二次根式基础训练题1
二次根式基础测试题含答案
二次根式基础测试题含答案一、选择题1.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.2.a 的值为( ) A .2B .3C .4D .5 【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a ,移项合并,得5a=25,系数化为1,得a=5.故选:D .【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.已知n 是整数,则n 的最小值是( ).A .3B .5C .15D .25 【答案】C【解析】【分析】【详解】解:135n =也是整数,∴n 的最小正整数值是15,故选C .5.在下列算式中:=②=;③42==;=,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;22==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.x的取值范围是()A.x<1 B.x≥1C.x≤﹣1 D.x<﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x﹣1≥0,解得,x≥1,故选:B.【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.7.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A 、原式=|-3|=3,正确;B 、原式=6,错误;C 、原式不能合并,错误;D 、原式不能合并,错误.故选A .【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.9.下列计算错误的是( )A =B =C .3=D =【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C.【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10x的取值范围是()A.x≥5B.x>-5 C.x≥-5 D.x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.11.下列二次根式中是最简二次根式的是()DA B C【答案】B【解析】【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),判断即可.【详解】解:A,故本选项错误;BC,故本选项错误;3D,故本选项错误.故选:B.【点睛】本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.下列各式中是二次根式的是()A B C D x<0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A3,不是二次根式;B1<0,无意义;C的根指数为2,且被开方数2>0,是二次根式;D的被开方数x<0,无意义;故选:C.【点睛】a≥0)叫二次根式.14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.15.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】 试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B 点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b - 【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b <<>0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.下列运算正确的是()A.18126-=B.822÷=C.3223-=D.142 2=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】A. 181232-23-=,故错误;B. 822÷=,正确;C. 32222-=,故错误;D.1422≠,故错误;故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.若x+y=3+22,x﹣y=3﹣22,则22x y-的值为()A.42B.1 C.6 D.3﹣22【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=3+22,x﹣y=3﹣22,∴22()()(322)(322)x y x y x y-=+-=+-=1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.20.12n-n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】-如果实数n取最大值,那么12-n12n212n-2,从而得出结果.【详解】12n-2时,n取最大值,则n=8,故选:C【点睛】-”的含义.本题考查二次根式的有关知识,解题的关键是理解12n。
二次根式基础练习
二次根式基础测试题一、填空题(每小题2分,共20分)1、3是 的平方根,49的算术平方根是 ;021⎪⎭⎫ ⎝⎛-的平方根是 。
2、如果252=x ,那么=x ;如果()932=-x ,那么=x 。
3、当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义4、化简: =3a ;=322。
5、在8,12,27,18中与3是同类二次根式有 。
6、()=-231 ,()=-25334 。
(二)、精心选一选(每小题2分,共20分)1、下列说法中,正确的是( )(A)、-0.64没有立方根 (B )、 27的立方根是3±(C )、9的立方根是3 (D )、-5是()25-的平方根 2、下列计算正确的是 ( )(A )、36= (B )、39-=- (C )、39= (D )、393=4、要使式子32+x 有意义,字母x 的取值必须满足( )(A )、0≥x (B )、23≥x (C )、32≥x (D )、23-≥x 5、下列运算正确的是 ( )(A )、235=- (B )、312914= (C )、32321+=- (D )、()52522-=-7、下列各式是二次根式的是( )(A )、7- (B )、m (C )、12+a (D )、33 5.下列二次根式中属于最简二次根式的是( )A .14B .48C .ba D .44+a 8、-27的立方根与81的平方根的和是( )(A )、0 (B )、6 (C )、0或-6 (D )、-69、计算:3133⨯÷的结果为( )(A )3 (B )、9 (C )、1 (D )、3310、在根式①22b a + ②5x ③xy x -2 ④ abc 27中,最简二次根式是( )A .①②B .③④C .①③D .①④三、耐心算一算(每小题3分,共18分)1、273 2÷45、2484554+-+ 6⨯⨯五、能力提升(每小题4分,共20分)1、32218+-2、()()13132+-3、222333---4、22)25()25(--+ 525。
最新初中数学二次根式基础测试题及答案
2.下列各式计算正确的是( )
A.2+b=2b
B. 5 2 3 C.(2a2)3=8a5
【答案】D
【解析】
解:A.2 与 b 不是同类项,不能合并,故错误;
B. 5 与 2 不是同类二次根式,不能合并,故错误;
C.(2a2)3=8a6,故错误; D.正确. 故选 D.
D.a6÷ a4=a2
3.式子 x 1 在实数范围内有意义,则 x 的取值范围是(
A. a 1 2
【答案】C 【解析】 【分析】
B. a 1 2
C. a 1 2
D.无解
根据二次根式的性质得 (2a 1)2 |2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到 2a-
1≤0,然后解不等式即可. 【详解】
解:∵ (2a 1)2 |2a-1|,
∴|2a-1|=1-2a, ∴2a-1≤0,
C.3k﹣11
D.11﹣3k
【答案】D
【解析】
【分析】
求出 k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出 6-k-(2k-5),求出 即可.
【详解】
∵一个三角形的三边长分别为 1 、k、 7 ,
2
2
∴ 7 - 1 <k< 1 + 7 ,
22
22
∴3<k<4,
k2 12k 36 -|2k-5|,
∴a 1 . 2
故选:C. 【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.
5.若 x、y 都是实数,且 2x 1 1 2x y 4 ,则 xy 的值为 ( )
A.0
B. 1 2
【答案】C
【解析】
由题意得,2x−1⩾0 且 1−2x⩾0,
人教版八年级数学下册 二次根式 基础题练习(含答案)
《二次根式》基础测试八年级数学下册二次根式基础题练习一、选择题:1、下列二次根式中属于最简二次根式的是()A. B. C. D.2、下列各式是最简二次根式的是()A. B. C. D.3、要使有意义,x的取值范围是()A.x≥5B.x≤5C.x>5D.x<54、若代数式在实数范围内有意义,则x的取值范围为()A.x2 D.x≥-3,且x≠25、下列运算正确的是()A. B. C. D.6、使代数式有意义的自变量x的取值范围是()A.x≥3B.x>3且x≠4C.x≥3且x≠4D.x>37、函数中,x的取值范围是()A.x≠0B.x>-2C.x<-2D.x≠-28、函数y=中自变量x的取值范围是()A.x≥0B.x>4C.x<4D.x≥49、下列各式成立的是()A. B. C. D.10、下列二次根式中,属于最简二次根式的是()A. B. C. D.11、下列各式计算正确的是( )A.+=B.4-3=1C.=3D.2×3=612、下列计算正确的是()A. B. C. D.13、下列计算正确的是()A. B. C. D.14、下列计算错误的是()A. B. C. D.15、下列计算正确的是()A. B. C. D.16、下列运算正确的是()A. B. C. D.17、下列计算正确的是( )A. B. C. D.18、下列各根式中与是同类二次根式的是( )A. B. C. D.19、下列二次根式的运算:①,②,③,④;其中运算正确的有( )A.1个B.2个C.3个D.4个20、下列计算正确的是()A. B. C D.21、下列计算正确的是()A. B. C. D.22、下列根式中,不能与合并的是()A. B. C. D.23、下列计算正确的是()A. B. C. D.24、下列计算正确的是().A. B. C. D.25、化简的结果是( )A.3B.-3C.D.二、填空题:26、若在实数范围内有意义,则x .27、已知函数y=,则自变量x的取值范围是______.28、若有意义,则的取值范围是___________________.29、使有意义的x的取值范围是.30、函数中,自变量的取值范围是 .31、计算(-)2的结果等于.32、化简: , .33、计算:()()=___________.34、计算的结果是 .35、计算:的结果为 .36、化简:= .37、计算:.38、化简计算: = .39、计算:()2 .40、计算-的结果是______.参考答案1、A2、C.3、A4、D5、B6、C7、B8、D9、D10、D11、C12、A13、D14、A15、B16、C17、D18、B19、C20、B21、B22、C23、C24、D25、A26、答案为:<227、答案为:x>1.28、答案为:≥且29、答案为:x≥.30、答案为:x≤3且x≠1;31、答案为:8-2.32、答案为:2 ,33、答案为:334、答案为:2;35、答案为:2.36、答案为:;37、答案为:38、答案为:39、答案为:5.40、答案为:.。
二次根式基础测试题及答案
二次根式基础测试题及答案一、选择题1.在下列各组根式中,是同类二次根式的是( )A .2,12B .2,12C .4ab ,4abD .1a -,1a + 【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可. 【详解】 A 、1223=,2与12不是同类二次根式;B 、1222=,2与12是同类二次根式; C 、4242,ab ab ab b a ==,4ab 与4ab 不是同类二次根式;D 、1a -与1a +不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B与不能合并,所以A 、B 选项错误; C 、原式=×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列计算中,正确的是( )A .535344=B .1a ab b b ÷=(a >0,b >0)C .5539335777⨯= D .()()22483248324832670÷⨯+-=【答案】B【解析】【分析】 根据二次根式的乘法法则:a •b =ab (a≥0,b≥0),二次根式的除法法则:a b =a b(a≥0,b >0)进行计算即可. 【详解】 A 、534=532,故原题计算错误; B 、a ab b ÷=1a b ab ⋅=1b (a >0,b >0),故原题计算正确; C 、559377⨯=368577⨯=6857,故原题计算错误; D 、()()22483248324832÷⨯+-=32×165=245,故原题计算错误; 故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.4.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2 【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.= )A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.7.已知3y =,则2xy 的值为( )A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .8.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【答案】D【解析】【分析】 求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.9.下列式子正确的是( )A 6=±B C 3=- D 5=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. ()255-=,故D 错误. 故选:C 【点睛】 此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.10.下列计算正确的是( )A .1836÷=B .822-=C .2332-=D .2(5)5-=- 【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A .1831836÷=÷=,此选项计算错误; B.822222-=-=,此选项计算正确;C.2333-=,此选项计算错误;D.2(5)5-=,此选项计算错误;故选:B .【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.11.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .12【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式12.2a a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.下列计算或化简正确的是()A.=BC3==-D3【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.14.362+在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【答案】C【解析】【分析】+== 1.41436222≈,即可解答.【详解】+== 1.41436222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是()A.2-=B-=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为( )A .B .C .D . 【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.下列计算正确的是( )A .=B =C .=D -=【答案】B【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.18.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】 解:(221m m ++1)31m m+÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.下列各式中,不能化简的二次根式是( )A B C D 【答案】C【解析】【分析】A 、B 选项的被开方数中含有分母或小数;D 选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【详解】解:A =,被开方数含有分母,不是最简二次根式;B 10=,被开方数含有小数,不是最简二次根式;D =,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C .【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.。
二次根式练习题
二次根式练习题二次根式是数学中一个重要的概念,也是我们在代数学习中经常遇到的一个内容。
它在数学中有着广泛的应用,不仅仅是在解方程、求根等方面,还可以用于几何中的面积、体积计算等。
在这篇文章中,我们将通过一些练习题来巩固和提升我们对二次根式的理解和运用能力。
练习题一:计算下列二次根式的值1. √162. √253. √364. √495. √64解答:1. √16 = 42. √25 = 53. √36 = 64. √49 = 75. √64 = 8这些题目是比较简单的,我们可以直接计算出结果。
但是在实际问题中,我们可能会遇到更复杂的二次根式。
下面我们来看一些稍微复杂一些的练习题。
练习题二:化简下列二次根式1. √122. √183. √204. √275. √32解答:1. √12 = √(4 × 3) = 2√32. √18 = √(9 × 2) = 3√23. √20 = √(4 × 5) = 2√54. √27 = √(9 × 3) = 3√35. √32 = √(16 × 2) = 4√2这些题目需要我们将二次根式化简为最简形式。
我们可以将根号内的数分解为两个因数的乘积,然后将其中的平方数提取出来。
这样可以使得二次根式的形式更简洁,也更容易计算。
练习题三:计算下列二次根式的值1. √(5 + 2√3)2. √(3 + 2√2)3. √(8 + 4√3)4. √(2 + √5)5. √(7 + √10)解答:1. √(5 + 2√3) = √3 + 12. √(3 + 2√2) = 1 + √23. √(8 + 4√3) = 2 + √34. √(2 + √5) ≈ 1.618(约等于黄金分割比例)5. √(7 + √10) ≈ 3.146这些题目需要我们运用二次根式的性质来计算。
我们可以将根号内的式子进行分解,然后运用二次根式的加减乘除法则进行计算。
二次根式练习题及答案
二次根式练习题及答案一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7正确答案:A2. 以下哪个二次根式是同类二次根式?A. √2 和3√2B. √3 和√12C. √5 和2√5D. √7 和√49正确答案:B3. 计算下列二次根式的加法:√5 + √3 =A. √8B. √15C. √18D. 无法计算正确答案:D二、填空题4. 将下列二次根式化简:√121 = ____答案:115. 合并同类二次根式:3√2 + √2 = ____答案:4√26. 计算二次根式的除法:(√6 / √3) = ____答案:√2三、计算题7. 计算下列表达式的值:(√8 + √18) / √2解:首先化简根式,√8 = 2√2,√18 = 3√2,代入原式得:(2√2 + 3√2) / √2 = 5√2/ √2 = 58. 解二次根式方程:x√2 = √3解:将方程两边同时除以√2,得:x = √(3/2) = √6 / 2四、应用题9. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边长度为:c = √(3² + 4²) = √(9 + 16) = √25 = 510. 一个正方形的面积为16平方厘米,求其边长。
解:设边长为a,则a² = 16,所以a = √16 = 4厘米。
五、证明题11. 证明√2是一个无理数。
证明:假设√2是有理数,即存在两个互质整数m和n,使得√2= m/n。
根据有理数的性质,可以设m和n的最大公约数为1。
将等式两边平方,得到2n² = m²,从而m²是偶数,所以m也是偶数,设m = 2k。
代入原等式,得到2n² = (2k)²,即n² = 2k²,说明n也是偶数,这与m和n互质矛盾。
《二次根式》基础专题训练
《二次根式》基础专题训练(一)判断题:(每小题1分,共5分).1.2)2(=2.……( )2.21x --是二次根式.……………( )3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac1是同类二次根式.……( ) 5.b a +的有理化因式为b a -.…………( ) (二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.7.当x ____________时,二次根式32-x 有意义.8.比较大小:3-2______2-3.9.计算:22)21()213(-等于__________. 10.计算:92131·3114a =______________. 11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.12.若8-x +2-y =0,则x =___________,y =_________________. 13.3-25的有理化因式是____________.14.当21<x <1时,122+-x x -241x x +-=______________. 15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_______,b =_____. (三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯ 17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b 1ab18.若式子12-x -x 21-+1有意义,则x 的取值范围是………( )(A )x ≥21 (B )x ≤21 (C )x =21 (D )以上都不对 19.当a <0,b <0时,把b a 化为最简二次根式,得………………………( )(A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b 20.当a <0时,化简|2a -2a |的结果是( )(A )a (B )-a (C )3a (D )-3a(四)在实数范围内因式分解:(每小题4分,共8分)21.2x 2-4; 22.x 4-2x 2-3.(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02);24.(548+12-76)÷3;25.50+122+-421+2(2-1)0;26.(b a 3-b a +2a b +ab )÷ab .(六)求值:(每小题6分,共18分)27.已知a =21,b =41,求b a b --b a b +的值.28.已知x =251-,求x 2-x +5的值.29.已知y x 2-+823-+y x =0,求(x +y )x 的值.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.参考答案(一)判断题:(每小题1分,共5分).1.2)2(=2.……( ) 2.21x --是二次根式.……………( )3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………( )【答案】1.√;2.×;3.×;4.√;5.×.(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.【答案】x ≤1. 7.当x ____________时,二次根式32-x 有意义.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.比较大小:3-2______2-3.【提示】∵243=<,∴ 023<-,032>-.【答案】<. 9.计算:22)21()213(-等于__________.【提示】(321)2-(21)2=?【答案】23. 10.计算:92131·3114a =______________.【答案】92a a . 11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数?[3a -4b <0.]【答案】6a -4b .12.若8-x +2-y =0,则x =___________,y =_________________. 【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.3-25的有理化因式是____________.【提示】(3-25)(3+25)=-11.【答案】3+25.14.当21<x <1时,122+-x x -241x x +-=______________.【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x .15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_____________,b =______________.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .]【答案】1,1.(三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯【答案】D .【点评】本题考查二次根式的性质.注意(B )不正确是因为2)52(=|-52|=52;(C )不正确是因为没有公式b a +=b a +.17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )b a =b 1ab 【答案】B .【点评】本题考查二次根式的性质成立的条件.(A )不正确是因为a +b 不一定非负,(C )要成立必须a ≥1,(D )要成立必须a ≥0,b >0.18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( )(A )x ≥21 (B )x ≤21 (C )x =21 (D )以上都不对 【提示】要使式子有意义,必须⎩⎨⎧≥-≥-.021012x x 【答案】C .19.当a <0,b <0时,把ba 化为最简二次根式,得…………………………………( ) (A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b 【提示】b a =2b ab =||b ab .【答案】B . 【点评】本题考查性质2a =|a |和分母有理化.注意(A )错误的原因是运用性质时没有考虑数.20.当a <0时,化简|2a -2a |的结果是………( )(A )a (B )-a (C )3a (D )-3a【提示】先化简2a ,∵ a <0,∴ 2a =-a .再化简|2a -2a |=|3a |.【答案】D .(四)在实数范围内因式分解:(每小题4分,共8分)21.2x 2-4;【提示】先提取2,再用平方差公式.【答案】2(x +2)(x -2).22.x 4-2x 2-3.【提示】先将x 2看成整体,利用x 2+px +q =(x +a )(x +b )其中a +b =p ,ab =q 分解.再用平方差公式分解x 2-3.【答案】(x 2+1)(x +3)(x -3).(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02); 【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】33.24.(548+12-76)÷3;【解】原式=(203+23-76)×31=203×31+23×31-76×31 =20+2-76×33=22-221. 25.50+122+-421+2(2-1)0; 【解】原式=52+2(2-1)-4×22+2×1 =52+22-2-22+2=52.26.(b a 3-b a +2a b +ab )÷a b . 【提示】本题先将除法转化为乘法,用分配律乘开后,再化简. 【解】原式=(b a 3-b a +2a b +ab )·ba =b a 3·b a -b a ·b a +2a b ·b a +ab ·ba =a -2)(ba +2+2a =a 2+a -b a +2. 【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐.(六)求值:(每小题6分,共18分)27.已知a =21,b =41,求b a b --ba b +的值. 【提示】先将二次根式化简,再代入求值. 【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 【点评】如果直接把a 、b 的值代入计算,那么运算过程较复杂,且易出现计算错误.28.已知x =251-,求x 2-x +5的值. 【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+. ∴ x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.【点评】若能注意到x -2=5,从而(x -2)2=5,我们也可将x 2-x +5化成关于 x -2的二次三项式,得如下解法:∵ x 2-x +5=(x -2)2+3(x -2)+2+5=(5)2+35+2+5=7+45.显然运算便捷,但对式的恒等变形要求甚高.29.已知y x 2-+823-+y x =0,求(x +y )x 的值. 【提示】y x 2-,823-+y x 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论? 【解】∵y x 2-≥0,823-+y x ≥0, 而 y x 2-+823-+y x =0,∴ ⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]【解】在直角三角形中,根据勾股定理: 另一条直角边长为:22)326()362(+-+=3(cm ).∴ 直角三角形的面积为: S =21×3×(326+)=23336+(cm 2) 答:这个直角三角形的面积为(23336+)cm 2. 31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.【提示】由已知得|1-x |-|x -4|=2x -5.此式在何时成立?[1-x ≤0且x -4≤0.]【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴ x 的取值范围是1≤x ≤4.。
二次根式练习10套(附答案)讲解学习
精品文档二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题 13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )精品文档A. 2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式单元测试题及答案doc
二次根式单元测试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是二次根式?A. \( \sqrt{4} \)B. \( \sqrt[3]{8} \)C. \( \sqrt[4]{16} \)D. \( \sqrt{-1} \)答案:A2. 计算 \( \sqrt{9} \) 的值是多少?A. 3B. -3C. 3或-3D. 0答案:A3. 化简 \( \sqrt{49} \) 的结果是?A. 7B. -7C. 7或-7D. 0答案:A4. 已知 \( a > 0 \),那么 \( \sqrt{a^2} \) 等于?A. \( a \)B. \( -a \)C. \( |a| \)D. \( a^2 \)答案:C5. 计算 \( \sqrt{16} \) 的值是多少?A. 4B. -4C. 4或-4D. 0答案:A6. 化简 \( \sqrt{25} \) 的结果是?A. 5B. -5C. 5或-5D. 0答案:A7. 已知 \( b < 0 \),那么 \( \sqrt{b^2} \) 等于?A. \( b \)B. \( -b \)C. \( |b| \)D. \( b^2 \)答案:B8. 计算 \( \sqrt{81} \) 的值是多少?A. 9B. -9C. 9或-9D. 0答案:A9. 化简 \( \sqrt{36} \) 的结果是?A. 6B. -6C. 6或-6D. 0答案:A10. 已知 \( c = 0 \),那么 \( \sqrt{c^2} \) 等于?A. \( c \)B. \( -c \)C. \( |c| \)D. \( c^2 \)答案:C二、填空题(每题4分,共20分)1. 计算 \( \sqrt{144} \) 的值是 ________。
答案:122. 化简 \( \sqrt{64} \) 的结果是 ________。
答案:83. 已知 \( d > 0 \),那么 \( \sqrt{d^2} \) 等于 ________。
(完整版)二次根式专题练习(含答案)
初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为()A.0 B.2 C .﹣2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12.化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2﹣,第 4 个等式: a 4==﹣2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+ +a n =.15.已知 a 、b 为有理数,m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.已知: a <0,化简=.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+ )× .22.计算:×(﹣)+| ﹣2 |+ ()﹣3.23.计算:(+1 )(﹣1)+ ﹣()0.24.如图,实数 a 、b 在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.28.化简求值:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A.0 B.2C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C.D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3.11.( 2016? 聊城)计算:=12.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 .算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.( 2016? 黄石)观察下列等式:第 1 个等式: a 1= = ﹣ 1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣ 2,按上述规律,回答以下问题:( 1)请写出第 n 个等式: a n= = ﹣;;( 2) a 1+a 2+a 3+ +a n = ﹣1 .【分析】( 1)根据题意可知,a 1= = ﹣1,a 2 = = ﹣,a 3= =2 ﹣,a 4== ﹣ 2,由此得出第 n 个等式: a n = = ﹣;( 2)将每一个等式化简即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = ﹣1,第 2 个等式: a 2= = ﹣,第 3 个等式: a 3= =2﹣,第 4 个等式: a 4= = ﹣2,∴第 n 个等式: a n= = ﹣;(2) a 1+a 2+a 3+ +a n=(﹣1)+(﹣)+(2﹣)+(﹣2)++(﹣)故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a ﹣ =0∴a=1 或﹣ 1∵a <0∴a= ﹣ 1∴原式 =0﹣2= ﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到 a 的值.17.设,,,,.设,则 S=(用含n的代数式表示,其中n 为正整数).【分析】由 S n =1++===,求,得出一般规律.【解答】解:∵ S n =1++===,∴==1+=1+﹣,∴S=1+1﹣ +1+ ﹣ + +1+ ﹣=n+1 ﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共11 小题)18.( 2016? 泰州)计算或化简:﹣(3+);【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当 a=0 时, |a|=0 ,故此时 a 的绝对值是零;当 a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点评】本题关键是先求出a+b 、ab 的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)( 1)请用不同的方法化简.(2=;=.(3)化简:+++ +.【分析】(1 )中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;( 2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;.(2)原式= + +=++ +=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由 a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵ a=2+>0,b=2﹣>0,∴a+b=4 ,ab=1 ,∴原式=+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。
二次根式--习题精选(基础题)(完整资料).doc
1、(长沙)已知 为两个连续整数,且 ,则 .
(注意: 为两个连续整数,故 只有一组值符合条件)
2、(天津)若 为实数,且 ,则 的值为( )
A.1 B.-1 C.2 D.-2
参考答案:
◆随堂检测
1、C.∵ ,∴ 一定是二次根式;故选C.而A中根指数不是2;B中被开方数小于0,无意义;D中被开方数 也可表示负数, 不一定是二次根式.
(1)x2-2(2)x4-9 3x2-5
参考答案
一、1.B 2.C
二、1.3 2.非负数
三、1.(1)( )2=9(2)-( )2=-3(3)( )2= ×6=
(4)(-3 )2=9× =6(5)-6
2.(1)5=( )2(2)3.4=( )2
(3) =( )2(4)x=( )2(x≥0)
3. xy=34=81
2.若│1995-a│+ =a,求a-19952的值.
(提示:先由a-2000≥0,判断1995-a的值是正数还是负数,去掉绝对值)
3.若-3≤x≤2时,试化简│x-2│+ + 。
参考答案
一、1.C 2.A
二、1.-0.02 2.5
三、1.甲甲没有先判定1-a是正数还是负数
2.由已知得a-2000 ≥0,a ≥2000
2、C.∵若式子 有意义,则 ,且 ,∴ 且 ,则点P 在应是第三象限,故选C.
3、 且 . ∵函数 中,自变量 满足 且 ,解得 且 .
4、2. ∵ ,∴ ,∴ ,∴ ,∴ 的整数部分是2.
5、解:由题意得, ,且 ,且 ,
∴ ,∴原式= 2-3=-1.
6、解:由题意得, ,∴ 且 ,
∴ ,且 . 又∵ 中, ,∴ .
二次根式基础练习题
二次根式基础练习题班级 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( ) A .m≤3 B .m <3 C .m≥3 D .m >3 2.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个 3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个 5.化简二次根式352⨯-)(得 ( ) A .35- B .35 C .35± D .306.对于二次根式92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是37.把aba 123分母有理化后得 ( )A .b 4B .b 2C .b 21D . b b 2 8.y b x a +的有理化因式是 ( ) A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( )A .ab ab 21 B .ab ab 1 C .ab b1D .ab b二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义. 13.比较大小:23-______32-.14.=⋅baa b 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216acb =_________________. 17.当a=3时,则=+215a ___________.18.若xx xx --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算:⑴))((36163--⋅-; ⑵63312⋅⋅; ⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算:⑴20245-; ⑵14425081010⨯⨯..;⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅. 22.(8分)把下列各式化成最简二次根式:⑴27121352722-; ⑵ba c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.(注:文档可能无法思考全面,请浏览后下载,供参考。
二次根式基础练习(含答案)
二次根式练习题及答案1.当a ______时,23-a 有意义;当x ______时,31-x 有意义. 2.当x ______时,x1有意义;当x ______时,x1的值为1.3.直接写出下列各式的结果: (1)49=______;(2)2)7(=______;(3)2)7(-=______;(4)2)7(-=______;(5)2)7.0(=______;(6)22])7([-=______. 4.下列各式中正确的是( ). (A)416±=(B)2)2(2-=- (C)24-=- (D)3327= 5.下列各式中,一定是二次根式的是( ). (A)23- (B)2)3.0(- (C)2- (D)x6.已知32+x 是二次根式,则x 应满足的条件是( ). (A)x >0 (B)x ≤0 (C)x ≥-3 (D)x >-3 7.当x 为何值时,下列式子有意义? (1)x -1;(2)2x -;(3)12+x ; (4).7x +8.计算下列各式: (1)2)23( (2)2)32(⨯ (3)2)53(⨯-(4)2)323( 9.若y x xy ⋅=24成立,则x ,y 必须满足条件______.10. (1)12172⨯______; (2))84)(213(--=______; (3)62434⨯________.(4)3649⨯=______;(5)25.081.0⨯=______;(6)31824a a ⋅=______. 11.下列计算正确的是( ). (A)532=⋅ (B)632=⋅(C)48=(D)3)3(2-=-12.化简2)2(5-⨯,结果是( ).(A)52(B)52- (C)-10 (D)1013.如果)3(3-=-⋅x x x x ,那么( ).(A)x ≥0 (B)x ≥3 (C)0≤x ≤3 (D)x 为任意实数 14.当x =-3时,2x 的值是( ). (A)±3 (B)3 (C)-3 (D)915.计算:(1)26⨯(2)123⨯(3)8223⨯ (4)x x 62⋅ (5)aab 131⋅(6)ab a 3162⋅ (7)49)7(2⨯- (8)22513- (9)7272y x16.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.17.把下列各式化成最简二次根式: (1)12=______; (2)18=______; (3)45=______; (4)x 48=______;(5)32=______; (6)214=______; (7)35b a =______; (8)3121+=______. 18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式: 如:23与2. (1)32与______;(2)32与______; (3)a 3 与______;(4)38a 与______; (5)26a 与______. 19.xxx x -=-11成立的条件是( ). (A)x <1且x ≠0 (B)x >0且x ≠1(C)0<x ≤1 (D)0<x <1 20.下列计算不正确...的是( ). (A)471613= (B)xy xx y 63132= (C)201)51()41(22=- (D)x x x 3294=21.下列根式中,不是..最简二次根式的是( ) A .7 B .3 C .21 D .222.(1)2516= (2)972=(3)324= (4)1227=(5)1525=(6)632= (7)211311÷ (8)125.02121÷23.把下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有_________;与3的被开方数相同的有______;与5的被开方数相同的有______.24. (1)31312+=______;(2)485127-=______. 25.化简后,与2的被开方数相同的二次根式是( ). (A)12 (B)18 (C)41 (D)6126.下列说法正确的是( ).(A)被开方数相同的二次根式可以合并 (B)8与80可以合并(C)只有根指数为2的根式才能合并(D)2与50不能合并27.可以与a 12合并的二次根式是( ).(A)a2 (B)a 54 (C)a 271 (D)a 328、.48512739-+ 29..61224-+30..503238318-++31.).5.04313()81412(---32..12183127--33.)272(43)32(21--+34.当a =______时,最简二次根式12-a 与73--a 可以合并. 35.若a =7+2,b =7-2,则a +b =______,ab =______.36.合并二次根式:(1))18(50-+=______;(2)ax xax45+-=______. 37.下列各式中是最简二次根式的是( ). (A)a 8 (B)32-b (C)2y x - (D)y x 2338.下列计算正确的是( ). (A)3232=+(B)b a ab 555+=(C)268=- (D)x x x =-45 39.)32)(23(+-等于( ).(A)7 (B)223366-+- (C)1 (D)22336-+40.⋅⋅-121)2218( 41.).23)(322(-- 42.).3223)(3223(-+ 43.).3218)(8321(-+ 44..6)1242764810(÷+- 45..)18212(2-参考答案1..3,32>≥x a . 2.x >0,x =1.3.(1)7;(2)7;(3)7; (4)7;(5)0.7;(6)49. 4.D . 5.B .6.D .7.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≥-7.8.(1)18;(2)6;(3)15;(4)6. 9.x ≥0且y ≥0. 10.(1)6;(2)24;(3)16.(4)42;(5)0.45;(6).3122a 11.B . 12.A . 13.B . 14.B 15.(1)32; (2)6; (3)24; (4)x 32; (5)3b ; (6)ab 2; (7)49; (8)12; (9).263y xy16..cm 6217.(1)32; (2)23; (3)53; (4)x 34;(5)36; (6)223; (7)ab b a 2; (8)⋅630 18.(1)3; (2)2; (3)a 3; (4)a 2; (5).6 19.C . 20.C . 21.C . 22.(1);54 (2);35 (3);22 (4);23(5);63 (6);2 (7);322 (8)4. 23..454,125;12,27;18,82,32 24..36)2(;33)1(-25.B . 26.A . 27.C . 28..33 29..632+ 30..21631..23+ 32..23- 33.⋅-42341134.6. 35.3,72. 36.(1)22; (2)ax 3-. 37.B . 38.D . 39.B. 40.⋅6641..763- 42.⋅3619 43.⋅417 44..215 45..62484-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式基础训练题
一、选择题:
1、下列代数式中,属于二次根式的为( )
A 、
B 、
C 、 (a ≥1)
D 、— 2、下列各式中一定是二次根式的是( ). A .23-
B .2)3.0(-
C .2-
D .x
3、下列各式中,x 的取值范围是x >2的是( ).
A .2-x
B .21-x
C .x -21
D .
121
-x 4、
x x
x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <1
5、若等式 成立,则m 的取值范围是( ) A 、m ≥ B 、m >3 C 、 ≤m <3 D 、m ≥3
6、要使二次根式2x -6 有意义,x 应满足的条件是( )
A .x ≥3
B .x <3
C .x >3
D .x ≤3
7、下列各组二次根式中,x 的取值范围相同的是( )
A 、 与
B 、( )2与
C 、 与
D 、 与
8、当x =2时,下列各式中,没有意义的是( ). A .2-x
B .x -2
C .22-x
D .22x -
9、根式-(-3)2 的值是( )
A .-3
B .-3或3
C .3
D .9 10、若x ·x -6 =
x(x -6) ,则( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数
11、把
32
1
化成最简二次根式为( ). A .3232
B .
3232
1
C .
28
1 D .
24
1 12、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④
x
1
;⑤75.0中最简二次根式是( )
A 、①②
B 、③④⑤
C 、②③
D 、只有④
13、下列各式中,最简二次根式是( ).
A .
y
x -1
B .
b
a C .42+x D .
b a 25
14、下列二次根式: , , , , , , 其中是最简二次根式的有( )
A 、2个
B 、3个
C 、1个
D 、4个
15、化简后,与2的被开方数相同的二次根式是( ). A .10
B .12
C .
2
1
D .
61
16、下列二次根式中,与24 是同类二次根式的是……………………………………( )
A .18
B .30
C .48
D .54
17、下列计算正确的是( ).
A .532=⋅
B .632=⋅
C .48=
D .3)3(2-=-
18、下列计算不正确的是( ).
4-3x -1-a 2
-2
1213
1
2312--=--m m m m x 1+x x 2x 12+x 22+x 1-x x
1
a 5.03a
b a 221-a 4
11222y x +n m 2
.)15(2
8
22180-+-
-
.
21233ab b
b a a b a b a b a -
+-x
x x x x x 4619322+-A .47
1613
= B .xy x x y 63132=
C .201)51()41(22=-
D .
x x
x
3294= 19、下列计算,正确的是( ).
A .3232=+
B .5225=-
C .a a a 26225=+
D .xy x y 32=+
20、下列说法正确的是( ).
A .被开方数相同的二次根式可以合并
B .8与80可以合并
C .只有根指数为2的根式才能合并
D .2与50不能合并 21、计算:
ab
ab b a 1
⋅÷等于 ( ) A .
ab ab 21
B .
ab ab 1 C .ab b
1
D .ab b 22、如果1≤a ≤2,则2122
-++-a a a 的值是( )
A 、a +6
B 、a --6
C 、a -
D 、1 23、若x <2,化简
()x x -+-322
的正确结果是( )
A 、-1
B 、1
C 、52-x
D 、x 25- 24、已知,21)12(2a a -=-那么a 的取值范围是( ).
A .2
1
>a
B .21
<a
C .21
≥a
D .2
1
≤a
25、若022|5|=++-y x ,则x -y 的值是( ). A .-7
B .-5
C .3
D .7
二、解答题:
1、.48512739-+
2、.61224-+
3、⋅---)5.0431
3()81412( 4、
⋅++321
8121
5、
).
272(43
)32(21--+ 6、).32841)(236215(-- 7、.)18212(2- 8、
9、
10、
11、( 3 - 2) ( 3 + 2) 12、
13、
14、 15、
a a
b a b a ab 3
1
32722323+-
)6
5()154(533
3y x x y xy --÷∙2)23()25)(25(---+)323125.0()48(81
----。