人教版八年级数学上册第十二章全等三角形测试题

合集下载

完整版人教版八年级上册数学第十二章 全等三角形含答案

完整版人教版八年级上册数学第十二章 全等三角形含答案

人教版八年级上册数学第十二章全等三角形含答案一、单选题(共15题,共计45分)1、如图,在中,点是内一点,且点到三边的距离相等.若,则的度数为()A. B. C. D.2、如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE =S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1B.2C.3D.43、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画圆弧,分别交AB、AC于点D、E,再分别以点D、E为圆心,大于DE长为半径画圆弧,两弧交于点F,作射线AF交边BC于点G.若CG=3,AB=10,则△ABG的面积是()A.3B.10C.15D.304、下列四个图形中,属于全等图形的是()A.①和②B.②和③C.①和③D.②和④5、如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cmB.2cmC.3cmD.4cm6、如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=nB.x=m+nC.x>m+nD.x 2=m 2+n 27、如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AFD :S四边形AFOE为()A.1:2B.2:1C.2:3D.3:28、在ΔABC和ΔDEF中,AB=DE,∠A=∠D,若证ΔABC≌ΔDEF还要从下列条件中补选一个,错误的选法是()A.∠B=∠EB.∠C=∠FC.BC=EFD.AC=DF9、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A 1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180° 如图,下列各组合同三角形中,是镜面合同三角形的是()A. B. C. D.10、如图四边形ABCD是菱形,且∠ABC=60°,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则下列五个结论中正确的是()①若菱形ABCD的边长为1,则AM+CM的最小值1;②△AMB≌△ENB;③S四边形AMBE =S四边形ADCM;④连接AN,则AN⊥BE;⑤当AM+BM+CM的最小值为2时,菱形ABCD的边长为2A.①②③B.②④⑤C.①②⑤D.②③⑤11、如图,∠B=∠D=90°,CB=CD,∠1=40°,则∠2=()A.40°B.45°C.50°D.60°12、直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为( )A. B. C. D.13、如图,在ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E,则DE的长是()A.4B.3C.3.5D.214、如图,在中,,,,平分,则点到的距离等于()A.3B.4C.5D.915、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E, S△ABC=32,DE=4,AB=6,则AC的长是( )A.8B.9C.10D.12二、填空题(共10题,共计30分)16、如图,Rt△ABC中,∠BAC=90°,AB=AC,BD⊥直线L于D,CE⊥直线L于E,若BD=5cm,CE=4cm,则DE=________.17、如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是________ .18、如图,直线,且相邻两条平行线的距离都相等,若等腰的三个顶点都在直线上,则________.19、如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为________.20、如图,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上 ________条件(写一个就可以),就可证明ΔABC≌ΔDEF;并用你所选择的条件加以证明。

人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)

人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)

人教版数学八年级上册第十二章《全等三角形》测试卷(含答案)一、单选题1.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A. 5B. 6C. 7D. 不能确定2.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A. 1B. 2C.D. 43.如图,用尺规作图作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A. SASB. AASC. ASAD. SSS4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A. ∠B=∠CB. AD=AEC. ∠ADC=∠AEBD. DC=BE5.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A. 1︰1︰1B. 1︰2︰3C. 2︰3︰4D. 3︰4︰56.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A. 76°B. 62°C. 42°D. 76°、62°或42°都可以7.如图,在5×5格的正方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )A. 5个B. 6 个C. 7个D. 8 个8.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若CD=3,点Q是线段AB上的一个动点,则DQ的最小值()A. 5B. 4C. 3D. 29.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时,△ABP和△DCE全等.A. 1B. 1或3C. 1或7D. 3或710.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1, √3),则点C 的坐标为()A. (﹣1,)B. (﹣,1)C. (﹣,1)D. (﹣,2)二、填空题11.如图,AC,BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB ≅△DOC,你补充的条件是________。

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)

人教版八年级数学上册第十二章《全等三角形》测试卷(含答案)班级_______________姓名_________________分数________________一、选择题(每小题5分,共25分)1.如图,已知AC =BD ,AD =BC ,则△ABC ≌△BAD 的依据是( ) A .SAS B .ASA C .AAS D .SSS2.如图,AC 和BD 相交于点O, AO =CO ,BO =DO ,若∠A =25°,则∠C =( )A.25°B.35°C.45°D.55°3. 如图所示,∠ACB =∠DFE ,BC =EF ,如果要使得△ABC ≌△DEF ,则还须补充的一个条件 可以是( )A .∠ABC =∠DEFB .∠ACE =∠DFBC .BF =ECD .AB =DE4.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与 书上完全重合的三角形,那么这两个三角形完全重合的依据是( ) A.SSS B.SAS C. ASA D. AAS5.如图,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC=18cm , 则△DEB 的周长为( )A.16cmB.17cmC.18cmD.19cm二、填空题(每小题5分,共25分)6.已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则 ∠C ′=_________,A ′B ′=__________。

7.在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形___对.D O CBA 第1题 第4题ACBDO第2题ADBCEF第3题第5题8.如图,△ABC ≌△ADE ,若∠BAE =120°,∠BAD =42°,则∠D AC 的度数为 .9.如图,在Rt △ABC 中,∠C=90°, AD 是△ABC 的角平分线,AB=6cm, CD=2cm,则△ABD 的面积是____. 10. 如图,6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .三、解答题(每小题10分,共50分) 11.如图,AB ,CD 相交于点O ,OA =OC ,OB =OD.求证:∠A=∠C.12.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.第10题图CBAED第8题A BCD第9题第7题13.如图,点B,C,D,E在同一直线上,AB∥EF,∠A=∠F, BD=CE.求证:(1)△ABC ≌△FED;(2)AC∥DF14.如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC, 垂足分别为E,F,BE=CF. 求证:AD平分∠BAC.AE F15.如图,已知△ABC中,∠ABC=∠BAC, D是BC边上的一点。

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)

八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:1.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS 2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均错误3.如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C .∠1=∠2,∠3=∠4D .∠1=∠2, ∠B=∠D5.如图,AD 是ABC 的中线,//CE AB 交AD 的延长于点E ,AB=5,AC=7,则AD 的取值可能是( )A .3B .6C .8D .126.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC||AB ,AB=5,BD=1,则CF 的长度为( )A .2B .2.5C .4D .57.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .208.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE=EF ,AB ∥EF ,AD 平分∠BAE ,CE=3,AB=13,则CF=( )A .10B .8C .7D .6二、填空题: 9.如图,在 ACB 中 ACB 90︒∠= , AC BC = 点 C 的坐标为 ()2,0- ,点 A 的坐标为 ()8,3- ,点 B 的坐标是 .10.如图,在ABC 中45ABC ∠=︒,F 是高AD 和BE 的交点8AC =cm ,则线段BF 的长度为 .11.如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为 cm .12.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,若∠A=60°,则∠BMN 的度数是 .三、解答题:13.已知,如图,∠C =∠D =90°,E 是CD 的中点,AE 平分∠DAB.求证:BE 平分∠ABC.14.如图,要测量池塘两岸相对的两点A,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C,D,使BC=CD,再画出BF 的垂线DE,使E 与A,C 在一条直线上,这时测得DE 的长就是AB 的长。

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案

人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

人教版初中八年级数学上册第十二章《全等三角形》测试卷(含答案解析)

人教版初中八年级数学上册第十二章《全等三角形》测试卷(含答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .5A解析:A【分析】 当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】 本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键.2.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【详解】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;添加BC=EF,利用SAS可得△ABC≌△DEF;添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;添加AC DF,不符合任何一个全等判定定理,不能证明△ABC≌△DEF;故选:D.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL 是解题的关键.3.如图,点O是△ABC中∠BCA,∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离是()A.1 B.2C.3 D.4C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12 OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .9D解析:D【分析】 求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S △ABC =S △ABD +S △ACD ,∴12=12×AB×DE+12×AC×DF , ∴24=AB×2+3×2,∴AB=9,故选:D .【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等B解析:B【分析】根据全等三角形的判定定理进行证明并依次判断.【详解】解:A 、有两边及其中一边上的中线对应相等的两个三角形全等,可利用证两步全等的方法求得,是真命题;B 、高有可能在内部,也有可能在外部,是不确定的,不符合全等的条件,原命题是假命题;C 、有两角及其中一角的平分线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;D 、有两边及第三边上的中线对应相等的两三角形全等,可利用证两步全等的方法求得,是真命题;故选:B .【点睛】此题考查全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,灵活判定命题真假,熟记定理并灵活应用解决问题是解题的关键.8.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.9.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④A解析:A【分析】根据已知条件,已知两角对应相等,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案即可;【详解】题意已知:∠A=∠D ,∠B=∠E ,∴①根据“ASA”可添加AB=DE ,故①正确;②根据“AAS” 可添加AC=DF ,故②正确;③根据“AAS” 可添加BC=EF ,故③错误;④根据“ASA”可添加AB=DE ,故④错误;所以补充①②可判定两三角形全等;故选:A .【点睛】本题主要考查了三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结;10.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠DB .EB=DFC .AD=BCD .AE=CF A解析:A【分析】 直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS 、SAS 、AAS 、ASA ;【详解】A ∵∠A=∠C ,∠AFD=∠CEB ,∠B=∠D ,三个角相等,不能判定三角形全等,该选项不符合题意;B ∵∠A=∠C ,∠AFD=∠CEB ,EB=DF ,符合AAS 的判定,该选项符合题意;C ∵∠A=∠C ,∠AFD=∠CEB ,AD=BC ,符合AAS 的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;二、填空题11.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .13【分析】过点C 作CN ⊥AD 交AD 延长线于点N 由角平分线的性质得到CN=CM 然后证明△CDN ≌△CBM 得到DN=BMCD=CB=25然后求出AN=AM=4则AD=4DN 即可求出四边形的周长【详解】解析:13【分析】过点C 作CN ⊥AD ,交AD 延长线于点N ,由角平分线的性质,得到CN=CM ,然后证明△CDN ≌△CBM ,得到DN=BM ,CD=CB=2.5,然后求出AN=AM=4,则AD=4-DN ,即可求出四边形的周长.【详解】解:根据题意,过点C 作CN ⊥AD ,交AD 延长线于点N ,如图:∵CM AB ⊥,CN ⊥AD ,∴∠N=∠CMB=90°,∵180B ADC ∠+∠=︒,180CDN ADC ∠+∠=︒,∴B CDN ∠=∠,∵AC 平分DAB ∠,∴CN=CM ,∴△CDN ≌△CBM ,∴DN=BM ,CD=CB=2.5,∵AC=AC ,∠N=∠CMA=90°,∴△ACN ≌△ACM (HL ),∴AN=AM=4,∴AD=4-DN ,∴AB=4+BM=4+DN ,∴四边形ABCD 的周长为:4 2.5 2.5413AD DC CB AB DN DN +++=-++++=;故答案为:13.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,解题的关键是利用所学的知识,正确得到AD=4-DN ,AB=4+DN .12.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键.13.如图,∠ABC=∠DCB ,要使△ABC ≌△DCB ,还需要补充一个条件:___.(一个即可) AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC 再添加任意一组角或是AB=CD 即可【详解】∵∠ABC=∠DCBBC=CB ∴当AB=解析:AB=CD (或∠A=∠D 或∠ACB=∠DBC )【分析】根据已知条件:两个三角形已经具备∠ABC=∠DCB 及公共边BC ,再添加任意一组角,或是AB=CD 即可.【详解】∵∠ABC=∠DCB ,BC=CB ,∴当AB=CD 时,利用SAS 证明△ABC ≌△DCB ;当∠A=∠D 时,利用AAS 证明△ABC ≌△DCB ;当∠ACB=∠DBC 时,利用ASA 证明△ABC ≌△DCB ,故答案为:AB=CD (或∠A=∠D 或∠ACB=∠DBC ).【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理是解题的关键. 14.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.15.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS 解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠. 在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△, ∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.16.在Rt △ABC 中,∠C =90°,AC =15cm ,BC =8cm ,AX ⊥AC 于A ,P 、Q 两点分别在边AC 和射线AX 上移动.当PQ =AB ,AP =_____时,△ABC 和△APQ 全等.8cm 或15cm 【分析】分情况讨论:①AP =BC =8cm 时Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时Rt △ABC ≌Rt △PQA (HL )此时AP =AC =15cm 【详解】解:①当P 运动解析:8cm 或15cm【分析】分情况讨论:①AP =BC =8cm 时,Rt △ABC ≌Rt △QPA (HL );②当P 运动到与C 点重合时,Rt △ABC ≌Rt △PQA (HL ),此时AP =AC =15cm .【详解】解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QPA 中,AB QP BC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,AB PQ AC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解.17.如图,9cm AB =,3cm AC =,点P 在线段AB 上以1cm/s 的速度由点B 向点A 运动,同时点Q 在射线BD 上以x cm/s 的速度由点B 沿射线BD 的方向运动,它们运动的时间为t (s )(1)如图①,若AC AB ⊥,BD AB ⊥,当ACP BPQ △≌△,x =________;CPQ ∠=________.(2)如图②,CAB DBA ∠=∠,当ACP △与BPQ 全等,x =________;90°2或【分析】(1)根据全等找出对应边利用BP 边求得时间再在BQ 边上求速度再运用全等三角形的性质即可证明角度;(2)结合条件对与全等时的情况进行分析分类讨论即可【详解】(1)当时又;(2)①当时解析:90° 2或23【分析】(1)根据全等找出对应边,利用BP 边求得时间,再在BQ 边上求速度,再运用全等三角形的性质,即可证明角度;(2)结合条件,对ACP △与BPQ 全等时的情况进行分析,分类讨论即可.【详解】(1)当ACP BPQ △≌△时,3AC PB ==,936AP BQ cm ==-=, 331cm t s cm /s ∴==,623cm x cm /s s==, 又CPA PQB ∠=∠,90PQB QPB ∠+∠=︒,90CPA QPB ∴∠+∠=︒,18090CPQ ∴∠=︒-︒=90︒;(2)①当ACP BPQ △≌△时,3AC BP ==,936AP BQ ==-=, 此时,331cm t s cm /s ==,623cm x cm /s s==; ②当ACP BQP △≌△时, 3AC BQ ==,92AP BP ==,此时,99212cm t s cm /s ==,32932cm x cm /s s ==; 综上:当ACP △与BPQ 全等,2x cm /s =或23cm /s . 【点睛】本题考查了全等三角形的性质及判定,熟练掌握全等三角形的性质是解题关键. 18.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____ 18【分析】过点D 作DE ⊥AB 于点E 由角平分线的性质可得出DE 的长再根据三角形的面积公式即可得出结论【详解】解:过点D 作DE ⊥AB 于点E ∵D (0-3)∴OD=3∵AD 是Rt △OAB 的角平分线OD ⊥O解析:18【分析】过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE 的长,再根据三角形的面积公式即可得出结论.【详解】解:过点D 作DE ⊥AB 于点E ,∵D (0,-3)∴OD=3,∵AD 是Rt △OAB 的角平分线,OD ⊥OA ,DE ⊥AB ,∴DE=OD=3,∴S △ABD =12AB•DE=12×12×3=18.故答案为:18.【点睛】本题考查了坐标与图形的性质,角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.19.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)∠C ∠E 或ABFD(ADFB)或∠ABC ∠FDE 或DE ∥BC 【分析】要判定△ABC ≌△FDE 已知∠A=∠FAC=FE 具备了一组角和一组边对应相等故可以添加∠C ∠E 利用ASA 可证全等(也可添加其它条件解析:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC【分析】要判定△ABC ≌△FDE ,已知∠A=∠F ,AC=FE ,具备了一组角和一组边对应相等,故可以添加∠C =∠E ,利用ASA 可证全等.(也可添加其它条件).【详解】增加一个条件:∠C =∠E ,在△ABC 和△FDE 中,C E AC FE A F ∠∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△FDE(ASA);或添加AB =FD(AD =FB) 利用SAS 证明全等;或添加∠ABC =∠FDE 或DE ∥BC 利用AAS 证明全等.故答案为:∠C =∠E 或AB =FD(AD =FB)或∠ABC =∠FDE 或DE ∥BC (答案不唯一).【点睛】本题考查了全等三角形的判定;判定方法有ASA 、AAS 、SAS 、SSS 等,在选择时要结合其它已知在图形上的位置进行选取.20.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC即可求出答案【详解】解:过D作DE⊥AB于E∵∠C=90°AD平分∠BACDC=2∴DE=DC=2即点D到线段AB的距离等于2故答案为:2解析:【分析】过D作DE⊥AB于E,根据角平分线的性质得出DE=DC,即可求出答案.【详解】解:过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,DC=2,∴DE=DC=2,即点D到线段AB的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC是解此题的关键.三、解答题21.如图,在△ABC中,AC=BC,∠ACB=90°,点D在边BC上(不与点B,C重合),过点C作CE⊥AD,垂足为点E,交AB于点F,连接DF.(1)请直接写出∠CAD与∠BCF的数量关系;(2)若点D是BC中点,在图2中画出图形,猜想线段AD,CF,FD之间的数量关系,并证明你的猜想.解析:(1)∠BCF=∠CAD;(2)AD=CF+DF,证明见解析【分析】(1)由余角的性质可求解;(2)过点B作BG∥AC交CF的延长线于G,由“ASA”可证△ACD≌△CBG,可得CD=BG,AD=CG,由“SAS”可证△BDF≌△BGF,可得DF=GF,可得结论.【详解】解:(1)∠BCF=∠CAD,理由如下:∵CE⊥AD,∴∠CED=∠ACD=90°,∴∠CAD+∠ADC=90°=∠ADC+∠BCF,∴∠CAD =∠BCF ;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON=∠α(2)在边OM上截取OA=m,在边ON上截取OB=n.(3)作直线AB.解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a,接着以点O为圆心,同样的长度为半径画弧,交ON于一个点,以这个点为圆心,a为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O,得到射线OM,即可得到∠MON=∠α;(2)以点O为圆心,m为半径画弧,交OM于点A,以点O为圆心,n为半径画弧,交ON于点B;(3)连接AB,线段AB所在的直线即直线AB.【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 23.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.解析:见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.解析:见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.26.如图,点P 是锐角∠ABC 内一点,BP 平分∠ABC ,点M 在边BA 上,点N 在边BC 上,且PM =PN .求证:∠BMP +∠BNP =180°.解析:见解析【分析】过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,根据角平分线性质定理可得PE =PF ,再由HL 可证Rt △MEP ≌Rt △NFP ,进而证得∠PME =∠PNF ,从而证得∠BMP +∠BNP =180°.【详解】证明:如图所示,过点P 作PE ⊥BA 于点E, 作PF ⊥BC 于点F ,∴∠MEP =∠NFP =90°.∵BP 平分∠ABC ,∴PE =PF .在Rt △MEP 与Rt △NFP 中,PE PF PM PN =⎧⎨=⎩, ∴Rt △MEP ≌Rt △NFP (HL ).∴∠PME =∠PNF .∵∠BMP+∠PME=180°,∴∠BMP+∠BNP=180°.【点睛】本题主要考查了全等三角形的判定与性质,通过证明三角形全等得出对应角相等是解决问题的关键.27.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB=90°,在图中动手画图(不用写画法).在∠AOB内部任意画一条射线OC;画∠AOC的平分线OM,画∠BOC的平分线ON;用量角器量得∠MON=______.(2)如图2,∠AOB=90°,将OC向下旋转,使∠BOC=30°,仍然分别作∠AOC,∠BOC 的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O为圆心,任意长为半径,画圆弧,并分别交OA、OC于点H、点G;再分别以点H、点G为圆心,以大于12HG的长度为半径画圆弧并相较于点P,过点P作射线OM即为∠AOC的平分线;同理得∠BOC的平分线ON;通过量角器测量即可得到∠MON;(2)根据题意,得114522COM AOC BOC∠=∠=+∠,12CON BOC∠=∠,结合MON COM CON∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON=45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90° ∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.28.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=. ∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键.。

人教版八年级数学上册第十二章《全等三角形》测试带答案解析

人教版八年级数学上册第十二章《全等三角形》测试带答案解析

人教版八年级数学上册第十二章《全等三角形》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD △的面积是( )A .12B .10C .8D .62.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD 与'''O C D 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS 3.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .∠ODE =∠OED D .∠ODE =∠OFE 4D E BC,,12110,60AD AE BE CD BAE ==∠=∠∠=︒=︒,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°5.如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点,若5,3AB BC ==,则线段CD 的长为( )A .32B .53C .43D .856.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )8.如图,点E 是△ABC 内一点,∠AEB =90°,AE 平分∠BAC ,D 是边AB 的中点,延长线段DE 交边BC 于点F ,若AB =6,EF =1,则线段AC 的长为( )A .7B .8C .9D .109.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .2710.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等11.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②2180ABC APC ∠+∠=︒;③2BAC BPC ∠=∠;④PAC MAP NCP S S S ∆∆∆=+.其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =12CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题13.如图,ABC DCB △≌△,若AB =4cm ,BC =6cm ,AC =5cm ,则DC =________cm .14.嘉淇为了测量建筑物墙壁AB 的高度,采用了如图所示的方法:①把一根足够长的竹竿AC 的顶端对齐建筑物顶端A ,末端落在地面C 处;②把竹竿顶端沿AB 下滑至点D ,使DB =_____,此时竹竿末端落在地面E 处;③测得EB 的长度,就是AB 的高度.以上测量方法直接利用了全等三角形的判定方法 _____(用字母表示).15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图,任意画一个60BAC ∠=︒的ABC ,再分别作ABC 的两条角平分线BE 和CD ,BE 和CD 交于点P ,连结AP .有以下结论:①AP 平分BAC ∠;②PD PE =;③BD CE BC =+;④PBD PCE PBC S S S +=.其中正确的序号是_____.三、解答题17.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.18.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.如图,点E ,F 在线段AD 上,AB ∥CD ,B C ∠=∠,BE CF =.求证:AF DE =.20.如图,ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE CF ∥.(1)求证:BDE △≌CDF ;(2)若15AE =,8AF =,试求DE 的长.21.如图,已知ABC 中,2C B ∠=∠.(1)请用基本尺规作图:作∠BAC 的角平分线交BC 于点D ,在AB 上取一点E ,使AE =AC ,连接DE .(不写作法,不下结论,保留作图痕迹);(2)在(1)所作的图形中,求证:AB AC CD =+.请完成下面的证明过程:证明:∵AD 平分BAC ∠,∴DAC ∠=______,在EAD 与CAD 中AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD CAD ≌△△,∴______C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+______,且2C B ∠=∠,∴B BDE=,∠=∠,∴BE DE∴BE=______,=+.∵AB AE BE=+,∴AB AC CD22.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.23.如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即=∵AF=5cm∴=5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB()24.在△ABC中,AB=BC,∠ABC=90°,点D为BC上一点,BF⊥AD于点E,交AC于点F,连接DF.(1)如图①,当AD平分∠BAC时,①AB与AF相等吗?为什么?②判断DF与AC的位置关系,并说明理由;(2)如图②,当点D为BC的中点时,试说明:∠FDC=∠ADB.25.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式求解即可.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵AD 是∠BAC 的角平分线,90C ∠=︒,CD =3,∴DE =CD =3,∵AB =8,∴△ABD 的面积118312.22AB DE =⋅=⨯⨯= 故选A.【点睛】本题主要考查角了平分线的性质,掌握角平分线上的点到角两边的距离相等是解答本题的关键.2.A【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD ∆和O C D '''∆中, OD O D OC O C DC D C '''''=⎧'⎪=⎨⎪=⎩,()OCD O C D SSS '''∴∆≅∆.故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.3.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4.B【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.A【分析】利用基本作图得BD平分∠ABC,过D点作DE⊥AB于E,如图,根据角平分线的性质得到则DE=DC,再利用勾股定理计算出AC=4,然后利用面积法得到12•DE×5+12•CD×3=12×3×4,最后解方程即可.【详解】解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC BC222253=4,∵S△ABD+S△BCD=S△ABC,∴12•DE×5+12•CD×3=12×3×4,即5CD+3CD=12,∴CD=32,故选:A.【点睛】本题考查了基本作图:作解平分线,角平分线的性质,勾股定理,熟练掌握基本作图(作已知角的角平分线),角平分线的性质是解题的关键.6.C【分析】利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.【详解】在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,根据作法可知:AE =AF ,AM =AN ,在△AMF 和△ANE 中,AF AE MAF NAE AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMF ≌△ANE (SAS ),∴∠AMD =∠AND ,∵AE =AF ,AM =AN ,∴ME =NF ,在△MDE 和△NDF 中,MDE NDF AMD AND ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NDF (AAS ),MDE NDF S S ∴=△△所以D 点到AM 和AN 的距离相等,∴AD 平分∠BAC .综上,能判断射线AD 平分∠BAC 的是图1和图3.故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,角平分线的判定,解决本题的关键是掌握角平分线的作法.7.B【分析】根据角平分线的性质得到AE =DE ,根据三角形的周长公式计算,得到答案.【详解】解:∵BE 是△ABC 的角平分线,ED ⊥BC ,∠A =90°,∴AE =DE ,∵△CDE 的周长为12,CD =4,∴DE +EC =8,∴AC =AE +EC =8,故选:B .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B【分析】延长BE 交AC 于H ,证明HAE BAE ∆≅∆,根据全等三角形的性质求出AH ,根据三角形中位线定理解答即可.【详解】解:延长BE 交AC 于H , AE 平分BAC ∠,HAE BAE ∴∠=∠,在HAE ∆和BAE ∆中,HAE BAE AE AEAEH AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAE BAE ASA ∴∆≅∆,6AH AB ∴==,HE BE =,HE BE =,AD DB =,//DF AC ∴,HE BE =,22HC EF ∴==,8AC AH HC ∴=+=,故选:B .【点睛】本题考查的是全等三角形的判定和性质、三角形中位线定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,∵AI ,BI ,CI 分别平分∠BAC ,∠ABC ,∠ACB ,∴IE =IF =ID =3,∴ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.10.A【分析】根据O 是AD 与BC 的中点,得到OA =OD ,OB =OC ,根据∠AOB =∠DOC ,推出△AOB ≌△DOC ,是SAS .【详解】∵O 是AD 与BC 的中点,∴OA =OD ,OB =OC ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC (SAS).故选A .【点睛】本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.11.D【分析】过点P 作PD ⊥AC 于D ,根据角平分线的判定定理和性质定理判断①;证明Rt △P AM ≌Rt △P AD ,根据全等三角形的性质得出∠APM =∠APD ,同理得出∠CPD =∠CPN ,可判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【详解】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PN =PD ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △P AM 和Rt △P AD 中,PM PD PA PA=⎧⎨=⎩, ∴Rt △P AM ≌Rt △P AD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵PC 平分∠FCA ,BP 平分∠ABC ,∴∠ACF =∠ABC +∠BAC =2∠PCN ,∠PCN =12∠ABC +∠BPC , ∴()1122PCN ABC BPC ABC BAC ∠=∠+∠=∠+∠ ∴∠BAC =2∠BPC ,③正确;④由②可知Rt △P AM ≌Rt △P AD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D【点睛】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.D【分析】根据两直线平行,同旁内角互补可得∠ABC +∠BAD =180°,又BE 、AE 都是角平分线,可以推出∠ABE +∠BAE =90°,从而得到∠AEB =90°,然后延长AE 交BC 的延长线于点F ,先证明△ABE 与△FBE 全等,再根据全等三角形对应边相等得到AE =EF ,然后证明△AED 与△FEC 全等,从而可以证明①②⑤正确,AB 与CD 不一定相等,所以③④不正确.【详解】解:∵AD ∥BC ,∴∠ABC +∠BAD =180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∴∠AEB =180°﹣(∠BAE +∠ABE )=180°﹣90°=90°,故①小题正确;如图,延长AE 交BC 延长线于F ,∵∠AEB =90°,∴BE ⊥AF ,∵BE 平分∠ABC ,∴∠ABE =∠FBE ,在△ABE 与△FBE 中,90ABE FBE BE BEAEB FEB ∠∠⎧⎪⎨⎪∠∠︒⎩==== , ∴△ABE ≌△FBE (ASA ),∴AB =BF ,AE =FE ,∵AD ∥BC ,∴∠EAD =∠F ,在△ADE 与△FCE 中,EAD F AE FE AED FEC ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴AB =BF =BC +CF =BC +AD ,故②小题正确;∵△ADE ≌△FCE ,∴CE =DE ,即点E 为CD 的中点,∵BE 与CE 不一定相等∴BE 与12CD 不一定相等,故③小题错误;若AD =BC ,则CE 是Rt △BEF 斜边上的中线,则BC =CE ,∵AD 与BC 不一定相等,∴BC 与CE 不一定相等,故④小题错误;∵BF =AB =x ,BE ⊥EF ,∴BE 的取值范围为0<BE <x ,故⑤小题正确.综上所述,正确的有①②⑤.故选:D .【点睛】本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE ⊥AF 并作出辅助线是解题的关键,本题难度较大,对同学们的能力要求较高. 13.4【分析】由ABC DCB △≌△,可得AB =DC ,已知AB =4cm ,即可得DC 的长度,做题时要找准对应边.【详解】解:∵ABC DCB △≌△,∴AB =DC =4cm .故答案为4.【点睛】本题考查了全等三角形的性质,题中条件虽多但找到相应关系即可得解,不需要用到所有条件,关键是找准对应边.14. CB ##BC HL【分析】根据题意,将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌即可求解.【详解】解:由③可得将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌,故把竹竿顶端沿AB 下滑至点D ,使DB =CB ,证明90,,ABC EBD AC ED DB CB ∠=∠=︒==,∴Rt Rt ABC EBD ≌(HL )故答案为:CB ,HL .【点睛】本题考查了HL 证明三角形全等,全等三角形的性质,掌握HL 的性质与判定是解题的关键.15.3【分析】根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据三角形的面积公式列式计算即可得解.【详解】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12AB ×DE +12AC ×DF =12×4×2+12AC ×2=7,解得AC =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 16.①②③④【分析】首先由三角形内角和定理和角平分线得出PBC PCB ∠+∠的度数,再由三角形内角和定理可求出120BPC ∠=︒可知120DPE ∠=︒,过点P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,由角平分线的性质可知AP 是BAC ∠的平分线,由此判断①;由全等三角形的判定定理可得出PFD PGE ≌,由此判断②;由三角形全等的判定定理可得出BHP BFP ≌,CHP CGP ≌,然后根据全等三角形推出BC BD CE =+,由此判断③,根据全等可得PBD S 、PCE S 和PBC S 的关系,由此判断④,由此即可解答本题.【详解】∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,60BAC ∠=︒, ∴11(180)(18060)6022BA B C PBC PC ︒-∠=︒+∠-︒=∠=︒, ∴()180********BPC PBC PCB ∠=︒-∠+∠=︒-︒=︒,∴120DPE ∠=︒,过点P 作PF AB ⊥于F 点,PG ⊥AC 于G 点,PH ⊥BC 于H 点,∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,PF AB ⊥,PG AC ⊥,PH BC ⊥, ∴PF PH PG ==,∴AP 平分BAC ∠,故①正确;由①可知:PF PH PG ==,∵60BAC ∠=︒,90AFP AGP ∠=∠=︒,∴120FPG ∠=︒,∵120DPE ∠=︒,∴DPF DPE EPF FPG EPF EPG ∠=∠-∠=∠-∠=∠,∴PFD PGE ASA ≌(), ∴PD PE =,故②正确;又∵BP BP =,PF PH =,∴()Rt BHP Rt BFP HL ≌,同理:Rt CHP Rt CGP ≌,∴BH BD DF =+,CH CE GE =-,两式相加得:+=++BH CH BD DF CE GE -,∵PFD PGE ASA ≌(), ∴DF GE =,∴BD CE BC =+,故③正确;∵PF PH PG ==,∴PBD △,PCE ,PBC △,的高相等,∵BD CE BC =+,∴PBD PCE PBC S S S +=,故④正确;故答案是:①②③④.【点睛】本题主要考查全等三角形的判定和性质定理,角平分线的性质定理以及四边形内角为360°等知识,添加辅助线,构造全等三角形,是解题的关键.17.见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.18.证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19.见详解【分析】由题意易得A D ∠=∠,然后可证ABE DCF △≌△,进而问题可求证.【详解】证明:∵AB ∥CD ,∴A D ∠=∠,∵B C ∠=∠,BE CF =,∴ABE DCF △≌△(AAS ),∴AE DF =,∵,AF AE EF DE DF EF =-=-,∴AF DE =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.20.(1)见解析; (2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:∵BE ∥CF ,∴∠BED =∠CFD ,∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:由(1)结论可得DE =DF ,∵EF =AE -AF =15-8=7,∴DE =72; 【点睛】本题考查了平行线的性质,全等三角形的判定(AAS )和性质;掌握全等三角形的判定和性质是解题关键.21.(1)见详解(2)∠DAE ,∠AED ,∠B ,CD【分析】(1)利用尺规作出角平分线及相等的线段,然后连接即可;(2)先证明()EAD CAD SAS ≌,再结合AED BDE ∠=∠+∠B ,且2C B ∠=∠,即可得到结论.【详解】(1)解:如图所示即为所求;(2)证明:∵AD 平分BAC ∠,∴DAC ∠=∠DAE ,在EAD 与CAD 中,AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()EAD CAD SAS ≌,∴∠AED C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+∠B ,且2C B ∠=∠,∴B BDE ∠=∠,∴BE DE =,∴BE =CD ,∵AB AE BE =+,∴AB AC CD =+.故答案是:∠DAE ,∠AED ,∠B ,CD .【点睛】本题主要考查尺规作图—基本作图,全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质,是解题的关键.22.(1)证明见解析;(2)证明见解析【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.【详解】(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键.23.(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ≌△DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ≌△DEF ,可以得到∠A =∠D ,从而可以得到AB 与DE 平行.【详解】解:(1)∵△ABC ≌△DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∵AF =5cm∴CD =5cm ;(2)∵△ABC ≌△DEF (已知)∴∠A =∠D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点睛】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)①AB AF =,理由见解析;②DF AC ⊥,理由见解析;(2)见解析【分析】(1)①SAS 证明AEF AEB △≌△,即可推出AB AF =;②根据AD 垂直平分BF 可得BD DF =,进而SSS 证明ADF ADB ≌,可得90DFA DBA ∠=∠=︒,即可求解.(2)过点C 作CG BC ⊥,交BF 的延长线于点G ,ASA 证明ABD BCG △≌△,可得DB CG =,进而证明△FCG ≌FCD ()SAS ,得出FDC FGC ∠=∠,根据同角的余角相等,可得G ADB ∠=∠,等量代换可得∠FDC =∠ADB .(1)①AB AF=,理由如下,AD平分∠BAC,FAD BAE∴∠=∠,BF⊥AD,AEB AEF∠=∠∴,又AE AE=,∴AEF AEB△≌△,∴AB AF=;②DF AC⊥,理由如下,AEF AEB△≌△,EF EB∴=,又AD FB⊥,DF DB∴=,在ADF△与ADB中AD ADAF ABDF DB=⎧⎪=⎨⎪=⎩,∴ADF△≌ADB()SSS,90ABC∠=︒,∴90DFA DBA∠=∠=︒,即DF AC⊥;(2)过点C作CG BC⊥,交BF的延长线于点G,如图,90GCB DBA∴∠=∠=︒,BF AD⊥,90ABC∠=︒,∴90,90 GBD ADB ADB DAB∠+∠=︒∠+∠=︒,GBD DAB∴∠=∠,又AB BC=,∴ABD BCG △≌△()ASA ,DB CG ∴=,点D 为BC 的中点,BD CD ∴=12BC =, CG CD ∴=, ,90AB AC ABC =∠=︒,45ACB ∴∠=︒,45FCB FCG ∴∠=∠=︒,在△FCG 与FCD 中,CG CD GCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌FCD ()SAS ,FDC FGC ∴∠=∠,,CG CB AD BF ⊥⊥,FBD ADB FBD G ∴∠+∠=∠+∠,G ADB ∴∠=∠,∴∠FDC =∠ADB .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 25.(1)∠ADF =45°,ADDF ;(2)①成立,理由见解析;②1≤S △ADF ≤4.【分析】(1)延长DF 交AB 于H ,连接AF ,先证明△DEF ≌△HBF ,得BH =CD ,再证明△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)①过B 作DE 的平行线交DF 延长线于H ,连接AH 、AF ,先证明△DEF ≌△HBF ,延长ED 交BC 于M ,再证明∠ACD =∠ABH ,得△ACD ≌△ABH ,得AD =AH ,等量代换可得∠DAH =90°,即△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;②先确定D 点的轨迹,求出AD 的最大值和最小值,代入S △ADF =214AD 求解即可.【详解】(1)解:∠ADF =45°,AD ,理由如下:延长DF 交AB 于H ,连接AF ,∵∠EDC =∠BAC =90°,∴DE ∥AB ,∴∠ABF =∠FED ,∵F 是BE 中点,∴BF =EF ,又∠BFH =∠DFE ,∴△DEF ≌△HBF ,∴BH =DE ,HF =FD ,∵DE =CD ,AB =AC ,∴BH =CD ,AH =AD ,∴△ADH 为等腰直角三角形,∴∠ADF =45°,又HF =FD ,∴AF ⊥DH ,∴∠F AD =∠ADF =45°,即△ADF 为等腰直角三角形,(2)解:①结论仍然成立,∠ADF=45°,AD DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中点,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延长ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF为等腰直角三角形,②由①知,S△ADF=12DF2=14AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为3-1=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,∴1≤S△ADF≤4.【点睛】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点.构造全等三角形及将面积的最值转化为线段的最值是解题关键.遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线.。

人教版数学八年级上册第十二章《全等三角形》测试题(含答案)

人教版数学八年级上册第十二章《全等三角形》测试题(含答案)

第十二章《全等三角形》测试题一、单选题1.如图所示,△ABC≌△EFD,那么()A.AB=EF,AC=DE,BC=DF B.AB=DF,AC=DE,BC=EFC.AB=DE,AC=EF,BC=DF D.AB=EF,AC=DF,BC=DE2.如图,△ACB≌△A′CB′,∠A′CB=30∘,∠ACB′=110∘,则∠ACA′的度数是()A.30∘B.40°C.20∘D.45°3.在Rt△ABC与Rt△A'B'C'中,∠C=∠C'=90°,∠A=∠B' ,AB=A'B',则下面结论正确的是( )A.AB=A'C' B.BC=B'C' C.AC=B'C' D.∠A=∠A'.4.如图,要测量池塘两岸相对的两点,A B的距离,可在池塘外取AB的垂线BF上的 ,再画出BF的垂线DE,使E与,A C在一条直线上,这时测点,C D,使BC CD得DE的长就是AB的长,依据是()A.SSS B.SAS C.ASA D.AAS5.如图,Rt△ABC≌Rt△DEF,∠E=55°,则∠A的度数为()A.25°B.35°C.45°D.55°6.如图,△ABC≌△CDA,AB=5,BC=6,AC=7,则AD的边长是()A.5 B.6 C.7 D.不能确定7.直线AB上有一点O,射线OD和射线OC在AB同侧,∠AOD=60°,∠BOC=30°,则∠AOD与∠BOC的平分线的夹角的度数是()A.75°B.90°C.135°D.以上都不对8.如图,△ABC≌△DEF,下列结论不正确的是( )A.AB=DE B.BE=CF C.BC=EF D.AC=DE9.如图,点E, F在直线AC上,DF=BE,∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是( )A.∠D=∠B B.AD=CB C.AE=CF D.AD// BC 10.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,若CD=4,则D 到斜边的距离为()。

八年级数学上册试题 第十二章 全等三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十二章 全等三角形章节测试卷--人教版(含详解)

第十二章《全等三角形》章节测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD沿着角第3图的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS8.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )A.5.5B.4C.4.5D.39.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°10.如图,AB=AD,AE平分∠BAD,点C在AE上,则图中全等三角形有( )A.2对B.3对C.4对D.5对11.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处B.二处C.三处D.四处12.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为( )A.25B.5.5C.7.5D.12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC≌△DEF,∠A=60°,∠F=50°,点B的对应顶点是点E,则∠B的度数是 .14.如图,BD=CF,FD⊥BC于点D,DE⊥AB于点E,BE=CD,若∠AFD=145°,则∠EDF = .15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为 .三.解答题(共8小题,共86分)17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB =DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题1.【解答】解:观察发现,B、C、D选项的两个图形都可以完全重合,∴是全等图形,A选项中两组图画不可能完全重合,∴不是全等形.故选:A.2.【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.【解答】解:∵△AOD≌△COB,∴∠C=∠A=40°,由三角形内角和定理可知,∠B=180°﹣∠BOC﹣∠C=25°,故选:A.4.【解答】解:已知△ABC中,∠B=50°,∠C=58°,∠A=72°,BC=a,AB=c,AC=b,∠C=58°,图甲:只有一条边和AB相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;图乙:只有两个角对应相等,还有一条边对应相等,符合三角形全等的判定定理(AAS),即和△ABC全等;图丙:符合SAS定理,能推出两三角形全等;故选:B.5.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;C、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:C.6.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.7.【解答】解:在△ADC和△ABC中,{AD=ABDC=BC,AC=AC∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴AC就是∠DAB的平分线.故选:A.8.【解答】解:∵AB∥EF,∴∠A=∠E,在△ABC和△EFD中,{∠A=∠EAB=EF,∠B=∠F∴△ABC≌△EFD(ASA),∴AC=ED=7,∴AD=AE﹣ED=10﹣7=3,∴CD=AC﹣AD=7﹣3=4.故选:B.9.【解答】解:作MN⊥AD于N,∵∠B =∠C =90°,∴AB ∥CD ,∴∠DAB =180°﹣∠ADC =70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN =MC ,∵M 是BC 的中点,∴MC =MB ,∴MN =MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB =12∠DAB =35°,故选:B .10.【解答】解:∵AE 平分∠BAD ,∴∠BAE =∠CAE ,在△ABC 和△ADC 中{AB =AD∠BAC =∠DAC AC =AC ,∴△DAC ≌△BAC (SAS ),∴BC =CD ;在△ABE 和△ADE 中{AB =AD∠BAE =∠DAE AE =AE ,∴△DAE ≌△BAE (SAS ),∴BE =ED ;在△BEC 和△DEC 中{BC =DCEC =EC EB =ED ,∴△BEC ≌△DEC (SSS ),故选:B .11.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△ADF和Rt△ADH中,{AD=ADDF=DH,∴Rt△ADF≌Rt△ADH(HL),∴S Rt△ADF=S Rt△ADH,在Rt△DEF和Rt△DGH中,{DE=DGDF=DH∴Rt△DEF≌Rt△DGH(HL),∴S Rt△DEF=S Rt△DGH,∵△ADG和△AED的面积分别为60和35,∴35+S Rt△DEF=60﹣S Rt△DGH,.∴S Rt△DEF=252故选:D.二.填空题13.【解答】解:∵△ABC≌△DEF,∠A=60°,∠F=50°,∴∠D=∠A=60°,∠C=∠F=50°,∴∠B=∠E=70°.故答案为:70°.14.【解答】解:∵FD⊥BC于点D,DE⊥AB于点E,∴∠BED=∠FDC=90°,∵BE=CD,BD=CF,∴Rt△BED≌Rt△CDF(HL),∴∠BDE=∠CFD,∵∠AFD=145°,∴∠DFC=35°,∴∠BDE=35°,∴∠EDF=90°﹣35°=55°,故答案为55°.15.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.16.【解答】解:∵AD=AD,且∠DAB=90°,∴将△ACD绕点A逆时针旋转90°,AD与AB重合,得到△ABE.∴∠ABE=∠D,AC=AE.根据四边形内角和360°,可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案

人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。

人教版八年级上册数学第12章《全等三角形》测试题【含答案】

人教版八年级上册数学第12章《全等三角形》测试题【含答案】

一、选择题(每小题3分,共24分)1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD及△APE全等的理由是()A.SSS B.SASC.SSA D.AAS2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③ D.④3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个C.3个D.4个4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SASC.ASA D.AAS5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB7.如图6,△ABC≌△EFD,则()A.AB=DE,AC=EF,BC=DFB.AB=DF,AC=DE,BC=EFC.AB=EF,AC=DE,BC=DFD.AB=EF,AC=DF,BC=DE8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B二、填空题(每小题4分,共32分)9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.15.如图12,点D在AB上,点E在AC上,CD及BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=__________.16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD及△ABC全等,则点D 的坐标是__________.三、解答题(共64分)17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC及ED相等吗说明理由.18.(10分)如图15,若BE=CD,∠1=∠2,则BD及CE相等吗为什么19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.△BEC及△CDA全等吗请说明理由.20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD=CD.求证:AD平分∠BAC.21.(12分)如图18,已知△ABC≌△ADE,BC及DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.第十二章全等三角形测试题一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B二、9.3 10.311.答案不唯一,如AC=DF等12.7 cm 13.4 14.60° 15.20°16.(4,-1)或(-1,3)或(-1,-1)三、17.解:BC=ED.理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC及△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.18.解:相等.理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.又BE=CD,∠A=∠A,所以△ABE≌△ACD.所以AB=AC,AE=AD.所以AB-AD=AC-AE,即BD=CE.19.解:△BEC≌△CDA.理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA. 20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.又∠CDE=∠BDF, CD=BD,所以△ECD≌△FBD.所以DE=DF.又DF⊥AB,DE⊥AC,所以AD平分∠BAC.21.解:△ACD≌△AEB,△DCF≌△BEF.理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.所以△ACD≌△AEB(SAS).所以∠ACD=∠AEB,CD=EB.因为△ABC≌△ADE,所以∠ACB=∠AED.所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).22.解:OE⊥AB.理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌△BAD.所以∠CBA=∠DAB,∠C=∠D.在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.所以OA=OB.在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.所以∠OEA=∠OEB=90°,即OE⊥AB.。

人教版八年级数学上册第12单元《全等三角形》练习题(含答案)

人教版八年级数学上册第12单元《全等三角形》练习题(含答案)

人教版八年级数学上册第12单元《全等三角形》练习题(含答案)一、单选题1.下列命题的逆命题一定成立的是( )①对顶角相等;②同位角相等,两直线平行;③全等三角形的周长相等;④能够完全重合的两个三角形全等.A .①②③B .①④C .②④D .②2.如图,∠BAD =90°,AC 平分∠BAD ,CB =CD ,则∠B 与∠ADC 满足的数量关系为( )A .∠B =∠ADCB .2∠B =∠ADC C .∠B +∠ADC =180°D .∠B +∠ADC =90°3.如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ABC ∆,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .,,AB BC CA B .,,AB BC B ∠ C .,,AB AC B ∠D .,,∠∠A B BC4.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ).A .带①去B .带②去C .带③去D .①②③都带5.下列说法:①若AC BC =,则C 为AB 的中点②若12AOC AOB ∠=∠,则OC 是AOB ∠的平分线③a b >,则22a b >④若a b =,则||||a b =,其中正确的有( )A .1个B .2个C .3个D .4个 6.如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为M .若∠ABC =30°,∠C =38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°7.如图,AB AC =,AD AE =,BAC DAE ∠=∠,点B ,D ,E 在同一直线上,若125∠=︒,235∠=︒,则3∠的度数是( )A .50︒B .55︒C .60︒D .70︒8.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则::ABO BCO CAO S S S 等于( ).A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.下列说法正确的是( )①近似数232.610⨯精确到十分位;②2()2--38-2--38-③如图所示,在数轴上点P 所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点.A .1B .2C .3D .410.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 11.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( )A .4B .6-C .1-或4D .6-或2312.下列说法正确的是( )A .点(1,﹣a 2)在第四象限B .若ab =0,则P (a ,b )在坐标原点C .点P 在第二象限,且点P 到x 轴的距离为2,点P 到y 轴的距离为3,则点P 的坐标为(﹣3,2)D .在平面直角坐标系中,若点A 的坐标为(﹣1,﹣2),且AB 平行于x 轴,AB =5,则点B 的坐标为(4,﹣2)二、填空13.若点()3,3A m m +-在x 轴上,则m =__________.14.在△ABC 中,AB =AC ,点D 是△ABC 内一点,点E 是CD 的中点,连接AE ,作EF ⊥AE ,若点F 在BD 的垂直平分线上,∠BAC =α,则∠BFD =_________.(用α含的式子表示)15.如图所示,在Rt ABC 中,∠B =90°,AD 平分∠BAC ,交BC 于点D ,DE ⊥AC ,垂足为点E ,若BD=3,则DE 的长为 ________.16.如图.两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF 的位置,8,3==AB DP ,平移距离为6,则阴影部分的面积为____________.17.如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是______.(只填一个即可)18.如图,ABC 中,点D 、点E 分别在边AB 、BC 上,连结AE 、DE ,若ADE BDE ≌,::2:3:4AC AB BC =,且ABC 的周长比AEC △的周长大6.则AEC △的周长为______三、解答题19.如图,A ,E ,C 三点在同一直线上,且△ABC ≌△DAE .(1)线段DE ,CE ,BC 有怎样的数量关系?请说明理由.(2)请你猜想△ADE 满足什么条件时,DE ∥BC ,并证明.20.如图,在Rt ABC ∆中,90BAC ∠=︒且AB AC =,点D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE DF ⊥.连接AD .(1)求证:ADE CDF ∆≅∆;(2)如图,若12BE =,5CF =,则DEF ∆的面积为________.21.已知:如图,AB BC ⊥,CD DA ⊥,AB CD =.求证:OB OD =.22.如图1,已知ABC ∆中,90ACB ∠=︒,AC BC =,BE 、AD 分别与过点C 的直线垂直,且垂足分别为E ,D .(1)猜想线段AD 、DE 、BE 三者之间的数量关系,并给予证明.(2)如图2,当过点C 的直线绕点C 旋转到ABC ∆的内部,其他条件不变,如图2所示, ①线段AD 、DE 、BE 三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;②若 2.8AD =, 1.5DE =时,求BE 的长.23.如图,已知点C 是AB 的中点,CD //BE ,且CD BE =.(1)求证:△ACD ≌△CBE .(2)若87,32A D ∠=︒∠=︒,求∠B 的度数.24.已知:如图,AB ∥CD ,∠ABD =90°,∠AED =90°,BD =DE .求证:∠AFC =2∠ADC .25.如图,AC ⊥BC ,AD ⊥BD ,AD =BC .AD ,BC 交于点O .求证:OC =OD .26.如图,已知AB∥CD,OA=OD,AE=DF.试说明:EB∥CF.参考答案1.C2.C3.C4.C5.A6.D7.C8.C9.B10.B11.C12.C 13.314.180°﹣α.15.316.3917.AD=AC(∠D=∠C或∠ABD=∠ABC等).18.12.19.解:DE=CE+BC.理由:∵△ABC≌△DAE,∴AE=BC,DE=AC.∵A,E,C三点在同一直线上,∴AC=AE+CE,∴DE=CE+BC.(2)猜想:当△ADE满足∠AED=90°时,DE//BC.证明:∵△ABC≌△DAE,∴∠AED=∠C,又∵DE∥BC,∴∠C=∠DEC,∴∠AED=∠DEC.又∵∠AED+∠DEC=180°,∴∠AED =∠DEC =90°,∴当△ADE 满足∠AED =90°时,DE ∥BC . 20.(1)证明:∵AB=AC ,D 是BC 中点, ∴∠BAD=∠C=45°,AD=BD=CD ,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°, ∴∠ADE=∠CDF ,在△ADE 和△CDF 中,BAD C AD CDADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CDF (ASA ).(2)解:∵△ADE ≌△CDF∴AE=CF=5,BE=AF=12,AB=AC=17, ∴12AEDF ABC S S ∆= ∴1512302AEF S ∆=⨯⨯= ∴△DEF 的面积=1111691717302224ABC AEF S S ∆∆-=⨯⨯⨯-=. 21.证明:连接AC.在Rt △ABC 和Rt △CDA 中,,,CD AB AC AC =⎧⎨=⎩∴△ABC ≅△CDA.∴AD=BC.∵AB BC ⊥,CD DA ⊥,∴∠AD0=∠CB0=90°.又∵∠AOD=∠COB ,∴△ADO ≅△CBO.∴OB OD =.22.(1)解:DE AD BE =+, 理由如下: ∵BE 、AD 分别与过点C 的直线垂直, ∴90BEC ADC ∠∠=︒=, ∴90ACD CAD ∠∠+︒=, ∵90ACB ∠=︒, ∴90ACD BCE ∠+∠=︒, ∴CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACD CBE AAS ∴∆≅∆, AD CE ∴=,CD =BE , ∵ DE =EC +CD , DE AD BE ∴=+;(2)解:①发生改变. ∵BE 、AD 分别与过点C 的直线垂直, ∴90BEC ADC ∠∠=︒=, ∴90ACD CAD ∠∠+︒=, ∵90ACB ∠=︒, ∴90ACD BCE ∠+∠=︒, ∴CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACD CBE AAS ∴∆≅∆, AD CE ∴=,CD =BE , ∵ DE =CE -CD , ∴DE AD BE =-;②由①知:DE AD BE =-, ∴ 2.8 1.5 1.3BE AD DE =-=-=, ∴BE 的长为1.3.23.(1)∵C 是AB 的中点, ∴AC =CB ,∵CD //BE ,∴ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴ACD CBE ∆≅∆;(2)∵8732A D ︒︒∠=∠=,, ∴180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=, 又∵ACD CBE ∆≅∆,∴61B ACD ︒∠=∠=.24.证明:在Rt △ABD 与Rt △AED 中, AD AD BD DE =⎧⎨=⎩, ∴Rt △ABD ≌Rt △AED (HL ), ∴∠BAD =∠EAD ,∵AB ∥CD ,∴∠BAD =∠ADC ,∴∠EAD =∠ADC ,∵∠AFC =∠EAD +∠ADC ,∴∠AFC =2∠ADC .25.证明:∵AC ⊥BC ,AD ⊥BD , ∴∠C =∠D =90°.在Rt △ABD 和Rt △BAC 中,,,AD BC AB BA =⎧⎨=⎩, ∴Rt △ABD ≌Rt △BAC (HL ), ∴BD =AC ,在△AOC 和△BOD 中, ,,,C D AOC BOD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (AAS ), ∴OC =OD .26. AB CD ∥,34∴∠=∠,CDF BAE ∴∠=∠,12,OA OD ∠=∠=,()ABD DCF ASA ∴≅, AB CD ∴=,AE DF =,()ABE DCF SAS ∴≅, E F ∴∠=∠,EB CF ∴∥.。

人教版初二上册数学第12章全等三角形测试题(带答案)

人教版初二上册数学第12章全等三角形测试题(带答案)

人教版初二上册数学第12章全等三角形测试题(带答案)第十二章全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是() A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2. 如图所示,分别表示△ABC的三边长,则下面与△一定全等的三角形是() 3.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4. 在△ABC和△中,AB= ,∠B=∠,补充条件后仍不一定能保证△ABC≌△,则补充的这个条件是( ) A.BC= B.∠A=∠C.AC= D.∠C=∠5.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是()A.边角边 B.角边角 C.边边边 D.边边角7.已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2 C.△ABC≌△CED D.∠1=∠28. 在△和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD 交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③ B.②③④ C.①③⑤ D.①③④10. 如图所示,在△中,>,∥= ,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等() A. ∥ B. C.∠=∠ D.∠=∠二、填空题(每小题3分,共24分)11. 如果△ABC和△DEF 这两个三角形全等,点C和点E,点B和点D分别是对应点,则另一组对应点是,对应边是,对应角是,表示这两个三角形全等的式子是. 12. 如图,在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是.13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE是度. 15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC中,∠C=90°,AD平分∠CAB,BC=8 cm,BD=5 cm,那么点D到直线AB的距离是cm. 17.如图所示,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.18. 如图所示,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15 cm,则△DEB的周长为cm.三、解答题(共46分)19.(6分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.20. (8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.22. (8分)如图所示,在△ABC 中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F 在AC上,BD=DF.证明:(1)CF=EB.(2)AB=AF+2EB.23. (9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.24. (9分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE 相等的线段,并证明.第十二章全等三角形检测题参考答案 1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错.2. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B. 3. D 解析:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C 正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项 C 不满足三角形全等的条件.5. D 解析:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE (SAS),故A成立.∵△BCD≌△ACE,∴∠DBC=∠CAE.∵∠BCA=∠ECD=60°,∴∠ACD=60°.在△BGC和△AFC中,∴△BGC≌△AFC,故B成立.∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立.6. B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7. D 解析:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵AB=AC,∴∠ABC=∠ACB.∵BD 平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);由①可得CE=BD, BE=CD,∴③△BDA≌△CEA (SAS);又∠EOB=∠DOC,所以④△BOE≌△COD (AAS).故选D.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵= ,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△≌△,故本选项不可以证出全等;D.∵∠=∠,∠=∠,,∴△≌△,故本选项可以证出全等.故选C.11. 点A与点F AB与FD,BC与DE,AC与FE ∠A=∠F,∠C=∠E,∠B=∠D △ABC≌△FDE 解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角. 12. △△△13. 135°解析:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE.又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14. 60 解析:∵△ABC是等边三角形,∴∠ABD=∠C,AB=BC.∵BD=CE,∴△ABD≌△BCE,∴∠BAD=∠CBE.∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°.15. 55°解析:在△ABD与△ACE中,∵∠1+∠CAD=∠CAE +∠CAD,∴∠1=∠CAE.又∵AB=AC,AD=AE,∴△ABD ≌△ACE(SAS).∴∠2=∠ABD.∵∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.16. 3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,所以D点到直线AB 的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以点D到直线AB的距离是3 cm.17. 31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF.∴= ×OD×BC+ ×OE×AC+ ×OF×AB= ×OD×(BC+AC+AB)= ×3×21=31.5.18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE,AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm). 19. 分析:(1)根据△≌△是对应角可得到两个三角形中对应相等的三条边和三个角;(2)根据(1)中的相等关系即可得的长度.解:(1)因为△≌△是对应角,所以.因为GH是公共边,所以.(2)因为2.1 cm,所以=2.1 cm.因为3.3 cm,所以.20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC= (∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC= (∠EAB-∠CAD)= .∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21. 分析:首先根据角间的关系推出再根据边角边定理,证明△≌△.最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为,所以.又因为在△与△中,所以△≌△. 所以.(2)因为△△,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线性质证明△ADC≌△ADE,∴AC=AE,再将线段AB进行转化.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB. (2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23. 证明:∵DB⊥AC ,CE⊥AB,∴∠AEC=∠ADB=90°.∴在△ACE与△ABD 中,∴△ACE≌△ABD (AAS),∴AD=AE.∴在Rt△AEF与Rt△ADF中,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.24. 解:⑴因为直线BF垂直于CE于点F,所以∠CFB=90°,所以∠ECB+∠CBF=90°.又因为∠ACE +∠ECB=90°,所以∠ACE =∠CBF .因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.又因为点D是AB的中点,所以∠DCB=45°.因为∠ACE =∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.(2)BE=CM.证明:∵∠ACB=90°,∴∠ACH +∠BCF=90°.∵CH⊥AM,即∠CHA=90°,∴∠ACH +∠CAH=90°,∴∠BCF=∠CAH.∵CD为等腰直角三角形斜边上的中线,∴CD=AD.∴∠ACD=45°.△CAM与△BCE中,BC=CA ,∠BCF=∠CAH,∠CBE=∠ACM,∴△CAM ≌△BCE,∴BE=CM.。

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

人教版八年级数学上册 第十二章 全等三角形 章节检测(含答案)

第十二章 全等三角形一、单选题1.下列各选项中的两个图形属于全等形的是( )A .B .C .D . 2.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等3.△ABC≌≌ECD≌≌A≌48°≌≌D≌62°,点B≌C≌D 在同一条直线上,则图中∠B 的度数是( )A .38°B .48°C .62°D .70°4.如图,在ABC 中,D E 、分别是AC BC 、上的点,若ADB EDB EDC △≌△≌△,则C 的度数是( )A .15B .20C .25D .305.如图,BE=CF ,AB∥DE ,添加下列哪个条件不能证明∥ABC∥∥DEF 的是( )A .AB=DEB .∥A=DC .AC=DFD .AC∥DF6.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则∠BED 的度数为( )A .100°B .120°C .135°D .150°7.如图,在△ABC 中,AC =5,BC =12,AB =13,AD 是角平分线,DE ⊥AB ,垂足为E ,则△BDE 的周长为( )A .17B .18C .20D .258.如图,在OA ,OB 上分别截取OD ,OE ,使OD OE =,再分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠内交于点C ,作射线OC ,OC 就是AOB ∠的角平分线.这是因为连CD ,CE ,可得到COD COE ∆∆≌,根据全等三角形对应角相等,可得COD COE ∠=∠.在这个过程中,得到COD COE ∆∆≌的条件是( )A .SASB .AASC .ASAD .SSS9.如图≌在≌ABC 中≌AB ≌AC ≌D 是BC 的中点≌AC 的垂直平分线交AC ≌AD ≌AB 于点E ≌O ≌F ≌则图中全等三角形的对数是≌ ≌A .1对B .2对C .3对D .4对10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题11.如图,图中由实线围成的图形与①是全等形的有______.(填番号)12.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).13.如图所示,已知ABC 的周长是10,OB OC 、分别平分ABC ∠和,ACB OD BC ∠⊥于,D 且1,OD =则ABC 的面积是_______________________.14.如图,ABC ∆和DCE ∆都是等腰直角三角形,90ACB ECD ∠=∠=︒,42EBD ∠=︒,则AEB ∠=___________度.三、解答题15.如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9cm,BC=5cm,求AB的长.16.如图,已知点B≌E≌C≌F在一条直线上,AB=DF≌AC=DE≌∠A=∠D≌1≌求证:AC∥DE≌≌2≌若BF=13≌EC=5,求BC的长.17.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.18.在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.答案1.A2.C3.D4.D5.C6.C7.C8.D9.D10.B11.②③12.∠A=∠D或∠ABC=∠DCB或BD=AC 13.514.13215.(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA =BD .∴CA -CB=BD -CB .即AB =CD .∵AD =9 cm, BC=5 cm ,∴AB +CD=9-5=4 cm .∴AB =CD=2 cm .16.解:(1)在≌ABC 和≌DFE 中 AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DFE (SAS ),≌≌ACE=≌DEF ,≌AC≌DE ;(2)≌≌ABC≌≌DFE ,≌BC=EF ,≌CB ﹣EC=EF ﹣EC ,≌EB=CF ,≌BF=13,EC=5,≌EB=4,≌CB=4+5=9.17.(1)证明:∵∠BAC =DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =BE +CE =BD +BE ;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE . 证明:∵∠BAC =∠DAE ,∴∠BAC +∠EAB =∠DAE +∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE .18.(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E , ∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE,在△ACD与△CBE中,∵DAC ECBADC CEB AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册第十二章全等三角形测试题
一、选择题
1.下列说法中,不正确的是()
①全等形的面积相等;
②形状相同的两个三角形是全等三角形;
③全等三角形的对应边,对应角相等;
④若两个三角形全等,则其中一个三角形一定是由另一个三角形平移得到的.
A. ①与②
B. ③与④
C. ①与③
D. ②与

2.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数
为()
A. 90°
B. 135°
C. 150°
D. 180°
3.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交
BE于点F,若BF=AC,则∠ABC等于()
A. 45°
B. 48°
C. 50°
D. 60°
4.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是
一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角
尺两边相同的刻度分别与D,E重合,这时过角尺顶点F的射线
OF就是∠AOB的平分线,你认为工人师傅在此过程中用到的三角
形全等的判定方法是这种作法的道理是()
A. SAS
B. ASA
C. AAS
D. SSS
5.如图,点B、F、C、E在一条直线上,AB//ED,AB=DE,
要使△ABC≌△DEF,需要添加下列选项中的一个条件是:()
A. BF=EC
B. AC=DF
C. ∠B=∠E
D. BF=FC
6.如图,△ACB≌△A′CB′,∠A′CB=30°,∠ACB′=110°,
则∠ACA′的度数是()
A. 20°
B. 30°
C. 35°
D. 40°
7.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是
()
A. AD=AE
B. DB=AE
C. DF=EF
D. DB=EC
8.如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,
则∠EAC=()
A. 27°
B. 54°
C. 30°
D. 55°
9.如图,在△ABC中,∠C=90°,CA=CB,AD平分∠CAB,DE⊥AB,AB=6,则△DEB 的周长为()
A. 6
B. 8
C. 10
D. 12
10.如图,已知△ABC≌△CDA,则下列结论:
①AB=CD,BC=DA.
②∠BAC=∠DCA,∠ACB=∠CAD.
③AB//CD,BC//DA.
其中正确的是()。

相关文档
最新文档