华南理工大学线性代数期末试卷及解析

合集下载

2020-2021学年线性代数期末考试题(含答案)

2020-2021学年线性代数期末考试题(含答案)

线性代数20-21学年第二学期期末考试试卷一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每空3分,共15分)1.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 2.设A 是n 阶矩阵,秩(A )<n ,且A *≠0,则齐次线性方程组Ax=0的基础解系中所含解向量的个数为_____________________.3.若A ,B 均为3阶矩阵,且|A |=2,B =-3E ,则|AB |=_____________________. 4.设A 为n 阶矩阵,若行列式|5E -A |=0,则A 必有一特征值为__________________.5.二次型3223222122x x x x x +--的秩为_____________________. 1.若A ,B 为3阶矩阵,且|A |=3,B =-3E ,则|AB |=_____________________. 2.若向量组α1=(1,0,0),α2=(2,t,4),α3=(0,0,6)线性相关,则t=_____________. 3.设矩阵A =⎪⎪⎪⎭⎫⎝⎛332313322212312111b a b a b a b a b a b a b a b a b a ,其中a i b i ≠0(i =1,2,3).则秩(A )=_______________. 4.设A 为n 阶矩阵,若齐次线性方程组Ax =0只有零解,则非齐次线性方程组Ax=b 的解的个数为_____________________.5.()()===⎪⎪⎪⎭⎫⎝⎛=A R A 则秩设,,3,2,1,321 αββα____________________()==A R A 则秩已知1101001100001100001100101 .1________________________.2224, 4., ,000200011132200233121232221是负定的二次型时取值为.当则相似与.已知矩阵x x x tx x x x f t y x y B x A ++---===⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=., ,222252322323121232221==+=+++++=b a y y f x bx x x x ax x x x f 则经正交变换化为标准形.已知二次型二、选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线代期末试题及答案解析

线代期末试题及答案解析

线代期末试题及答案解析一、选择题1. 下列哪个矩阵是零阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}2 & -2 \\ -3 & 3\end{bmatrix}$答案:B解析:零阵是所有元素都为0的方阵,选项B满足此条件。

2. 若矩阵$A$、$B$满足$AB=I$,其中$I$为单位矩阵,则矩阵$B$是矩阵$A$的:A. 逆矩阵B. 转置矩阵C. 相反矩阵D. 对角矩阵答案:A解析:若矩阵$A$的逆矩阵存在,则$A$的逆矩阵为$B$。

3. 下列哪个矩阵是对称矩阵?A. $\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}$B. $\begin{bmatrix}-1 & 2 \\ 2 & -1\end{bmatrix}$C. $\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}$D. $\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}$答案:D解析:对称矩阵是指矩阵的转置等于自身的矩阵,选项D满足此条件。

4. 若矩阵$A$、$B$满足$AB=BA$,则矩阵$A$和$B$是:A. 可逆矩阵B. 特征矩阵C. 对角矩阵D. 可交换矩阵答案:D解析:可交换矩阵是指满足$AB=BA$的矩阵,选项D满足此条件。

5. 若行矩阵$\mathbf{u}$、$\mathbf{v}$满足$\mathbf{u}\cdot\mathbf{v}=\mathbf{0}$,其中$\mathbf{0}$为零向量,则下列哪个说法是正确的?A. $\mathbf{u}$和$\mathbf{v}$一定不相等B. $\mathbf{u}$和$\mathbf{v}$一定相等C. $\mathbf{u}$和$\mathbf{v}$可能相等也可能不相等D. 不能确定$\mathbf{u}$和$\mathbf{v}$是否相等答案:C解析:行向量的内积为零意味着两个向量正交,不一定相等,所以选项C是正确的。

线性代数期末测试题及其答案

线性代数期末测试题及其答案

线性代数期末考试题一、填空题将正确答案填在题中横线上;每小题5分,共25分1. 若022150131=---x ,则=χ__________; 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 ;3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵;4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A ;5.n 阶方阵A 满足032=--E A A ,则=-1A ;二、选择题 每小题5分,共25分6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是 A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点0,2,4且与两平面2312=-=+z y z x 和的交线平行的直线方程为 A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为 A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 每小题10分,共50分11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X ;12.问a 取何值时,下列向量组线性相关 123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭;13. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解 当方程组有无穷多解时求其通解;14. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示;15.证明:若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A ;其中I 为单位矩阵 线性代数期末考试题答案一、填空题 1. 5.解析:采用对角线法则,由002)5(03)2(51=----++-⨯⨯x x 有5=x . 考查知识点:行列式的计算. 难度系数:2.1≠λ.解析:由现行方程组有)1(22211111111-=-+==λλλλλD ,要使该现行方程组只有零解,则0≠D ,即1≠λ.考查知识点:线性方程组的求解 难度系数: 3.n n s s ⨯⨯, 解析;由题可知ns ij c C ⨯=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方阵,所以A 为s s ⨯阶矩阵,B 为n n ⨯阶矩阵.考查知识点:n 阶矩阵的性质 难度系数:4. 24解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .考查知识点:矩阵的运算 难度系数:5. E A 3-解析:由032=--E A A 有E E A A =-)3(,此时E A A 31-=-.考查知识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛--5212111t t ,而0455212111,0111,1122>--=-->-=>t t t t t t t,可解得054<<-t ;此时,该二次型正定;考查知识点:二次型正定的判断 难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5; 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关; 考查知识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21-==n n ,则所求直线的方向向量为k j i n n s ++-=⨯=3221;所以所求直线为14322-=-=-z y x ; 考查知识点:求空间平面交线平行的直线方程难度系数:10. C.解析:由08215132=--=⎪⎪⎭⎫ ⎝⎛---=-λλλλλE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值难度系数:三、解答题11. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------121012100120001][1210012100120001][1234012300120001100021003210432111)()()(B C B C B C TT T E X B C ,, 考查知识点:矩阵方程的运算求解难度系数:12.解:)22()12(81212121212121||2321-+=------==a a a a aa a a A ,, 当||A =0时即21-=a 或1=a 时,向量组321a a a ,,线性相关;考查知识点:向量组的线性相关性 难度系数:13.解:①当1≠λ且2-≠λ时,方程组有唯一解;②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 考查知识点:线性方程组的求解难度系数:14.解:由题可知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==0000110020102001131300161600241031217130104302410312171307311100943121)(4321a a a a A ,,,则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 321422a a a a ++-=考查知识点:向量组的秩与 最大无关组 难度系数:15.证明:由题可知,()()A I TA I A I A AA A I A TT+-=+-=+=+=+∴()02=+A I ,即()0=+A I 考查知识点:n 阶方阵的性质 难度系数:。

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。

每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。

2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大【篇一:华南理工大学线性代数与解析几何试卷(14)】s=txt>华南理工大学期末考试《线性代数-2007》试卷a注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。

1.设矩阵a1 2??3 4??, b1 23??456??, c??14?25,则下列矩阵运算无意义的是【】36??a. bacb. abcc. bcad. cab2.设n阶方阵a满足a2–e =0,其中e是n阶单位矩阵,则必有【】a. a=a-1b. a=-ec. a=ed. det(a)=13.设a为3阶方阵,且行列式det(a)=?12,则a*【】 a. ?14b. 14c. ?1d. 1 4.设a为n阶方阵,且行列式det(a)=0,则在a的行向量组中【】a.必存在一个行向量为零向量b.必存在两个行向量,其对应分量成比例c. 存在一个行向量,它是其它n-1个行向量的线性组合d. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是【】 a.a1?a2,a2?a3,a3?a1 b. a1,a2,2a1?3a2 c. a2,2a3,2a2?a3 d.a1,a2,a1?a36.向量组(i): a1,?,am(m?3)线性无关的充分必要条件是【】a.(i)中任意一个向量都不能由其余m-1个向量线性表出b.(i)中存在一个向量,它不能由其余m-1个向量线性表出 c.(i)中任意两个向量线性无关d.存在不全为零的常数k1,?,km,使k1a1kmam?0【】a.a的行向量组线性相关 b. a的列向量组线性相关 c. a的行向量组线性无关 d. a的列向量组线性无关a1x1a2x2a3x308.设ai、bi均为非零常数(i=1,2,3),且齐次线性方程组?bx?bx?bx?02233?11的基础解系含2个解向量,则必有【】a.a1a2b2b30 b.a1a2b1b20 c.a1a3a1a2a30 d.b1b2b1b2b3【】9.方程组?x?2x?x?1 有解的充分必要的条件是1233 x3x2xa123?2x1x2x31a. a=-3b. a=-2c. a=3d. a=2【】a. 方程组有无穷多解b. 方程组可能无解,也可能有无穷多解c. 方程组有唯一解或无穷多解d. 方程组无解12. n阶方阵a相似于对角矩阵的充分必要条件是a有n个【】a.互不相同的特征值b.互不相同的特征向量c.线性无关的特征向量d.两两正交的特征向量13. 下列子集能作成向量空间rn的子空间的是【】a. {(a1,a2,?,an)|a1a2?0}b. {(a1,a2,?,an)|c. {(a1,a2,?,an)|a1?1}d. {(a1,a2,?,ana)|?an1i?nii0} 1}14.【】1001?1 2a. 011b. ?5?2-10 1 -1c. ?1 -11 0d.0 -10 -11 0 015.若矩阵a?0 2 a正定,则实数a的取值范围是【】 0 a 8?? a.a 8b. a>4c.a<-4 d.-4 <a<4二、填空题(每小题2分,共20分)。

华南理工大学线性代数期末试卷及解析

华南理工大学线性代数期末试卷及解析

华南理工大学期末考试(A 卷)《2010-11线性代数(上)》试卷注意事项:1. 考前请将密封线内各项信息填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷;一、1.设A 是n m ⨯矩阵,B 是列向量,那么线性方程组B AX =有解的充要条件是: 2.矩阵A 是正定二次型的矩阵的条件是:3.设)0,16,2,3,1(---=α,)3,0,1,3,2(=β则=)det(αβT 4. 若A 为2011阶正交矩阵,则=))det((det A A T5.将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵记为))(,(k i j P , 将矩阵A的第i 列乘k 加到第j 列得到的矩阵=二、 选择题(共20分)1.如果将单位矩阵E 的第i 行乘k 得到的矩阵设为))((k i P ,那么))((k i P 是正交矩阵的充要条件是: A , k >0, B ,-1<k <0 C ,k =-1, D ,k <-12.若A 为n m ⨯矩阵,且A TA 可逆,则A ,n m >;B , n m <;C , T A A 也可逆,D , 以上都不对。

3.若A ,B 为n 阶可逆方阵,则以下命题哪一个成立A ,()T T T AB A B =, B , ()T T T A B A B +=+C , 111()AB A B ---= ,D , 111()A B A B ---+=+4.若A 是n 阶初等矩阵,*A 是A 的伴随矩阵,则以下命题哪一个不成立:A ,矩阵T A 为初等矩阵,B ,矩阵*A 为初等矩阵C ,矩阵1A -为初等矩阵,D ,以上都不对5.如果n (n >1)阶矩阵M 的行列式为0,那么:A , M 的行向量线性无关,B ,M 的列向量线性无关C , M 的秩为0,D ,以M 为系数矩阵的线性方程组有非零解三、判断下面的命题是否正确(每小题4分,共12分)(二学分的只需要给出判断,三学分的要求说明正确的理由或举出不正确的反例) (1) 已知A ,B 是矩阵。

华南理工大学 线性代数与解析几何 习题 (3)

华南理工大学 线性代数与解析几何 习题 (3)

1 , 2 , , r,1 , 2 , , t 线性表示;
因此,向量组1 1 , 2 2 , , n n 可由向量组1 , 2 , , r,1 , 2 , , t 线性表示, 则rank(1 1 , 2 2 , , n n ) rank(1 , 2 , , r,1 , 2 , , t ) r t 即:rank(A B) r t rank ( A) rank ( B )
三、 (第3章第6题) 证明:若方程组 a11 a11 x1 a12 x2 a1n xn b1 系数矩阵的秩等于矩阵 an1 a x a x a x b nn n n n1 1 n 2 2 b1 的秩,则这个方程组有解。 a12 b2 a1n ann bn a1n b1 bn 0
九、(第四章第14题)证明V {( x1 , x2 , x3 ) | 2 x1 x2 3 x3 0}是R 3的 一个子空间,并求V 的一组基。 证: 设任意向量 =(a1 , a2 , a3 )T , (b1 , b2 , b3 )T V , 任意k , t R, 则 2a1 a2 3a3 0, 2b1 b2 3b3 0 k t (ka1 tb1 , ka2 tb2 , ka3 tb3 )T 由于 2(ka1 tb1 ) (ka2 tb2 ) 3(ka3 tb3 ) =k (2a1 a2 3a3 ) t (2b1 b2 3b3 ) 0 所以,k t V . 则V 是子空间。 x1 c1 x1 1 0 解方程组: 2 x1 x2 3 x3 0 x2 2c1 3c2 x2 c1 2 c2 3 x c x 0 1 2 3 3 则 (1,2,0)T ,(0,3,1)T 是子空间V的一组基。

线性代数期末试题及答案

线性代数期末试题及答案

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线代期末试题及答案

线代期末试题及答案

T AB =______________.2.若三元非齐次线性方程组的系数矩阵的秩为2,123,,βββ是它的 三个解向量,且12(2,6,3),T ββ+=-23(6,8,5),T ββ+=-则该线性方 程组的通解是__________.3. 设123625t A t t ⎛⎫⎪=- ⎪ ⎪-⎝⎭的行向量线性相关,则实数t 满足的条件是 _________.4.令ii A 是三阶矩阵A 的元素ii a 的代数余子式(i =1,2,3),若A 的特征值为3,4,5,则112233A A A ++=__________.5.若101020105A c c ⎛⎫ ⎪=+ ⎪ ⎪-⎝⎭是正定矩阵,则c 的取值范围为 ___________.二. 选择题(每小题3分,共15分)1. 设A 、B 均为n 阶正交矩阵,则____________. (1)A+B 为正交矩阵 (2)A-B 为正交矩阵(3) B AB 为正交矩阵(4)k AB 为正交矩阵(k >0为实数)2.设A 为m 阶可逆矩阵,B 为n 阶可逆矩阵,则可逆分块矩阵O A D B O ⎛⎫= ⎪⎝⎭的逆矩阵是____________.(1)11A O O B --⎛⎫⎪⎝⎭ (2)11O B A O --⎛⎫⎪⎝⎭ (3) 11B O OA --⎛⎫⎪⎝⎭ (4)11O A BO --⎛⎫ ⎪⎝⎭3. 设α与β是线性无关的单位向量,则α与β的内积必 ____________.(1) >0 (2)<0 (3)>1 (4)<14.设A 为n 阶可逆矩阵,1*,,T A A A -分别是A 的转置矩阵,逆矩阵和伴随矩阵,若ξ是A 的特征向量,则下列命题中的不正确的是________.(1)ξ是T A 的特征向量 (2)2ξ是1A -的特征向量 (3)3ξ是*A 的特征向量(4) 4ξ是kA 的特征向量(k 为常数)5.设222623222,000222000A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则____ ____. (1)A 与B 是相似的且是合同的 (2)A 与B 是相似的但不是合同的 (3)A 与B 不是相似的但是合同的 (4)A 与B 不是相似的也不是合同的三.(15分)试求五元齐次线性方程组123451234512345330,30,0x x x x x x x x x x x x x x x ++++=⎧⎪-++-+=⎨⎪+++-=⎩的解空间V(作为5R 的子空间)的一组规范(标准)正交基。

2012-1线性代数期末统考试卷

2012-1线性代数期末统考试卷

2012-1线性代数期末统考试卷华南理工大学广州汽车学院基础部关于2011年《线性代数》期末统考的通知通知要点一、考试的重点内容与要求二、考试的形式与试卷结构三、题型示例与答案一、考试时间、考试的重点内容与要求考试时间:2012年1月9日下午考试的范围是《线性代数》(同济大学·第五版)第一、二、三、四、五章。

以下按章次明确考试的重点与要求:第一章行列式1.了解行列式的定义,会用对角线法则计算二三阶行列式。

2. 掌握余子式,代数余子式,会利用行列式的性质及按行(列)展开计算行列式。

3. 掌握范德蒙行列式。

?4.了解克拉默法则。

第二章矩阵及其运算1.理解矩阵的概念。

了解零矩阵、单位矩阵、对角矩阵等特殊的矩阵。

2.掌握矩阵的加法及数乘矩阵、矩阵的乘法、矩阵的转置、方阵的行列式以及它们的运算规则。

3.理解可逆矩阵的概念、性质,以及矩阵可逆的充要条件。

4.了解伴随矩阵的概念和性质,会用伴随矩阵求矩阵的逆阵。

第三章矩阵的初等变换与线性方程组1.掌握用初等行变换把矩阵化成阶梯形矩阵和行最简形矩阵的方法。

2.理解矩阵等价的概念。

2.知道初等矩阵,了解初等矩阵与初等变换的联系,掌握用初等变换求可逆矩阵的方法。

3.理解矩阵的秩的概念,知道初等变换不改变矩阵的秩。

4.了解线性方程组无解、有唯一解或有无限多个解的充要条件(包括非齐次线性方程组有解的充要条件及齐次方程组有非零解的充要条件)。

5.掌握用矩阵的初等行变换求解线性方程组的方法(包括求非齐次线性方程组及齐次线性方程组的通解)。

第四章向量组的线性相关性1.理解n维向量的概念,了解向量组的概念及向量组与矩阵的对应。

2.了解向量组的线性组合的概念,了解向量组线性相关、线性无关的概念,了解向量组的最大无关组和向量组的秩的概念。

3.理解齐次线性方程组的基础解系的概念,并熟悉基础解系的求法。

理解非齐次线性方程组通解的结构。

第五章相似矩阵及二次型1.了解向量的内积、长度及正交性。

大学线性代数期末考试题含答案

大学线性代数期末考试题含答案

用心用情 服务社会1广东工业大学考试试卷 ( A )课程名称: 线性代数 试卷满分 100 分考试时间: 2009 年 6 月 9 日 (第 17 周 星期 二 ) 题 号 一 二 三 四 五 六 七 八 九 十 总分 评卷得分评卷签名 复核得分 复核签名一、 填空题 (每小题4分,共20分)1. 已知三阶行列式D 中第一行的元素依次为a 、2 、 1,它们的余子式分别是-2、-5、4,且D =10,则a = 。

2. 5,A A A *=-=设为三阶方阵,若则 。

3. 若n 阶矩阵A 满足O E A A =--422,则 ()1-+E A = 。

4.02030x ky z y z kx y z +-=⎧⎪+=⎨⎪--=⎩如果齐次线性方程组 有非零解,则k= 。

5.设33500012,025A B ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭的列向量组线性无关,则R(AB)= 。

二、选择题(每小题4分,共16分)1.A 为n m ⨯矩阵,0=AX 仅有零解的充分必要条件是( )(A)A 的列向量组线性无关 (B)A 的列向量组线性相关 (C)A 的行向量组线性无关 (D)A 的行向量组线性相关 2.设A ,B ,C 均为n 阶方阵,E 为n 阶单位矩阵,且E ABC =,则下列等式总成立的有( )(A) E ACB = (B) E CBA = (C) E BAC = (D) E BCA =用心用情 服务社会2 3. 如果1333231232221131211=a a a a a a a a a ,则=---333231312322212113121111324324324a a a a a a a a a a a a ( ) (A)8 (B)-12 (C)24 (D )-244. 下列哪一个不是n 阶方阵为非奇异矩阵的充要条件( )(A) A 的行秩为n (B)A 的每个行向量都是非零向量 (C) n A r =)( (D) 线性方程0=Ax 只有零解三、(10分)四、解矩阵方程 B AX X +=2,其中⎪⎪⎪⎭⎫ ⎝⎛--=101121011A , ⎪⎪⎪⎭⎫ ⎝⎛--=202031B .(12分)五、求非齐次线性方程组的一个解及对应的齐次方程组的基础解系。

华南理工大学 线性代数与解析几何 试卷 (21)

华南理工大学 线性代数与解析几何 试卷 (21)

代数难题之三15.题目知识点矩阵乘法逆矩阵向量运算解题过程(1)(2)常见错误矩阵乘法概念模糊,没有注意当u是n维向量时,T uu是一个nn⨯矩阵,但u u T是一个数。

事实上,u u T可看作是一个n⨯1矩阵乘以1⨯n矩阵,其结果是11⨯矩阵,即一个数.16.题目知识点零矩阵的概念矩阵乘法解题过程可见常见错误对零矩阵概念不理解,因而不明确:要证明A是零矩阵,必须要证A中每一个元素均为0. 另一方面,没有想到X可取一些特殊的向量.17.题目计算行列式.知识点行列式性质解题过程常见问题本题技巧性强, 首先用按行展开的方法把行列式降阶, 再巧用等式关系找出递推规律, 最后利用递推关系求出行列式的值. 本题的方法不容易想到.18.题目证明知识点行列式性质解题过程常见错误有些同学用加边法进行计算,在其过程中出现n ni ia a a a 211)11(∑=+,这就要求i a 全不为零,但题目给出的条件并没有这种限制,故不适合. 19. 题目设A 为n 阶非零实矩阵(n>2),且A 的每个元素j i a 等于它在det A 中的代数余子式j i A ,求det A. 知识点矩阵运算 行列式按行展开 解题过程因为所以其中因为A为非零实矩阵,所以所以从而常见错误没有利用A是非零实矩阵的条件,推出.20.题目设n阶矩阵A的分块如下:若A11可逆,证明知识点分块矩阵矩阵乘法解题过程若A11可逆,则A11-1存在,因为所以从而常见问题对分块矩阵的运算不熟练,对矩阵的初等行变换与左乘初等方阵的关系不明确,导致不会分解原来的分块矩阵.。

线性代数期末试题及答案

线性代数期末试题及答案

8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。

线性代数习题及答案-华南理工大学工版

线性代数习题及答案-华南理工大学工版

习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n -。

解:(1)(134782695)04004200010τ=++++++++= ;(2)[(1)21]n n τ-=(1)(1)(2)102n n n n --+-+++=。

2.选择i 和k ,使得: 1)1274i 56k 9成奇排列;2)1i 25k 4897为偶排列。

解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。

从而3,8i k ==。

(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。

与题意不符,从而6,3i k ==。

3.由定义计算行列式11122122313241424344455152535455000000000a a a a a a a a a a a a aaaa 。

解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。

4.计算行列式:1)402131224---; 2)1111111*********----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++++++++。

理工大学线性代数考试试卷及参考答案(B)

理工大学线性代数考试试卷及参考答案(B)
三、解答下列各题(14分):
11.设 ,求
四、证明题(16分=8分×2):
12.设 为 维列向量,且 ,证明: 是对称的正交阵.
13.设 可逆,证明其伴随矩阵 也可逆,且 .
五、计算题(14分):
14.解矩阵方程 。
六、计算题(10分):
15.设 ,求可逆矩阵 ,使 为对角矩阵,并求 .
七、 ( ) .
3.当 时, 都是线性方程组 的解.
( ) ;( ) ;
( ) ;( ) .
4.向量 线性无关,而 线性相关,则__________.
( ) 必可由 线性表出;( ) 必不可由 线性表出;
( ) 必可由 线性表出;( ) 必不可由 线性表出.
5.已知 阶方阵 的每行元素之和均为 ,则()是 的特征值.
( ) ; ( ) ; ( ) ; ( ) .
二、填空题(20分=4分 ):
6. _______.
7.设 为三阶方阵,若 =5,则 =_______.
8.若4阶方阵 的秩为2,则 的伴随矩阵 的秩等于_______.
9.设 则 =________.
10. 阶矩阵 有 个不同的特征值是 与对角矩阵相似的_______条件.
16.设 阶方阵 ,且 可逆,证明
2005级线性代数期末考试参考答案(B卷)
一、单项选择(20分=4分 5):
1、 2、 3、 4、 5、
二、填空题(20分=4分 ):
6、 ,7、 ,8、0,9、 ,10、充分不必要
三、计算行列式(14分):
11.解:因为 7’
所以 7’
四、证明(16分=8分×2):
2005级线性代数期末考试试卷(B卷)
课程名称:线性代数适用专业年级:

华南理工大学有限元考试试题

华南理工大学有限元考试试题

华南理工大学广州学院有限单元法期末试题大纲一、选择题:1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为________________。

(A)配点法(B)子域法(C)伽辽金法2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。

(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同3 有限元位移模式中,广义坐标的个数应与___________相等。

(A)单元结点个数(B)单元结点自由度数(C)场变量个数4 采用位移元计算得到应力近似解与精确解相比较,一般___________。

(A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少是______完全多项式。

(A)m-1次(B)m次(C)2m-1次6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进行回代计算。

(A)上三角矩阵(B)下三角矩阵(C)对角矩阵7 对称荷载在对称面上引起的________________分量为零。

(A)对称应力(B)反对称应力(C)对称位移(D)反对称位移8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。

(A)单元编号(B)单元组集次序(C)结点编号9 n个积分点的高斯积分的精度可达到______阶。

(A)n-1 (B)n(C)2n-1 (D)2n10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。

(A)对称性(B)稀疏性(C)奇异性C B B C B CD C C C二、填空题:(课本···黑色字体)····仿题1、有限元网格划分的过程中应注意:网格数目、网格疏密、单元阶次、网格质量2、网格分界面和分界点应使网格形式满足边界条件特点,而不应让边界条件来适应网格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工大学期末考试(A 卷)
《2010-11线性代数(上)》试卷
注意事项:1. 考前请将密封线内各项信息填写清楚;
2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷;
一、
1.设A 是n m ⨯矩阵,B 是列向量,那么线性方程组B AX =有解的充要条件是: 2.矩阵A 是正定二次型的矩阵的条件是:
3.设)0,16,2,3,1(---=α,)3,0,1,3,2(=β则=)det(αβT 4. 若A 为2011阶正交矩阵,则=))det((det A A T
5.将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵记为))(,(k i j P , 将矩阵A
的第i 列乘k 加到第j 列得到的矩阵=
二、 选择题(共20分)
1.如果将单位矩阵E 的第i 行乘k 得到的矩阵设为))((k i P ,那么))((k i P 是正交
矩阵的充要条件是: A , k >0, B ,-1<k <0 C ,k =-1, D ,k <-1
2.若A 为n m ⨯矩阵,且A T
A 可逆,则
A ,n m >;
B , n m <;
C , T A A 也可逆,
D , 以上都不对。

3.若A ,B 为n 阶可逆方阵,则以下命题哪一个成立
A ,()T T T A
B A B =, B , ()T T T A B A B +=+
C , 111()AB A B ---= ,
D , 111()A B A B ---+=+
4.若A 是n 阶初等矩阵,*
A 是A 的伴随矩阵,则以下命题哪一个不成立:
A ,矩阵T A 为初等矩阵,
B ,矩阵*A 为初等矩阵
C ,矩阵1A -为初等矩阵,
D ,以上都不对
5.如果n (n >1)阶矩阵M 的行列式为0,那么:
A , M 的行向量线性无关,
B ,M 的列向量线性无关
C , M 的秩为0,
D ,以M 为系数矩阵的线性方程组有非零解
三、判断下面的命题是否正确(每小题4分,共12分)(二学分的只需要给出判
断,三学分的要求说明正确的理由或举出不正确的反例) (1) 已知A ,B 是矩阵。

如果)()(B rank A rank =,那么A 可以经过初等变换化
为B 。

(2) 如果一个矩阵的行向量组线性无关,那么它的列向量组也线性无关。

(3) 如果一个对称矩阵A 的行列式大于0,那么它是正定的。

四、解下列各题(每小题8分共16分)
1.求所有的向量β,它与
111
101
313
A
⎛⎫

= ⎪

⎝⎭
的行向量都是正交的。

2. 设n阶方阵
12n
222
12n
n n n
12n
a a...a
a a...a
......
a a...a
A
⎛⎫


= ⎪


⎝⎭
,计算A
det.
五. 求常数c,使得矩阵
1111
11-1-1
1-11-1
1-1-11
A c
⎛⎫


=


⎝⎭
的逆矩阵是A.(10分)
六.证明题(6分) 设A ,B 是n 阶方矩阵,*A 是A 的伴随矩阵,BA AB =.如果
A 可逆,证明**BA
B A =.
七.(6分)证明,对于任何一个二次型f 都存在一个正定二次型g 以及一个整数m ,使得f+mg 是一个正定二次型。

八、(10分)用正交变换化下列二次型为标准型,并写出该正交变换所对应的矩阵。

2222
12313121323(,,)+222f x x x x x x x x x x x x =+-+-。

相关文档
最新文档