-α, ∵π4-α,β∈⎝ ⎛⎭⎪⎫-π2,π2且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是单调增函数,∴β=π4-α,∴α+β=π4,∴tan(α+β)=tan π4=1. 2.(·浙江五校联考)在△ABC 中,已知tan A +B2=sin C ,给出以下四个论断:①tan Atan B=1; ②1<sin A +sin B ≤2; ③sin 2A +cos 2B =1; ④cos 2A +cos 2B =sin 2C . 其中正确的是( )A .①③B .②③C .①④D .②④ [答案] D[解析] 因为在三角形中A +B =π-C ,所以tan A +B2=tan π-C 2=cot C 2=cos C2sinC 2,而sin C =2sin C 2cos C2,∵tanA +B2=sin C ,∴cosC2sinC 2=2sin C 2cos C 2.因为0<C <π,∴cos C 2≠0,sin C 2>0,故sin 2C 2=12,∴sin C 2=22,∴C =π2,A +B =π2,∴sin A +sin B =sin A +cos A =2sin ⎝⎛⎭⎪⎫A +π4∈(1,2],排除A 、C ; cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故选D. 3.(·哈三中)已知tan ⎝⎛⎭⎪⎫α+π6=12,tan ⎝⎛⎭⎪⎫β-7π6=13,则tan(α+β)=________. [答案] 1[解析] tan(α+β)=tan(α+β-π) =tan[(α+π6)+(β-7π6)]=12+131-12×13=1.4.(·山师大附中模考)若tan(x +y )=35,tan(y -π3)=13,则tan(x +π3)的值是________.[答案]29[解析] tan(x +π3)=tan[(x +y )-(y -π3)] =tan x +y -tan y -π31+tanx +y ·tany -π3=35-131+35×13=29. 5.(·福建福州市)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cos B =b cos C . (1)求角B 的大小;(2)若|BA →-BC →|=2,求△ABC 的面积的最大值. [解析] (1)在△ABC 中,∵(2a -c )cos B =b cos C , 根据正弦定理有(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin(C +B ),即2sin A cos B =sin A . ∵sin A >0,∴cos B =12,又∵B ∈(0,π),∴B =π3.(2)∵|BA →-BC →|=2,∴|CA →|=2,即b =2.根据余弦定理b 2=a 2+c 2-2ac cos B ,有4=a 2+c 2-ac . ∵a 2+c 2≥2ac (当且仅当a =c 时取“=”号), ∴4=a 2+c 2-ac ≥2ac -ac =ac ,即ac ≤4,∴△ABC 的面积S =12ac sin B =34ac ≤3,即当a =b =c =2时,△ABC 的面积的最大值为 3.6.(·辽宁锦州)已知△ABC 中,|AC |=1,∠ABC =120°,∠BAC =θ,记f (θ)=AB →·BC →, (1)求f (θ)关于θ的表达式; (2)求f (θ)的值域. [解析] (1)由正弦定理有: |BC |sin θ=1sin120°=|AB |sin 60°-θ,∴|BC |=sin θsin120°,|AB |=sin 60°-θsin120°∴f (θ)=AB →·BC →=|AB →|·|BC →|cos(180°-∠ABC ) =23sin θ·sin(60°-θ) =23(32cos θ-12sin θ)sin θ =13sin(2θ+π6)-16 (0<θ<π3) (2)∵0<θ<π3,∴π6<2θ+π6<5π6, ∴12<sin(2θ+π6)≤1, ∴0<f (θ)≤16,即f (θ)的值域为(0,16].7.(·湖北黄冈)如图,平面四边形ABCD 中,AB =13,三角形ABC 的面积为S △ABC =25,cos ∠DAC =35,AB →·AC→=120.(1)求BC 的长; (2)cos ∠BAD 的值.[解析] (1)由S △ABC =25得, 12|AC →||AB →|·sin∠CAB =25 由AC →·AB →=120得,|AC →|·|AB →|·cos∠CAB =120,以上两式相除得, tan ∠CAB =512,∴sin ∠CAB =513,cos ∠CAB =1213, ∴|AC →||AB →|=130,又∵|AB →|=13,∴|AC →|=10, 在△ABC 中,由余弦定理得,|BC →|2=102+132-2×10×13×1213=29,∴|BC →|=29,即BC =29(2)∵cos ∠DAC =35,∴sin ∠DAC =45,∴cos ∠BAD =cos(∠BAC +∠CAD )=cos ∠BAC ·cos∠CAD -sin ∠BAC sin ∠CAD =1213×35-513×45=1665. 8.(·江西新余一中)已知函数f (x )=sin x2+2cos 2x4.(1)求函数f (x )的最小正周期;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若(2a -c )cos B =b cos C ,求f (A )的取值范围. [解析] (1)f (x )=sin x 2+⎝ ⎛⎭⎪⎫2cos 2x4-1+1=sin x 2+cos x 2+1=2sin ⎝ ⎛⎭⎪⎫x 2+π4+1 ∴f (x )的最小正周期为T =4π. (2)由(2a -c )cos B =b cos C 得, (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin(B +C )=sin A ,∵sin A ≠0,∴ocs B =12,∴B =π3,∴A +C =2π3,又∵f (A )=2sin ⎝ ⎛⎭⎪⎫A 2+π4+1,∴0<A <2π3,∴π4<A 2+π4<7π12,又∵sin π4<sin7π12,∴22<sin⎝⎛⎭⎪⎫A2+π4≤1,∴2<f(A)≤2+1.。

高一三角函数诱导公式课后各作业

高一三角函数诱导公式课后各作业

1.cos315sin(30)sin 225cos480+-++2.cos 225tan 240sin(60)tan(60)++-+-3.42sin()2sin 2sin333πππ-++ 4.已知:1tan 2α=,求 sin cos sin cos αααα+-的值5已知:,tan 2α=-求 2222sin cos sin sin cos 2cos αααααα+--的值6.证明函数 ①()s i n c o s f x x x = 为奇函数②()sin f x x = 为偶函数2.角α、β的终边关于y 轴对称,下列各式正确的是( ) A. sin sin αβ= B. cos cos αβ= C. tan tan αβ= D. sin sin αβ=-3.若角A 、B 、C 是ABC ∆的三个内角,则下则等式中一定成立的是( ) A. cos()cos A B C += B. sin()sin A B C +=- C. tan()tan A B C += D. sin()cos 22A B C+= 4.若cos()6m πα-=,则2sin()3πα-=( ) A. m - B. 2m - C. 2m D. m 5若1sin()44πα-=,则cos()4πα+=_____________. 6. 000cos(585)sin 495sin(570)-+-的值为__________. 7.化简: 000sin()sin(90)sin(540)sin(270)αααα-+---+--8.设函数()sin()cos()f x a x b x παπβ=+++,其中,,,a b αβ都是非零实数,且满足(2008)10f =,求(2009)f 的值.★★9.求证: 232sin()cos()1tan(9)12212sin ()tan()1ππθθπθπθπθ-+-++=-++-★★10.已知函数()sin(),3n f n n Z π=∈求(1)(2)(3)(2009)f f f f ++++ 的值2.与角α的终边相同的角的表示形式 。

实变函数-课后习题

实变函数-课后习题

第一章作业(一)答案:1. (30分)证明:(A ∪B)\C =(A\C)∪(B\C) 解:(A ∪B)\C =(A ∪B)∩C c =(A ∩C c )∪(B ∩C c )=(A\C)∪(B\C) 注意:A\B =A ∩B c ;(A ∪B)∩C c =(A ∩C c )∪(B ∩C c )4. (40分)设A 2n−1=(0,1n ),A 2n =(0,n),n =1,2,….,,求出集列{A n }的上限集和下限集 解:∵A 2n−1→ϕ, A 2n →(0,∞)∴lim n→∞A n =⋂⋃A m ∞m=n∞n=1=⋂(0,∞)∞n=1=(0,∞)limn→∞A n=⋃⋂A m ∞m=n ∞n=1=⋃ϕ∞n=1= ϕ5. (30分)证明:证明:11111lim ,,,,,lim ,,,lim lim lim n m m m n mn n m nn m nn m nm m m nn n m nm nm n n m n n n m nn m nx A n m n x A x A A A A x A n x A m n x A x A A A A A ∞∞∞∞∞→∞→∞=====∞∞∞→∞===∞∞∞∞→∞→∞====∀∈∃∀≥∈∈⊂⊂∀∈∃∈∀≥∈∈⊂=使得对有从而即另一方面,对,,使得因此,对从而即,从而有实变函数复习范围1.设1[,2(1)],1,2,n n A n n=+-=,则( )(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1](C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞=奇数:A n ⟶[1n ,1]⟶(0,1];偶数:A n ⟶[1n ,3]⟶(0,3]limn ⟶∞A n=⋃.∞n⟶1⋂A m ∞m=n=⋃(0,1]∞n⟶1=(0,1]2、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( )A 、(-1, 1)B 、(-1, 0)C 、[0, 1]D 、[-1, 1]A 1=0,A 2=[−12,12],⋯,A i ⟶(−1,1)3、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( )A 、(0, 1)B 、[0, 1]C 、(0, 1]D 、(0, +∞)A 1=[0,2],A 2=[0,32],⋯,A i ⟶[0,1]4、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( )A 、[1, 2]B 、(1, 2)C 、 (0, 3)D 、(1, 2]A 1=(0,3),A 2=(12,52),⋯,A i ⟶(1,2]5、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( )A 、(-1, 1)B 、[0, 1]C 、φD 、{0} A 1=(1,52),A 2=(2,72),…无交集6、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( )A 、(-1, 1)B 、[0, 1]C 、ΦD 、{0}A1=(−1,1),A2=(−12,12),…,Ai =(−∞,∞)7、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1) A 2n−1⟶[0,2),A 2n ⟶[0,1],limn ⟶∞A n=⋃.∞n⟶1⋂A m ∞m=n=⋃[0,1]∞n⟶1=[0,1]8、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1]A 2n−1⟶[0,2),A 2n ⟶[0,1],limn→∞A n =⋂.∞n⟶1⋃A m ∞m=n=⋂[0,2)∞n⟶1=[0,2)9、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、Φ B、[0, n] C 、R D 、(0, ∞)lim n→∞A n =⋃⋂A m ∞m=n ∞n=1=⋃(0,n )∞n=1= (0, )10、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0,n1) C 、{0} D 、Φ ∴lim n→∞A n =⋂⋃A m ∞m=n∞n=1=⋂(0,1n)∞n=1=Φ11、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0,n1) C 、(0, n) D 、(0, ∞) ∵A 2n−1→ϕ, A 2n →(0,∞)∴lim n→∞A n =⋂⋃A m ∞m=n∞n=1=⋂(0,∞)∞n=1=(0,∞)limn→∞A n=⋃⋂A m ∞m=n ∞n=1=⋃ϕ∞n=1= ϕ第二次作业答案13.解:令φ:X ⟶Y ,即φ:(−1,1) ⟶(−π2,π2) 5分 ψ:Y ⟶Z,即ψ: (−π2,π2) ⟶(−∞,+∞) 5分 易知φ为y =π2x ,ψ为z =tan (y) 20分 从而ψ[φ(x )]=tan(π2x) 10∞15. 对任意n ,设A n 是n 次有理数多项式的全体组成的集合,由于多项式由系数确定,除首项系数不为0外,其他系数可取任何有理数. (10分) 因此,则A n ={a 0x^n+a 1x^(n −1)+⋯+ a n }~Q 0×Q ×⋯×Q ,其中Q 0= Q -{0}和Q 都是可数集,从而A n 是可数集。

复变函数课后部分习题解答

复变函数课后部分习题解答

求下列各式的值。

(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i求下列式子的值(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=xy =1x>0,y>0 ∴θ属于第一象限角∴θ=4π ∴1+i=2(cos 4π+isin 4π) ∴(1+i )6=(2)6(cos46π+isin 46π) =8(0-i )=-8i求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一(4)求(1-i)31的值。

解:(1-i)31 =[2(cos-4∏+isin-4∏)]31 =62[cos(12)18(-k ∏)+isin(12)18(-k ∏)] (k=0,1,2)求方程3z+8=0的所有根。

解:所求方程的根就是w=38-因为-8=8(cosπ+isinπ)所以38-= ρ [cos(π+2kπ)/3+isin(π+2kπ)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)x-∞∈,(∞所以,不等式所确定的区域D为:不包括实轴的上半平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、写两个函数,分别求两个整数的最大公约数和最小公倍数#include <stdio.h>void main(){ int common_divisior(int x,int y);int common_multiple(int x,int y);int a,b,max_divisor,max_multiple;scanf("%d,%d",&a,&b);max_divisor=common_divisior(a,b);max_multiple=common_multiple(a,b);printf("max_divisor=%d,max_multiple=%d\n",max_divisor,max_multiple); }int common_divisior(int x,int y){int m,max,i;if(x>y)m=x;elsem=y;for(i=1;i<=m;i++){if((x%i==0)&&(y%i==0))max=i;}return max;}int common_multiple(int x,int y){int m,max,i;if(x>y)m=x;elsem=y;for(i=1;i<=m;i++){if((x%i==0)&&(y%i==0))max=i;}max=x*y/max;return max;}2、写一个判断素数的函数,在主函数输入一个整数,输出是否素数的信息。

#include<stdio.h>void main(){int primer(int x);int a,b;scanf("%d",&a);b=primer(a);if(b==1)printf("%d is a primer!\n",a);elseprintf("%d is not a primer!\n",a);}int primer(int x){int z=1,i;for(i=2;i<x&&z==1;i++)if(x%i==0)z=0;return z;}3、写一个函数,使一个3*3矩阵行列互换。

#include <stdio.h>#define N 3int convert(int array[N][N]){int i,j,t;for(i=0;i<N;i++)for(j=1+i;j<N;j++){t=array[i][j];array[i][j]=array[j][i];array[j][i]=t;}}void main(){int i,j;int array[N][N];printf("请输入矩阵中各元素的值:\n");for(i=0;i<N;i++)for(j=0;j<N;j++)scanf("%d",&array[i][j]);printf("矩阵转置前:\n");for(i=0;i<N;i++){for(j=0;j<N;j++)printf("%5d",array[i][j]);printf("\n");}convert(array);printf("矩阵转置后:\n");for(i=0;i<N;i++){for(j=0;j<N;j++)printf("%5d",array[i][j]);printf("\n");}}4、写一个函数,使输入的一个字符串按反序存放。

#include <stdio.h>#include <string.h>int inverse(char str[]){char t;int i,j;for(i=0,j=strlen(str);i<j;i++,j--){t=str[i];str[i]=str[j-1];str[j-1]=t;}}void main(){char str[20]={0};printf("请输入一个字符串:\n");scanf("%s",str);printf("转换前字符串为:\n%s\n",str);inverse(str);printf("转换后字符串为:\n%s\n",str);}5、写一个函数,将两个字符串连接#include<stdio.h>#include<string.h>void main(){void lianjie(char c[100],char d[100]);char a[100],b[100];printf("请输入第一组\n");gets(a);printf("请输入第二组\n");gets(b);lianjie(a,b);}void lianjie(char c[100],char d[100]){printf("两组进行连接\n%s\n",strcat(c,d));}6、写一个函数,将一个字符串中的元音字母复制到另一字符串,然后输出#include<stdio.h>void main(){void yuanyin(char c[100],char d[100]);char a[100],b[100];printf("请输入字符串\n");gets(a);yuanyin(a,b);printf("里面的元音字母有%s\n",b);}void yuanyin(char c[100],char d[100]){int i=0,j=0;while(c[i]!='\0'){if(c[i]=='a'||c[i]=='A'||c[i]=='e'||c[i]=='E'||c[i]=='i'||c[i]=='I'||c[i]=='o'||c[i]=='O'||c[i]=='u'||c[i]== 'U'){d[j]=c[i];j++;}i++;}d[j]='\0';}7、写一个函数,由实参传来一个字符串,统计此字符串中字母、数字、空格和其他字符的个数#include<stdio.h>int o,z,w,x;void main(){void statistic(char b[100]);char a[100];printf("请输入字符串\n");gets(a);printf("您输入的字符串为\n");puts(a);statistic(a);printf("字母%d,数字%d,空格%d,其它%d\n",z,x,w,o);}void statistic(char b[100]){int i=0;o=z=w=x=0;for(i=0;b[i]!='\0';i++){if(b[i]>='a'&&b[i]<='z'||b[i]>='A'&&b[i]<='Z')z++;else if(b[i]>'0'&&b[i]<'9')x++;else if(b[i]==' ')w++;elseo++;}}8、写一个函数,输入一个4位数字,要求输出这4个数字字符,但每个数字间空一格。

#include <stdio.h>int indiv,ten,hundred,thousand;void main(){int num;void out(int number);scanf("num=%d",&num);out(num);}void out(int number){indiv=number%10;ten=(number/10)%10;hundred=(number/100)%10;thousand=number/1000;printf("%d%2d%2d%2d\n",thousand,hundred,ten,indiv);}9、写一个函数,输入一行字符,将此字符串中最长的单词输出。

#include <stdio.h>#include <stdlib.h>void main(void){void fun(char str[],char word[]);char str[80] = {0},word[20] = {0};fgets(str,80,stdin);// scanf("%s",str); scanf只能读1个单词,不能读1行单词printf("%s\n",str);fun(str,word);printf("%s\n",word);}void fun(char str[], char word[]){int i,j = 0,w = 0,k,th,t[10],length[10],len = 0;for (i = 0; str[i] != '\0'; i++){if (str[i] == ' ') w = 0;//该循环标记各单词的首字母位置else if(w == 0){t[j] = i;//并使各单词首字母位置与其是第几个单词对应j ++;w = 1;}}j = 0;for (i = 0; str[i] !=0; i++){len ++;if (str[i]==' ') //如果有多个空格不能仅这样处理{length[j] = len-1;j++;len = 0;}}k = length[0];th = 0;for (i =0; length[i] !=0; i++)if (k < length[i]){k = length[i];th = i;}for (j = t[th],i = 0;str[j] !=' ';j++){word[i] = str[j];i++;}word[i] = '\0';}方法二:#include <stdio.h>#include <string.h>#define OUT 0#define IN 1int alpha(char c){if(c>='a'&&c<='z'||c>='A'&&c<='Z')return 1;elsereturn 0;}void longest(char str[]){int pointer,state,len,i,tmppoint,length,place;pointer=state=len=tmppoint=length=place=0;state=OUT;for(i=0;i<=strlen(str);i++) //注意这里的i的判断语句只能用i<=strlen(str),而不能用str[i]!='\0'{if(!alpha(str[i])) //先判断字符类型,如果不是字母{if(len>length) //看得到的单词长度是否大于先前的最大长度,如果是,则{length=len; //将此单词长度赋给最大长度lengthplace=tmppoint; //将最长单词起始地址设为tmppoint值}state=OUT; //不是字母,设状态为单词外len=0; //已在单词外,设单词长度为0}else //是字母{if(state==OUT) //如果最近一个状态为单词外,也即此为单词的第一个字母tmppoint=pointer; //将此地址设为单词起始地址len++; //单词长度加1state=IN; //设状态为单词内}pointer++; //不管是不是字母,指针,也即位置向后移动一位}for(i=0;i<length;i++)str[i]=str[i+place]; //将最长单词的起始处设为字符串的起始处str[i]='\0'; //最长单词结束后添加一个字符串结束标志}main(){char str[100];printf("请输入一个字符串:\n");scanf("%[^\n]",str);longest(str);printf("输入字符串中最长的单词为:%s.\n",str);}9、写一个函数,用“起泡法”对输入的10个字符按由小到大的顺序排列。

相关文档
最新文档