数字电子技术(6).ppt
合集下载
数字电子技术基础-第六章_时序逻辑电路(完整版)
T0 1
行修改,在0000 时减“1”后跳变 T1 Q0 Q0(Q3Q2Q1)
为1001,然后按
二进制减法计数
就行了。T2 Q1Q0 Q1Q0 (Q1Q2Q3 )
T3 Q2Q1Q0
50
能自启动
47
•时序图 5
分 频
10 分 频c
0
t
48
器件实例:74 160
CLK RD LD EP ET 工作状态 X 0 X X X 置 0(异步) 1 0 X X 预置数(同步) X 1 1 0 1 保持(包括C) X 1 1 X 0 保持(C=0) 1 1 1 1 计数
49
②减法计数器
基本原理:对二进 制减法计数器进
——74LS193
异步置数 异步清零
44
(采用T’触发器,即T=1)
CLKi
CLKU
i 1
Qj
j0
CLKD
i 1
Qj
j0
CLK0 CLKU CLKD
CLK 2 CLKU Q1Q0 CLK DQ1Q0
45
2. 同步十进制计数器 ①加法计数器
基本原理:在四位二进制 计数器基础上修改,当计 到1001时,则下一个CLK 电路状态回到0000。
EP ET 工作状态
X 0 X X X 置 0(异步)
1 0 X X 预置数(同步)
X 1 1 0 1 保持(包括C)
X 1 1 X 0 保持(C=0)
1 1 1 1 计数
39
同步二进制减法计数器 原理:根据二进制减法运算 规则可知:在多位二进制数 末位减1,若第i位以下皆为 0时,则第i位应翻转。
Y Q2Q3
数字电子技术第6章 时序逻辑电路
RD—异步置0端(低电平有效) 1 DIR—右移串行输入 1 DIL—左移串行输入 S0、S1—控制端 1 D0D1 D2 D3—并行输入
《数字电子技术》多媒体课件
山东轻工业学院
4、扩展:两片74LS194A扩展一片8位双向移位寄存器
《数字电子技术》多媒体课件
山东轻工业学院
例6.3.1的电路 (P276) 74LS194功能 S1S0=00,保持 S1S0=01,右移 S1S0=10,左移 S1S0=11,并入
(5)状态转换图
《数字电子技术》多媒体课件
山东轻工业学院
小结
1、时序逻辑电路的特点、组成、分类及描述方法; 2、同步时序逻辑电路的分析方法; 课堂讨论: 6.1,6.4
《数字电子技术》多媒体课件
山东轻工业学院
6.3 若干常用的时序逻辑电路
寄存器和移位寄存器 时序 逻辑电路 计数器 顺序脉冲发生器 序列信号发生器
移位寄存器不仅具有存储功能,且还有移位功能。 可实现串、并行数据转换,数值运算以及数据处理。 所谓“移位”,就是将寄存器所存各位数据,在每个移 位脉冲的作用下,向左或向右移动一位。
2、类型: 根据移位方向,分成三种:
左移 寄存器 (a) 右移 寄存器 (b) 双向 移位 寄存器 (c)
《数字电子技术》多媒体课件
学习要求 :
* *
自学掌握
1. 掌握寄存器和移位寄存器的概念并会使用; 2. 掌握计数器概念,熟练掌握中规模集成计数器74161 和74160的功能,熟练掌握用160及161设计任意进制计 数器的方法。
《数字电子技术》多媒体课件
山东轻工业学院
6.3.1寄存器和移位寄存器
一、寄存器
寄存器是计算机的主要部件之一, 它用来暂时存放数据或指令。
数字电子技术PPT课件
12
弹性元件的基本性能
1、弹性特性是指弹性元件的输入量(力、力
矩、压力、温度等)与由它引起的输出量(应 变、位移或转角)之间的关系
(1). 刚度
弹性元件产生单位变形所需要的外加作用力, 即 k dF dx
F为作用在弹性元件上的外力,x为弹性元件上 产生的变形
13
(2). 灵敏度 灵敏度S定义为单位输入量所引起的输
15
弹性滞后
弹性元件在加载和卸载的正反行程中应力和应变 曲线不重合的现象称为弹性滞后,由特性曲线可 以看出,当应力不同时,弹性滞后是不同的
一般用最大相对滞后的百分数来表示,即
r max 100% max
式中,
m
a
为最大应变滞后;
x
m
为最大载荷下的总应变
ax
16
17
弹性后效
E
15
式中,N15为弹性后效值; 15 15 0
15为施加应力保持15 min 后所对应的应变值
为施加应力时刻对应的应变
0
值
E为材料的弹性模量;为材料的正应力
19
应力松弛
材料在高温下工作,受应力的作用而产生应变。 当其总的应变量在恒定情况下,应力随时间的延 续而逐渐降低的现象称应力松弛。其应力松弛率 为:
在弹性变形范围内,应变不但是应力的函 数,而且与时间有关, 在应力保持不变的 情况下,应变随时间的延续而缓慢变化, 直到最后达到平衡应变值,这一现象称为 弹性后效,也称蠕变
18
弹性后效常常需要延续很长时间,一般采用应力 保持15min作参考值。弹性后效可表示为:
N 15
15 0
弹性元件的基本性能
1、弹性特性是指弹性元件的输入量(力、力
矩、压力、温度等)与由它引起的输出量(应 变、位移或转角)之间的关系
(1). 刚度
弹性元件产生单位变形所需要的外加作用力, 即 k dF dx
F为作用在弹性元件上的外力,x为弹性元件上 产生的变形
13
(2). 灵敏度 灵敏度S定义为单位输入量所引起的输
15
弹性滞后
弹性元件在加载和卸载的正反行程中应力和应变 曲线不重合的现象称为弹性滞后,由特性曲线可 以看出,当应力不同时,弹性滞后是不同的
一般用最大相对滞后的百分数来表示,即
r max 100% max
式中,
m
a
为最大应变滞后;
x
m
为最大载荷下的总应变
ax
16
17
弹性后效
E
15
式中,N15为弹性后效值; 15 15 0
15为施加应力保持15 min 后所对应的应变值
为施加应力时刻对应的应变
0
值
E为材料的弹性模量;为材料的正应力
19
应力松弛
材料在高温下工作,受应力的作用而产生应变。 当其总的应变量在恒定情况下,应力随时间的延 续而逐渐降低的现象称应力松弛。其应力松弛率 为:
在弹性变形范围内,应变不但是应力的函 数,而且与时间有关, 在应力保持不变的 情况下,应变随时间的延续而缓慢变化, 直到最后达到平衡应变值,这一现象称为 弹性后效,也称蠕变
18
弹性后效常常需要延续很长时间,一般采用应力 保持15min作参考值。弹性后效可表示为:
N 15
15 0
【2024版】精品课件-数字电子技术(第三版)(刘守义)-第6章
果从Q3~Q0取得输出可以构成一个八进制计数器。 对比一下图 6.6中的时钟脉冲波形与Q3的输出波形, 不难发现,Q3的波形 的频率恰为时钟波形频率的1/8。 如果从Q3取得输出, 则 6.5电路构成了一个8分频器。
第6章 寄 存 器
2. 所谓可编程分频器是指分频器的分频比可以受程序控制。 在现代通信系统与控制系统中,可编程分频器得到广泛的应 用。 下面以图6.10的实际电路为例, 介绍利用移位寄存器 实现可编程分频的基本思路。
(2) 并行加载数据。 断开电源, 将S0、 S1置11(都接 高电平), 将D0~D3置1010; 接通电源, 此时, 发光二极 管均不亮, 送出一个单脉冲, 观察发光二极管的亮、 灭情 况。如果操作准确, 发光二极管的亮、 灭指示Q0~Q3的数据 为1010, 说明D0~D3的数据已加载到输出端, 此时再改变输 入端的数据, 输出数据不变。
第6章 寄 存 器 实训6 寄 存 器
6.1 寄存器的功能与使用方法 6.2 寄存器应用实例 6.3 寄存器集成电路简介
第6章 寄 存 器
实训6 1. (1) 了解寄存器的基本功能。 (2) 学会寄存器的使用方法。 (3) 熟悉寄存器的一般应用。 (4) 进一步掌握数字电路逻辑关系的检测方法。
第6章 寄 存 器
第6章 寄 存 器
当A、 B的数据(即74LS194 S0、 S1端的数据)为01时, 数据右移; 第一个时钟脉冲过后, 74LS194(1)DSR端的数 据1移位至Q0端, 其他Q端的0均依次右移, 各输出端的数据 如表6.1的第2行数据所示; 此后, 随着时钟脉冲的到来, 发光二极管自左至右一个个点亮, 第8个脉冲以后, 全部二 极管均点亮, 此时, DSR端的数据变为0, 随着后续脉冲的到 来, 发光二极管自左至右一个个熄灭。
第6章 寄 存 器
2. 所谓可编程分频器是指分频器的分频比可以受程序控制。 在现代通信系统与控制系统中,可编程分频器得到广泛的应 用。 下面以图6.10的实际电路为例, 介绍利用移位寄存器 实现可编程分频的基本思路。
(2) 并行加载数据。 断开电源, 将S0、 S1置11(都接 高电平), 将D0~D3置1010; 接通电源, 此时, 发光二极 管均不亮, 送出一个单脉冲, 观察发光二极管的亮、 灭情 况。如果操作准确, 发光二极管的亮、 灭指示Q0~Q3的数据 为1010, 说明D0~D3的数据已加载到输出端, 此时再改变输 入端的数据, 输出数据不变。
第6章 寄 存 器 实训6 寄 存 器
6.1 寄存器的功能与使用方法 6.2 寄存器应用实例 6.3 寄存器集成电路简介
第6章 寄 存 器
实训6 1. (1) 了解寄存器的基本功能。 (2) 学会寄存器的使用方法。 (3) 熟悉寄存器的一般应用。 (4) 进一步掌握数字电路逻辑关系的检测方法。
第6章 寄 存 器
第6章 寄 存 器
当A、 B的数据(即74LS194 S0、 S1端的数据)为01时, 数据右移; 第一个时钟脉冲过后, 74LS194(1)DSR端的数 据1移位至Q0端, 其他Q端的0均依次右移, 各输出端的数据 如表6.1的第2行数据所示; 此后, 随着时钟脉冲的到来, 发光二极管自左至右一个个点亮, 第8个脉冲以后, 全部二 极管均点亮, 此时, DSR端的数据变为0, 随着后续脉冲的到 来, 发光二极管自左至右一个个熄灭。
《数字电子技术》PPT课件
【任务引入】 在TTL门电路中,输出级三极管的集电极是开路的,
称为集电极开路门,简称OC门。集电极开路门可以线与, 即将多个OC门的输出端连接起来。本节课的任务即是掌握 由TTL集电极开路门电路CT74LS03构成的线与功能逻辑 电路。
精选ppt
2
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
阻RC的数值,并将RC和电源UCC连接在OC门的输出端。
2. 功能与应用
(1)功能:实现正常的逻辑功能、提高输出驱动负载的能力、
转换TTL到其他电平、实现“线与”功能。外接上拉电阻R
的取值范围为几百至几千欧,接入外接电阻R后:
1)A、B不全为1时,uB1=1V,T2、T3截止,Y=1。
2)A、B全为1时,uB1=2.1V,T2、T3饱和导通,Y=0。
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
【学习目标】 1.熟悉集电极开路门(OC门)的逻辑功能。 2.掌握OC门的电路原理。 3.掌握由CT74LS03实现的线与功能电路的仿真调试。
精选ppt
1
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
输出Vo为低电平。如图
2-1-2所示。
图2-1-2 输入全为高电平时的情况
精选ppt
6
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
(2)输入有低电平时:
如uA=0.3V, uB= uC =3.6V,则
uB1=0.3+0.7=1V,VT2、 VT3截止,VT4导通。忽
称为集电极开路门,简称OC门。集电极开路门可以线与, 即将多个OC门的输出端连接起来。本节课的任务即是掌握 由TTL集电极开路门电路CT74LS03构成的线与功能逻辑 电路。
精选ppt
2
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
阻RC的数值,并将RC和电源UCC连接在OC门的输出端。
2. 功能与应用
(1)功能:实现正常的逻辑功能、提高输出驱动负载的能力、
转换TTL到其他电平、实现“线与”功能。外接上拉电阻R
的取值范围为几百至几千欧,接入外接电阻R后:
1)A、B不全为1时,uB1=1V,T2、T3截止,Y=1。
2)A、B全为1时,uB1=2.1V,T2、T3饱和导通,Y=0。
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
【学习目标】 1.熟悉集电极开路门(OC门)的逻辑功能。 2.掌握OC门的电路原理。 3.掌握由CT74LS03实现的线与功能电路的仿真调试。
精选ppt
1
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
输出Vo为低电平。如图
2-1-2所示。
图2-1-2 输入全为高电平时的情况
精选ppt
6
模块Ⅱ 数字电子技术
项目二 逻辑门电路基础
任务一 插装与调试OC门CT74LS03的“线与”功能
(2)输入有低电平时:
如uA=0.3V, uB= uC =3.6V,则
uB1=0.3+0.7=1V,VT2、 VT3截止,VT4导通。忽
数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件
《数字电子技术》精品课程——第6章
FF0
FF1
1J
Q0 1J
Q1
时序逻辑电路的分析与设计
&Z
FF2
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
➢驱动方程:
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
简化状态图(表)中各个状态。 (4)选择触发器的类型。
(5)根据编码状态表以及所采用的触发器的逻辑功能,导出待设计 电路的输出方程和驱动方程。
(6)根据输出方程和驱动方程画出逻辑图。
返回 (7)检查电路能否自启动。
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
2.同步计数器的设计举例
驱动方程: T1 = X T2 = XQ1n
输出方程: Z= XQ2nQ1n
(米利型)
2.写状态方程
T触发器的特性 方程为:
Qn1 TQn TQn
Q 1nQ1QX21nn TX1QQ1n1nXTQX11nQ1n X Q1n
Q1n
Qn1 2
T2 Q2n
T2Qn2
T Q n 将T1、 T2代入则得X到Q两1n Q2n XQ1nQn2
0T1 = X0 0 0 0 0 0
0
求T1、T2、Z
0T2
0
=ZX=01QX1nQ10 2nQ010n
0 0
0 1
1 0
0 0
由状态方程
求Q2n+1 、 Q1n+1
数字电子技术基础6时序逻辑电路
Q* Q1 Q2 Q3 Q2Q3 3
Q1 Q3 * Q2 * Q1 * Y
输 出 方 程
Y Q2Q3
Q1 Y
CLK Q3 Q2
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
DI 串行 输入
D Q3 Q D Q2 Q D Q1 D Q0 Q
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 缺少111为 0 1 1 初态的情况 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1
7进制计数器
其中Q3Q2Q1为计数状态,Y为进位
我们可以把状态转换表表示为状态转换图的形式
/Y /0 /0
CLK Q3 0 1 0 0
*
Q
* 3
Q Q Q (Q )
1 2 3 0
C Q0Q3
设初态为0000
作状态转换图
可以看出这是一个异步十进制加法计数器! 3. 检验其能否自动启动 ?
什么叫 “自动启动” ? 四个触发器本应有十六个稳定状态 ,可 上图电路的状态图中只有十个状态。如果由 于某种原因进入了其余的六个状态当中的任 一个状态,若电路能够自动返回到计数链 ( 即有效循环 ) ,人们就称其为能自动启动。
*6.2.3
异步时序逻辑电路的分析方法
例6.2.4 分析图6.2.10所示电路的逻辑功能。
1、写三大方程
驱 动 方 程 状 Q0 Q 0 cp0 Q 0 (cp0 ) * 态 Q1 Q 3 Q 1 (cp1 ) Q 3 Q 1 (Q0 ) * 方 Q2 Q 2 (cp2 ) Q 2 (Q1 ) 程 *
Q1 Q3 * Q2 * Q1 * Y
输 出 方 程
Y Q2Q3
Q1 Y
CLK Q3 Q2
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 1 0 0
0 1 1 0 0 1 0 0
1 0 1 0 1 0 0 0
DI 串行 输入
D Q3 Q D Q2 Q D Q1 D Q0 Q
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 0 缺少111为 0 1 1 初态的情况 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1
7进制计数器
其中Q3Q2Q1为计数状态,Y为进位
我们可以把状态转换表表示为状态转换图的形式
/Y /0 /0
CLK Q3 0 1 0 0
*
Q
* 3
Q Q Q (Q )
1 2 3 0
C Q0Q3
设初态为0000
作状态转换图
可以看出这是一个异步十进制加法计数器! 3. 检验其能否自动启动 ?
什么叫 “自动启动” ? 四个触发器本应有十六个稳定状态 ,可 上图电路的状态图中只有十个状态。如果由 于某种原因进入了其余的六个状态当中的任 一个状态,若电路能够自动返回到计数链 ( 即有效循环 ) ,人们就称其为能自动启动。
*6.2.3
异步时序逻辑电路的分析方法
例6.2.4 分析图6.2.10所示电路的逻辑功能。
1、写三大方程
驱 动 方 程 状 Q0 Q 0 cp0 Q 0 (cp0 ) * 态 Q1 Q 3 Q 1 (cp1 ) Q 3 Q 1 (Q0 ) * 方 Q2 Q 2 (cp2 ) Q 2 (Q1 ) 程 *
数字电子技术 第6章 寄存器与计数器
68
工作原理分析
69
74LS90具有以下功能:(1)异步清零。(2)异步置9。(3) 正常计数。(4)保持不变。
70
例6-7 分别采用反馈清零法和反馈置9法,用 74LS90构成8421BCD码的8进制加法计数器。 解:(1)采用反馈清零法。
71
(2)采用反馈置9法。
首先连接成8421BCD码十进制计数器,然后在此基础 上采用反馈置9法。8进制加法计数器的计数状态为 1001、0000~0110,其状态转换图如图(a)所示。
41
6.4.1
集成同步二进制计数器
其产品多以四位二进制即十六进制为主,下面 以典型产品 74LS161为例讨论。
42
① 异步清零。当CLR=0时,不管其它输入信号的状 态如何,计数器输出将立即被置零。
43
② 同步置数。当CLR=1(清零无效)、LD=0时, 如果有一个时钟脉冲的上升沿到来,则计数器输出 端数据Q3~Q0等于计数器的预置端数据D3~D0。
13
例6-1 对于图6-4所示移位寄存器,画出下图所示输入 数据和时钟脉冲波形情况下各触发器输出端的波形。 设寄存器的初始状态全为0。
14
2. 集成电路移位寄存器 常用集成电路移位寄存器为74LS194,其逻辑符号和 引脚图如图所示。
15
16
例6-2 利用两片集成移位寄存器74LS194扩展成一 个8位移位寄存器。
连 接 规 律 加 法 计 数 减 法 计 数 T'触发器的触发沿 上 升 沿 下 降 沿
CPi Q i 1
CPi Qi 1
CPi Q i 1
例子
25
CPi Qi 1
6.2.2
异步非二进制计数器
数字电子技术 第6章 时序逻辑电路的设计
17
2.画出次态状态表 画出次态状态表
次态 y=0(down) Q2 Q1 Q0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 y=1(up) Q2 Q1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 Q0 1 1 0 0 1 1 0 0
为使电路能自启动,将卡诺图中的最小项 xxx取做有效状态例如010状态,这时Q2n+1 的卡诺图应修改为右图。化简后得到新状 态方程: Q1n+1= Q2n⊕Q3n Q2n+1= Q1n+ Q2nQ3n Q3n+1= Q2n 驱动方程:J1=Q2n⊕Q3n 输出方程:C= Q1n Q2n Q3n K1=Q2n⊕Q3n J2=Q1n+Q3n K2=Q1n J3= Q2n K3= Q2n
检查自启动:设初态为000,来第1个CP脉冲,将跳变为010,进入循环状态,该电路可 以自启动。
11
6.3同步时序逻辑电路设计 同步时序逻辑电路设计 (时钟同步状态机的设计)
1.用状态图设计同步时序逻辑电路 ①状态序有规则的时序电路; ②态序不规则的Moore型; ③Mealy型 2. 使用状态表设计时序逻辑电路 3.使用状态转换表设计时序状态机
8
例2:设计一个串行数据检测器。要求连续输入3个或3个以 上的1时,输出为1,其它情况下输出为0。
(1)因为输入多于3个1,有输出。设输入变量为x;检测 (5)最多连续输入m=3,可选用 结果为输出变量,定义为y;又因连续输入3个1以上有 (7)逻辑电路图: n=2,2个J-K FF,于是可画出次 输出,因此要求同步计数。 态及输出卡诺图。还可分解为3 个卡诺图。 (2)状态分析:初态S0为全0状态,设输入一个1时为S1 态,输入2个1时为S2,输入3个1及以上为S3。 Q1n+1 Q0n+1 y (3)状态转换图如图所示: (4)状态转换表。因为输入m>3和连续输入3个1(m=3)状态是相同的,都停留在S2上,故 (8)检查能否自启动: 状态转换图可以简化成如下。 当电路初态进入11状态后: (6)状态方程:Q1n+1=xQ0Q1+xQ 若x=1时,Q1n+1Q0n+1=10状态为 1 sn S S1 S2 S 0 X 次态;若x=0时,Q1n+1 Q0n+1=00 3 n 驱动方程:J1=xQ0 J0=xQ1 0 S0/0 S0/0 S0/0 S0/0 次态。 输出方程:y=xQ1n 1 S1/0 该电路可以自启动。S2/0 S3/1 S4/1 Q0n+1=xQ1Q0+1Q1 K1=x K0=1 自启动部分
数字电子技术 第六章 脉冲波形的产生课件50页PPT
综上所述,多谐振荡器的Байду номын сангаас点是电路没有稳定状态,
在两个暂稳态之间不停地翻转。能够自动翻转的原因是电 容C的充放电,改变充放电的时间常数,就改变了两个暂 稳态持续的时间,也就改变了产生的脉冲宽度。当采用集 成逻辑门时,振荡周期的估算公式为:
T ≈ 2.2RC 2. 多谐振荡器的基本功能及应用 多谐振荡器能自动产生矩形脉冲输出,常作为矩形脉 冲信号源,为需要矩形脉冲的电路提供矩形脉冲信号,如 为时序逻辑电路提供时钟信号、为数字钟提供时基信号等。 图6.4所示的RC环形多谐振荡器的频率稳定性较差,只能 应用于对频率稳定性要求不高的场合。如果要求产生频率 稳定性很高的脉冲波形,就要采用图6.5虚线框中所示的石 英晶体多谐振荡电路。
图6.5 秒信号发生器的电路图
图6.5所示电路实际上是一款采用CD4060 构成的秒信 号发生器,它由石英晶体多谐振荡电路和15次二分频电路 组成。晶振的频率f = 32.768kHz,振荡电路产生的脉冲信 号经过整形、15次二分频后,就可获得频率稳定的1Hz脉 冲信号,即秒脉冲信号。
6.2 单稳态触发器及应用
图中,CD4060内部的G1门和外接电阻R、电容C1和C2、 石英晶振组成振荡电路,内部G2 门对振荡输出的信号进 行整形。石英晶振在电路中起选频作用,选频特性非常好, 只有频率等于石英晶振谐振频率的信号才能被选出,而其 他频率的信号均被衰减。因此,石英晶体多谐振荡器的输 出信号频率取决于石英晶振的频率,并且频率稳定性非常 高。
在电源接通的瞬间,若G2门输出为高电平,因电容电 压不能突变,G1门的输入为高电平、输出为低电平,维持 G态2)门。输出高电平,电路处于一种暂时稳定状态(也叫暂稳 延值是续时G接2,,门着电G的G1容输门2门电入的输压,输出升所出的高以由高,G低电2G电门平1平门的对变的输电为输出容高入由进电电高行平压电充。降平电因低变,,G为随1当低门着低电的充到平输电一,出的定电就 路处于另一种暂稳态。 的输路延出返G续由回2门,高到的电前G输1平一门出变种的变为稳输为低定入低电状电电平态压平,,升后又G高,2开,门电始当的容重高输开复到出始前一又放面定回电的值到,过时高随程,电着。平G放1,门电电的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑电路课程中所介绍的中、小规模集成电 路都属于通用型,它们的逻辑功能比较简单,而且固 定不变。
专用型数字集成电路(ASIC———Application Specific Integrated Circuit)是为某种专门用途 而设计的集成电路。它不仅能减小电路体积、重量和 功耗,而且使电路的可靠性大幅提高;但是,在用量 不大的情况下,设计和制造的成本很高,并且设计、 制造和修订的周期均较长。
2.开发系统的软件
PLD的编程工作可以按如下步骤进行: (1)进行逻辑抽象。 (2)选定PLD的种类和型号。 (3)选定开发系统。 (4)按编程语言的规定格式编写源程序。 (5)上机运行。 (6)卸载。 (7)测试。
EPLD由于采用CMOS工艺,所以它功耗低、 噪声容限大。又由于采用UVEPROM工艺,以叠 栅注入MOS管作编程单元,所以它具有能够改 写、可靠性高、集成度高、造价低的特点。目 前EPLD的集成度可达每片1万门以上。
2.EPLD的输出逻辑宏单元
EPLD的OLMC中的D触发器增加了预置和置零功 能,从而增加了使用灵活性。预置和置零工作方 式可分为两大类:一类为同步工作方式,另一类为 异步工作方式。
Y3 ABCD ABC D
Y2 AC BD
Y1 A B
Y 0 = C ⊙D
FPLA
时 序 逻 辑 型
的 电 路 结 构 原 理 图
二、可编程阵列逻辑(PAL)
1.PAL的基本电路结构
编程后的PAL电路实 现的函数为 :
Y1 I1I2I3 I2I3I4 I1I3I4 I1I2I4 Y1 I1 I2 I2 I3 I3 I4 I4 I1 Y3 I1 I2 I1 I2 Y4 I1I2 I1 I2
第四章 可编程逻辑器件
➢ 基本知识点 ➢ 概述 ➢ 可编程逻辑器件的分类 ➢ 可编程逻辑器件的基本结构 ➢ 可编程逻辑器件编程
基本知识点
可编程逻辑器件的种类 PLA、PAL、GAL的结构特点 EPLD、CPLD、FPGA的基本概念
1概述
从逻辑功能的特点上可将数字集成电路分为通用 型和专用型两大类。
五、现场可编程门阵列(FPGA)的基本结构
4 可编程逻辑器件编程
1.开发系统的硬件
硬件部分包括计算机和编程器。计算机用目 前一般配置的PC机就可以了。编程器是对PLD进行 写入和擦除的专用装置,能提供写入或擦除操作 所需要的电源电压和控制信号,并通过串行接口 从计算机接收编程数据,最终写进PLD中。目前生 产的编程器都有较强的通用性,可以对多种类、 多型号的PLD器件进行编程。
8个OLMC,10个输入缓冲器,8个三态输出缓冲器 和8个反馈/输入缓冲器。
2.输出逻辑宏单元(OLMC)
四、可擦除的可编程逻辑器件(EPLD)的 基本结构
1.EPLD的基本结构
产品AT22V10的基本电路结构和GAL类似。 AT22V10有两种不同的封装形式,即双列直插 式(DIP)和表面安装式(SMT)。
2 可编程逻辑器件的分类
一、可编程逻辑器件PLD的内部可编程情况
类型 PROM PLA PAL GAL
与阵列 固定
可编程 可编程 可编程
或阵列 可编程 可编程
固定 固定
输出电路 固定 固定 固定
可组态
二、可编程逻辑器件的密度分类
3 可编程逻辑器件的基本结构
一、现场可编程逻辑阵列(FPLA)的基本结构
2.PAL的输出电路类型
(1)专用输出结构
(2)可编程输入/输出结构
(3)寄存器输出结构
(4)异或输出结构
Байду номын сангаас
(5)运算选通反馈结构
三、通用阵列逻辑(GAL)
1.GAL的电路结构 我们以常用的GAL16V8为例,介绍GAL器件的一
般电路结构和工作原理。 GAL16V8有一个64×32位的可编程与逻辑阵列,
专用型数字集成电路(ASIC———Application Specific Integrated Circuit)是为某种专门用途 而设计的集成电路。它不仅能减小电路体积、重量和 功耗,而且使电路的可靠性大幅提高;但是,在用量 不大的情况下,设计和制造的成本很高,并且设计、 制造和修订的周期均较长。
2.开发系统的软件
PLD的编程工作可以按如下步骤进行: (1)进行逻辑抽象。 (2)选定PLD的种类和型号。 (3)选定开发系统。 (4)按编程语言的规定格式编写源程序。 (5)上机运行。 (6)卸载。 (7)测试。
EPLD由于采用CMOS工艺,所以它功耗低、 噪声容限大。又由于采用UVEPROM工艺,以叠 栅注入MOS管作编程单元,所以它具有能够改 写、可靠性高、集成度高、造价低的特点。目 前EPLD的集成度可达每片1万门以上。
2.EPLD的输出逻辑宏单元
EPLD的OLMC中的D触发器增加了预置和置零功 能,从而增加了使用灵活性。预置和置零工作方 式可分为两大类:一类为同步工作方式,另一类为 异步工作方式。
Y3 ABCD ABC D
Y2 AC BD
Y1 A B
Y 0 = C ⊙D
FPLA
时 序 逻 辑 型
的 电 路 结 构 原 理 图
二、可编程阵列逻辑(PAL)
1.PAL的基本电路结构
编程后的PAL电路实 现的函数为 :
Y1 I1I2I3 I2I3I4 I1I3I4 I1I2I4 Y1 I1 I2 I2 I3 I3 I4 I4 I1 Y3 I1 I2 I1 I2 Y4 I1I2 I1 I2
第四章 可编程逻辑器件
➢ 基本知识点 ➢ 概述 ➢ 可编程逻辑器件的分类 ➢ 可编程逻辑器件的基本结构 ➢ 可编程逻辑器件编程
基本知识点
可编程逻辑器件的种类 PLA、PAL、GAL的结构特点 EPLD、CPLD、FPGA的基本概念
1概述
从逻辑功能的特点上可将数字集成电路分为通用 型和专用型两大类。
五、现场可编程门阵列(FPGA)的基本结构
4 可编程逻辑器件编程
1.开发系统的硬件
硬件部分包括计算机和编程器。计算机用目 前一般配置的PC机就可以了。编程器是对PLD进行 写入和擦除的专用装置,能提供写入或擦除操作 所需要的电源电压和控制信号,并通过串行接口 从计算机接收编程数据,最终写进PLD中。目前生 产的编程器都有较强的通用性,可以对多种类、 多型号的PLD器件进行编程。
8个OLMC,10个输入缓冲器,8个三态输出缓冲器 和8个反馈/输入缓冲器。
2.输出逻辑宏单元(OLMC)
四、可擦除的可编程逻辑器件(EPLD)的 基本结构
1.EPLD的基本结构
产品AT22V10的基本电路结构和GAL类似。 AT22V10有两种不同的封装形式,即双列直插 式(DIP)和表面安装式(SMT)。
2 可编程逻辑器件的分类
一、可编程逻辑器件PLD的内部可编程情况
类型 PROM PLA PAL GAL
与阵列 固定
可编程 可编程 可编程
或阵列 可编程 可编程
固定 固定
输出电路 固定 固定 固定
可组态
二、可编程逻辑器件的密度分类
3 可编程逻辑器件的基本结构
一、现场可编程逻辑阵列(FPLA)的基本结构
2.PAL的输出电路类型
(1)专用输出结构
(2)可编程输入/输出结构
(3)寄存器输出结构
(4)异或输出结构
Байду номын сангаас
(5)运算选通反馈结构
三、通用阵列逻辑(GAL)
1.GAL的电路结构 我们以常用的GAL16V8为例,介绍GAL器件的一
般电路结构和工作原理。 GAL16V8有一个64×32位的可编程与逻辑阵列,