高中数学专题---零点个数问题

合集下载

高中数学考点12 零点定理(讲解)(解析版)知识点解析

高中数学考点12 零点定理(讲解)(解析版)知识点解析

考点12:零点定理【思维导图】【常见考法】考点一:求零点1.若幂函数()f x x α=的图象过点(,则函数()()3g x f x =-的零点是。

【答案】9【解析】∵幂函数()f x x α=的图象过点,∴2α=,解得1=2α,∴()12f x x =∴()123g x x =-由()1230g x x =-=,得9x =.2.函数()234f x x x =+-的零点是____________.【答案】1,4-【解析】令f (x )=0,即x 2+3x-4=0,解得:x=-4,x=1.3.若函数()2,01,0x e x f x x x ⎧≤=⎨->⎩,则函数()1y f x =-的零点是___________.【答案】0【解析】要求函数()1y f x =-的零点,则令()10y f x =-=,即()1f x =,又因为:()2,01,0x e x f x x x ⎧≤=⎨->⎩,①当0x ≤时,()xf x e =,1x e =,解得0x =.②当0x >时,()21f x x =-,211x -=,解得x =,所以x =.综上所以,函数()1y f x =-的零点是0.故答案为:04.函数y =11x-的图象与函数y =2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于.【答案】8【解析】函数y 1=11x-与y 2=2sinπx 的图象有公共的对称中心(1,0),作出两个函数的图象,由图象可知,两个函数在[-2,4上共有8个交点,两两关于点(1,0)对称设对称的两个点的横坐标分别为m 、n 则m+n=2×1=2,故所求的横坐标之和为8,故答案为8.考点二:零点区间1.函数()42xxf x -=-的零点所在区间是()A .(1,0)-B .1(0,4C .11(,42D .1(,1)2【答案】D【解析】易知函数()f x 为减函数,又121111(402424f -=-=->,11(1)042f =-<,根据零点存在性原理,可知函数()42xx f x -=-的零点所在的区间是1(,1)2,故选D.2.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f (0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2,故选B .3.函数()ln 3f x x x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【解析】∵f (x )=ln x +x -3在(0,+∞)上是增函数f (1)=-2<0,f (2)=ln2-1<0,f (3)=ln3>0∴f (2)•f (3)<0,根据零点存在性定理,可得函数f (x )=ln x +x -3的零点所在区间为(2,3)故选:C .4.已知()f x 是定义在()0,∞+上的单调函数,满足()()2ln 21xf f x ex e --+=-,则函数()f x 的零点所在区间为()A .210,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .()1,e 【答案】C【解析】设()2ln 2xf x e x t --+=,即()2ln 2xf x e x t =+-+,()1f t e =-,因为()f x 是定义在()0,∞+上的单调函数,所以由解析式可知,()f x 在()0,∞+上单调递增.而()12f e t =-+,()1f t e =-,故1t =,即()2ln 1xf x e x =+-.因为()110f e =->,11112ln 13ee f e e e e ⎛⎫=+-=- ⎪⎝⎭,由于11ln ln 3ln 30ee e-=-<,即有13e e <,所以1130e f e e ⎛⎫=-< ⎪⎝⎭.故()110f f e ⎛⎫< ⎪⎝⎭,即()f x 的零点所在区间为1,1e ⎛⎫ ⎪⎝⎭.故选:C .考点三:零点个数1.函数f(x)=|x-2|-lnx 在定义域内零点的个数为。

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结

二次函数零点问题题类型方法总结二次函数是高中数学中的重要内容,求其零点是常见的题目类型之一。

本文将对二次函数零点问题的题型和解题方法进行总结。

题型总结在求解二次函数零点的过程中,常见的题型可以归纳为以下几种:1. 一元二次方程的解法:给定一个一元二次方程,要求求解方程的解。

2. 零点的个数:给定一个二次函数,要求计算其零点的个数。

3. 零点的坐标:给定一个二次函数,要求计算其零点的坐标。

4. 求参数:已知一个二次函数的零点和另外一个点的坐标,要求求解该二次函数的参数。

解题方法总结对于不同的题型,可以采用不同的解题方法来求解二次函数零点问题。

以下是常见的解题方法总结:1. 完全平方公式:对于一元二次方程,可以使用完全平方公式进行求解,即 $$x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}$$。

通过代入方程中的系数,即可得到方程的解。

2. 判别式法:通过计算方程的判别式来判断二次函数的零点个数。

若判别式 $$\Delta=b^2-4ac$$ 大于0,则方程有两个不相等的实数根;若判别式等于0,则方程有两个相等的实数根;若判别式小于0,则方程没有实数根。

3. 坐标法:对于求零点坐标的问题,可以通过将二次函数表示为顶点形式,然后根据顶点坐标和其他给定的坐标求解未知参数,进而得到零点的坐标。

4. 求参数法:对于求参数的问题,可以利用已知的零点坐标和另一点的坐标,构建方程组,然后通过解方程组求解未知参数。

总结通过以上的总结,我们可以了解到二次函数零点问题的常见题型和解题方法。

在实际解题中,根据题目要求选择合适的方法,并根据具体情况灵活运用,以获得正确的解答。

希望本文对您理解和解决二次函数零点问题有所帮助。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

高中数学——破解嵌套函数的零点问题

高中数学——破解嵌套函数的零点问题

破解嵌套函数的零点问题函数的零点问题是高考的热点,常与函数的性质等相关问题交汇.对于嵌套函数的零点问题,通常借助函数图象、性质求解即通过换元将复合函数拆解为两个相对简单的函数。

.1.嵌套函数形式:形如f g x2.解决嵌套函数零点个数的一般步骤(1)换元解套,转化为t=g(x)与y=f(t)的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.注:抓住两点:(1)转化换元;(2)充分利用函数的图象与性质.一、嵌套函数零点个数的判断【例1】已知f(x)=|lg x|,x>0,2|x|,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是()A.3B.5C.7D.8跟踪训练1.已知函数f(x)=-x+1,x≤1,ln(x-1),x>1,则函数g(x)=f(f(x))-2的零点个数为( )A.3B.4C.2D.1二、求嵌套函数零点中的参数【例1】函数f(x)=ln(-x-1),x<-1,2x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围是.跟踪训练1.已知函数f(x)=x2-2x+4,x≤0,ln x,x>0,若函数g(x)=[f(x)]2+2f(x)+m(m∈R)有三个零点,则m的取值范围为.课后跟踪练习1.已知函数f x =2x 2-x +a a ∈R ,若方程f x =0有实根,则集合x f f x =0 的元素个数可能是()A.1或3B.2或3C.2或4D.3或42.函数f x =x 2-1,x ≤1ln x ,x >1,则函数y =f (f (x ))-1的零点个数为()A.2B.3C.4D.53.(多选)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为()A.1B.2e 3C.1e 2D.1e4.已知函数f (x )=(ax +ln x )(x -ln x )-x 2有四个不同的零点x 1,x 2,x 3,x 4,且四个零点全部大于1,则1-ln x 1x 11-ln x 2x 21-ln x 3x 31-ln x 4x 4的值为.5.已知函数f x =2x +2,x ≤0log 4x ,x >0,则函数y =f f x 的所有零点之和为.6.已知函数f (x )=−x ,x ≤0,−x 2+2x ,x >0,若方程f (x ) 2+bf (x )+18=0有六个不等实根,则实数b 的取值范围是 .破解嵌套函数的零点问题函数的零点问题是高考的热点,常与函数的性质等相关问题交汇.对于嵌套函数的零点问题,通常借助函数图象、性质求解即通过换元将复合函数拆解为两个相对简单的函数。

浅谈高中数学零点问题

浅谈高中数学零点问题

浅谈⾼中数学零点问题 函数的零点是考纲上要求的基本内容,也是⾼中新课程标准新增内容之⼀,是函数的重要性质。

接下来店铺为你整理了浅谈⾼中数学零点问题,⼀起来看看吧。

浅谈⾼中数学零点问题篇⼀ ⼀、求函数的零点 例1求函数y=x2-(x<0)2x-1(x≥0)的零点。

解:令x2-1=0(x<0),解得x=1, 2x-1=0(x≥0),解得x=。

所以原函数的零点为和-1和。

点评:求函数f(x)的零点,转化为⽅程f(x)=0,通过因式分解把⽅程转化为⼀(⼆)次⽅程求解。

⼆、判断函数零点个数 例2求f(x)=x-的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f(x)=0即x-=0, 解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为⽅程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数 例3若⽅程ax-x-a=0有两个解,求a的取值范围。

析:⽅程ax-x-a=0转化为ax=x+a。

由题知,⽅程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所⽰。

(1)0此种情况不符合题意。

(2)a>1。

直线y=x+a 在y轴上的截距⼤于1时,函数y=ax与函数y=a+x 有两个不同的交点。

所以a<0与0 点评:采⽤分类讨论与⽤数形结合的思想。

四、⽤⼆分法近似求解零点 例4求函数f(x)=x3+x2-2x-2的⼀个正数零点(精确到0.1)。

解:(1)第⼀步确定零点所在的⼤致区间(a,b),可利⽤函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定⼀个长度为1的区间。

(2)列表如下: 零点所在区间中点函数值区间长度 (1,2)f(1.5) >0 1 (1,1.5) f(1.25) <00.5 (1.25,1.5) f(1.375) <00.25 (1.375,1.5) f(1.438)>0 0.125 (1.375,1.438) f(1.4065)>0 0.0625 可知区间(1.375,1.438)长度⼩于0.1,故可在(1.375,1.438)内取1.4065作为函数f(x)正数的零点的近似值。

二次函数零点问题梳理

二次函数零点问题梳理

二次函数零点问题梳理二次函数是高中数学中的重要内容之一,其中零点问题是常见的考点之一。

为了更好地理解和掌握二次函数零点问题,本文将对二次函数、零点以及相关的概念、性质和解题方法进行梳理和总结。

1. 二次函数的定义和性质:二次函数是指形如f(x) = ax² + bx + c的函数,其中a、b、c是实数且a ≠ 0。

二次函数的图象是抛物线,其开口方向由a的正负决定。

若a > 0,则抛物线开口向上;若a < 0,则抛物线开口向下。

2. 二次函数的零点:二次函数的零点就是函数的解,即满足f(x) = 0的x值。

零点也可以称为函数的根或者方程的解。

3. 二次函数的零点的性质:(1)判别式:二次函数的判别式Δ = b² - 4ac。

判别式的值可以判断二次函数的零点情况:a. 当Δ > 0时,二次函数有两个不相等的实根;b. 当Δ = 0时,二次函数有两个相等的实根,也即有一个重根;c. 当Δ < 0时,二次函数无实根,但有两个共轭复根。

(2)零点与二次函数图象的关系:a. 若零点为x1和x2,且x1 < x2,则函数图象与x轴相交于x1和x2两点;b. 若零点为x1 = x2,则函数图象与x轴相切于x1点;c. 若无实根,则函数图象与x轴不相交。

4. 求解二次函数零点的方法:(1)因式分解法:将二次函数进行因式分解,然后令各个因式等于零,解出x的值。

(2)配方法:对于一元二次方程ax² + bx + c = 0,若a ≠ 0,可将其变形为完全平方式(ax + b/2a)² + (c - b²/4a) = 0,然后移项并配方得到(x + m)² = n,再通过开平方将方程解出。

(3)求根公式:对于一元二次方程ax² + bx + c = 0,其根的公式为: x = [-b ± √(b² - 4ac)] / 2a。

高考数学零点专题()

高考数学零点专题()

高考数学零点问题专项训练一、零点的区间与个数问问题1.设()x f 是定义在区间[]b a ,上的函数,且()()0<b f a f ,则方程()0=x f 在区间[]b a ,上A. 至少有一实根B. 至多有一实根C. 没有实根D. 必有唯一实根2. 已知函数x xx f 2log 6)(-=,下列区间包含零点的区间是 ( )A. (0,1)B. (1,2)C. (2,3)D. (3,4) 3. 方程x x -=22的根所在区间是( ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1)4. 使得函数221ln )(-+=x x x f 有零点的一个区间是( )A (0,1)B (1,2)C (2,3)D (3,4)5. 函数12log )(2-+=x x x f 的零点必落在区间( )A.⎪⎭⎫⎝⎛41,81B.⎪⎭⎫⎝⎛21,41C.⎪⎭⎫⎝⎛1,21D.(1,2)6. 函数()x x f x 32+=的零点所在的一个区间是( )A .()1,2--B .()0,1-C .()1,0D .()2,1 7.函数()2-+=x e x f x 的零点所在的一个区间是( )A .()1,2--B .()0,1-C .()1,0D .()2,1 8.下列函数中在[]2,1上有零点的是( ) A.543)(2+-=x x x f B.55)(3+-=x x x f C.63ln )(+-=x x x f D.63)(-+=x e x f x 9. 方程0lg =-x x 根的个数为( )A .无穷多B .3C .1D .0 10.函数132)(3+-=x x x f 零点的个数为 ( )A .1B .2C .3D .4 11. 直线3y =与函数26y x x =-的图象的交点个数为()A .4个B .3个C .2个D .1个12.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是A .4B .3C .2D .113.函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( )A .0B .1C .2D .314. 若偶函数)(x f y =满足)()2(x f x f =+,[]x x f x =∈)(1,0时,当,则)(x f y =的图像与x y 4log =的图像的交点个数是A .3B .4C .6D .8 15. 已知)(x f 是定义在R 上的奇函数,当x x x f x 3)(02-=≥时,,则函数 3)()(+-=x x f x g 的零点的集合为A. {1,3}B.{-3,-1,1,3}C.{2-7,1,3}D.{-2-7,1,3} 16. 已知)(x f 是定义在R 上的偶函数,当2)(10x x f x =≤≤时,,则函数 x x f y 5log )(-=的零点的个数为A .4B .5C .8D .10 17. 已知)32(22tan )(πππ≤≤---=x x x x f 的所有零点之和等于 A .π B .π2 C .π3 D .π418.已知函数)0()(2>++=a c bx ax x f 的零点为)(,2121x x x x <,)(x f 的最小值[)210,x x y ∈,则函数))((x f f y =的零点个数是A .2或3B .3或4C .3D .419. 已知函数2432)(,2cos )(--==x x g x x f π,[]6,2-∈x ,则函数)()()(x g x f x h -=的所有零点之和是A .6B .8C .10D .1220 已知函数)00()(2<>++=c a c bx ax x f ,零点为)(,2121x x x x <,)(x f 的最小值20-x y ≤,则函数))((x f f y =的零点个数是A .2或3B .3或4C .2或4D .4 二、与零点有关的比较大小、取值范围问题1. 设函数3ln )(,2)(2-+=-+=x x x g x e x f x ,若实数0)()(,==b g a f b a 满足,则2. 设函数xx x g x e x f x 1-ln )(,44)(1-=-+=,若实数0)()(,==b g a f b a 满足,则 3. 已知函数x x x f )31()1(log )(3--=有两个零点21,x x ,则 4. 已知函数22)(kx x x x f -+=有四个不同的零点,则实数k 的取值范围是_______5. 已知函数()2,0233)(在--+=a x x x f 上恰有两个零点,则实数a 的取值范围是_____ A .()2,0 B .()4,0 C .()6,0 D .()4,26. 已知方程)0(022>=+--a x a x 有两个不相等的实数根,则实数a 的取值范围是_____7. 若存在[])(,1416)(,22*∈--+--=∈N a a m x x x x f R m 在使函数上有三个不同的零点,则满足条件的a 的最小值是_______8. 已知)(x f 是定义在R 上且以4为周期的奇函数,当)ln()(202b x x x f x +-=<<时,,若函数[]2,2-)(在区间x f 上的零点个数为5,则实数b 的取值范围是_______9. 已知函数()⎪⎩⎪⎨⎧≤<≤<--+=)()(10,01,311x x x x x f ,且(]1,1-)()(在m mx x f x g --=内有且仅有两个不同的零点,则实数m 的取值范围是_______10. 已知已知)(x f 是定义在R 上且以3为周期的函数,[)时当3,0∈x 212)(2+-=x x x f ,若函数[]4,3-)(在区间a x f y -=上有10个不等的零点,则实数a 的取值范围是_______ 11. 函数已知)(x f 是定义在R 上的偶函数,且满足)2()(+=x f x f ,[)时当3,0∈x ,x x f 2)(=,在区间[]2,2-上方程0)(=-+x f a ax 恰有三个不相等的实数根,则实数a 的取值范围是_______12.已知实数0>a ,()⎪⎩⎪⎨⎧≤->=)1(2)1(log 221x ax x x x x f ,若方程243)(a x f -=有且仅有两个不相等实根,且较大实根大于2,,则实数a 的取值范围是_______13. 已知函数()⎪⎩⎪⎨⎧<≥+-=)0()0(232x x x x x x f ,若函数a x x f x g --=)()(有四个不同的零点,则实数a的取值范围是_______14. 已知函数()⎩⎨⎧>-≤≤-+-=)0)(2(2)02(11x x f x x x f ,若方程a x x f +=)(在区间[]4,2-内有3个不等实根,则实数a 的取值范围是_______15. 对于任意实数⎩⎨⎧<-≥-=⊗⊗)1()1(,b a a b a b b a b a ”:定义运算“设)4()1()(2x x x f -⊗-=若函数k x f y +=)(的图像与x 轴恰有三个不同的交点,则k 的取值范围是_______ 16.设)()(x g x f 与是定义在同一区间[]b a ,上的两个函数,若函数)()(x g x f y -=在[]b a x ,∈上有两个不同的零点,则称)()(x g x f 与在[]b a ,是“关联函数”,[]b a ,称为“关联区间”,若m x x g x x x f +=+-=2)(43)(2与在[]3,0上是“关联函数”,则m 的取值范围是_______ 17. 已知R x ∈,符号[]x 表示不超过x 的最大整数,若函数[])0()(>-=x a xx x f 有三个不同的零点,则实数a 的取值范围是_______18. 已知函数()⎪⎩⎪⎨⎧<<+-<<-+=)31(1)2()11)(1(log 21x x f x x x f 若关于x 的方程0)()(2=-x af x f 有四个不同的实数解,则实数a 的取值范围是_______19. 设函数a x x x f ++=2)(2,若方程0))((=x f f 有且只有两个不相同的实根,则实数a 的取值范围是_______20. 已知函数()⎪⎩⎪⎨⎧≤+>+=)0(9)0(13x x x x x x f ,若关于x 的方程a x x f =+)2(2有六个不同的实数解,则实数a 的取值范围是_______21 已知)(x f 为偶函数,)0(12)(0>--=≥a a x a x f x 时,当,若函数))((x f f y =恰有10个零点,则实数a 的取值范围是_______A .⎪⎭⎫ ⎝⎛21,0 B .⎪⎭⎫ ⎝⎛23,21 C .⎪⎭⎫⎢⎣⎡210, D .⎪⎭⎫⎢⎣⎡∞+,21。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)1) 对于函数 y=f(x),将方程 f(x)=0 的实数根称为函数y=f(x) 的零点。

2) 方程 f(x)=0 有实根⇔函数 y=f(x) 的图像与 x 轴有交点⇔函数 y=f(x) 有零点。

若函数 f(x) 在区间 [a,b] 上的图像是连续的曲线,则 f(a)f(b)<0 是 f(x) 在区间 (a,b) 内有零点的充分不必要条件。

2、二分法:对于在区间 [a,b] 上连续不断且 f(a)f(b)<0 的函数 y=f(x),通过不断地把函数 y=f(x) 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:一)函数零点的存在性定理指出:“如果函数 y=f(x) 在区间 [a,b] 上的图象是连续不断的一条曲线,并且 f(a)f(b)<0,那么,函数 y=f(x) 在区间 (a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0,这个 c 也是方程 f(x)=0 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件。

例如,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 ( )。

分析:显然函数 f(x)=ln(x+1)-2 在区间 [1,2] 上是连续函数,且 f(1)0,所以由根的存在性定理可知,函数 f(x)=ln(x+1)-2 的零点所在的大致区间是 (1,2),选 B。

二)求解有关函数零点的个数(或方程根的个数)问题。

函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。

对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。

高考数学专题函数零点的个数问题

高考数学专题函数零点的个数问题

第 10 炼函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数y f x x D ,我们把方程f x 0的实数根x称为函数y f x x D 的零点2、函数零点存在性定理:设函数f x 在闭区间a,b 上连续,且f a f b 0 ,那么在开区间a,b 内至少有函数f x 的一个零点,即至少有一点x0a,b ,使得f x0 。

(1)f x 在a,b 上连续是使用零点存在性定理判定零点的前提( 2)零点存在性定理中的几个“不一定” (假设f x 连续)① 若f a f b 0 ,则f x 的零点不一定只有一个,可以有多个② 若f a f b 0 ,那么f x 在a,b 不一定有零点③ 若f x 在a,b 有零点,则 f a f b 不一定必须异号3、若f x 在a,b 上是单调函数且连续,则f a f b 0 f x 在a,b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为y f x ,则f x 的零点即为满足方程f x 0的根,若f x g x h x , 则方程可转变为g x h x ,即方程的根在坐标系中为g x ,h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程1lnx x 0 ,无法直接求出根,构造函数f x lnx x ,由f 1 0, f 0 即可判定21其零点必在1,1 中22、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

高中数学曲线与直线交点个数(或者零点个数)问题

高中数学曲线与直线交点个数(或者零点个数)问题

曲线与直线交点个数(或者零点个数)问题有关曲线与直线相交的交点个数问题,往往转化为直线y=k 和函数f(x)交点个数问题,这个时候一般要利用作图法,作出f (x )图像,从而找出交点个数与k 的范围。

较难的题目中,f(x)往往要利用分离变量法进行构造出来。

例1 函数()[]()3sin sin 0,2f x x x x π=+∈的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围是解析:作出f(x)图像即可。

()sin sin 04sin 03sin sin 22sin 2x x x x x f x x x x x x ππππππ+≤≤≤≤⎧⎧==⎨⎨-≤≤≤≤⎩⎩,图像如下因此要想有两个交点,必有{}|24k k -<<≠,且k 0例2 已知函数()()sin f x A wx ϕ=+,其中0w > 当2,6A w πϕ===-时,()()g x f x m =-在0,2π⎡⎤⎢⎥⎣⎦上有两个零点,求m 取值范围 解析:易知()2sin 26g x x m π⎛⎫=-- ⎪⎝⎭因此我们只要画出2sin 26y x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的图像,结合图像去找m 范围即可。

当0,2x π⎡⎤∈⎢⎥⎣⎦52,666x πππ⎡⎤⇒-∈-⎢⎥⎣⎦ []1sin 2,12sin 21,2626x x ππ⎛⎫⎡⎤⎛⎫⇒-∈-⇒-∈- ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭2sin 26y x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦图像如下因此从图像上可知有两个零点,则[1,2)m ∈ 例3 若方程在上有两个不同的实数解,则a 的取值范围为 解析:方程可化为, 可化为, 作出函数在的图象,.由图可知,当且,即且时,函数图象有两个不同的交点,故答案为:且 例4 (2019安徽二模)已知函数()ln f x x x =+,直线:21l y kx =-试确定曲线y=f(x)与直线l 的交点个数,并说明理由解析:依然属于曲线与直线交点个数问题即ln 21x x kx +=-有几个解我们的方向是要把问题转化为直线y=k 与一个新函数的交点问题。

高中数学-函数的零点问题及例题分析

高中数学-函数的零点问题及例题分析

高中数学-函数的零点问题及例题分析1. 引言函数是数学中一个非常重要的概念,它在数学和实际问题中发挥着重要的作用。

函数的零点问题是函数中一个常见且重要的问题,它与方程的解有着紧密的联系。

本文将介绍函数的零点问题,并通过一些例题分析来加深理解。

2. 函数的定义与性质回顾函数是一个将一个集合的元素映射到另一个集合的元素的规则。

函数通常用符号表示,如$f(x)$,其中$x$是自变量,$f(x)$是对应的函数值。

函数的零点指的是函数取零值的点,即满足$f(x)=0$的$x$值。

函数的零点问题与方程的解问题紧密相关。

对于一元函数,函数的零点就是方程$f(x)=0$的解。

因此,解方程可以转化为求函数的零点。

函数的零点可以通过图像、图表或数值计算等方法来确定。

下面将通过几个例题来进一步分析。

3. 例题分析3.1 例题一已知函数$f(x)=2x^2-3x+1$,求函数$f(x)$的零点。

解析:要求函数$f(x)$的零点,即求解方程$2x^2-3x+1=0$。

我们可以使用配方法、求根公式或因式分解等方法来解这个二次方程,最终可以得到$x=1$和$x=\frac{1}{2}$两个解。

3.2 例题二已知函数$g(x)=\sqrt{x+3}-2$,求函数$g(x)$的零点。

解析:要求函数$g(x)$的零点,即求解方程$\sqrt{x+3}-2=0$。

为了消除平方根,我们可以将方程两边平方,得到$x+3=4$,然后解得$x=1$。

因此,函数$g(x)$的零点为$x=1$。

3.3 例题三已知函数$h(x)=\frac{1}{x-2}$,求函数$h(x)$的零点。

解析:函数$h(x)$在$x=2$处不存在定义,因此不存在零点。

4. 总结本文介绍了函数的零点问题及其与方程的解之间的联系。

函数的零点是函数取零值的点,可以通过解相应的方程来求得。

通过例题分析,我们进一步了解了求函数零点的具体方法。

在实际问题中,函数的零点问题有时对于确定某个变量的取值非常重要,因此对于函数的零点问题的理解和掌握是非常有益的。

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

高中数学专题---零点问题

高中数学专题---零点问题

高中数学专题--- 零点问题基本方法:零点个数问题:解决这类题的关键是利用导数对函数的单调性,函数的极值进行讨论,画出此函数的“趋势图”,再判断极大值和极小值与0的关系;注意分类讨论的思想、函数与方程的思想、数形结合思想的应用.隐零点问题:导数解决函数综合性问题最终都回归于函数单调性的判断,而函数的单调性与其导数的零点有着紧密的联系,可以说导函数零点的判断、数值上的精确求解或估计成为导数综合应用中最为核心的问题. 导函数的零点,根据其数值上的差异,我们可以分为两类:一类是数值上能精确求解的,我们不妨称为“显零点”;另一类是能判断其存在但数值上无法精确求解的,我们不妨称为“隐零点”.(1)函数“隐零点”的存在性判断对于函数“隐零点”的存在性判断,常采用下列两种方法求解:①若连续函数()f x 在(,)a b 上单调,且()()0f a f b ,则()f x 在(,)a b 上存在唯一零点;②借助图像分析,即将函数()f x 的零点问题转化为方程()0f x 的解的判断,并通过合理的变形将方程转化为合适的形式在处理.(2)函数“隐零点”的虚设和代换 对于函数“隐零点”,由于无法求出其显性表达式,这给我们求解问题带来一定困难. 处理这类问题的基本方法为“虚设及代换”:在确定零点存在的条件下虚设零点0x ,再借助零点的表达式进行合理的代换进而求解.(3)函数“隐零点”的数值估计-卡根思想函数“隐零点”尽管无法求解,但是我们可以进行数值估计,最简单的方法即为判断其存在性的前提下利用二分法进行估计,估值范围越精确越容易解决问题. 对于“隐零点”的代数估计,可以通过单调函数构造函数不等式进行估计.一、典型例题1. 已知函数()()21e x f x x ax =-+,a ∈R .(1)讨论函数()f x 的单调区间;(2)若()f x 有两个零点,求a 的取值范围.2. 已知函数()e 23x f x x m =-++,1212,()x x x x ≠是函数()f x 的两个零点.(1)求m 的取值范围;(2)求证120x x +<.二、课堂练习1. 已知函数()()32113f x x a x x =-++. 证明:()f x 只有一个零点.2. 已知函数()()2e 2e x x f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.三、课后作业1. 已知函数()(2)ln 23f x x x x =-+-,1x ≥,试判断函数()f x 的零点个数.2. 已知函数()2ln f x x x x x =--,证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.3. 设函数2()(1)x f x x a a =->,讨论()f x 的零点个数.。

高中数学专题 第5讲 母题突破3 零点问题

高中数学专题 第5讲 母题突破3 零点问题

设g(x)=f′(x)=ex-4cos x,
则g′(x)=ex+4sin x.
显然当x∈[0,π]时,g′(x)>0,
当x∈[π,+∞)时,g′(x)>eπ-4>0,
所以f′(x)在[0,+∞)上单调递增,
又Байду номын сангаас
f′(0)=-3<0,f′π3=e
π 3
-2>0,
所以存在唯一 x0∈0,π3,使 f′(x0)=0.
12
(2)曲线y=-12ln(1+x)+3x+b与y=f(x)的图象有三个不同的公共点,求 实数b的取值范围.
12
曲线y=-12ln(1+x)+3x+b与y=f(x)的图象有三个不同的公共点, 等价于方程4ln(1+x)+x2-7x =-12ln(1+x)+3x+b, 即16ln(1+x)+x2-10x=b有三个不同的解, 设g(x)=16ln(1+x)+x2-10x,该函数的定义域为(-1,+∞), 则 g′(x)=11+6x+2x-10=2(x-11+)(xx-3), 由g′(x)>0得-1<x<1或x>3; 由g′(x)<0得1<x<3.
12
当x∈(x0,π)时,f′(x)>0,f(x)单调递增. 又f(0)=-1<0,f(π)=π2-1>0, ∴函数f(x)在区间(0,π)上有且仅有一个零点.
12
专题强化练
1.已知x=3是函数f(x)=aln(1+x)+x2-7x的一个极值点. (1)求a的值;
∵f(x)=aln(1+x)+x2-7x,该函数的定义域为(-1,+∞),f′(x)=1+a x +2x-7, 由 x=3 是函数 f(x)=aln(1+x)+x2-7x 的一个极值点,有 f′(3)=a4+6- 7=0,得 a=4, 经检验当a=4时,x=3为函数f(x)的极值点,所以a=4.

判断零点个数的常用方法

判断零点个数的常用方法

判断零点个数的常用方法一、引言在数学领域中,求解函数的零点是一项重要的任务。

零点是指函数取值为0的点,也就是函数图像与x轴相交的点。

判断一个函数有几个零点是一个基本问题,这个问题在高中数学中就有所涉及。

本文将介绍几种常用的方法来判断一个函数的零点个数。

二、图像法1.绘制函数图像首先,我们需要将给定的函数绘制出来。

通过观察函数图像与x轴相交的位置来判断零点个数。

2.观察图像与x轴相交的位置如果函数图像与x轴相交一次,则说明该函数有一个零点;如果相交两次,则说明该函数有两个零点;以此类推。

3.注意事项需要注意的是,在使用这种方法时,需要对给定区间内所有可能存在零点的位置进行考虑,因为在其他区间内可能会存在其他的零点。

三、牛顿迭代法1.原理牛顿迭代法是一种求解方程近似解的方法,它通过不断逼近方程根来得到方程根附近的近似值。

具体实现过程如下:2.具体步骤(1)选择一个初始值x0,并计算出f(x0)和f'(x0)。

(2)计算出x1=x0-f(x0)/f'(x0)。

(3)如果|x1-x0|<ε,则停止迭代,输出x1作为方程的近似解;否则,将x1作为新的初始值,返回第(1)步。

3.注意事项需要注意的是,在使用牛顿迭代法时,需要选择一个合适的初始值,并且需要保证函数在该点处可导。

四、二分法1.原理二分法是一种求解方程近似解的方法,它通过不断将区间缩小来得到方程根附近的近似值。

具体实现过程如下:2.具体步骤(1)选择一个初始区间[a,b],并计算出f(a)和f(b)。

(2)计算出中点c=(a+b)/2,并计算出f(c)。

(3)如果|f(c)|<ε,则停止迭代,输出c作为方程的近似解;否则,根据f(c)与0的符号确定新的区间[a,c]或[c,b],返回第(1)步。

3.注意事项需要注意的是,在使用二分法时,需要保证函数在给定区间内连续,并且在两个端点处取值异号。

五、拉格朗日中值定理1.原理拉格朗日中值定理是微积分中的一个重要定理,它可以用来证明函数在某一区间内存在零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题--- 零点个数问题
基本方法:
解决这类题的关键是利用导数对函数的单调性,函数的极值进行讨论,画出此函数的“趋势图”,再判断极大值和极小值与0的关系;注意分类讨论的思想、函数与方程的思想、数形结合思想的应用.
一、典型例题
1. 已知函数()()()2e 11x f x k x k =---∈R ,若函数()f x 在区间()0,1上无零点,求实数k 的取值范围.
2. 已知函数()()2e 2e x x f x a a x =+--.
(1)讨论()f x 的单调性;
(2)若()f x 有两个零点,求a 的取值范围.
二、课堂练习
1. 设函数2()(1)x f x x a a =->,讨论()f x 的零点个数.
2. 已知函数()()()2211ln ,22f x x x a x a g x x x =+-∈=++R ,讨论函数()()12y f x g x =-+的零点个数.
三、课后作业
1. 已知函数()(2)ln 23f x x x x =-+-,1x ≥,试判断函数()f x 的零点个数.
2. 已知函数()214f x x a x
=+-,()()g x f x b =+,其中,a b 为常数. 已知3b >-,b ∈Z ,若函数()f x 有2个零点,()()f g x 有6个零点,试确定b 的值.
3. 已知函数()()2
f x x ax
=-+,a∈R.
1e x
(1)讨论函数()
f x的单调区间;
(2)若()
f x有两个零点,求a的取值范围.。

相关文档
最新文档