2014年10月北京13分期中数学试题答案

合集下载

北京市海淀区2014届高三上期中考试数学试题(理)(有答案)

北京市海淀区2014届高三上期中考试数学试题(理)(有答案)

海淀区高三年级第一学期期中练习数学(理科) 答案2013.11一、选择题1、A2、C3、B4、C5、B6、B7、D8、C二、填空题:本大题共6小题,每小题5分,共30分。

9.210..211. a b c >> 12..2π3,π6 13..2λ> 14. 4;6(31)n - 三、解答题: 本大题共6小题,共80分。

解答应写出文字说明, 演算步骤或证明过程。

15.解:(Ⅰ)由60A =和332ABC S ∆=可得133sin6022bc =, ---------------------------2分 所以6bc =, --------------------------------------3分又32,b c =所以2,3b c ==. ------------------------------------5分(Ⅱ)因为2,3b c ==,60A =,由余弦定理2222cos a b c bc A =+-可得 ------------------------------------7分2222367a =+-=,即7a =. ------------------------------------9分由正弦定理sin sin a b A B=可得------------------------------------11分 72sin sin60B =,------------------------------------12分 所以21sin B =.------------------------------------13分 16. 解:(I )π()3cos4cos(4)2f x x x =-+------------------------------------2分 3cos4sin 4x x =+------------------------------------4分π2sin(4)3x =+------------------------------------6分 ()f x 最小正周期为πT 2=,------------------------------------8分 (II )因为ππ64x -≤≤,所以ππ4π4333x -≤+≤-----------------------------------10分 所以3πsin(4)13x -≤+≤-----------------------------------12分 所以π32sin(4)23x -≤+≤, -----------------------------------13分 所以()f x 取值范围为[3,2]-. ------------------------------------14分17.解:(I )由已知11,1AH t PH t =-=+ -------------------------------------1分所以APH ∆的面积为1()(11)1,1112f t t t t =-+-<<. ---------------------4分(II )解法1. 111'()1(11)2221f t t t t =-++⨯-⨯+ 3(3)41t t -=+ -------------------------------------7分 由'()0f t =得3t =, -------------------------------------8分 函数()f t 与'()f t 在定义域上的情况下表:t (1,3)-3 (3,11) '()f t +0 - ()f t↗ 极大值 ↘-----------------------------------12分 所以当3t =时,函数()f t 取得最大值8. ------------------------------------13分 解法2.由211()(11)1(11)(1),11122f t t t t t t =-+=-+-<< 设2()(11)(1),111g t t t t =-+-<<, -------------------------------------6分则2'()2(11)(1)(11)(11)(1122)3(3)(11)g t t t t t t t t t =--++-=--++=--.-------7分函数()g t 与'()g t 在定义域上的情况下表:t (1,3)-3 (3,11) '()g t +0 - ()g t↗ 极大值 ↘------------------------------------11分 所以当3t =时,函数()g t 取得最大值, -----------------------------------12分 所以当3t =时,函数()f t 取得最大值1(3)82g =.------------------------------------13分18.解:(I )由②可得2112a a ⋅=,3122a a ⋅= -------------------------------2分 由①可得12a =. -------------------------------3分(II )由②可得112n n a a +⋅=, ------------------------------6分所以数列{}n a 的通项公式2n n a =. ------------------------------7分(III )由(II )可得21(1)421n n n n b a +=+=++,易得1{4},{2}n n +分别为公比是4和2的等比数列,------------------------------8分由等比数列求和公式可得124(14)4(12)1(416)214123n n n n n S n n ++--=++=-++--.--13分19.解:(I )因为1a =,2()42ln f x x x x =-+,所以2242'()(0)x x f x x x-+=>, ------------------------------1分 (1)3f =-,'(1)0f =, ------------------------------3分所以切线方程为3y =-. ------------------------------4分(II )222(1)22(1)()'()(0)x a x a x x a f x x x x-++--==>, ----------------------------5分 由'()0f x =得12,1x a x ==, ------------------------------6分 当01a <<时,在(0,)x a ∈或(1,)x ∈+∞时'()0f x >,在(,1)x a ∈时'()0f x <,所以()f x 的单调增区间是(0,)a 和(1,)+∞,单调减区间是(,1)a ; ---------------7分 当1a =时,在(0,)x ∈+∞时'()0f x ≥,所以()f x 的单调增区间是(0,)+∞;-----8分 当1a >时,在(0,1)x ∈或(,)x a ∈+∞时'()0f x >,在(1,)x a ∈时'()0f x <.所以()f x 的单调增区间是(0,1)和(,)a +∞,单调减区间是(1,)a . ---------------10分 (III )由(II )可知()f x 在区间[1,e]上只可能有极小值点,所以()f x 在区间[1,e]上的最大值在区间的端点处取到,-------------------------12分 即有(1)12(1)0f a =-+≤且2(e)e 2(1)e 20f a a =-++≤,解得2e 2e 2e 2a -≥-. ---------------------14分 20.解:(I )27,9,3;8,9,3;6,2,3. --------------------------------------3分(II )若k a 被3除余1,则由已知可得11k k a a +=+,2312,(2)3k k k k a a a a ++=+=+; 若k a 被3除余2,则由已知可得11k k a a +=+,21(1)3k k a a +=+,31(1)13k k a a +≤++; 若k a 被3除余0,则由已知可得113k k a a +=,3123k k a a +≤+; 所以3123k k a a +≤+, 所以312(2)(3)33k k k k k a a a a a +-≥-+=- 所以,对于数列{}n a 中的任意一项k a ,“若3k a >,则3k k a a +>”.因为*k a ∈N ,所以31k k a a +-≥.所以数列{}n a 中必存在某一项3m a ≤(否则会与上述结论矛盾!)若3m a =,则121,2m m a a ++==;若2m a =,则123,1m m a a ++==,若1m a =,则122,3m m a a ++==, 由递推关系易得{1,2,3}A ⊆. ---------------------------------------8分 (III )集合A 中元素个数()Card A 的最大值为21.由已知递推关系可推得数列{}n a 满足:当{1,2,3}m a ∈时,总有3n n a a +=成立,其中,1,2,n m m m =++.下面考虑当12014a a =≤时,数列{}n a 中大于3的各项:按逆序排列各项,构成的数列记为{}n b ,由(I )可得16b =或9,由(II )的证明过程可知数列{}n b 的项满足: 3n n b b +>,且当n b 是3的倍数时,若使3n n b b +-最小,需使2112n n n b b b ++=-=-, 所以,满足3n n b b +-最小的数列{}n b 中,34b =或7,且33332k k b b +=-,所以33(1)13(1)k k b b +-=-,所以数列3{1}k b -是首项为41-或71-的公比为3的等比数列, 所以131(41)3k k b --=-⨯或131(71)3k k b --=-⨯,即331k k b =+或3231k k b =⨯+, 因为67320143<<,所以,当2014a ≤时,k 的最大值是6,所以118a b =,所以集合A 重元素个数()Card A 的最大值为21.---------------13分。

北京市第十三中学分校2014---2015学年度第二学期期中八年级 数 学 试 卷 含答案

北京市第十三中学分校2014---2015学年度第二学期期中八年级  数 学 试 卷 含答案

一.选择题(每小题3分,共30分)1.下列各组数中,以它们为边长的线段不能..构成直角三角形的是(). A .12 B .1,2 C .5,12,13 D . 12. 已知关于x 的方程0162=-+-m x x 有两个不相等实数根,则m 的取值范围是( ).A .10<mB .10=mC .10>mD .10≥m3. ()22230m m x mx --++=是关于x 的一元二次方程,则m 的取值范围是( ).A .1m ≠B .2m ≠C .1m ≠-且2m ≠D .一切实数 4. 对角线相等且互相平分的四边形一定是( ).A .等腰梯形B .矩形C .菱形D .平行四边形 5.下列命题中不正确...的是( ) A .平行四边形的对角线互相平分B .平行四边形的面积等于底乘以这底上的高C .一组对边平行,另一组对边相等的四边形是平行四边形D .两组对边分别相等的四边形是平行四边形6ABCD 的周长是44,对角线AC 、BD 相交于点O,且△OAB 的周 长比△OBC 的周长小4,则AB 的长为 ( )A .4 B.9 C.10 D.127.若一个直角三角形的两边长分别是5和12,则第三边长为( )A.13B.119C.13或119D.无法确定8. 将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ) A.B. 2C. 3D.9. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P , 则∠FPC=( )A .35°B .45°C .50°D .55°北京市第十三中学分校2014---2015学年度 第二学期期中 八年级 数 学 试 卷10. 如图,已知△ABC 中,∠ABC =90°, AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .7第Ⅱ卷二. 填空题(每小题2分,共16分)11.关于x 的一元二次方程()()222340m x m x m -+++-=有一个根是零,则m =___.12已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为____________.13.中,AE ⊥BD 于E ,∠EAC=30°,AE=3,则AC 的长等于 ______ .14.如图,菱形ABCD 的周长为40cm ,∠ABC=60°,E 是AB 的中点,点P 是BD 上的一动点,则PA+PE 的最小值为___________.15. 在直线l 上摆放着七个正方形(如图),已知斜放置的三个正方形的面积分别是1、2、3正放置的四个正方形的面积依次是1234S S S S 、、、,则1234S S S S +++= .第10题l 1l 2 l 3ACB第8题第13题 第15题第9题A DEP CBF14题16. 已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为_____________.17.矩形ABCD 中,对角线AC ,交于点O ,AE BD ⊥于E , 若13OE ED =∶∶,AE = 则BD = .18. 如图,在平面直角坐标系中,边长不等的正方形依次排列, 每个正方形都有一个顶点落在函数y=x 的图象上,从左向右 第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角 形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n , 则S 2的值为________, S n 的值为_____ . (用含n 的代数式表示,n 为正整数) 三.计算题(每小题5分,共10分)19. 220x -+= 20. 2(x+2)2-8=0四.解答题(21----25每小题5分,26---27每小题6分,28题7分,共44分) 21.已知:如图,在平行四边形ABCD 中,点E 、F 在AC 上,且AE=CF . 求证:四边形BEDF 是平行四边形.22.已知:△ABC 中,∠B=30°,∠C=45°,AB=2,求BC 的长.23. 某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.求平均每年投资增长的百分率.24. 如图,已知△ABC 是等腰三角形,顶角∠BAC=α(α<60°),D 是BC 边上的一点,连接AD , 线段AD 绕点A 顺时针旋转α到AE ,过点 E 作BC 的平行线,交AB 于点F ,连接 DE ,BE ,DF . (1)求证:BE=CD ; (2)若AD ⊥BC ,试判断四边形BDFE 的形状,并给出证明.25. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.26. 我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.如图1。

2014年北京市中考数学试卷(附答案与解析)

2014年北京市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前北京市2014年高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共32分)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( )A .2B .2-C .12-D .122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨.将300000用科学记数法表示应为( )A .60.310⨯B .5310⨯C .6310⨯D .43010⨯ 3.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .16B .14C .13D .124.如图是某几何体的三视图,该几何体是( )A .圆锥B .圆柱C .正三棱柱D .正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄18 19 20 21 人数5 41 2 则这12名队员年龄的众数和平均数分别是( ) A .18,19B .19,19C .18,19.5D .19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为 ( ) A .40平方米 B .50平方米 C .80平方米 D .100平方米7.如图,O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,CD 的长为( ) A .22 B .4 C .42 D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( )ABCD第Ⅱ卷(非选择题 共88分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 9.分解因式:429ax ay -= .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达方式为 .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(),a b ,对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分5分)如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.(本小题满分5分)计算:011(6π)()3tan30|5--+--+-.15.(本小题满分5分)解不等式1211232x x --≤,并把它的解集在数轴上表示出来.16.(本小题满分5分)已知x y -=,求代数式2(1)2(2)x x y y x +-+-的值.17.(本小题满分5分)已知关于x 的方程2(2)20(0)mx m x m -++=≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.(本小题满分5分) 列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.(本小题满分5分)如图,在□ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=,求tan ADP ∠的值.20.(本小题满分5分)根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图FPECBADECBAD数学试卷 第5页(共28页) 数学试卷 第6页(共28页)根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.21.(本小题满分5分)如图,AB 是O 的直径,C 是AB 的中点,O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF 交O 于点H ,连接BH .(1)求证:AC CD =; (2)若2OB =,求BH 的长.22.(本小题满分5分) 阅读下面材料:小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=,30CAD ∠=,2AD =,2BD DC =,求AC 的长.小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2).请回答:ACE ∠的度数为 ,AC 的长为 . 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=,30CAD ∠=,75ADC ∠=,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.23.(本小题满分7分)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点2(0,)A -,(3,4)B . (1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分7分)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接,BE DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若20PAB ∠=,求ADF ∠的度数;(3)如图2,若4590PAB ∠<<,用等式表示线段,,AB FE FD 之间的数量关系,并证明.25.(本小题满分8分)对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=(0)x >和1(42)y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+(,)a x b b a ≤≤>的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤?北京市2014年高级中等学校招生考试数学答案解析5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】22.5A =∠sin OC COE =∠,又AB CD ⊥【考点】圆周角定理,垂径定理,解直角三角形. 【答案】A【解析】因为由图象看,点AP 是先增大再减小,直到半周的位置而当点动半周时,AP 是先增大再减小再增大;当点P 沿正方形边界运动半周时,第Ⅱ卷【答案】证明:BC DE∥EDB中,ABABCBC⎧⎪⎨⎪⎩∠,A∴=∠【考点】平行线的性质,全等三角形的判定和性质不等式的解集在数轴上表示如下:7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)x y -=【考点】代数式的化简求值17.【答案】)证明:0m ≠,2(mx m ∴-是关于x 的一元二次方程(2)m m =-2(2)m -≥∴方程总有两个实数根(2)由求根公式,得11x ∴=,方程的两个根都是整数,且19.【答案】(1)证明:BF 是ABC ∠的平分线,AD BC ∥AFB ∴=∠同理AB =∴四边形ABEF AB AF =9 / 14(2)过点P 作PG AD ⊥于点G ,如图.四边形4AB =,12AP ∴=在Rt AGP △cos601AG AP ∴==,sin 603GP AP ==. 6AD =,5DG ∴=3tan 5ADP ∴=∠. 【考点】角平分线的定义,平行四边形及菱形的判定和性质,解直角三角形等20.【答案】(2)5.00AB 是O 的直径,C 是AB 的中点,AC BC ∴=.CAB CBA ∴∠=∠=BD 是O 的切线,可证CBD D ∠=∠=BC CD ∴=.AC ∴=数学试卷 第19页(共28页)数学试卷 第20页(共28页)OA OC =COE ∴∠=E 是OB CEO ∠=BF OC ∴=.2OB =,由勾股定理,得AF =90ABF AHB ∠=∠=4=55AB BF BH AF ∴=【考点】切线的性质,等腰直角三角形的性质,全等角形的判定与性质,勾股定理等22.【答案】解:ACE ∠解决问题:过点D 作DF AB ∥交AC 于点F .如图.2 BE ED=CAD∠=2ABFD=,ADC∠=AC AD∴=在Rt ABC△【考点】相似三角形的判定与性质,勾股定理等23.【答案】)点∴抛物线的对称轴为1x=.24.【答案】(1)补全图形,如图1所示.(2)连接AE,如图2.点AB AD=AED∴∠=2ADF∴∠ADF∴∠=(3)AB,数学试卷第23页(共28页)点=AB AD∴∠=ADE∠=又DGF22∴+FB FD22=BD AB【解析】轴对称的性质,等腰三角形的性质,三角形的内角和定理,勾股定理等25.【答案】(1(=+-y xy函数的最大值是又函数的边界值是数学试卷第27页(共28页)。

2013-2014学年北京市重点中学高二上学期期中数学试卷与解析

2013-2014学年北京市重点中学高二上学期期中数学试卷与解析

2013-2014学年北京市重点中学高二(上)期中数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=2.(4分)设点P(x,y),则“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(4分)若命题“(¬p)∨(¬q)”是假命题,则在下列各结论中,正确的为()①命题“p∧q”是真命题;②命题“p∧q”是假命题;③命题“p∨q”是真命题;④命题“p∨q”是假命题.A.①③B.②④C.②③D.①④4.(4分)下列命题中的假命题是()A.∀x∈R,2x﹣1>0 B.∀x∈N*,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=25.(4分)抛物线y2=8x的焦点到准线的距离是()A.1 B.2 C.4 D.86.(4分)圆与圆的位置关系是()A.相交B.外切C.内切D.相离7.(4分)双曲线﹣=1的焦点到渐近线的距离为()A.2 B.C.3 D.28.(4分)一个几何体的三视图如图所示,那么此几何体的表面积为()A.144 B.124 C.104 D.849.(4分)设a>b>0,k>0且k≠1,则椭圆和椭圆具有相同的()A.顶点B.焦点C.离心率D.长轴和短轴10.(4分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.311.(4分)若椭圆mx2+ny2=1与直线x+y﹣1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=()A.B.C.D.12.(4分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8二、填空题(本大题共8个小题,每小题4分,共32分.把答案填在题中横线上)13.(4分)命题p“∀x∈R,sinx≤1”的否定是.14.(4分)已知直线l:y=kx+1与抛物线C:y2=x,则“k≠0”是“直线l与抛物线C 有两个不同交点”的条件.15.(4分)过原点的直线与圆C:x2+y2﹣4y+3=0相切,若切点在第二象限,则该直线方程为.16.(4分)若中心在原点,对称轴为坐标轴的椭圆过点P(3,0),且长轴长是短轴长的3倍,则其标准方程为.17.(4分)若抛物线C:y2=x上一点P到A(3,﹣1)的距离与到焦点F的距离之和最小,则点P的坐标为.18.(4分)某几何体的三视图如图所示,则它的体积是.19.(4分)过抛物线y2=2px(p>0)的焦点作倾斜角为60°的直线,与抛物线分别交于A,B两点(点A在x轴上方),=.20.(4分)已知是圆为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为.三、解答题(本大题共2个小题,每小题10分.共20分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知两个定点O(0,0),A(3,0),动点M满足,记动点M的轨迹为C.(Ⅰ)求C的方程;(Ⅱ)求直线l:x+y+2=0被C截得的弦长.22.(10分)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.2013-2014学年北京市重点中学高二(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=【解答】解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选:C.2.(4分)设点P(x,y),则“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵x=2且y=﹣1”可以得到“点P在直线l:x+y﹣1=0上”,当“点P在直线l:x+y﹣1=0上”时,不一定得到x=2且y=﹣1,∴“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”的充分不必要条件,故选:A.3.(4分)若命题“(¬p)∨(¬q)”是假命题,则在下列各结论中,正确的为()①命题“p∧q”是真命题;②命题“p∧q”是假命题;③命题“p∨q”是真命题;④命题“p∨q”是假命题.A.①③B.②④C.②③D.①④【解答】解:∵命题“(¬p)∨(¬q)”是假命题,∴¬p和¬q都是假命题,∴p和q都是真命题,故“p且q”和“p或q”都是真命题故选:A.4.(4分)下列命题中的假命题是()A.∀x∈R,2x﹣1>0 B.∀x∈N*,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2【解答】解:∵指数函数y=2t的值域为(0,+∞)∴任意x∈R,均可得到2x﹣1>0成立,故A项正确;∵当x∈N*时,x﹣1∈N,可得(x﹣1)2≥0,当且仅当x=1时等号∴存在x∈N*,使(x﹣1)2>0不成立,故B项不正确;∵当x=1时,lgx=0<1∴存在x∈R,使得lgx<1成立,故C项正确;∵正切函数y=tanx的值域为R∴存在锐角x,使得tanx=2成立,故D项正确综上所述,只有B项是假命题故选:B.5.(4分)抛物线y2=8x的焦点到准线的距离是()A.1 B.2 C.4 D.8【解答】解:由y2=2px=8x,知p=4,又焦点到准线的距离就是p.故选:C.6.(4分)圆与圆的位置关系是()A.相交B.外切C.内切D.相离【解答】解:∵圆C1的方程为x2+y2+6x﹣4y+9=0,∴化成标准方程得(x+3)2+(y﹣2)2=4,可得圆心C1(﹣3,2),半径r1=2.同理可得圆C2的圆心为C2(3,﹣6),半径r2=8.∵两圆圆心之间的距离|C1C2|==10.∴由r1+r2=10,可得|C1C2|=r1+r2.因此两圆相外切.故选:B.7.(4分)双曲线﹣=1的焦点到渐近线的距离为()A.2 B.C.3 D.2【解答】解:由题得:其焦点坐标为(±4,0).渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:D.8.(4分)一个几何体的三视图如图所示,那么此几何体的表面积为()A.144 B.124 C.104 D.84【解答】解:如图,此几何体是正四棱锥,其底面边长为8,侧面的斜高为5,从而表面积为底面面积加四个侧面面积,S=8×8+4××8×5=144.故选:A.9.(4分)设a>b>0,k>0且k≠1,则椭圆和椭圆具有相同的()A.顶点B.焦点C.离心率D.长轴和短轴【解答】解:∵椭圆中,长半轴为a,短半轴为b,∴椭圆C1的半焦距c=,可得椭圆C1的离心率e1==;将椭圆化成标准形式,得,∴k>0,得椭圆C2的离心率e2==.因此e 1=e2,即椭圆C1与椭圆C2的离心率相同.当a、b保持不变时椭圆C1的顶点、焦点、长轴和短轴保持不变,而随着k的变化椭圆C2的顶点、焦点、长轴和短轴都在变化.因此,两个椭圆不一定有相同的顶点、焦点、和长短轴.故选:C.10.(4分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.3【解答】解:∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x=﹣,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,∴则,A,B两点的纵坐标分别是y=±=,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选:C.11.(4分)若椭圆mx2+ny2=1与直线x+y﹣1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=()A.B.C.D.【解答】解:由直线x+y﹣1=0,可得y=﹣x+1代入mx2+ny2=1得:(m+n)x2﹣2nx+n ﹣1=0设A、B的坐标为(x1,y1),(x2,y2),则有:x1+x2=,y1+y2=1﹣x1+1﹣x2=2﹣(x1+x2)=∴M的坐标为:(,),∴0M的斜率k==故选:B.12.(4分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选:B.二、填空题(本大题共8个小题,每小题4分,共32分.把答案填在题中横线上)13.(4分)命题p“∀x∈R,sinx≤1”的否定是∃x∈R,sinx>1.【解答】解:根据题意我们直接对语句进行否定命题p“∀x∈R,sinx≤1”的否定是:∃x∈R,sinx>1.故答案为:∃x∈R,sinx>1.14.(4分)已知直线l:y=kx+1与抛物线C:y2=x,则“k≠0”是“直线l与抛物线C 有两个不同交点”的必要而不充分条件条件.【解答】解:∵直线l与抛物线C有两个不同交点,∴方程组有两组不同的实数解,即方程k2x2+(2k﹣1)x+1=0有两个不同的实根且k≠0,∴“k≠0”是“直线l与抛物线C有两个不同交点”的必要不充分条件.故答案为:必要而不充分条件.15.(4分)过原点的直线与圆C:x2+y2﹣4y+3=0相切,若切点在第二象限,则该直线方程为.【解答】解:圆C:x2+y2﹣4y+3=0化为圆x2+(y﹣2)2=1,圆的圆心坐标(0,2),半径为1,如图:设直线方程为y=kx,即kx﹣y=0,∴,∴k=.因为切点在第二象限,∴k=.所求直线方程为.故答案为:16.(4分)若中心在原点,对称轴为坐标轴的椭圆过点P(3,0),且长轴长是短轴长的3倍,则其标准方程为或.【解答】解:①当椭圆的焦点在x轴上时,设方程为(a>b>0).∵椭圆过点P(3,0),∴a=3,∵长轴长是短轴长的3倍,∴2a=3•2b,可得b==1,此时椭圆的方程为;②当椭圆的焦点在y轴上时,设方程为(a>b>0).∵椭圆过点P(3,0),∴b=3,∵长轴长是短轴长的3倍,∴2a=3•2b,可得a=3b=9,此时椭圆的方程为.综上所述,椭圆的标准方程为或.17.(4分)若抛物线C:y2=x上一点P到A(3,﹣1)的距离与到焦点F的距离之和最小,则点P的坐标为(1,﹣1).【解答】解:作出抛物线的准线l,设P在l上的射影点为Q,连结PQ,根据抛物线的定义,得|PA|+|PF|=|PA|+|PQ|,运动点P,可得当A、P、Q三点共线时,|PA|+|PQ|=|AQ|达到最小值.∴当|PA|+|PF|取最小值时,直线PA与准线l垂直,可设P的坐标为(x0,﹣1),代入抛物线方程得(﹣1)2=x0,此时的点P坐标为(1,﹣1),即点P到A的距离与P到焦点F的距离之和最小时,点P的坐标为(1,﹣1).故答案为:(1,﹣1)18.(4分)某几何体的三视图如图所示,则它的体积是8﹣π.【解答】解:由题意知,根据三视图可知,几何体是一个正方体挖去一个圆锥得到的,要求的几何体的体积是由正方体的体积减去圆锥的体积,正方体的体积是23=8,圆锥的体积是×πR2•h=,∴要求的几何体的体积是8﹣,故答案为:8﹣π.19.(4分)过抛物线y2=2px(p>0)的焦点作倾斜角为60°的直线,与抛物线分别交于A,B两点(点A在x轴上方),=3.【解答】解:设A(x1,y1),B(x2,y2),则,,又,可得,则,故答案为:3.20.(4分)已知是圆为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为.【解答】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,a=1,c=,则有b=故点P的轨迹方程为故答案为三、解答题(本大题共2个小题,每小题10分.共20分.解答应写出文字说明、证明过程或演算步骤)21.(10分)已知两个定点O(0,0),A(3,0),动点M满足,记动点M的轨迹为C.(Ⅰ)求C的方程;(Ⅱ)求直线l:x+y+2=0被C截得的弦长.【解答】解:(Ⅰ)设M(x,y),由,得,化简得x2+y2+2x﹣3=0,∴动点M的轨迹C的方程为x2+y2+2x﹣3=0;(Ⅱ)由x2+y2+2x﹣3=0,即(x+1)2+y2=4,∴C是以(﹣1,0)为圆心,2为半径的圆.圆心(﹣1,0)到直线l:x+y+2=0的距离,∴弦长为.22.(10分)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.【解答】解:(Ⅰ)∠F1AF2=60°⇔a=2c⇔e==.(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=.△AF1B面积S=|BA||F1A|sin60°⇔=40⇔a=10,∴c=5,b=5.。

北京第13中学—度初二上期中数学试题及答案.doc

北京第13中学—度初二上期中数学试题及答案.doc

北京市第十三中学2014-2015学年度 八年级数学期中测试 2014年11月下面各题均有四个选项,其中只有一个是符合题意的. 1. 下列平面图形中,不是..轴对称图形的是( )2. 点P (1,2)关于y 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3.下列各式从左到右的变形属于分解因式的是( )A .(2)(3)(3)(2)m m m m --=--B .21(1)(1)a a a -=+- C .2(1)(1)1x x x +-=- D .2223(1)2a a a -+=-+4.计算33-的结果是( ). A .9- B .27- C .271 D .271- 5.在△ABC 和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC ≌△A′B′C′一定成立的是( ).A .AC=A′C′B .BC=B′C′C .∠B=∠B′D .∠C=∠C′ 6.计算1a -1 – aa -1的结果为()A. 1+a a -1B . -aa -1 C . -1 D .1-aABCD7.与三角形的三个顶点距离相等的点是( )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .三条边垂直平分线的交点 8.已知:如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC , ∠BAD=40°,则∠C 为 ( )A .35°B .25°C .40°D .50°9.如图,在△ABC 中,AB=4,AC=3,AD 平分∠BAC 交BC 于点D , 则S △ABD :S △ADC 为( )A . 4∶3B .16∶19C .3∶4D . 不能确定10.在ΔABC 中,高AD 、BE 所在直线交于H 点,若BH =AC ,则∠ABC =( ). A .30︒ B .45︒或135︒ C .45︒ D .30︒或150︒ 二、填空题(每小题2分,共20分)11.若1)5(0=+x ,则x 的取值范围________. 12. 分解因式:x 2+6x +9=_________13.把0.000 043用科学记数法表示为_____________.14.计算:20132-20142= .15.当分式24-2+x x 的值为0时, x 的值是 .16.如图,在四边形ABCD 中,CD=CB ,∠B=∠D=90°,∠BAC=55°, 则∠BCD 的度数为 .17.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为____________.18.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积28cm 2,则图中阴影部分的面积是 ___ cm 2. 19.已知311=-y x ,则分式yxy x yxy x ---+2232的值为 . ABCDABCDABCDb20.如图,点A 的坐标为(0,1),点B 的坐标为(3,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,且C 、D 不重合,那么点D 的坐标是________________________.三、解答题(每小题5分,共40分)21.分解因式: 8m 3n -2mn 22.计算:(m+2+m-25)m -34-m 2•23.解分式方程:45251=+-++xx x24.先化简,再求值:21)21441(22++÷++++x x x x x x ,其中x =3.25. 如图,点A ,E ,F ,C 在同一条直线上,AD =BC ,A E =CF , ∠A =∠C .求证:△ADF ≌△CBE .26. a ,b 分别代表铁路和公路,点M 、N 分别代表蔬菜和杂货批发市场.现要建中转站O 点,使O 点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O 点位置,不写作法,保留作图痕迹.27.如图,在平面直角坐标系xoy 中,A(-1,5),B (-1,0),C (-4,3).(1)ABC △的面积是____________.(2)作出ABC △关于x 轴的对称图形111A B C △. (3)写出点111,,A B C 的坐标.FEDABC28.学校在假期内对教室内的黑板进行整修,需在规定期限内完成.如果由甲工程小组做,恰好如期完成;如果由乙工程小组做,则要超过规定期限3天.结果两队合作了2天,余下部分由乙组独做,正好在规定期限内完成,问规定期限是几天?四、解答题(每小题5分,共10分)29.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连结BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE 的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?30.已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—α.(1)用含α的代数式表示∠APC,得∠APC =_______________________;(2)直接写出∠BAP与∠PCB的大小关系是_____________________;(3)求∠PBC的度数.APB C初二数学期中测试答案 2014年11月一.选择题1.A 2.B 3.B 4.C 5.B 6.C 7.D 8.A 9.A 10.B 二.填空题11. 5-≠x 12. (x+3)2 13. 4.3×10-5 14. -4027 15. 270° 17. 6 18. 14 19 . 3/5 20. (-1,3)(-1,-1)(4,-1)三、解答题21. 原式=2m (4m 2-1)=2mn(2m+1)(2m-1)22. (m+2+m-25)m -34-m 2•=m -25)2-m )(2m (++m -34-m 2•=m -2)m -3)(m 3(+m-3)2-m (2•=-2m-6 23. 解:方程两边同乘(5)x +,得 20421+=-+x x . 解得 7-=x .检验:7-=x 时50x +≠,7-=x 是原分式方程的解. 24. 解:21)21441(22++÷++++x x x x x x =21])2(1)2(1[2++÷+++x x x x x =21)2(222++÷++x x x x x =22(1)2(2)1x x x x x ++⋅++ =222x x+. 当3=x 时,原式=22323+⨯=152. 25. 证明:∵ A E =CF , ∴ A E +EF = CF + EF . ∴ AF =EC .在△ADF 和△CBE 中,⎪⎩⎪⎨⎧=∠=∠=,,,CE AF C A CB AD ∴ △ADF ≌△CBE .26. 略27. (1)7.5FEDABC28. 设规定期限是x 天,则132=++x x x 解得:x=6 检验:x=6是方程的解且符合题意 答:设规定期限是6天29. (1)EC 证△ABC ≌△AEC 60°不变 30. (1)∠APC 230α+=.(2)相等(∠BAP=∠PCB . ) (3)解法一:在CB 上截取CM 使CM=AP ,连接PM (如图). ∵PC=AC ,AB=AC , ∴PC=AB . 在△ABP 和△CPM 中, AB=CP ,∠3=∠4, AP=CM ,∴△ABP ≌△CPM . ∴∠6=∠7, BP=PM . ∴∠8=∠9.∵∠6=∠ABC -∠8,∠7=∠9-∠4,∴∠ABC -∠8=∠9-∠4.即(290α-)-∠8=∠9-(302-α). ∴ ∠8+∠9=60. ∴2∠8=60. ∴∠8= 30.即∠PBC= 30.解法二:作点P 关于BC 的对称点N ,连接PN 、AN 、BN 和CN (略)4521CPAB63987。

北京市第十三中学2014-2015学年度第二学期七年级数学期中测试含答案.docx

北京市第十三中学2014-2015学年度第二学期七年级数学期中测试含答案.docx

4321D C BA 北京市第十三中学2014-2015学年度七年级数学期中测试 2015年4月一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。

1.不等式 -x >-2的解集在数轴上表示为 ( )A .B .C .D .2.已知a b <,下列不等式变形中正确的是( )A .22a b ->-B .22ab>C . 22a b ->-D .3131a b +>+ 3.下列长度的三条线段能组成三角形的是( )A .2,3,6B .4,4,8C .5,9,14D .6,12,13 4.如图 若AD∥BC,则( ). A .∠1=∠2 B.∠3=∠4C .∠1=∠3 D.∠B+∠BCD=∠180° 5.下列命题中,是真命题的个数是 ( )①两条直线被第三条直线所截,同位角相等②在同一平面内,垂直于同一直线的两直线互相平行 ③三角形必有一条高线在三角形内部 ④三角形的三个外角一定都是锐角 A .1个 B .2个 C .3个 D .4个6.如图,在△ABC 中,∠C =90°.若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是 ( )A .40°B .60° C.70° D .80° 7.如图,在△ABC 中,将△ABC 沿射线BC 方向移动,使点B 移动到点C ,得到△DCF ,连接AF ,若△ABC 的面积为4,则△ABF 的面积为 ( )A .2B .4C .8D . 168.在△ABC 中,若∠A ∶∠B =5∶7,∠C -∠A =10°,则∠C等于( )A .70°B .60°C .50°D .40°A D F C A EB9.如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( )A.10°B.15°C.20°D.30°10.如果不等式组⎩⎨⎧><m x x 3无解,那么m 的取值范围是( )A .m <3B .m≤3C .m >3D .m≥3二、细心填一填(11-19每题2分,20题3分,本题共21分)11.用不等式表示“x 的3倍与2的和不小于5”为__________________.12.若一个多边形的内角和是外角和的4倍,则这个多边形的边数是________. 13.将一副直角三角尺按如图所示放置,其中∠A=30°,∠ACB=90°, ∠E=45°,三角形板DCE 的直角顶点D 在AB 边上,边ED 与边AC 交于点F ,若EC ∥AB , 则∠AFE 的度数是 .14.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为____________.15.如图,△ABC 中,∠B=30°,∠C=70°,AD 平分∠BAC, AE⊥BC 于E , EF⊥AD 于F ,则∠AEF=__________.16. 如图,ABC ∆中,∠ABC=BAC ∠,DAC ACD ∠=∠,若∠ADC=CAD ∠21,则∠BAD的度数为 .17.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,那么其它两边长 分别为 ㎝.18.点O 在直线AB 上,∠AOC =35°,射线OD ⊥OC ,∠BOD 的度数是 _ . 19.关于x 的方程5336x x m =+-的解是负数,则m 的取值范围是__________________. 20.如图: 已知△ABC 中,∠ABC 的n 等分线与∠ACB 的n 等分线分别相交于G 1, G 2, G 3, … , G n -1,试猜想:∠BG n -1C 与∠A 的关系.(其中n 是不小于2 的整数) , 首先得到:当n = 2时,如图1,∠BG 1C = ______________,14题图 15题图 16题图A D F C BEA B C G 1 A B C G 1 G 2 图1 图2 AB CG 1G 2 G n -1…图3 A当n = 3时,如图2,∠BG 2C = _____________, ……如图3,猜想 ∠BG n -1C = ___________________ .三、解答题(本题共28分,第21~24题每小题6分,第25题4分) 21.解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 22.解不等式组 4(1)78,25,3x x x x +≤-⎧⎪-⎨-<⎪⎩并求它的所有整数解23.根据下列证明过程填空:如图,BD ⊥AC ,EF ⊥AC ,D 、F 分别为垂足,且∠1=∠4,求证:∠CDG +∠C =180° 证明:∵BD ⊥AC ,EF ⊥AC∴∠2=∠ = ∴BD ∥ ∴∠4= ∵∠1=∠4∴∠1=∴DG ∥ ∴∠CDG +∠C =180°24.已知:如图,四边形ABCD 中,AD ∥BC ,AC 为对角线,点E 在BC 边上,点F 在AB 边上,且 ∠1=∠2.(不用标注理由) (1)求证:EF ∥AC ;(2)若CA 平分∠BCD ,∠B =50°,∠D =120°, 求∠BFE 的度数.25.作图题.要求:铅笔作图.如图,已知△ABC ,求作: (1) △ABC 的中线AD ; (2) △ABD 的角平分线DM ; (3) △ACD 的高线CN ;(4)若AB=3,△ACD 的周长与△ABD 的周长差为2,则AC=四、解答题(本题共21分,每题7分) 26.列方程组和不等式组解应用题某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?27.先阅读短文,然后回答短文后面所给出的问题: 对于三个数c b a 、、的平均数,最小的数都可以给出符号来表示,我们规定{}c b a M ,,表示c b a ,,这三个数的平均数,{}c b a ,,m in 表示c b a ,,这三个数中最小的数,{}c ,b ,a max 表示c b a ,,这三个数中最大的数。

2014年北京市中考数学试卷-答案

2014年北京市中考数学试卷-答案
AB 是 O 的直径,ACB 90 . C 是 AB 的中点, AC=BC . AC BC . CAB CBA 45 . BD 是 O 的切线,ABD 90 . 可证 CBD D 45 . BC CD . AC CD .
5 / 10
(2)连接 OC. OA OC ,OCA CAB 45 .
∠AFB ∠ABF , AB AF 同理 AB BE . AF BE . 四边形 ABEF 是平行四边形.
AB AF ,四边形 ABEF 是菱形.
4 / 10
(2)过点 P 作 PG AD 于点 G,如图.
四边形 ABEF 是菱形, ABC 60 , △ABE 是等边三角形.
AB 4 , AE AB 4 . AP 1 AE 2 .
3 【解析】待定系数法求函数解析式,在平面直角坐标系中比较的数值的大小. 24.【答案】(1)补全图形,如图 1 所示.
(2)连接 AE,如图 2.
点 E 与点 B 关于直线 AP 对称, AE AB , EAP BAP 20 .
AB AD , BAD 90 , AE AD . AED ADF . 2ADF 40 90 180 . ADF 25 . (3)AB,FE,FD 满足的数量关系: FE2 FD2 2AB2 . 证明:连接 AE,BF,BD,设 BF 交 AD 于点 G,如图 3.
时,n 为正整数,n 等于原数的整数位数减 1;当原数的绝对值小于 1 时,n 为负整数,n 的绝对值等于原数 中左起第一个非零数前零的个数(含整数位上的零),即 300 000 3105 ,故选 B.
【考点】科学记数法. 3.【答案】D 【解析】六张扑克牌中有 2 张的点数是偶数,故 P(抽到的点数是偶数) 3 1 ,故选 D.

北京第十三中分校2013-2014年初一下期中数学试题及答案

北京第十三中分校2013-2014年初一下期中数学试题及答案

第Ⅰ卷一、 选择题(本题共30分,每小题3分)以下每个小题中,只有一个选项....是符合题意的.1. 不等式2+x <4的正整数解有 .A .1个B .2个C .3 个D .4个2. 下列各式正确的是 .A .5)5(2-=- B . 15)15(2-=-- C .5)5(2±=- D .2121= 3. 在下列各数0.51525354、0、2.0 、π3、722、 1010010001.6、11131、27 中,无理数的个数是 .A . 1B . 2C . 3D . 44. 利用数轴确定不等式组102x x +≥⎧⎨<⎩的解集,正确的是 .A .B .C .D . 2013---2014学年度北京市第十三中学分校 第二学期期中 七年级 数 学 试 卷5. 如右图,由下列条件不能得到AB ∥CD 的是 .A . ∠B +∠BCD =180° B . ∠1=∠2C . ∠3=∠4D . ∠B =∠56. 将一直角三角板与两边平行的硬纸条如图所示放置,下列结论:(1)∠1=∠2; (2)∠3=∠4; (3)∠2+∠4=90°; (4)∠4+∠5=180°. 其中正确的个数是 . A .1 B .2 C .3 D .47. 下列命题中,是真命题的个数是.①两条直线被第三条直线所截,同位角相等②在同一平面内,垂直于同一直线的两直线互相平行 ③三角形必有一条高线在三角形内部 ④三角形的三个外角一定都是锐角A .1个B .2个C .3个D .4个8. 等腰三角形的两边长分别是5㎝和10㎝,则它的周长是 . A .15㎝ B .20㎝ C .25㎝ D .20㎝或25㎝9. 关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧++-+a x x x x )3(21,5)52(31只有5个整数解,则a 的取值范围是.A .2116-- a B . 2116-≤- a C . 2116-≤-a D . 2116-≤≤-a10. 已知正整数a 、b 、c 中,c 的最大值为6且a<b<c ,则以a 、b 、c 为三边的三角形共有.A .4个B .5个C .6个D .7个第Ⅱ卷二、细心填一填(本题共16分,每小题2分)11. 若点P(m -2,13+m )在x 轴上,则m =________. 12.81的平方根是 .13.如图,四边形ABCD 中,∠B=40°,沿直线MN 剪去∠B ,则所得五边形AEFCD 中,∠1+∠2=_________°.14.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.若格点P (m -2,m +1)在第二象限,则m 的值为______.15.如图,000623,622,721=∠=∠=∠,则4∠的度数为 °.第15题图 第16题图16.将一副直角三角尺按如图所示放置,其中∠A=30°,∠ACB=90°, ∠E=45°,三角形板DCE 的直角顶点D 在AB 边上,边ED 与边AC 交于点F ,若EC ∥AB , 则∠AFE 的度数是 度.17. 在平面直角坐标系中,定义两种新的变换:对于平面内任一点P (m ,n ),规定:①()()f m n m n =-,,,例如,(2)(21)f =-,1,; ②()()g m n m n =-,,,例如,(2)(21)g =-,1,. 按照以上变换有:[(3)](3)(3)g f g -=--=-,4,4,4,那么[(5)]f g ,2等于 . 18. 一个三角形内有n 个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时,此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有99个点时,此时有 个小三角形.AF BE C DM N12ADF CB E三.计算题:(19题每题5分,20题(1)4分,(2)6分,共20分)19.计算 (1)23)21(641251625-+- (21+2)451(- .20.(1) 解不等式 31122x x -+≥并将解集在数轴上表示出来............. (2) 求不等式组523(2),12123x x x x +<+⎧⎪--⎨⎪⎩ ≤. 的整数..解.. 四.解答题:(21题 5分,22、24题4分,23、25题6分,共25分)21. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3).(1)画出△ABC ,并求△ABC 的面积;(2)在△ABC 中,点C 经过平移后的对应点为C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’,画出平移后的△A ’B ’C ’,并写出点A ’,B ’的坐标;(3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),22. 已知:如图,点A 、B 、C 在一条直线上,AD ∥BE ,∠1=∠2.将求证:∠A =∠E 的过程填空完整.证明:∵AD ∥BE ( ),∴∠A = ( ), 又∵∠1=∠2( ),∴ED ∥ ( ),∴∠E= ( ), ∴∠A =∠E ( ).D BE CA 21第22题24.已知:如图,点P 为△ABC 内任一点.求证:PA+PB+PC>21(AB+BC+AC) .25. 列方程(组)或不等式(组)解应用题某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?五、解答题(本题共9分,第26题5分,第27题4分)26.如图1,将三角板ABC 与三角板ADE 摆放在一起;如图2,其中∠ACB=30°,∠D AE=45°∠B AC=∠D =90°.固定三角板ABC ,将三角板ADE 绕点A 按顺时针方向旋转,记旋转角∠CAE =α(0°<α<180°).(1)当α为 度时, AD ∥BC ,并在图3中画出相应的图形;(2)当△ADE 的一边与△ABC 的某一边平行(不共线)时,写出旋转角 α的所有可能的度数;(3)当0°<α<45°时,连结BD ,利用图4探究∠BDE +∠CAE +∠DBC 值的大小变化情况,并给出你的证明.PCBA图1 图2 固定三角板ABC 旋转三角板ADE CACA27.阅读理解如图a ,在△ABC 中,D 是BC 的中点.如果用ABC ∆S 表示△ABC 的面积,则由等底等高的三角形的面积相等,可得ABC ACD ABD ∆∆∆==S 21S S .同理,如图b ,在△ABC 中,D 、E 是BC 的三等分点,可得ABC AEC ADE ABD ∆∆∆∆===S 31S S S .结论应用 已知:△ABC 的面积为42,请利用上面的结论解决下列问题:(1)如图1,若D 、E 分别是AB 、AC 的中点,CD与BE 交于点F ,则△DBF 的面积为____________; 类比推广(2)如图2,若D 、E 是AB 的三等分点,F 、G 是AC 的三等分点,CD 分别交BF 、BG 于M 、N ,CE 分别交BF 、BG 于P 、Q ,求△BEP 的面积;探究新知(3)如图3,问题(2)中的条件不变,求四边形EPMD 的面积.E AD CB 图b图aBCDA图1图2B 图319.计算(1)23)21(641251625-+-解:原式=551442-+=12……………………5分(2)1+2)451(- .解:原式114+=134+……………………5分20.(1) 解不等式 31122x x -+≥并将解集在数轴上表示出来.............2013--2014学年度北京市第十三中学分校第二学期期中 七年级 数学答案-x ≥-1x ≤1 ……………………3分 正确画出数轴 ……………………4分(2)求不等式组523(2),12123x x x x +<+⎧⎪--⎨⎪⎩ ≤. 的整数解.... 解:解不等式①,得 5236x x +<+. 2x <. ·································································································· 2分 解不等式②,得 3342x x -≤-.1x -≤.1x ≥-. ································································································· 4分 在数轴上表示不等式①,②的解集,∴这个不等式组的解集是: 12x -≤<. ·························································· 5分∴这个不等式组的整数解是:-1、0、1 ······························································ 6分21.解:(1)如图,过A 作AH ⊥x 轴于点H .ABC AHB OBC AHOC S S S S ∆∆∆=--梯1()2AH OC HO =+⋅1122AH BH OB OC -⋅-⋅111(73)67333222=⨯+⨯-⨯⨯-⨯⨯15=. ···················2分 (2)如图,(18)A '-,,(2)B ',1; ············ 4分(3)m =3,n =1. ················································································· 6分22.证明:∵AD ∥BE ( 已知 ),∴∠A = ∠EBC ( 两直线平行,同位角相等 ), 又∵∠1=∠2( 已知 ),∴ED ∥ AC ( 内错角相等,两直线平行 ),∴∠A =∠E ( 等量代换 ).………………………………4分23.解:(1)∵AD ∥BC ,∴∠2=∠ACB . ································· 1分 又∵∠1=∠2, ∴∠1=∠ACB . ∴EF ∥AC . ································· 3分(2)∵AD ∥BC ,∴∠D +∠BCD =180°. ∵∠D =120°, ∴∠BCD = 60°. ······················································································ 4分 ∵CA 平分∠BCD ,∴∠ACB =12BCD ∠=30°. ········································································· 5分∵EF ∥AC ,∴∠1 =∠ACB =30°.在△FBE 中,∠B +∠1+∠BFE =180°. ∵∠B =50°, ∴∠BFE = 100°. ······················································································· 6分24、证明:∵在△P AB 中,PA+PB >AB 在△PBC 中,PC+PB >BC 在△P AC 中,PA+PC >AC ∴2(PA+PB+PC) >AB+BC+AC ∴ PA+PB+PC)>12AB+BC+AC ························································ 4分 25、解:(1)设新建一个地上停车位需x 万元,新建一个地下停车位需y 万元. ······ 1分根据题意,得0.6,32 1.3.x y x y +=+=⎧⎨⎩ ····································································· 2分解这个方程组,得0.1,0.5.x y ==⎧⎨⎩答:新建一个地上停车位需0.1万元,新建一个地下停车位需0.5万元. ····· 3分 ﹙2﹚设新建m 个地上停车位,则新建(50-m )个地下停车位. 根据题意,得12<0.1m +0.5(50-m ) ≤13. ··········································· 4分解得 30≤m <65. ················································································· 5分∴m =30,31,32. ∴50-m =20,19,18. 答:有三种建造方案:方案一:新建30个地上停车位和20地下停车位;方案二:31个地上停车位和19地下停车位;方案三:32个地上停车位和18地下停车位. ·········································································································· 6分26.解(1)15°;······················································································································· 2分(2)15°,45°,105°,135°,150°; ························································· 4分参考画图如下:阅卷说明:在第(2)小题中,不要求画图,没有答出15°不扣分,其它四个结果每两个结果得1分,全正确得2分.(3)设BD 分别交AC ,AE 于点M ,N , 在△AMN 中,∠AMN +∠CAE +∠ANM =180°,∵∠ANM =∠E +∠BDE , ∠AMN =∠C +∠DBC ,∴∠E +∠BDE +∠CAE +∠C +∠DBC =180°.∵∠C =30°,∠E =45°,∴∠BDE +∠CAE +∠BDC =105°. ······················································································································5分第26题图-2 E A 第26题-127.(1) △DBF 的面积为 7 ; -----------------1分(2) 解:连接PA .∵在△PAB 中,D 、E 是AB 的三等分点, ∴PBE PBA ∆∆=S 3S ,PBE PAE ∆∆=S 2S . ∵在△PAC 中,F 、G 是AC 的三等分点, ∴PAF PAC ∆∆=S 3S .∵在△ABC 中,D 、E 是AB 的三等分点,F 、G 是AC 的三等分点, ∴284232S 32S =⨯==∆∆ABC CAE , 144231S 31S =⨯==∆∆ABC BAF . 设x PEB =∆S ,y PFA =∆S ,则由题意得 ⎩⎨⎧=+=+.2823143x y y x , 解得⎩⎨⎧==.82y x ,∴2S =∆PEB . -----------------3分(3) 解:连接AM .∵在△MAB 中,D 、E 是AB 的三等分点, ∴MAD MAB ∆∆=S 3S .∵在△MAC 中,F 、G 是AC 的三等分点, ∴MAF MAC ∆∆=S 3S .∵在△ABC 中,D 、E 是AB 的三等分点,F 、G 是AC 的三等分点, ∴ =∆BAF S 144231S 31S =⨯==∆∆ABC CAD . 设m MAD =∆S ,S MFA n ∆=,则由题意得 ⎩⎨⎧=+=+.143143m n n m , 解得⎩⎨⎧==.5.35.3n m ,∴5.3S =∆MAD . ∴7S 2S ==∆∆MAD MBD .图2B图3由(2)可知 2S =∆PEB ,∴=EPMD 四边形S 527S S =-=-∆∆PEB MBD . -------------4分。

北京101中学2013-2014学年上学期高二年级期中考试数学试卷 后有答案

北京101中学2013-2014学年上学期高二年级期中考试数学试卷  后有答案

北京101中学2013-2014学年上学期高二年级期中考试数学试卷(理科)一、选择题:本大题单选,共8小题,每小题5分,共40分。

1. 已知命题2:,3,p x x ∃∈>R 下列各选项中对命题p 的理解不正确的是( ) A. 有一个x ∈R ,使得 23x > B. 对有些x ∈R ,使得23x > C. 任选一个x ∈R ,都有23x > D. 至少有一个x ∈R ,使得23x > 2. 过点(1,3)-且与直线230x y -+=平行的直线方程是( )A. 250x y --=B. 270x y -+=C. 210x y +-=D. 250x y +-= 3. “a b =”是“直线2y x =+与圆22()()2x a y b -+-=相切”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 已知椭圆2214x y +=的左右焦点分别为12,F F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF 等于( )12 D. 725. 已知椭圆方程为2223(0)x y m m +=>,则该椭圆的离心率为( )A.1312 6. 过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为( )A. 230x y +-=B. 230x y --=C. 430x y --=D. 430x y +-=7. 给出三条曲线①30,x y ++=②229,2x y +=③22154x y +=,其中与直线30x y -+=仅有一个公共点的曲线有( )A. 0条B. 1条C. 2条D. 3条8. 已知1l 和2l 是平面内相互垂直的两条定直线,它们的交点为A ,动点,B C 分别在直线1l 和2l 上,且||BC =,,A B C 三点的动圆所形成的区域的面积是( )A. 6πB. 8πC. 16πD. 18π二、填空题:本大题共6小题,每小题5分,共30分。

北京市海淀区2014届九年级数学上学期期中试题

北京市海淀区2014届九年级数学上学期期中试题

北京市海淀区2014届九年级上学期期中考试数学试题(扫描版)新人教版海淀区九年级第一学期期中练习2013.11数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数.二、填空题(本题共16分,每小题4分)9.45°;10.20x x -=(二次项系数不为0,且常数项为0均正确);11.50°;12.21,622+-n n (每空2分).三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:36324⨯+÷=2分2322+=…………………………………………………………………4分25=.……………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为2+410x x -=,……………………………………………………1分141a ,b ,c ===-,2441(1)=20>0,∆=-⨯⨯-…………………………………………………………2分方程有两个不相等的实数根,2x ===-4分即1222x =-=-.……………………………………………………5分15.(本小题满分5分)结论:CD BE =.……………………………………………………………………1分 证明: △ABC 与△AED 是等边三角形, ∴AE AD =,AB AC =,60CAB DAE ∠=∠=.…2分 ∴CAB DAB DAE DAB ∠-∠=∠-∠,即CAD BAE ∠=∠.………………………………3分在△CAD 和△BAE 中,D CBAAC AB,CAD BAE,AD AE,=⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BAE .…………………………………………………………4分 ∴CD =BE .…………………………………………………………………5分16.(本小题满分5分)解: 15-=x ,∴1x +=.∴5)1(2=+x .………………………………………………………………1分∴2215x x ++=.………………………………………………………………2分∴224x x +=.…………………………………………………………………3分 ∴225451x x +-=-=-.……………………………………………………5分17.(本小题满分5分)证明:过点O 作AB OM ⊥于M ,…………………………1分由垂径定理可得DM CM BM AM ==,.……………3分 ∴DM BM CM AM -=-.…………………………4分 即BD AC =.…………………………………………5分18.(本小题满分5分)解:设小路的宽度是x 米.………………………………………………………1分由题意可列方程,3(20)(12)20124x x --=⨯⨯.……………………………2分化简得, 232600x x -+=.解得, 12302x ,x ==.………………………………………………………3分由题意可知3020x =>不合题意舍去,2x =符合题意.…………………4分 答:小路的宽度是2米.……………………………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)∵关于x 的一元二次方程210x mx m -++=的一个根为2,∴22210m m -++=.……………………………………………………1分 ∴5m =.……………………………………………………………………2分∴一元二次方程为2560x x -+=.解得1223x ,x ==.…………………………………………………………3分∴5m =,方程另一根为3.(2)当长度为2的线段为等腰三角形底边时,则腰长为3,此时三角形的周长为2+3+3=8;………………………………………………………………4分 当长度为3的线段为等腰三角形底边时,则腰长为2,此时三角形的周长为2+2+3=7. ………………………………………………………………5分20.(本小题满分5分)解:(1)过点O 作OM ⊥BC 于M .由垂径定理可得:BM=CM .…1分∵30DAC ∠=,∴12OM OA =.∵直径DE =10, EA =1,∴=5OD OC OE ==. ∴516OA OE EA =+=+=.∴3OM =.…………………2分在R t △COM 中,222225316CM OC OM =-=-=. ∴4CM =. ∴4BM =.∴+8BC BM CM ==.……………………………………………………3分 (2)在R t △AOM 中,222226327AM OA OM =-=-=.∴AM =.……………………………………………………………………4分∴+4AC AM CM ==. ∵OM ⊥AC ,∴114)3622AOC S AC OM =⋅=⨯⨯= .……………………………5分21.(本小题满分5分)解:(1)∵关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根,∴224(1)4=8+4>0k k k ∆=+-.………………………………………………2分 ∴1>2k -.…………………………………………………………………3分(2)∵当1-=x 时,左边=222(1)x k x k -++22(1)2(1)(1)k k =--+⨯-+223k k =++…………………………………………4分2(+1)20k =+>.而右边=0,∴左边≠右边.∴1-=x 不可能是此方程的实数根.……………………………………5分22.(本小题满分5分)(1)正确画出34P P 、点(图略).………………………………………………1分224=P P P P .……………………………………………………………………2分(2)(-4,-2).…………………………………………………………………3分(0,2).……………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意可知0m ≠.2(21)42m m ∆=+-⨯⨯22=441(21)0m m m -+=-≥.……………………………………………2分∴此方程总有两个实数根.(2)方程的两个实数根为x =,∴1212x ,x m==.…………………………………………………………4分 ∵方程的两个实数根都是整数,且m 为整数,∴1m =±.…………………………………………………………………5分(3)∵原方程的两个实数根分别为1x 、2x ,∴211(21)20mx m x -++=222(21)20mx m x -++=.……………………………………………………6分∴5)(2))(12()(2122213231+++++-+x x x x m x x m=1323211222[(21)2]+[(21)2]+5mx m x x mx m x x -++-++ =12211222[(21)2]+[(21)2]+5x mx m x x mx m x -++-++ =12005x x ⨯+⨯+=5.…………………………………………………………………………7分24.(本小题满分8分)(1)AE ⊥CM ,AE =CM .……………………………………………………2分(2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H .∵90=∠ACB ,26==CB CA , ∴∠CAB =∠CBA =45°,12=. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥,∴CD=AD=BD =162AB =.∵M 是DB 的中点, ∴3BM DM ==. ∴3AG =.G∵2AF FD =,∴4 2.AF DF ==,∴+2+3=5.FM FD DM == ∵AG ⊥AF ,∴FG ==∴.FG FM =……………………………………………………………………3分 在△CAG 和△CBM 中,CA CB CAG CBM AG BM =⎧⎪∠=∠⎨⎪=⎩,,, ∴△CAG ≌△CBM .∴CG =CM ,ACG BCM ∠=∠.∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠= .………………………4分 在△FCG 和△FCM 中,CG CM FG FM CF CF =⎧⎪=⎨⎪=⎩,,, ∴△FCG ≌△FCM .∴FCG FCM ∠=∠.………………………………………………………5分 ∴45FCH ∠= .由(1)知AE ⊥CM , ∴90CHN ∠=∴45=∠CNE .………………………………………………………………6分 (3)存在.AF =8.…………………………………………………………………………8分25.(本小题满分7分)(1)5;…………………………………………………………………………………1分 (2)如图1, 过点C 分别作CP ⊥x 轴于P ,CQ ⊥y 轴于Q .∴∠CQB =∠CPA =90°, ∵∠QOP =90°, ∴∠QCP =90°. ∵∠BCA =90°, ∴∠BCQ =∠ACP . ∵BC=AC ,∴△BCQ ≌△ACP .∴CQ=CP .………………………………3分 ∵点C 在第一象限,∴不妨设C 点的坐标为(a ,a )(其中0a ≠).设直线OC 所对应的函数解析式为kx y =,∴a ka =,解得k =1,∴直线OC 所对应的函数解析式为x y =.…………………………………4分 (3)取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM =152AB =.同理ON =5.∵正方形DGFE ,N 为DE 中点,DE=10, ∴NG==.在点M 与G 之间总有MG ≤MO +ON +NG (如图2), 由于∠DNG 的大小为定值,只要12DON DNG ∠=∠,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立(如图3).………………………5分 ∴线段MG 取最大值10+55.………………6分此时直线MG 的解析式x y 251+-=.……………………………………7分。

2014年北京市中考数学试卷(含答案和解析)

2014年北京市中考数学试卷(含答案和解析)

2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的..2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 0003.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是().C D.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()6.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()7.(4分)(2014•北京)如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A=22.5°,OC=4,CD 的长为( )8.(4分)(2014•北京)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( ). CD .二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax 4﹣9ay 2= _________ .10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 _________ m .11.(4分)(2014•北京)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数y= (k ≠0),使它的图象与正方形OABC 有公共点,这个函数的表达式为 _________ .12.(4分)(2014•北京)在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P (﹣y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 _________ ,点A 2014的坐标为 _________ ;若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 _________ .三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B 在线段AD 上,BC ∥DE ,AB=ED ,BC=DB .求证:∠A=∠E .14.(5分)(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|15.(5分)(2014•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.16.(5分)(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.17.(5分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.(5分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.(5分)(2014•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE 与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.(5分)(2014•北京)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_________本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_________本.21.(5分)(2014•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.(5分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为_________,AC的长为_________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.(7分)(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.(8分)(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2014年北京市中考数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的..2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 0003.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是().C D.=.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()=196.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()7.(4分)(2014•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()CE=OC=2CE=OC=2.8.(4分)(2014•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是().C D.(二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.由题意得,=11.(4分)(2014•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).y=.,(12.(4分)(2014•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2014的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.,三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.(5分)(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|+15.(5分)(2014•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.16.(5分)(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.y=y=17.(5分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.,然后利用整数的整除性确定正整数=18.(5分)(2014•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.=四、解答题(本题共20分,每小题5分)19.(5分)(2014•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE 与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.PH=AP=PH=ADP=.20.(5分)(2014•北京)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500本.21.(5分)(2014•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.是,由=2===22.(5分)(2014•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.根据相似的三角形的判定与性质,可得,∴,AD=2DF=2AC=AD=2AB=2DF=2=2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2014•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.代入得:,坐标代入得:k=y=,.24.(7分)(2014•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.ADF=25.(8分)(2014•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?,易求或(,,或≤。

北京市2014年中考数学真题试题(含扫描答案)

北京市2014年中考数学真题试题(含扫描答案)

2014年北京市高级中等学校招生考试数学试卷下面各题均有四个选项,其中只有一个是符合题意的.1.2的相反数是A .2B .2-C .12-D .122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为A.60.310⨯B .5310⨯C .6310⨯D .43010⨯3.如图,有6张扑克处于,从中随机抽取一张,点数为偶数的概率是A .16B .14C .13D .124.右图是几何体的三视图,该几何体是A.圆锥B .圆柱C .正三棱柱D .正三棱锥5.某篮球队12名队员的年龄如下表所示:则这A .18,19B .19,19C .18,19.5D .19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为OE DCBAA .40平方米B .50平方米C .80平方米D .100平方米7.如图.O e 的直径AB 垂直于弦CD ,垂足是E ,22.5A∠=︒,4OC =,CD 的长为A .B .4C .D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如右图所示,则该封闭图形可能是AADCBAA二、填空题(本题共16分,每小题4分)9.分解因式:429______________ax ay -=. 10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x =≠,使它的图象与正方形OABC 有公共点,这个函数的表达式为 .12.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .三、解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.计算:11(6π)()3tan30|5--︒+--︒+.15.解不等式1211232x x --≤,并把它的解集在数轴上表示出来.16.已知x y -=,求代数式2(1)2(2)x x y y x +-+-的值. 17.已知关于x 的方程2(2)20(0)mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=︒,求tan ADP ∠的值.20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:年人均阅读图书数量(本) ECBADF PECBAD下载并打印阅读1.0%手机阅读15.6%电子阅读器阅读2.4%网络在线阅读15.0%图书阅读m %根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.21.如图,AB 是O e 的直径,C 是»AB 的中点,O e 的切线BD 交AC 的延长线于点D ,E是OB 的中点,CE 的延长线交切线BD 于点F ,AF 交O e 于点H ,连接BH . (1)求证:AC CD =; (2)若2OB =,求BH 的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=︒,30CAD ∠=︒,2AD =,2BD DC =,求AC 的长.图3ABCDEE图2图1AB CD D CB A小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2).请回答:ACE ∠的度数为 ,AC 的长为 . 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=︒,30CAD ∠=︒,75ADC ∠=︒,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0,2-),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图像,求点D 纵坐标t 的取值范围.24.在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE DE ,,其中DE 交直线AP 于点F . (1)依题意补全图1;(2)若20PAB ∠=︒,求ADF ∠的度数;(3)如图2,若4590PAB ︒<∠<︒,用等式表示线段AB FE FD ,,之间的数量关系,并证明.图 1PD CBAA BCDP图 225.对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x =()0x >和()142y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+()a x b b a ≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤?。

北京市朝阳区2014届高三上学期期中考试 数学理试题-含答案

北京市朝阳区2014届高三上学期期中考试 数学理试题-含答案

北京市朝阳区2013-2014学年度高三年级第一学期期中统一考试数学试卷(理工类) 2013.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{0,1,2}A =,{1,}B m =.若AB B =,则实数m 的值是A .0B .2C .0或2D .0或1或22.命题p :对任意x ∈R ,210x+>的否定是A .p ⌝:对任意x ∈R ,210x+≤ B .p ⌝:不存在0x ∈R , 0210x+≤ C .p ⌝:存在0x ∈R , 0210x+≤ D .p ⌝:存在0x ∈R , 0210x+> 3.执行如图所示的程序框图,则输出的T 值为 A .91 B . 55 C .54 D .304.若01m <<, 则 A .log (1)log (1)m m m m +>- B .log (1)0m m +>C .2)1(1m m +>- D .1132(1)(1)m m ->-5.由直线0x =,3x 2π=,0y =与曲线2sin y x =所围成的图形的面积等于A .3B .32C .1D .126.已知平面向量(1,2)=-a ,(2,1)=b ,(4,2)--c =,则下列结论中错误..的是 A .向量c 与向量b 共线B .若12λλ=+c a b (1λ,2λ∈R ),则10λ=,22λ=-C .对同一平面内任意向量d ,都存在实数1k ,2k ,使得12k k =d b +cD .向量a 在向量b 方向上的投影为07. 若函数2()f x x k =-的图象与函数()3g x x =-的图象至多有一个公共点,则实数k 的取值范围是 . .A. (,3]-∞B. [9,)+∞C. (0,9]D. (,9]-∞8.同时满足以下4个条件的集合记作k A :(1)所有元素都是正整数;(2)最小元素为1;(3)最大元素为2014;(4)各个元素可以从小到大排成一个公差为k ()k *∈N 的等差 数列.那么6133A A 中元素的个数是 A .96B .94C .92D .90第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.在公比小于零的等比数列{}n a 中,12a =,532a =,则数列{}n a 的前三项和3S = . 10.函数43y x x =++(3)x >-的最小值是 . 11.曲线()e x f x =在点0(x ,0())f x 处的切线经过点(1P ,0),则0x = .12.已知平面向量a 与b 的夹角为6π,=a ,1=b ,则-=a b ;若平行四边形ABCD 满足AB =+a b ,AD =a -b ,则平行四边形ABCD 的面积为 .13.已知函数222,0,()2,0.x x x f x x x x ⎧--≥=⎨-<⎩ 若2(3)(2)f a f a -<,则实数a 的取值范围是 .14.已知函数xa x f =)((10<<a ),数列}{n a 满足)1(1f a =,)(1n n a f a =+,n *∈N .则2a 与3a中,较大的是 ;20a ,25a ,30a 的大小关系是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2π())4cos 4f x x x =-+.(Ⅰ)求函数()f x 的最小正周期及最小值; (Ⅱ)若π[0,]2α∈,且()3f α=,求α的值.16. (本小题满分13分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos 25A =. (Ⅰ)若5=bc ,求ABC ∆的面积; (Ⅱ)若1a =,求b c +的最大值.17.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,*n ∈N ,且364a a +=,55S =-. (Ⅰ)求n a ;(Ⅱ)若123n n T a a a a =++++,求5T 的值和n T 的表达式.18. (本小题满分14分)已知函数2()43f x x x a =-++,a ∈R .(Ⅰ)若函数()y f x =的图象与x 轴无交点,求a 的取值范围; (Ⅱ)若函数()y f x =在[1,1]-上存在零点,求 a 的取值范围;(Ⅲ)设函数()52g x bx b =+-,b ∈R .当0a =时,若对任意的1[1,4]x ∈,总存在2[1,4]x ∈,使得12()()f x g x =,求b 的取值范围.19.(本小题满分14分)已知函数21()(3)3ln 2f x x m x m x =-++,m ∈R . (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)设1(A x ,1())f x ,2(B x ,2())f x 为函数()f x 的图象上任意不同两点,若过A ,B 两点的直线l 的斜率恒大于3-,求m 的取值范围.20. (本小题满分13分)如果项数均为n ()2,n n *≥∈N的两个数列{}na ,{}nb 满足),,,2,1(n k k b ak k==-且集合}2,,3,2,1{},,,,,,,{2121n b b b a a a n n =,则称数列}{},{n n b a 是一对 “n 项相关数列”.(Ⅰ)设}{},{n n b a 是一对“4项相关数列”,求1234a a a a +++和1234b b b b +++的值,并写出一对“4项相关数列” }{},{n n b a ;(Ⅱ)是否存在 “15项相关数列” }{},{n n b a ?若存在,试写出一对}{},{n n b a ;若不存在,请说明理由;(Ⅲ)对于确定的n ,若存在“n 项相关数列”,试证明符合条件的“n 项相关数列”有偶数对.北京市朝阳区2013-2014学年度高三年级第一学期期中统一考试数学试卷答案(理工类) 2013.11一、选择题:二、填空题:(注:两空的填空,第一空3分,第二空2分)三、解答题:(15)(本小题满分13分)解: 2π())4cos 4f x x x =-+ππ1cos 2sin 2cos cos 2sin 4442xx x +=⋅⋅+⋅sin 2cos22cos22x x x =-++sin 2cos22x x =++π)24x =++.(Ⅰ)函数()f x 的最小正周期为2ππ2=,函数()f x 的最小值为2 ………6分(Ⅱ)由()3f α=π)234α++=.所以πsin(2)42α+=. 又因为π[0,]α∈,所以ππ5π2α≤+≤,所以ππ244α+=或π3π244α+=. 所以0α=或π4α=. ………13分16. (本小题满分13分) 解:(Ⅰ)因为cos2A =,0A <<π,所以sin2A =. 所以4sin 2sin cos 225A A A ==. 因为5=bc , 所以2sin 21==∆A bc S ABC . ………6分 (Ⅱ)因为,552sin=A 所以532sin21cos 2=-=A A . 因为A bc c b a cos 2222-+=)cos 1(2)(2A bc c b +-+=1=.()2255()16164b c bc b c +=+-≤,所以b c +≤当且仅当2b c ==时等号成立.所以b c +………13分 17. (本小题满分13分)解:(Ⅰ)等差数列{}n a 的公差为d ,则1112545(51)552a d a d a d +++=⎧⎪⎨-+=-⎪⎩ 解得,15a =-,2d =,则27n a n =-,n *∈N . ………5分(Ⅱ)当4n ≥时, 270n a n =->,当3n ≤时,270n a n =-<. 则5T =12345()13a a a a a -++++=3n ≤T =26n n -4n ≥22618T S S n n =-=-+即226,3,618,4,n n n n T n n n ⎧-≤=⎨-+≥⎩n *∈N . ………13分18. (本小题满分14分)解:(Ⅰ)若函数()y f x =的图象与x 轴无交点,则方程()0f x = 的判别式0∆<,即164(3)0a -+<,解得1a >. ………3分(Ⅱ)2()43f x x x a =-++的对称轴是2x =,所以()y f x =在[1,1]-上是减函数,()y f x =在[1,1]-上存在零点,则必有:(1)0(1)0f f ≤⎧⎨-≥⎩,即080a a ≤⎧⎨+≥⎩, 解得:80a -≤≤,故实数的取值范围为80a -≤≤; ………8分(Ⅲ)若对任意的1[1,4]x ∈,总存在2[1,4]x ∈,使12()()f x g x =,只需函数()y f x =的值域为函数()y g x =值域的子集.当0a =时,2()43f x x x =-+的对称轴是2x =,所以()y f x =的值域为[1,3]-, 下面求()52g x bx b =+-,[1,4]x ∈的值域, ①当0b =时,()5g x =,不合题意,舍②当0b >时,()52g x bx b =+-的值域为[5,52]b b -+,只需要51523b b -≤-⎧⎨+≥⎩,解得6b ≥ ③当0b <时,()52g x bx b =+-的值域为[52,5]b b +-,只需要52153b b +≤-⎧⎨-≥⎩,解得3b ≤- 综上:实数b 的取值范围6b ≥或3b ≤- ………14分 19. (本小题满分14分)解:(Ⅰ) 依题意,()f x 的定义域为()0,+∞,3()(3)m f x x m '=-++2(3)3x m x m -++=(3)()x x m --=.(ⅰ)若0m ≤,当3x >时,()0f x '>,()f x 为增函数. (ⅱ)若3m =,2(3)()0x f x x-'=≥恒成立,故当0x >时,()f x 为增函数.(ⅲ)若03m <<,当0x m <<时,()0f x '>,()f x 为增函数; 当3x >时,()0f x '>,()f x 为增函数. (ⅳ)若3m >,当03x <<时,()0f x '>,()f x 为增函数; 当x m >时,()0f x '>,()f x 为增函数.综上所述,当0m ≤时,函数()f x 的单调递增区间是()3,+∞;当03m <<时,函数()f x 的单调递增区间是()0,m ,()3,+∞;当3m =时,函数()f x 的单调递增区间是()0,+∞;当3m >时,函数()f x 的单调递增区间是()0,3,(),m +∞. ………6分 (Ⅱ)依题意,若过,A B 两点的直线l 的斜率恒大于3-,则有1212()()3f x f x x x ->--,当120x x >>时,1212()()3()f x f x x x ->--,即1122()3()3f x x f x x +>+; 当120x x <<时,1212()()3()f x f x x x -<--,即1122()3()3f x x f x x +<+. 设函数()()3g x f x x =+,若对于两个不相等的正数12,x x ,1212()()3f x f x x x ->--恒成立,则函数21()3ln 2g x x mx m x =-+在()0,+∞恒为增函数, 即在()0,+∞上,3()0mg x x m x'=-+≥恒成立.(1)当0m <时,当0x →,()g x '→-∞,说明此时()0g x '≥不恒成立; 或3()111m m mg m m m m m '=-+=---12322011m m m m m +-=+-<--,说明此时()0g x '≥不恒成立;(2)当0m =时,()0g x x '=>在()0,+∞上恒成立; (3)当0m >时,若3()0m g x x m x '=-+≥恒成立,而当0x >时,3m x x+≥ ( 当且仅当x =时取等号)即0m ≥成立,即0≥,解得0<,即012m <≤,显然12m =符合题意.综上所述,012m ≤≤时,过,A B 两点的直线l 的斜率恒大于3-. 解法二:在()0,+∞上,3()0m g x x m x '=-+≥恒成立,等价于3(1)m x x-≥-,在()0,x ∈+∞成立,即3(1)m x x-≤在()0,x ∈+∞成立. (ⅰ)当3x =时,上式显然满足;(ⅱ)当03x <<时,上式等价于23x m x ≥-,设2()3x h x x =-,此时()h x 为减函数,()(),0h x ∈-∞,只需0m ≥;(ⅲ)当3x >时,上式等价于23x m x ≤-,设2()3x h x x =-,则()h x = 2(3)6(3)93x x x -+-+-9363x x =-++-,当3x >时,()12h x ≥(当且仅当6x =时等号成立). 则此时12m ≤.在()0,+∞上,当012m ≤≤时,3()0mg x x m x'=-+≥成立. 过,A B 两点的直线l 的斜率恒大于3-.解法三:在()0,+∞上,3()0mg x x m x'=-+≥恒成立,等价于2()30h x x mx m =-+≥在),0(+∞∈x 恒成(1)0≤∆时,即0122≤-m m ,所以 120≤≤m 或(2)0∆>时,需02m<且()3h x m >,即30m ≥显然不成立. 综上所述,120≤≤m . ………………14分 20. (本小题满分13分)解:(Ⅰ)依题意,112233441,2,3,4a b a b a b a b -=-=-=-=,相加得,12341234()10a a a a b b b b +++-+++=,又1234a a a a +++123436b b b b ++++=,则123423a a a a +++=,123413b b b b +++=.“4项相关数列”}{n a :8,4,6,5;}{n b :7,2,3,1(不唯一)………3分 参考:(“4项相关数列”共6对:}{n a :8,5,4,6;}{n b :7,3,1,2 或}{n a :7,3,5,8;}{n b :6,1,2,4 或}{n a :3,8,7,5;}{n b :2,6,4,1 或}{n a :2,7,6,8;}{n b :1,5,3,4或}{n a :2,6,8,7;}{n b :1,4,5,3 或}{n a :8,4,6,5;}{n b :7,2,3,1 (Ⅱ)不存在. 理由如下:假设存在 “15项相关数列”}{},{n n b a ,则15,,2,115152211=-=-=-b a b a b a ,相加,得120)()(15211521=+++-+++b b b a a a又由已知465302115211521=+++=+++++++ b b b a a a ,由此585)(21521=+++a a a ,显然不可能,所以假设不成立。

北京市重点中学2014-2015学年高二上学期期中考试数学含答案(完整资料).doc

北京市重点中学2014-2015学年高二上学期期中考试数学含答案(完整资料).doc

此文档下载后即可编辑2014~2015学年度第一学期期中考试高 二 数 学 试 卷2014.11 (考试时间:100分钟 总分:100分)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡中..........相应的位置上......) 1.下列说法正确的是( )A .三点确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点2.一个几何体的三视图如右图所示,该几何体的体积是( ) A .16π B .16 C .163πD .1633.圆1C :2220x y x ++=与圆2C :224840x y x y +-++=的位置关系是( )A .相交B .外切C .内切D .相离4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( )主(正)视图44左(侧)视图4俯视图4•A .若l α⊥,m α⊂,则l m ⊥B .若l m ⊥,m α⊂,则l α⊥C .若l ∥α,m α⊂,则l ∥mD .若l ∥α,m ∥α,则l ∥m 5.过点(1)P -的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是( )A .π(0,]6 B .π(0,]3 C .π[0,]6 D .π[0,]36.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点为12,F F,离心率为3,过2F 的直线l 交椭圆C 于,A B 两点.若△1AF B的周长为则椭圆C 的方程为( ) A .22132x y += B .2213x y +=C .221128x y +=D .221124x y +=7.设,,,A B C D 是空间四个不同的点,在下列命题中,不正确...的是( ) A .若AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线C .若,AB AC DB DC ==,则AD BC = D .若,AB AC DB DC ==,则AD BC ⊥ 8.如图,定点A ,B 都在平面α内,定点α∉P ,α⊥PB ,C 是α内异于A 和B 的动点,且AC PC ⊥.那么,动点C 在平面α内的轨迹是( )A . 一条线段,但要去掉两个点B . 一个圆,但要去掉两个点C . 一个椭圆,但要去掉两个点D . 半圆,但要去掉两个点二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在......答题卡中相应的位置上..........) 9.毛泽东主席在《送瘟神》中写到“坐地日行八万里”.又知地球的体积大约是火星的8倍,那么火星的大圆周长约为______________万里.10.如图,正四棱柱1111ABCD A B C D -(底面是正方形的直棱柱)的底面边长为2,高为4,那么异面直线1BD 与AD 所成角的正切值______________.11.已知椭圆221(0)3x y m m +=>的一个焦点是(0,1),则m = ;若椭圆上一点P 与椭圆的两个焦点12,F F 构成的三角形12PF F的面积为,则点P 的坐标是________.12.直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += ________. 13.某几何体的三视图如图所示,则它的侧面积是 .14.已知点1(,0)2A -,点B 是圆F :221()42x y -+=(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P的轨迹方程为正视图侧视图俯视图______________.三、解答题(本大题共4小题,共44分.解答应写出必要的文字说明、证明过程或演算步骤.请把答案填在答题卡中相应的位置上................) 15.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥; (Ⅱ)求证://PB 平面AEC ;(Ⅲ)若4PA =,求点E 到平面ABCD 的距离.16.已知圆C :222440x y x y +-+-=,直线l 与圆C 相交于A ,B 两点. (Ⅰ)若直线l 过点()4,0M,且AB =,求直线l 的方程; (Ⅱ)若直线l 的斜率为1,且以弦AB 为直径的圆经过原点,求直线l 的方程.17.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3,5AB BC ==.(Ⅰ)求证:1AA ⊥平面ABC ;(Ⅱ)若点D 是线段BC 的中点,请问在线段1AB 是否存在点E ,使得//DE 面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由;。

2013-2014学年北京市第七中学初一上学期期中数学试题(含答案)

2013-2014学年北京市第七中学初一上学期期中数学试题(含答案)

度第一学期期中检测试卷试卷满分:100 分 考试时间:100分钟一.选择题(本大题共10小题,每小题2分,共20分,在每小题的四个选项中,只有一个符合题目要求)1.下列各数中,是负分数的是 ( )A . 45 B .6 C .0 D .-3.12.下列各数中,3-的相反数...是 ( ) A .3 B .3- C .31 D .31-3.下列说法中正确的是 ( )A .0既不是整数也不是分数B .整数和分数统称有理数C .一个数的绝对值一定是正数D .绝对值等于本身的数是0和1 4.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是 ( )A .b a <B .0>abC .0<+b aD .0>ba5.我国领土面积大约是9600000平方公里,用科学记数法应记为 ( )A .71096.0⨯平方公里 B .6106.9⨯平方公里 C .51096⨯平方公里 D .5106.9⨯平方公里 6.下列各组数中,运算结果相等的是 ( )A .232⎪⎭⎫ ⎝⎛与322 B .22-与()22- C .()71--与71- D .()35-与35-7.下列式子中,是单项式的是 ( )A .2321yz x -B .y x -C .22n m -D .x 18.下列各式中,运算错误..的是 ( ) A .x x x 325=- B .055=-nm mn C .15422=-xy y x D .22223x x x =- 9.一种商品,降价10﹪后的售价是a 元,则原价为 ( )A .101(00-元 B .a )101(00-元 C .a00101-元 D .00101-a元10. 不相等的有理数,,a b c 在数轴上的对应点分别为A,B,C ,如果a b b c a c -+-=-,那么点A,B,C 在数轴上的位置关系是( )A .点A 在点B,C 之间B .点B 在点A,C 之间 C .点C 在点A,B 之间D .以上三种情况均有可能二.填空题(本大题共10小题,每小题2分,共20分)1.如果火车向东开出500千米记作+500千米,那么向西开出1000千米记作 千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式24=-⨯ .................................................................. 4分 3. ....................................................................................................... 5分 14.解:(1)y=(x-2)2-1……………1分(2)(3,0)(1,0);(0,3)……………2分 (3)图象基本正确,列表……………3分 (4)①1<x<3 ………4分 ② -1≤y ≤3 ………5分 15.对应边成比例…………2分夹角相等…………4分 判定相似…………5分 16. BD=10(√3+1)…………4分≈ 27.3 …………5分17.(1)证明:如图3.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC .∴∠B =∠ECF ,∠DAE =∠AEB .……2分 又∵∠DAE =∠F ,2014---2015学年度北京市第十三中学分校第一学期期中 九年级 数学答案FEADCB∴∠AEB =∠F .∴△ABE ∽△ECF . ................................................................................. 3分 (2)解:∵△ABE ∽△ECF ,∴AB BE EC CF=. ................................................................................................. 4分∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6. ∴526CF=.∴125CF =. ……………………………………………5分18.解:在Rt △DBC 中,∠C =90°,sin ∠CBD =23,DB =6,(如图1)∴2sin 643CD DB CBD =⋅∠=⨯=. ……………1分∴12AD CD ==1422⨯=. ………………………2分∵CB............................................................... 3分 AC = AD +CD =2+4=6, ..................................................................................... 4分 在Rt △ABC 中,∠C =90°,∴tan CB A AC ==. ................................................................................. 5分 四、解答题(本题共20分,每小题5分)19. 解:(1)当280≤<x 时,80=V . ………………..1分当18828≤<x 时,设b kx V +=,由图象可知,⎩⎨⎧+=+=.1880,2880b k b k解得:⎪⎩⎪⎨⎧=-=.94,21b k∴ 当18828≤<x 时,9421+-=x V . ………………..3分 (2)根据题意,得211-+94-9422P Vx x x x x ⎛⎫===+ ⎪⎝⎭=()21--9444182x +.A DB C图1答:当车流密度x 为94辆/千米时,车流量P 最大,为4418辆/时. …….5分20. (1)m=0时,一次函数,有实根 …….1分 m ≠0时,二次函数,△=(m+2)2≥0……2分 综上:无论m 取何值,方程恒有实根 (2)令y=0,解得x1=1,x2=2+2/m …4分依题意得,m=1或m=2,解析式:y=x 2-5x+4,或y=2x 2-8x+6 5分21. 解:过点A 作AF ⊥BD 于F . ∵∠CDB =90°,∠1=30°,∴∠2=∠3=60°. ………………………1分在△AFB 中,∠AFB =90°.∵∠4=45°,AB ,∴AF =BF ………………………2分 在△AFE 中,∠AFE =90°.∴1,2EF AE ==.………………………3分 在△ABD 中,∠DAB =90°.∴DB =∴1DE DB BF EF =--=.………………………4分∴111)22ADE S DE AF ∆=⋅==.………………………5分22.解:(1)3AB EH =,2CG EH =, 32. ……………………… 3分 (2)2a. …………………………………………… 4分 (3)mn . ……………………………………… 5分(一空一分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)证明:当y =0时,得220x kx k -+-=.∵22244(2)(2)4b ac k k k -=--=-+. ∵2(2)0k -≥,∴2(2)40k -+>.∴无论k 为任何实数,该抛物线与x 轴都有两个交点. …………3分(2)解:如图,过点P 作P A ⊥x 轴于A ,则∠OAP =90°, 依题意得:104,sin 35OP POA =∠=.∴8,23AP OA ==.∵n <0, ∴8(2,)3P -.∵P 在抛物线上, ∴84223k k -=-+-+. ∴23k =-. ∴抛物线解析式为22833y x x =--+. …5分 (3)当y =0时,228033x x +-=. ∴1242,3x x =-=,∴抛物线与x 轴相交于点4(2,0),(,0)3.B C -当直线y = - x + b 经过点C (-2,0)时,b = -2. ………6分当直线y = - x + b 与抛物线228+-33y x x =相切时,22833x +x-x b =-+,∴△ =2584()093b ++=. ∴ b = 12136-. ……………………………7分∴ 当12136-<b <-2时,直线与图形M 有四个交点. …………8分24.解:(1)EB DC =…………………………………………2分 (2)过点C 作CF ∥EB 且CF =EB ,连接DF 交EB 于点G , 连接BF . ∴四边形EBFC 是平行四边形. ………………………………3分 ∴CE ∥BF 且CE =BF . ∴∠ABF =∠A =90°.∵BF =CE =kAB .∴BFk AB=. ∵BD =kAE ,∴BDk AE=.… ………………………………………4分 ∴BF BDAB AE=. ∴DBF ∆∽EAB ∆. ……………………………………………5分 ∴DFk BE =,∠GDB=∠AEB . ∴∠DGB =∠A =90°. ∴∠GFC =∠BGF =90°.∵12CF EB DC DC ==. ∴∠CDF=30°, ∠DCF=60°, 3tan =∠==DCF CFDFEB DF ∴k…………………………………………………7分25. 解:(1)将点(1,0)(5,8)B C 、代入23y ax bx =++得3025538a b a b ++=⎧⎨++=⎩ ……………………1分 解之得14a b =⎧⎨=-⎩,所以抛物线的解析式为243y x x =-+ …………2分B(2)由(1)可得抛物线顶点(2,1)D - ……3分 直线AC 的解析式为3y x =+由E 是对称轴与直线AC 的交点,则E 由F 与E 关于点D 对称 ,则(2,7)F -证法一:从点,A C 分别向对称轴作垂线,AM CN ,交对,M N在Rt FAM ∆和Rt FCN ∆中90AMF CNF ∠=∠=21310515A M C NM F N F==== 所以Rt FAM ∆∽Rt FCN ∆所以AFE CFE ∠=∠……5分证法二:直线AF 的解析式为53y x =-+ 点 (5,8)C 关于对称轴的对称点是(1,8)Q - 将点(1,8)Q -代入53y x =-+可知点Q 在直线AF 所以AFE CFE ∠=∠(3)在FDC ∆中,三内角不等,且CDF ∠为钝角10 若点P 在点F 下方时,在AFP ∆中,AFP ∠为钝角因为AFE CFE ∠=∠,00180,180AFE AFP CFE CDF ∠+∠=∠+∠<所以AFP ∠和CDF ∠不相等所以,点P 在点F 下方时,两三角形不能相似 …………………… 6分 20 若点P 在点F 上方时,由AFE CFE ∠=∠,要使AFP ∆与FDC ∆相似 只需AF PF CF DF =(点P 在DF 之间)或AF PFDF CF=(点P 在FD 的延长线上)或(2,19)………………………………………8分解得点P的坐标为(2,3)。

相关文档
最新文档