2019届高三文科数学测试卷(一)附答案(可打印修改)
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析
2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2019年高考新课标(全国卷1)文数真题(word版,含解析)
2019年高考新课标全国1卷(文科数学)一、选择题:本题共12小题,每小题5分,共60分。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A I A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A +D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2019年全国1卷文科数学
2019年普通高等学校招生全国统一考试(新课标Ⅰ)文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z =( ) A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则( )A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cma b c <<a c b <<c a b <<b c a <<5.函数2sin ()cos x xf x x x +=+在[—π,π]的图像大致为( )A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°=( ) A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+D .112A A=+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知C c B b A a sin 4sin sin =- ,41cos -=A ,则bc =( )A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国1卷(附答案)
2019年高考文科数学全国1卷(附答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设3i12iz -=+,则z =A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉 的长度与咽喉至肚脐的长度之比也是512-.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°=A.-2-3B.-2+3 C.2-3 D.2+3 8.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A=1 2A +B. A=1 2A +C. A=1 12A +D. A=1 12A +10.双曲线C:22221(0,0)x ya ba b-=>>的一条渐近线的倾斜角为130°,则C的离心率为A.2sin40°B.2cos40° C.1sin50︒D.1cos50︒11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=A.6 B.5 C.4 D.312.已知椭圆C的焦点为12(1,0),(1,0)F F-,过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅰ文科数学高考试题(含答案)
2019年普通高等学校招生全国统一考试(Ⅰ卷)文科数学试题一、选择题:1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A + C .A =112A + D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 14.记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 15.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 3,那么P 到平面ABC 的距离为___________.三、解答题:17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.82818.(12分)记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.。
2019年全国1卷文数高考试题(含答案)(可编辑修改word版)
A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.曲线
在点
处的切线方程为___________.
14.记 Sn 为等比数列{an}的前 n 项和.若
,则 S4=___________.
15.函数
的最小值为___________.
16.已知∠ACB=90°,P 为平面 ABC 外一点,PC=2,点 P 到∠ACB 两边 AC,BC 的距离
记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1)若 a3=4,求{an}的通项公式; (2)若 a1>0,求使得 Sn≥an 的 n 的取值范围. 19.(12 分)
如图,直四棱柱 ABCD–A1B1C1D1 的底面是菱形,AA1=4,AB=2,∠BAD=60°, E,M,N 分别是 BC,BB1,A1D 的中点.
绝密★启用前
2019 年普通高等学校招生全国统一考试
文科数学 1
注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
5.函数 f(x)=
在[-π,π]的图像大致为( )
A.
B.
C.
D.
6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1,2,…,1 000,从这些
新生中用系统抽样方法等距抽取 100 名学生进行体质测验.若 46 号学生被抽到,则下面
4 名学生中被抽到的是( )
A.8 号学生 B.200 号学生 C.616 号学生 D.815 号学生
2019高考全国卷1文科数学详细答案
.
所以 .
(2)因为 为正数且 ,故有
=24.
所以 .
2019年普通高等学校招生全国统一考试
文科数学·参考答案
一、选择题
1.C2.C 3.B4.B5.D6.C
7.D8.B9.A10.D11.A12.B
二、填空题
13.y=3x14. 15.−416.
三、解答题
17.解:
(一)必考题:60分。
17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为 ,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为 ,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2) .
由于 ,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
18.解:
(2)过C作C1E的垂线,垂足为H.
由已知可得 , ,所以DE⊥平面 ,故DE⊥CH.
从而CH⊥平面 ,故CH的长即为C到平面 的距离,
由已知可得CE=1,C1C=4,所以 ,故 .
从而点C到平面 的距离为 .
20.解:
(1)设 ,则 .
当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,故 在 存在唯一零点.
解析:∵asinA-bsinB=4csinC
答案:B
解析:
二、填空题:本题共4小题,每小题5分,共20分。
答案:y=3x
解析:
∴y=3x
答案:
解析:
答案: -4
解析:
答案:
解析:∵点P到∠ACB两边AC,BC的距离均为 ,过P做PE⊥CA,PF⊥CB,PO⊥平面ABC,连接OE,OF
2019年高考文科数学全国1卷(附答案)
12B-SX-0000022_ _ _ _ _ _ _ _ :----绝密★启用前2019年普通高等学校招生全国统一考试文科数学全国I 卷本试卷共23 小题,满分150 分,考试用时120 分钟比是 5 1( 5 1≈0.618 ),称为黄金分割比例,著名22的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉号学_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ :名姓-----线封密-----(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
3 i1.设z ,则z =1 2i的长度与咽喉至肚脐的长度之比也是 512上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cmsin x x函数f(x)= 2cos x x.若某人满足在[—π,π的]图像大致为班_ _ _ _ _ _ _ 年_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ :校学----线封密---------A.2 B. 3 C. 2 D.12.已知集合U 1,2,3,4,5,6,7 ,A 2,3,4,5 ,B 2,3,6,7 ,则B e AUA.1,6 B.1,7 C.6,7 D.1,6,73.已知0.2 0.3a log 0.2,b 2 ,c0.2 ,则2A.a b c B.a c bC.c a b D.b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之A. B.C. D.6.某学校为了解1 000 名新生的身体素质,将这些学生编号为1,2,⋯,1 000,从这些新生中用系统抽样方法等距抽取100 名学生进行体质测验.若46 号学生被抽到,则下面4名学生中被抽到的是A .8 号学生B.200 号学生C.616 号学生D.815 号学生7.tan255 =°A .-2- 3 B.-2+ 3 C.2- 3 D.2+ 3- 1 - - 2 -12B-SX-00000228.已知非零向量 a ,b 满足 a =2 b ,且(a –b )b ,则 a 与 b 的夹角为A . π 6B . π 3C .2 π3 D .5 π 619. 如图是求2 2 1 12的程序框图,图中空白框中应填入222x y 3222x y 5 4x21yB .1D .A .C .2112 2x y4 3二、填空题:本题共4小题,每小题5分,共20分。
(可编辑版)2019年高考文科数学(1卷)答案详解(附试卷)
2019年普通高等学校招生全国统一考试文科数学(I 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(复数)设312iz i-=+,则z = A .2 B .3C .2D .1【解析】∵575)21)(21()21)(3(213ii i i i i i z -=-+--=+-=,∴2217=()()=255z +-.【答案】C2.(集合)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A C B U A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【解析】∵}7,6,1{=A C U ,∴}7,6{=A C B U . 【答案】C3.(函数)已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】由指数函数和对数函数的单调性易得22log 0.2log 10a =<=,0.20 221b =>=,0.3 0.20c =>且0.30 0.20.21c =<=,所以有a c b <<.【答案】B4.(估算)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm【解析】由题意可知,肚脐至足底的长度大于105cm ,则头顶至肚脐的长度大于105×0.618≈64.89cm ,因此身高大于105+64.89=169.89cm ;头顶至咽喉的长度小于26cm ,则咽喉至肚脐的长度小于42.07cm ,头顶至肚脐的长度小于68.07cm ,所以身高小于68.07+68.07÷0.618=178.21cm. 所以选答案B. 【答案】B5.(函数)函数f (x )=2sin cos x xx x++在]ππ,[-的图像大致为 A . B .C .D .【解析】∵2cos sin )(x x x x x f ++=,]ππ,[-∈x ,∴)(cos sin cos sin )(22x f x x xx x x x x x f -=++-=+--=-,∴f (x )在[,]-ππ上是奇函数,因此排除A ;又01cos sin )(22>π+-π=π+ππ+π=πf ,因此排除B 、C. 【答案】D6.(概率统计)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【解析】由题意可知,被抽到的学生的编号个位数为6. 【答案】C7.(三角函数)tan255°= A .23--B .23-+C .23-D .23+【解析】3230tan 45tan 130tan 45tan )3045tan(75tan )75180tan(255tan +=-+=+==+=.【答案】D8.(平面向量)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π6【解析】∵b a 、为非零向量,∴0||0||≠≠b a、. ∵()b -⊥a b ,∴2()||0b a b b -⋅=⋅-=a b ,即2||a b b ⋅=.设a 与b之间的夹角为θ,则2||||cos ||||||||||a b b b a a b a b θ⋅===,∵||2||a b =,∴1cos 2θ=.∵0πθ≤≤,∴π3θ=. 【答案】B9.(框图)如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A +D .A =112A +【解析】通过模拟程序过程,很容易得到正确答案. 【答案】A10.(解析几何)双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒ D .1cos50︒【解析】∵双曲线C 的渐近线方程为x a b y ±=,∴由题意有130tan =-ab ,即 50tan 130tan a a b =-=,∴ 50cos 150cos 50sin 150tan 150tan 22222222222=+=+=+==a a a a c e ,∴50cos 1=e . 【答案】D11.(三角函数)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =14-,则b c=A .6B .5C .4D .3【解析】∵a sin A -b sin B =4c sin C ,∴由正弦定理可得2224a b c -=,即2224a b c =+. 又由余弦定理有:222222224331cos =22224b c a b c c b c c A bc bc bc b +-+----====-,∴6bc=.【答案】A12.(解析几何)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】由题意,设椭圆C 的方程为22221(0)x y a b a b+=>>.∵22||2||AF BF =,2||3||AB BF =,又∵1||||AB BF =,12||3||BF BF =. 由椭圆的定义可知,12||||2BF BF a +=,∴13||2a BF =,2||2aBF =,2||AF a =,1||AF a =. ∵13||||=2aAB BF =,∴1AF B ∆为等腰三角形,在1AF B ∆中,11||1cos 2||3AF F AB AB ∠==. 而在12AF F ∆中,222222121212212||||||22cos 12||||2AF AF F F a a F AB AF AF a a +-+-∠===-, ∴22113a -=,解得2=3a . ∴2=2b ,椭圆C 的方程为22132x y +=. 【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)(可编辑修改word版)
所以其身高可能为 175 cm.故选 B.
【答案】B
5.(2019 全国卷Ⅰ·文)函数
f (x)
sinx x cosx x2
在[π, π] 的图象大致为(
)
第 2 页(共 12 页)
A.
B.
C.
D.
【解析】因为 f (x) sin( x) x sinx x f (x) ,所以 f (x) 为奇函数,排除选项 A. cos( x) ( x)2 cosx x2
比例,且腿长为105cm ,头顶至脖子下端的长度为 26cm ,则其身高可能是( )
A.165cm
B.175cm
C.185cm
D.190cm
【解析】设某人身高为 m cm,脖子下端至肚脐的长度为 n cm,
则由腿长为 105 cm,可得 m 105 5 1 0.618 ,解得 m 169.890 .
绝密★启用前
6 月 7 日 15:00-17:00
2019 年普通高等学校招生全国统一考试(全国卷Ⅰ)
数学(文史类)
总分:150 分 考试时间:120 分钟
★祝考试顺利★
注意事项:
1、本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考生务必将自己的姓名、 准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。用 2B 铅笔将答题卡 上试卷类型 A 后的方框涂黑。
学生中被抽到的是( )
A. 8 号学生
B. 200 号学生 C. 616 号学生 D. 815 号学生
【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为 1000 10 . 100
因为 46 除以 10 余 6,所以抽到的号码都是除以 10 余 6 的整数,结合选项知正确号码为 616.故选 C.
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年高考全国卷1文科数学及答案(word精校版可以编辑)
绝密★启用前2019年普通高等学校招生全国统一考试全国卷1文科数学考试时间:2019年6月7日15:00——17:00使用省份:福建、河南、河北、山西、江西、湖北、湖南、广东、安徽、山东本试卷分第I卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则=A.2 B.C.D.12.已知集合,则A.B.C.D.3.已知,则A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105,头顶至脖子下端的长度为26 ,则其身高可能是A.165 B.175 C.185 D.1905.函数f(x)=在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生7.255°=A.-2-B.-2+C.2-D.2+8.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为A.B.C.D.9.如图是求的程序框图,图中空白框中应填入A.B.C.D.10.双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为A.240°B.240°C.D.11.△的内角A,B,C的对边分别为a,b,c,已知-4,-,则= A.6 B.5 C.4 D.312.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国1卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2 BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则U B A =I ðA .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= a b c <<a c b <<c a b <<b c a <<8.已知非零向量a ,b 满足a=2b,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3D .5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A =12A +B. A =12A +C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .3 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国1卷(附答案)
学校:___________________________年_______班姓名:____________________学号:__---------密封线---------密封线------本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z=A .2B .C D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,UBA =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b<<D .b c a<<4的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A.165cm B.175cm C.185cm D.190cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生7.tan255°=A .-2-3B .-2+3C .2-3D .2+学校:___________________________年_______班姓名:____________________学号:__---------密封线---------密封线------本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2019年高考文科数学全国1卷(附答案)
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4
3π
f (x) sin(2 x
) 3cos x 的最小值为 ___________ .
.
长度之比也是
5
若
1
某
人
满
2
足
上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)
.
b)(c d )(a c)(b d)
0.050
0.010
2019年高考文科数学全国I卷含答案
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)令 bn log2an ,求数列 1n bn2 前 2n 项的和T .
18.(12 分)2018 年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗 寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随
机抽取 80 名群众进行调查,将他们的年龄分成 6 段:20,30,30, 40,40,50, 50, 60,60, 70,70,80,得到如图所示的频率分布直方图.问:
2
所以T n 2n 1.
18.【答案】(1) 55 ;(2) 1 . 5
【解析】(1)设 80 名群众年龄的中位数为 x ,则
0.00510 0.01010 0.02010 0.030 x 50 0.5 ,解得 x 55 ,
即 80 名群众年龄的中位数 55.
(2)由已知得,年龄在20,30中的群众有 0.0051080=4 人,
年龄在30, 40的群众有 0.011080=8 人,按分层抽样的方法随机抽取年龄在
20,30的群众 6 4 2 人,记为 1,2;随机抽取年龄在30, 40的群众 6 8 =4 人,
48
48
记为 a , b , c , d .则基本事件有: a,b, c, a,b, d , a,b,1, a,b, 2, a, c, d ,
2x1x2 x1 x2 x1 x2 2
2 ,
所以直线 BC 与 x 轴交于定点 D 2, 0.
答案 第 3 页(共 6 页)
21.【答案】(1)
1 2
,
;(2)
1,
;(3)证明见解析.
【解析】(1)由 a 2 ,得 h x f x g x ln x 2x 2 , x 0.
所以 hx 1 2 1 2x ,
A.136π
B.144π
C. 36π
D. 34π
10.若函数 f x x ,则函数 y f x log1 x 的零点个数是( )
2
A.5 个
B.4 个
C.3 个
D.2 个
11.已知抛物线 C : y2 4x 的焦点为 F ,准线为 l ,点 A l ,线段 AF 交抛物线 C 于点 uuur uuur uuur
第 1 页(共 8 页)
6.已知函数 y sin 2x 在 x π 处取得最大值,则函数 y cos 2x 的图像(
6 )
A.关于点
π 6
,
0
对称
B.关于点
π 3
,
0
对称
C.关于直线 x π 对称 6
D.关于直线 x π 对称 3
7.若实数 a
满足 loga
2 3
1
log 3 a
a, c,1, a, c, 2, a, d,1, a, d, 2, b, c, d , b, c,1, b, c, 2, b, d,1, b, d, 2,
c, d,1, c, d, 2, a,1, 2, b,1, 2, c,1, 2, d,1, 2共 20 个,参加座谈的导游中有
3 名群众年龄都在30, 40的基本事件有: a,b, c, a,b, d , a, c, d , b, c, d 共 4 个,
第 5 页(共 8 页)
第 6 页(共 8 页)
21.(12 分)已知函数 f x ln x , g x a x 1, (1)当 a 2 时,求函数 h x f x g x的单调递减区间; (2)若 x 1 时,关于 x 的不等式 f x g x恒成立,求实数 a 的取值范围; (3)若数列an满足 an1 1 an , a3 3 ,记an的前 n 项和为 Sn ,求证: ln 1 2 3 4... n Sn .
4
,则 a
的取值范围是(
)
A.
2 3
,1
B.
2 3
,
3 4
C.
3 4
,1
D.
0,
2 3
8.在△ABC 中,角 B 为 3π , BC 边上的高恰为 BC 边长的一半,则 cos A ( ) 4
A. 2 5 5
B. 5 5
C. 2 3
D. 5 3
9.某几何体的三视图如图所示,则该几何体的外接球的表面积为( )
请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10 分)【选修 4-4:坐标系与参数方程】
在直角坐标系 xOy 中,抛物线 C 的方程为 y2 4x .
(1)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;
x 2 t cos
(2)直线 l 的参数方程是
B ,若 FA 3FB ,则 AF ( )
A.3
B.4
C.6
D.7
uuur 12.已知△ABC 是边长为 2 的正三角形,点 P 为平面内一点,且 CP 3 ,则
uuur uuur uuur
PC PA PB 的取值范围是( )
A. 0,12
B.
0,
3 2
C.0, 6
D. 0, 3
第 2 页(共 8 页)
14.【答案】2
2
15.【答案】
10 16.【答案】 x2 y2 1
x
三、解答题 .
17.【答案】(1) an 2n1 ;(2)T n 2n 1.
【解析】(1)由
S
Sn
n1
2an 1 2an1
1
得
an
2an1
n N*, n 1
,
∴an是等比数列,令 n 1 得 a1 1,所以 an 2n1 .
纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选 项中,只有一项是符合题目要求的 .
1.复数 z 的共轭复数为 z ,且 z 3 i 10 ( i 是虚数单位),则在复平面内,复数 z 对应
Q AP PB 2 , AB PC 2 ,CQ 3 ,且△PAB 为等腰直角三角形, 即 APB 90 , PQ AB ,且 PQ 1, PQ2 CQ2 CP2 , PQ CQ ,
又 AB I CQ Q , PQ 平面 ABCD ,
VC PAE
VE ACP
1 2 VD ACP
16.已知双曲线 C 的中心为坐标原点,点 F 2, 0是双曲线 C 的一个焦点,过点 F 作渐
近线的垂线 l ,垂足为 M ,直线 l 交 y 轴于点 E ,若 FM 3 ME ,则双曲线 C 的方程 为__________.
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.(12 分)已知数列an的前 n 项和是 Sn ,且 Sn 2an 1 n N* .
x
x
令 hx 0 ,解得 x 1 或 x 0 (舍去),
所以
x1
x2
4k 2 1 2k 2
,
x1x2
2k 2 2 1 2k 2
,
直线 BC 的方程为
y
y2
y2 x2
y1 x1
x
x2
,所以
y
y2 x2
y1 x1
x
x1 y2 x2 y1 x2 x1
,
令
y
0 ,则
x
x1 y2 y2
x2 y1 y1
2kx1x2
k x1
k x1 x2 x2 2k
(2) bn log2 an log2 2n1 n 1,
于是数列bn是首项为 0,公差为 1 的等差数列.
答案 第 1 页(共 6 页)
T b12 b22 b32 b42 L
b2 2 n 1
b22n
b22 b12
b42 b32
L
b22n
b2 2 n 1
1 5 L 4n 3 1 4n 3 n n 2n 1,
的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.已知集合 A x 2 x 5, B x y x 1 ,则 A I B ( )
A. 2,1
B. 0,1
C. 1, 5
D. 1,5
3.阅读如下框图,运行相应的程序,若输入 n 的值为 10,则输出 n 的值为( )
A.0
B.1
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分.
13.计算: log8 32 7log7 3 ________.
x y 0
14.若
x
,
y
满足约束条件
x
y
y 1
0 ቤተ መጻሕፍቲ ባይዱ则
z
y 1 x2
的最大值为________.
15.已知
tan
π 4
2
,则
sin
2
π 4
的值等于__________.
y t sin
( t 为参数), l 与 C 交于 A , B 两点,
AB 4 6 ,求 l 的倾斜角.
23.(10 分)【选修 4-5:不等式选讲】
已知函数 f x a 3x 2 x . (1)若 a 2 ,解不等式 f x 3 ; (2)若存在实数 a ,使得不等式 f x 1 a 2 2 x 成立,求实数 a 的取值范围.
1 2 VP ACD
1 1 1 2 232
3 1
3. 6
20.【答案】(1) x2 +y2 1;(2)见解析. 2
【解析】(1)由已知,动点 M 到点 P 1 , 0, Q 1 , 0的距离之和为 2 2 ,
且 PQ 2 2 ,所以动点 M 的轨迹为椭圆,而 a 2 , c 1,所以 b 1,