superconductivity

合集下载

材料科学与工程专业英语词汇

材料科学与工程专业英语词汇

材料科学与工程专业英语词汇1. 物理化学物理化学是研究物质结构、性质、变化规律及其机理的基础科学,是材料科学与工程的重要理论基础之一。

物理化学主要包括以下几个方面:热力学:研究物质状态和过程中能量转换和守恒的规律。

动力学:研究物质变化过程中速率和机理的规律。

电化学:研究电流和物质变化之间的相互作用和关系。

光化学:研究光和物质变化之间的相互作用和关系。

表面化学:研究物质表面或界面处发生的现象和规律。

结构化学:研究物质分子或晶体结构及其与性质之间的关系。

统计力学:用统计方法处理大量微观粒子行为,从而解释宏观物理现象。

中文英文物理化学physical chemistry热力学thermodynamics动力学kinetics电化学electrochemistry光化学photochemistry表面化学surface chemistry结构化学structural chemistry统计力学statistical mechanics状态方程equation of state熵entropy自由能free energy化学势chemical potential相平衡phase equilibrium化学平衡chemical equilibrium反应速率reaction rate反应级数reaction order反应机理reaction mechanism活化能activation energy催化剂catalyst电池battery电极electrode电解质electrolyte电位potential电流密度current density法拉第定律Faraday's law腐蚀corrosion中文英文光敏材料photosensitive material光致变色photochromism光致发光photoluminescence光催化photocatalysis表面张力surface tension润湿wetting吸附adsorption膜membrane分子轨道理论molecular orbital theory晶体结构crystal structure点阵lattice空间群space group对称元素symmetry element对称操作symmetry operationX射线衍射X-ray diffraction2. 量子与统计力学量子与统计力学是物理学的两个重要分支,是材料科学与工程的重要理论基础之一。

Superconductivity at 1 K in Cd2Re2O7

Superconductivity at 1 K in Cd2Re2O7

1Superconductivity at 1 K in Cd 2Re 2O 7M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, and Z. HiroiInstitute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa, Chiba277-8581, Japan (Received 4 May 2001)We report the first pyrochlore oxide superconductor Cd 2Re 2O 7. Resistivity, magnetic susceptibility, and specific heat measurements on single crystals evidence a bulk superconductivity at 1 K. Another phase transition found at 200 K suggests that a peculiar electronic structure lies behind the superconductivity.Interplay between localized and itinerant electrons has been one of the most exciting subjects in solid state physics. In particular, various transition-metal (TM)oxides which exist in the vicinity of a metal-insulator (MI)transition have been studied extensively, and many intriguing phenomena such as high-temperature superconductivity in cuprates and charge/orbital ordering in manganites or others have been found. They would further attract many physicists in the future because of huge family of compounds already known and still hidden under the iceberg.Superconducting TM oxides known before the discovery of cupric oxide superconductors are rather limited. Only a few Ti, Nb, and W oxides which crystallize in the NaCl, spinel, or perovskite structure have been reported for 3d , 4d , and 5d series, respectively. The highest superconducting transition temperature T c among those non-cuprates was attained in a spinel compound LiTi 2O 4(T c = 13.7 K) [1]. Recently, Sr 2RuO 4 is studied well as representing an unusual p -wave superconductivity at 1 K [2].There is another class of compounds forming a large family of TM oxides which crystallize in the pyrochlore structure with a chemical formula A 2B 2O 7 where the B represents TMs [3]. However, no superconductivity has been observed there so far in spite of many metallic compounds present in the family. Looking in the general trend of electronic properties for pyrochlore compounds,most 3d and 4d TM pyrochlores are insulators owing to large electron correlations as well as relatively small electron transfers along the bent B-O-B bonds (110º ~140º). Molybdenum pyrochlores exist near the metal-insulator boundary, where ferromagnetic metals appear as the ionic radius of the counter cations is increased [4].On one hand, metallic pyrochlores can be found, when additional electrons are supplied from A cations like typically in Mn and Ru pyrochlores such as Tl 2Mn 2O 7 and Bi 2Ru 2O 7 [5, 6]. In contrast, 5d TM pyrochlores are mostly metallic because of relatively spreading 5d orbitals [3].A rare exception reported previously is found in Os 5+pyrochlores like Cd 2Os 2O 7 [7, 8] and Ca 2Os 2O 7 [9], wherea MI transition occurs with temperature. An Os 5+ion hasa 5d 3electron configuration and thus the t 2g orbital is half-filled, suggesting a possible Mott-Hubbard type MItransition. Note that most of Os 4+pyrochlores are metals.These examples illustrate that the effect of electron correlations is still important even for the 5d electron systems in the pyrochlore structure. We have searched for novel phenomena in pyrochlore compounds near Cd 2Os 2O 7 and reached to Cd 2Re 2O 7 which becomes the first superconductor in the pyrochlore family.Another important feature on the pyrochlore oxide is magnetic frustration on the three-dimensional tetrahedral network sharing vertices[10]. When d electrons are localized on the B site ions with interacting antiferromagnetically, classical Néel order is suppressed by the frustration and a quantum spin liquid state can be stabilized instead [11]. Even for ferromagnetic Ising spin systems on the A sublattice like Dy 2Ti 2O 7, it is shown that the effect of frustration leads to a highly degenerate ground state called ‘spin ice’ [12]. More interestingly, an exotic ground state is to be realized when d electrons keep an itinerant character near a MI transition. It is clearly illustrated with a mixed-valent compound LiV 2O 4 which has the spinel structure comprising a similar frustrated lattice and exhibits an unusual “heavy-Fermion” behavior [13, 14]. Superconductivity seen in another spinel compound LiTi 2O 4 may be interesting in this context.However, it has not been studied in detail because of difficulty in preparing single crystals.There are a few studies on Cd 2Re 2O 7. Donohue et al .prepared a single crystal, determined the crystal structure,and reported the resistivity which was metallic above 4 K [15]. Blacklock and White measured the specific heat above 1.8 K using a polycrystalline sample and found theSommerfeld coefficient γ to be 13.3 mJ/K 2mol Re [16].Since the Cd 2+ and Re 5+ have 4d 10 and 4f 145d 2 outer electronconfigurations, respectively, only the Re 5+is expected to underlie the electronic and magnetic properties of Cd 2Re 2O 7. It is known that Re 5+ is not present as a stable state in any binary or ternary oxide system [17].Subramanian et al . suggested that more stable Re 6+and Re 4+ are the entities instead of Re 5+ in Cd 2Re 2O 7 [3]. This suggests an inherent charge fluctuation present in this2compound. We prepared single crystals of Cd 2Re 2O 7 and measured resistivity, magnetic susceptibility, and specific heat down to ~ 0.4 K. Surprisingly observed at 1-2 K are a sharp drop in resistivity, a large diamagnetic signal in magnetization, and a well-defined λ-type anomaly in specific heat. These experimental facts give a strong evidence for the occurrence of superconductivity.Moreover, the resistivity and susceptibility show peculiar behaviors at high temperatures, implying interesting normal-state properties lying behind the superconductivity.Single crystals of Cd 2Re 2O 7 were prepared by assuming the chemical reaction, 2CdO + 5/3ReO 3 + 1/3Re →Cd 2Re 2O 7. Stoichiometric amounts of these starting powders were mixed in an agate mortar and pressed into a pellet. The reaction was carried out in an evaluated quartz ampoule at 800-900ºC for 70 h. The product appeared as purple octahedral crystals of a few mm on an edge which adhered to the walls of the ampoule. The crystals have grown probably by a vapor transport mechanism, as discussed in a previous study [15], because both CdO (Cd)and ReO 3 (Re 2O 7) are volatile. The chemical composition of the crystals examined by an electron-probe microanalyser (EPMA) was Cd/Re = 1.00 ± 0.02. The oxygen content was not determined in this study. The previous study using crystals prepared in similar conditions suggested that the oxygen nonstoichiometry was negligible [15]. A powder X-ray diffraction (XRD) pattern was taken at room temperature and indexed on the basis of a face-centered cubic unit cell with a = 1.0226(2) nm, which is slightly larger than the previously reported value of 1.0219nm.Resistivity and specific heat measurements were carried out on many crystals in a Quantum Design PPMS system equipped with a 3He refrigerator down to 0.4 K.The former was measured by the standard four probe method using crystals of typical dimensions 2 mm × 0.5mm × 0.1 mm. The current density for the measurementswas about 104 A/m 2. Specific heat was measured by the heat-relaxation method using crystals of 10-20 mg in weight. To perform dc magnetization measurements at very low temperature below 2 K, we used a Faraday-force capacitive magnetometer. A field gradient of 500 Oe/cm was applied to a crystal in addition to homogeneous external field. The detail of this technique was reported previously [18]. Magnetic susceptibility above 1.7 K was measured in a Quantum Design MPMS system.When the crystals were cooled below 2 K, we found a very sharp drop in resistivity probably due to superconductivity, as typically shown for two crystals in Fig. 1(a). The resistivity below the critical temperature T c was nearly zero within our experimental resolution of ~10 nV for the voltage detection. The onset temperature is 1.45 (2.15) K and a zero-resistivity is attained below 1.30(1.85) K for crystal A (B). We have carried out measurements on more than 10 crystals and found similar sharp drops for all of them. However, the T c values were scattered between 1 K and 2 K. When the magnetic fieldwas applied, the transition curves shifted to lower temperatures systematically.The temperature dependence of the resistivity at high temperatures are quite unusual as shown in Fig. 1(b). It is almost temperature independent around room temperature,while, with cooling down, it suddenly starts to decrease at about 200 K. Another small anomaly is seen around 120K, where the curvature is slightly changed. The decrease in the resistivity tends to saturate at low temperature, where the temperature dependence is approximately proportionalto T 3. The resistivity at 300 K and just above the T c are 640 (360) µΩcm and 21 (11) µΩcm for crystal A (B),respectively. The ratio is about 30. These resistivity values varied slightly from crystal to crystal, but the ratio was always nearly the same.Associated with the observation of the zero-resistive transition, a large diamagnetic signal due to the Meissner effect was observed below 1 K as shown in Fig. 2. The hysteresis loop measured at 0.45 K is characteristic of a type-II superconductor with H c1 less than 0.002 T and H c2of about 0.17 T, respectively. The magnetization of the peak top at 0.002 T is -0.19 emu/g, which corresponds to M /H = -0.0095 emu/g. This value is close to a value of -0.009 emu/g expected for perfect exclusion of vortices inFIG. 1.Temperature dependence of resistivity for two Cd 2Re 2O 7 single crystals A and B. The measurements were carried out on cooling for crystal A and on heating for crystal B.R e s i s t i v i t y (µΩc m )(a)3Cd 2Re 2O 7. Therefore, the superconducting volume fraction in our crystal is large enough to conclude a bulk property. The inset to Fig. 2 shows the magnetization measured with increasing and decreasing temperature. The applied field may be close to H c1, but not exactly known.The T c is determined as 0.98 K, which is considerably lower than decided in the resistivity measurements.The superconducting transition was also detected by specific heat C measurements. As shown in Fig. 3, a distinct λ-type anomaly is seen at zero field below 1 K,and it shifted to lower temperatures with increasing magnetic fields applied. The observed large jump at the transition evidences the bulk nature of superconductivity in the present compound. By fitting the data between 1 Kand 10 K to the form C = γT + αT 3 + βT 5, we obtained γ =15.1 mJ/K 2 mol Re, α = 0.111 mJ/K 4 mol Re, and β =1.35 × 10-6 mJ/K 6mol Re. This γ value is slightly larger than that reported previously [16]. It is rather small compared with the value of 37.5 mJ/K 2 mol reported for Sr 2RuO 4 [2]. The Debye temperature deduced from α is 458 K. The electronic specific heat C e was obtained by subtracting the lattice contribution estimated above, and C e /T is plotted in Fig.3. The T c determined from the midpoint of the jump in C e /T is 0.97 K, and the transition width between 25% and 75% height of the jump is 30mK, which is much smaller than that reported for Sr 2RuO 4[2]. The jump in C e at T c is 16.9 mJ/K mol Re, and thus ∆C e /γT c is 1.15, which is considerably smaller than that expected for superconductivity with an isotropic BCS gap,1.43. Specific heat data measured on other several crystals are essentially the same, giving nearly the same T c , ∆T c ,and jump at T c . Since the data is limited above 0.4 K, it is difficult to discuss how the specific heat reaches zero as T → 0. From the entropy balance, however, assuming thatFIG. 2.Magnetization versus magnetic field curve measured at 0.45 K showing a hysteresis loop characteristic of a type-II superconductor. The temperature dependence shown in the inset exhibits T c = 0.98 K.the normal-state specific heat is simply γT , it is considered that the specific heat must decrease with temperature rather quickly as in an exponential form than in a power law as observed in Sr 2RuO 4 [2]. This suggests that the superconducting ground state of Cd 2Re 2O 7 is possibly nodeless unlike Sr 2RuO 4. Nevertheless, the gap can be anisotropic, because there is a significant difference between the observed and calculated specific heat data assuming an isotropic gap, as compared in Fig. 3. From the field dependence of T c , the upper critical field H c2was roughly estimated to be 0.21 T, which corresponds to a coherence length of 40 nm.The T c value is consistent between the magnetization and specific heat measurements, while the resistivity measurements gave much higher values of 1-2 K. This might be because the surface of crystals has been modified in some way to raise T c . The former measurements probe the bulk superconductivity inside crystals, while the latter can be determined by the surface. We checked the surface of crystals by EPMA, but did observe neither deviation of the metal ratio nor segregation of other phases. One possible explanation would be a small change in oxygen content or metal ratio occurring at the crystal surface.Annealing experiments in various oxygen atmosphere are now in progress.Magnetic susceptibility χ at high temperature is shown in Fig. 4, where a kink is seen at 200 K which coincides with the anomaly observed in the resistivity. The χ seems to show a broad, rounded maximum around room temperature and decreases rapidly below 200 K. The χvalue at 5 K is reduced by 40 % from the maximum value at high temperature. There was little anisotropy in χbetween two measurements where a magnetic field wase Cd 2Re 2O 7 single crystal showing a λ-type anomaly associated with a superconducting transition at 0.97 K without magnetic fields. The solid line shows calculated C e /T assuming a superconducting transition with an isotropic BCS gap.4The Wilson ratio calculated from the χ value at 5 K and the γ is 0.72, much smaller than unity expected for free electron gas. Below 5 K, there is a strange downturn in the χ curve as shown in the inset to Fig. 4. No thermal hysteresis was detected between heating and cooling for this crystal. The resistivity did not show any corresponding anomalies. The magnitude of this downturn was sample dependent.Concerning the anomaly observed at 200 K,preliminary XRD, specific heat, and NMR experiments all suggested that there is a second-order phase transition without magnetic order. In particular, the XRD measurements indicated that there occurs a small structural change from cubic F d3m to another cubic F 43m , implying a slight deformation for the oxygen octahedra as well as the tetrahedral network of Re ions. The detail will be reported elsewhere. Anyway, there is a distinct phase transition at 200 K in Cd 2Re 2O 7 which dramatically affects resistivity, magnetic susceptibility, and also crystal structure, and thus must induce a significant change in the electronic structure . It would be crucial for understanding the superconductivity in Cd 2Re 2O 7 to elucidate the essential feature of this phase transition at high temperature.A Re 5+ion in Cd 2Re 2O 7 has two 5d electrons which should occupy the t 2g orbital. In the pyrochlore structure of space group F d3m a certain deformation of a BO 6octahedron is allowed. In most compounds an octahedron is compressed along the <111> direction, while it is slightly elongated in Cd 2Re 2O 7. Then, it is considered that in Cd 2Re 2O 7 the threefold degenerate t 2g level splits into a 1g and e g levels, the latter having a lower energy. Therefore,a kind of multi-band character arising from these orbitals is expected near the Fermi level in the metallic state, asFIG. 4.Temperature dependence of magnetic susceptibility in a wide temperature range. The measurement was performed on heating in a magnetic field of 1 T applied nearly parallel to the <111> axis of the crystal. The inset shows an enlargement of the data at low temperature.seen in Sr 2RuO 4. Preliminary band structure calculations by Harima suggested an interesting flat-band character just below the Fermi level [19]. The structural change at 200K must influence this basic electronic structure.In conclusion we found superconductivity in the pyrochlore compound Cd 2Re 2O 7. Although the nature of superconductivity is not clear at present, we expect a novel physics involved in this compound on the basis of electron correlations near the MI transition as well as frustration on the pyrochlore structure. In addition, the phase transition at high temperature is intriguing, which might be related to charge, spin, and orbital degrees of freedom.It is also important to investigate the other pyrochlore compounds which show metallic conductivity, in order to test whether a superconducting ground state is general in the pyrochlore oxides or Cd 2Re 2O 7 presents a special case.We would like to thank T. Yamauchi, M. Takigawa,M. Imada, K. Ueda and Y. Ueda for helpful discussions during the course of this study, and Y. Ueda for the use of the SQUID magnetometer and F. Sakai for chemical analysis. This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) given by The Ministry of Education, Culture, Sports, Science and Technology, Japan.[1] D. C. Johnston, J. Low Temp. Phys. 25, 145 (1976).[2] Y. Maeno, Physica B 281-282, 865 (2000).[3] M. A. Subramanian, G. Aravamudan, and G. V. S. Rao, Prog.Solid St. Chem. 15, 55 (1983).[4] J. E. Greedan, M. Sato, N. Ali, and W. R. Datars, J. Solid State Chem. 68, 300 (1987).[5] R. J. Bouchard and J. L. Gillson, Mat. Res. Bull. 6, 669 (1971).[6] Y. Shimakawa, Y. Kubo, N. Hamada, J. D. Jorgensen, Z.Hu, S. Short, M. Nohara, and H. Takagi, Phys. Rev. B 59, 1249(1999).[7] A. W. Sleight, J. L. Gilson, J. F. Weiher, and W. Bindloss,Solid State Commun. 14, 357 (1974).[8] D. Mandrus, J. R. Thompson, R. Gaal, L. Forro, J. C. Bryan,B. C. Chakoumakos, L. M. Woods, B. C. Sales, R. S. Fishman,and V. Keppens, Phys. Rev. B 63, 195104 (2001).[9] B. L. Chamberland, Mat. Res. Bull. 13, 1273 (1978).[10] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).[11] B. Canals and C. Lacroix, Phys. Rev. B 61, 1149 (2000).[12] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999).[13] S. Kondo, D. C. Johnston, and J. D. Jorgensen, Phys. Rev.Lett. 78, 3729 (1997).[14] C. Urano, M. Nohara, S. Kondo, F. Sakai, H. Takagi, T.Shiraki, and T. Okubo, Phys. Rev. Lett. 85, 1052 (2000).[15] P. C. Donohue, J. M. Longo, R. D. Rosenstein, and L. Katz,Inrog. Chem. 4, 1152 (1965).[16] K. Blacklock and H. W. White, J. Chem. Phys. 71, 5287(1979).[17] C. N. R. Rao and G. V. S. Rao, Transition Metal Oxides:Crystal Chemistry, Phase Transitions, and Related Aspects (NBS, Wash., 1974).[18] T. Sakakibara, H. Mitamura, T. Tayama, and H. Amitsuka,Jpn. J. Appl. Phys. 33, 5067 (1994).[19] H. Harima, .private communication.。

【原创1.11】南京邮电大学专业英语词汇释义精选

【原创1.11】南京邮电大学专业英语词汇释义精选
magnetized // 磁化 magnetostatics // 静磁 magnetron // 磁控管 mast // 天线 Maxwell's equation // 麦 克斯韦方程
medium // 介质 metallic // 金属的 method of moments // 矩 量法
MF/ // 中频 MIC/ // 微波集成电路 microstrip // 微带 minority carrier // 少数载 流子
第1页共2页
南京邮电大学 电磁场与无线技术 专业英语词汇释义 精选
net power // 净功率 newsletter // 通讯 N-LOS/ / 非视距 nonconductive // 不导电 nonresonant // 非谐振 nonthermal // 非热的 nonuniform plane // 非均 匀平面
ohm // 欧姆 ohmic // 阻值 Ohm's law // 欧姆定律 open-circuited // 开路 optics // 光学 orientation // 定向 orthonormal bases // 正交 基
oscillator // 振荡器 oscilloscope // 示波器
C
cable // 电缆 capacitance // 电容 cathode // 阴极 cavity // 空穴 空腔 ceiver // 接收器 cellular // 蜂窝网 channelization // 信道化
charge // 电荷 circuit // 电路 circulator // 环行器 coaxial probe // 同轴探针 coil // 线圈 cold cathode // 冷阴极管 compatibility // 兼容性 component // 元件 compound // 化合物的 conductance // 电导 conductivity // 电导率 conductor // 导体 conformal // 共形 conjugate // 共轭 constitutive relationship // 本构关系

常用物理英语词汇(全)

常用物理英语词汇(全)

常用物理英语词汇(全)1. Force(力):作用在物体上的外力,可以改变物体的运动状态。

2. Mass(质量):物体所含物质的量,通常用千克(kg)表示。

3. Weight(重量):物体受到地球引力作用产生的力,通常用牛顿(N)表示。

4. Acceleration(加速度):物体速度变化的快慢,通常用米/秒²(m/s²)表示。

5. Velocity(速度):物体在单位时间内移动的距离,通常用米/秒(m/s)表示。

6. Momentum(动量):物体运动的量度,等于物体的质量乘以速度。

7. Energy(能量):物体做功的能力,通常用焦耳(J)表示。

8. Power(功率):单位时间内做功的速率,通常用瓦特(W)表示。

9. Work(功):力作用在物体上,使物体移动的距离,通常用焦耳(J)表示。

10. Torque(力矩):力对物体产生的旋转效果,通常用牛顿·米(Nm)表示。

11. Angular momentum(角动量):物体旋转运动的量度,等于物体的转动惯量乘以角速度。

12. Frequency(频率):单位时间内发生的周期性事件的次数,通常用赫兹(Hz)表示。

13. Period(周期):完成一次周期性事件所需的时间,通常用秒(s)表示。

14. Amplitude(振幅):周期性运动的最高点与最低点之间的距离。

15. Wavelength(波长):相邻两个波峰或波谷之间的距离,通常用米(m)表示。

16. Speed of light(光速):光在真空中的传播速度,约为299,792,458米/秒(m/s)。

17. Refraction(折射):光从一种介质进入另一种介质时,传播方向发生改变的现象。

18. Reflection(反射):光遇到物体表面时,按照一定规律返回的现象。

19. Diffraction(衍射):光绕过障碍物或通过狭缝时,传播方向发生偏折的现象。

物理单词中英对照

物理单词中英对照

物理单词中英对照1. 力(Force)在物理学中,力是使物体产生加速度的原因。

2. 质量(Mass)质量是物体所含物质的量,是衡量物体惯性大小的物理量。

3. 速度(Velocity)速度是描述物体位置变化快慢和方向的物理量。

4. 加速度(Acceleration)加速度是描述速度变化快慢的物理量。

5. 动能(Kinetic Energy)动能是物体由于运动而具有的能量。

6. 势能(Potential Energy)势能是物体由于位置关系而具有的能量。

7. 功(Work)功是力在物体上产生位移的过程,是能量转化的量度。

8. 功率(Power)功率是单位时间内做功的多少,表示能量转化速率。

9. 温度(Temperature)温度是衡量物体冷热程度的物理量。

10. 压强(Pressure)压强是单位面积上受到的力的大小。

11. 密度(Density)密度是单位体积内物质的质量。

12. 摩擦力(Friction)摩擦力是两个接触物体在相对运动时产生的阻力。

13. 重力(Gravity)重力是地球对物体产生的吸引力。

14. 电荷(Electric Charge)电荷是物质的一种基本属性,表现为物体间的电磁相互作用。

15. 电流(Electric Current)电流是电荷在单位时间内通过导体截面的量。

16. 电压(Electric Voltage)电压是推动电荷流动的电势差。

17. 电阻(Electric Resistance)电阻是导体对电流阻碍作用的物理量。

18. 磁场(Magnetic Field)磁场是描述磁力作用范围的物理量。

19. 振动(Vibration)振动是物体围绕平衡位置做周期性运动的现象。

20. 波(Wave)波是振动在介质中传播的过程。

物理单词中英对照(续)21. 频率(Frequency)频率是指单位时间内完成振动的次数,是描述波动特性的基本参数。

22. 波长(Wavelength)波长是波在一个周期内传播的距离,它与频率共同决定了波的速度。

计算机与网络英语词汇(S4)_计算机英语词汇

计算机与网络英语词汇(S4)_计算机英语词汇

stream bitrate 串流位stream file object 串流档案对象stream format 串流格式stream format definition chunk 串流格式定义块stream header 串流标头stream i/o 串流 i/ostream length 串流长度stream mode 串流模式stream name 串流名称stream object 串流物件stream priority 串流优先等级stream quality 串流品质stream rate 串流率stream scale 串流尺度stream socket 串流通讯端stream start 串流起点stream, bit 数元流stream, input job 输入工件流streaming 资料流streaming digital cartridge tape drives 限流数字匣式磁带驱动机streaming drive data verification 限流驱动数据验证streaming formatter/controller 限流格式控制器streaming media 串流媒体streaming video 串流视讯streaming/incremental-recording tape systems 限流/递增记录磁带系统strength 强度strength reduction 复杂运算简化stress 结构工程系统解答器stress testing 压力测试stretch 自动缩放stretched vertically 垂直拉伸strict type semantic 严格类型语意strikeout 删除线string 字符串string break 串破裂string clement 组件串string concatenation operator 字符串串连运算子string constant 字符串常数string editor 字符串编辑器string expression 字符串表达式string file 串檔string identifier 字符串识别码string language 串语言string length 串长string literal 字符串常值string manipulation 串调处string manipulation, data-base 数据库串调处string name 字符串名称string of bits 位串string pooling 字符串共享string process system(sps) 串处理系统string processing 串处理string resources 字符串资源string sorting 串排序string table 字符串数据表string variable 串变数string variable name 字符串变量名称string variable rom 串变量仅读记忆器string variable, alphanumeric 文数串变数string, alphabetic 字符串string, character 字符串string, character(basic) (培基)字符串string-comparison operation 字符串比较作业stringy floopy 串状磁带strip 剥去strip, encoding 编码条纹strip, magnetic-file 磁档条strip, magnetic-tape 磁带条strip-chart recorder 条形图表纸记录器stripe card reader 条纹卡读取机stripe card reader/encoder 条纹卡读取机/编码器stripe card standards 条纹卡标准stripe recording, magnetic 磁条记录striping 加以条文;镶边strips left down 阶梯状往左下扩展strips left up 阶梯状往左上扩展strips right down 阶梯状往右下扩展strips right up 阶梯状往右上扩展strobe 闪控strobe frequency 分解动作频率strobe pulse 闪控脉波strobe release time 闪控释放时间strobe signal 闪控信号stroke 笔划;冲程stroke center line 笔划中线stroke character generator 笔划字符产生器stroke color 笔画色彩stroke edge 笔画边缘stroke edge irregularity 笔划边缘不规则性stroke list 单项工作清单stroke type 笔画类型stroke weight 字体粗细stroke width 笔划宽度stroked charactera 短划字符strong key 增强金钥strong name 强式名称strongly typed 强类型struct 结构structed language 结构化语言structure 结构structure expression 结构表式structure flowcharts 结构流程图structure member 结构组件structure of arrays 数组结构structure query language (sql) 结构化查询语言structure type 结构类型structure(struc) 结构structure, block 块结构structure, priority 优先序结构structured analysis 结构化分析structured exception handling 结构化例外处理structured field syntax 结构化栏语法structured interrupt 结构化岔断structured program testing 结构化程序测试structured programming 结构化程式编制structured programming document-ation 结构化规划文件处理structured programming(sp) 结构化规划structured query language 结构化查询语言 (sql) structured query language (sql) 结构化查询语言structured storage 结构化储存体structuring 结构strudl 结构设计语言sts-1(synchronous transport signal level 1) 同步传输讯号层1 stub card 残卡studio 工作室study date 研读日期study instance 研读实体study ref. physician 研读参考医生study time 研读时间study, application 应用研究stuffing character 填充字符stunt box 制止盒stx 起文字元style 样式style bit 样式位style builder 样式产生器style organizer 样式组织style presets 样式预先设定style sheet 样式表styled text 样式文字stylus 针尖;尖笔stylus printer 针尖印字机stylus, light(pen) 光电笔sub 子sub network mask 子网掩码sub select 细部选取sub task 子任务sub type 子类型sub-dependency 子相依sub-harmonic 分谐波sub-system 分系统sub-wave 副载波subaddress 子地址subalphabet 子字符subblock 子块;分块subchannel 子通道。

电力英语词汇汇总

电力英语词汇汇总

电力英语词汇汇总一、电力系统基本词汇1. 电站(Power Station)2. 发电机(Generator)3. 变压器(Transformer)4. 断路器(Circuit Breaker)5. 线路(Transmission Line)6. 电容器(Capacitor)7. 电抗器(Reactor)8. 继电器(Relay)9. 保护装置(Protection Device)10. 控制系统(Control System)二、电力设备与部件1. 母线(Busbar)2. 避雷器(Surge Arrester)3. 电缆(Cable)4. 绝缘子(Insulator)5. 钢筋(Rebar)6. 混凝土(Concrete)7. 齿轮(Gear)8. 轴承(Bearing)9. 油箱(Tank)10. 油冷却器(Oil Cooler)三、电力工程术语1. 电力工程(Electric Power Engineering)2. 设计规范(Design Specification)3. 施工图纸(Construction Drawing)4. 工程预算(Project Budget)5. 施工方案(Construction Scheme)6. 质量验收(Quality Acceptance)7. 安全生产(Safety Production)8. 环境保护(Environmental Protection)9. 节能减排(Energy Saving and Emission Reduction)10. 智能电网(Smart Grid)四、电力行业组织与机构1. 国家能源局(National Energy Administration)2. 电力公司(Electric Power Corporation)3. 电力设计院(Electric Power Design Institute)4. 电力科学研究院(Electric Power Research Institute)5. 电力行业协会(Electric Power Industry Association)6. 电力工会(Electric Power Trade Union)7. 电力市场(Electricity Market)8. 电力监管机构(Electric Power Regulatory Authority)9. 电力消费者协会(Electric Power Consumer Association)10. 国际电力组织(International Electric Power Organization)五、电力技术与发展1. 火力发电(Thermal Power Generation)2. 水力发电(Hydroelectric Power Generation)3. 核能发电(Nuclear Power Generation)4. 风能发电(Wind Power Generation)5. 太阳能发电(Solar Power Generation)6. 新能源(New Energy)7. 分布式发电(Distributed Generation)8. 电动汽车(Electric Vehicle)9. 能源互联网(Energy Internet)10. 电力系统自动化(Electric Power System Automation)六、电力运行与维护1. 电网调度(Power Grid Dispatching)2. 运行监控(Operation Monitoring)3. 设备巡检(Equipment Patrol Inspection)4. 预防性维修(Preventive Maintenance)5. 故障处理(Fault Handling)6. 状态检修(ConditionBased Maintenance)7. 安全操作(Safe Operation)8. 电力可靠性(Electric Power Reliability)9. 负荷预测(Load Forecasting)10. 电力质量(Power Quality)七、电力法律法规与政策1. 电力法(Electricity Law)2. 电力市场监管条例(Electricity Market Regulation)3. 电力设施保护条例(Regulations for the Protection of Electric Power Facilities)4. 电力供应与使用条例(Regulations on Electric Power Supply and Use)5. 电力价格政策(Electricity Pricing Policy)6. 电力体制改革(Electricity System Reform)7. 能源发展战略行动计划(Energy Development Strategy Action Plan)8. 环境保护法律法规(Environmental Protection Laws and Regulations)9. 节能减排政策(Energy Saving and Emission Reduction Policy)10. 电力行业发展规划(Electric Power Industry Development Plan)八、电力市场与交易1. 电力市场交易规则(Electricity Market Trading Rules)2. 电力中长期合同(Longterm Electricity Contract)3. 电力现货市场(Electricity Spot Market)4. 电价形成机制(Electricity Price Formation Mechanism)5. 售电公司(Electricity Sales Company)6. 用户侧响应(Customer Side Response)7. 跨区电力交易(Crossregional Electricity Trade)8. 电力市场分析(Electricity Market Analysis)9. 电力市场竞争(Electricity Market Competition)10. 电力市场风险管理与控制(Electricity Market Risk Management and Control)九、电力行业发展趋势1. 电力行业数字化转型(Digital Transformation of Electric Power Industry)2. 电力系统灵活性(Flexibility of Electric Power System)3. 电力储能技术(Electricity Storage Technology)4. 电力需求侧管理(Electricity Demand Side Management)5. 电力行业智能化(Intelligence of Electric Power Industry)6. 电力行业绿色低碳发展(Green and Lowcarbon Development of Electric Power Industry)7. 电力行业国际合作(International Cooperation inElectric Power Industry)8. 电力行业人才培养(Talent Training in Electric Power Industry)9. 电力行业科技创新(Technological Innovation in Electric Power Industry)10. 电力行业可持续发展(Sustainable Development of Electric Power Industry)十、电力行业热点问题1. 电力供需平衡(Electricity Supply and Demand Balance)2. 电力系统安全稳定(Safety and Stability of Electric Power System)3. 电力扶贫(Electricity Poverty Alleviation)4. 电动汽车充电基础设施建设(Electric Vehicle Charging Infrastructure Construction)5. 电力行业去产能(Capacity Reduction in Electric Power Industry)6. 电力行业环境保护(Environmental Protection in Electric Power Industry)7. 电力行业信用体系建设(Credit System Construction in Electric Power Industry)8. 电力行业反垄断(Antitrust in Electric Power Industry)9. 电力行业对外开放(Openingup of Electric Power Industry)10. 电力行业社会责任(Social Responsibility of Electric Power Industry)十一、电力技术创新与应用1. 智能电网技术(Smart Grid Technology)2. 分布式能源系统(Distributed Energy Systems)3. 微电网技术(Microgrid Technology)4. 能量管理系统(Energy Management System)5. 高压直流输电(High Voltage Direct Current Transmission)6. 超导技术(Superconductivity Technology)7. 电力电子技术(Power Electronics Technology)8. 量子计算在电力领域的应用(Application of Quantum Computing in Electric Power Field)9. 大数据与电力系统分析(Big Data and Electric Power System Analysis)10. 云计算在电力行业的应用(Application of Cloud Computing in Electric Power Industry)十二、电力工程项目管理1. 项目可行性研究(Project Feasibility Study)2. 项目立项(Project Approval)3. 项目招投标(Project Bidding)4. 项目合同管理(Project Contract Management)5. 项目进度控制(Project Schedule Control)6. 项目成本管理(Project Cost Management)7. 项目质量管理(Project Quality Management)8. 项目风险管理(Project Risk Management)9. 项目验收与移交(Project Acceptance and Handover)10. 项目后评价(Project Postevaluation)十三、电力行业职业素养与技能1. 电力工程师职业道德(Professional Ethics for Electrical Engineers)2. 电力行业职业技能培训(Vocational Skills Training in Electric Power Industry)3. 电力行业职称评定(Professional Title Evaluation in Electric Power Industry)4. 电力行业从业资格证书(Qualification Certificates in Electric Power Industry)5. 电力行业创新能力培养(Innovation Ability Training in Electric Power Industry)6. 电力行业团队协作(Team Collaboration in Electric Power Industry)7. 电力行业沟通与协调能力(Communication and Coordination Skills in Electric Power Industry)8. 电力行业应急处理能力(Emergency Handling Ability in Electric Power Industry)9. 电力行业法律法规知识(Legal Knowledge in Electric Power Industry)10. 电力行业国际视野(International Perspective in Electric Power Industry)十四、电力行业国际合作与交流1. 国际电力组织(International Electric Power Organizations)2. 国际电力展览会(International Electric Power Exhibitions)3. 国际电力技术交流(International Electric Power Technology Exchange)4. 国际电力项目合作(International Electric Power Project Cooperation)5. 国际电力市场分析(International Electric Power Market Analysis)6. 国际电力标准制定(International Electric Power Standards Development)7. 国际电力人才培养与合作(International Electric Power Talent Training and Cooperation)8. 国际电力政策研究(International Electric Power Policy Research)9. 国际电力环境保护合作(International Electric Power Environmental Protection Cooperation)10. 国际电力行业发展趋势探讨(Discussion on International Electric Power Industry Development Trends)。

常用物理英语词汇(全)

常用物理英语词汇(全)

常用物理英语词汇(全)1. Acceleration(加速度):物体速度变化的快慢程度。

2. Amplitude(振幅):波动或振动过程中,偏离平衡位置的最大距离。

3. Angular velocity(角速度):物体绕固定点旋转时,单位时间内转过的角度。

4. Atom(原子):物质的基本单位,由原子核和核外电子组成。

5. Capacitance(电容):电容器储存电荷的能力。

6. Current(电流):电荷的流动,单位为安培(A)。

7. Density(密度):单位体积内物质的质量,单位为千克/立方米(kg/m³)。

8. Electric field(电场):电荷周围空间对其产生作用力的区域。

9. Energy(能量):物体做功或传递热量的能力,单位为焦耳(J)。

10. Force(力):物体间的相互作用,使物体发生形变或改变运动状态。

11. Frequency(频率):单位时间内完成周期性变化的次数,单位为赫兹(Hz)。

12. Gravitational force(重力):地球对物体的吸引力。

13. Impulse(冲量):力在作用时间内对物体的累积效应,等于动量的变化。

14. Inductance(电感):电流变化时,产生电磁感应现象的能力。

15. Kinetic energy(动能):物体由于运动而具有的能量。

16. Magnetic field(磁场):磁体周围空间对其产生作用力的区域。

17. Momentum(动量):物体运动状态的量度,等于质量与速度的乘积。

18. Ohm's law(欧姆定律):电流、电压和电阻之间的关系,即I=V/R。

19. Potential energy(势能):物体由于位置或状态而具有的能量。

20. Power(功率):单位时间内完成的功,单位为瓦特(W)。

21. Pressure(压强):单位面积上受到的力,单位为帕斯卡(Pa)。

22. Resistance(电阻):电流通过导体时产生的阻碍作用。

《计算机英语》课后习题答案

《计算机英语》课后习题答案

《计算机英语》参考答案Chapter 11.(1) 中央处理器(Central Processing Unit)(2) 随机访问内存(Random-access Memory)(3) 美国国际商用机器公司(International Business Machine)(4) 集成电路(Integrated Circuit)(5) 大规模集成电路(Large Scale Integration)(6) 超大规模集成电路(Very Large Scale Integration)(7) 个人数字助理(Personal Digital Assistant)(8) 图形用户界面(Graphical User Interface)2.(1) data(2) software(3) IC(4) ENIAC(5) supercomputer(6) superconductivity3.(1) F (ENIAC is the second digital computer after Atanasoff-Berry Computer)(2) T(3) F (Data is a unorganized)(4) T(5) T(6) T4.(1) 人工智能(2) 光计算机(3) 神经网络(4) 操作系统(5) 并行处理(6) vacuum tube(7) integrated circuit(8) electrical resistance(9) silicon chip(10) minicomputer5.数据是未经组织的内容的集合,数据可以包括字符、数字、图形和声音。

计算机管理数据,并将数据处理生成信息。

向计算机输入的数据称为输入,处理的结果称为输出。

计算机能在某一个称为存储器的地方保存数据和信息以备后用。

输入、处理、输出和存储的整个周期称为信息处理周期。

与计算机交互或使用计算机所产生信息的人称为用户。

1.(1) 发光二极管(Light-Emitting Diode)(2) 静态随机存储器(Static Random Access Memory)(3) 只读存储器(Read Only Memory)(4) 运算器(Arithmetic and Logical Unit)(5) 阴极射线管(Cathode Ray Tube)(6) 视频显示单元(Visual Display Unit)(7) 可编程只读存储器(Programmable Read Only Memory)(8) 液晶显示屏(Liquid Crystal Display)2.(1) CPU(2) peripheral(3) memory(4) modem(5) control unit(6) byte3.(1) T(2) T(3) F (RAM is volatile memory because the information within the computer chips is erased as soon as the computer is powered off whereas ROM is nonvolatile)(4) T(5) T(6) F (Microphones and digital cameras are input devices)4.(1) 寄存器组(2) 主机(3) 二进制的(4) 算法(5) 光盘(6) CD-RW(7) logic operation(8) barcode(9) peripheral device(10) volatile memory5.计算机的内存可被视为一系列的单元,可以在单元中存取数字。

常用物理英语词汇(全)

常用物理英语词汇(全)

常用物理英语词汇(全)力学(Mechanics)1. Force(力)2. Acceleration(加速度)3. Momentum(动量)4. Kinetic Energy(动能)5. Potential Energy(势能)6. Gravity(重力)7. Friction(摩擦力)8. Torque(扭矩)9. Angular Momentum(角动量)10. Work(功)热学(Thermodynamics)11. Temperature(温度)12. Heat(热量)13. Internal Energy(内能)14. Entropy(熵)15. Boyle's Law(波义耳定律)16. Charles's Law(查理定律)17. GayLussac's Law(盖吕萨克定律)18. Ideal Gas Law(理想气体定律)19. First Law of Thermodynamics(热力学第一定律)20. Second Law of Thermodynamics(热力学第二定律)电磁学(Electromagnetism)21. Electric Charge(电荷)22. Electric Field(电场)23. Magnetic Field(磁场)24. Current(电流)25. Voltage(电压)26. Resistance(电阻)27. Capacitance(电容)28. Inductance(电感)29. Ohm's Law(欧姆定律)30. Ampère's Law(安培定律)光学(Optics)31. Light(光)32. Refraction(折射)33. Reflection(反射)34. Diffraction(衍射)35. Interference(干涉)36. Polarization(偏振)37. Lens(透镜)38. Prism(棱镜)39. Spectrum(光谱)40. Wave Optics(波动光学)现代物理(Modern Physics)41. Quantum Mechanics(量子力学)42. Relativity(相对论)43. Photon(光子)44. Electron(电子)45. Proton(质子)46. Neutron(中子)47. Quark(夸克)48. Black Hole(黑洞)49. Higgs Boson(希格斯玻色子)50. String Theory(弦理论)这些词汇仅为物理学中常用术语的一小部分。

什么是超导电力技术

什么是超导电力技术

什么是超导电力技术编者按:超导电力技术是利用超导体的特殊物理性质与电力工程相结合而发展起来的一门新技术。

本文简要介绍了超导电力装置的特点及国际发展动态,概述了中科院电工所超导电力研究的发展情况超导体具有诸多奇特的物理性质,如零电阻特性、完全抗磁特性、宏观量子相干效应等,利用超导体的这些特殊性质可以获得强磁场、储存电能、制作超导电力装置、实现磁悬浮以及测量微弱磁场信号等。

超导电力技术主要研究、开发各种超导电力装置、研究含超导装置的电力系统的各种特性,包括电力系统和超导电力装置的相互作用和影响、系统规划、设计、运行、控制、保护等。

许多电力装备都可以采用超导体来提高其性能,如输电电缆、电机、变压器和储能装置等,同时还可采用超导体研制出常规技术无法实现的新型电力设备,如超导故障电流限制器等。

超导电力装置具有体积小、重量轻、容量大等特点,在电力系统中应用超导技术可提高电机单机容量、提高电网的输送容量、降低电网的损耗、实现电能储存、限制短路电流,因而可以改善电能的质量、提高电力系统运行的稳定性和可靠性,从而为电网向高效安全和超大规模方向发展提供了新的技术途径。

超导电力技术多年来一直受到了世界各国的重视,特别是1986年发现高超导材料以后,由于高超导体可以在比低超导体所需的液氦区(4.2K)高得多的液氮区(77K)下运行,高超导电力装置的研究更是备受重视。

同时,由于美国和欧洲近年来相继发生了多次大的停电事故,因而促使西方和工业界进一步加快超导电力技术的研究步伐。

1999年,美国开始了S PI(Superconductivity Partnership Initiative)研究计划,开展了如超导电机、超导电缆、超导变压器、超导限流器、超导磁悬浮飞轮储能等项目的研究,在“美国电网2030”计划中,提出了采用超导电力技术建设骨干电网等建议,美国还在其海军舰船先进电力系统计划中列入了超导推进电机等研究项目。

日本在20世纪90年代曾实施了SuperGM等超导电力技术研究计划,并成立了国际超导技术研究中心(ISTEC),其主要电力公司及电机制造厂家均积极参与超导电力技术研究工作。

Superconductivity化学专业英语翻译

Superconductivity化学专业英语翻译

SuperconductivitySuperconductivity was discovered by a Dutch scientist named Heike K.Onnes. In 1908 he was the first to accomplish the liquefaction of helium. Using liquid helium as a coolant, he then began to study the low-temperature conductive properties of metals. In 1911 he observed that the resistivity of mercury displays a remarkable behavior as it is cooled to a temperature approaching absolute zero.超导性是一位名叫Heike K.Onnes的荷兰科学家发现的。

1908年,他第一次完成了氦的液化。

他利用在液态氦中加入冷冻剂,开始研究低温条件下的金属导电性。

1911年他观察到随着温度冷到接近于绝对零度,水银的电阻率显示出不寻常的性质。

At about 4 K, all electrical resistance of mercury is suddenly lost within a temperature range of 0.01K. In 1913Onnes concluded that "mercury has passed into a new state that, on account of its remarkable electrical properties, may be called the superconducting state." The temperature at which a material enters the superconducting state is now called its superconducting transition temperature, Tc.在开氏度4度的时候,温度在开氏度0.01度范围之内变化时,水银的电阻完全消失了。

传统超导的基本性质和理论

传统超导的基本性质和理论

临沂师范学院理学院 2010 届本科毕业论文(设计)


引言: ................................................ 6 一 关于超导的几个唯象理论: .......................... 6
1 二流体模型........................................................................................................................... 6 2 London 方程......................................................................................................................... 7 3 超导与对称性自发破却(金兹堡-朗道理论) ................................................................. 7
3 超导与对称性自发破却(金兹堡-朗道理论)
二 超导态微观图像(BCS 理论) ....................... 10 三 第二类超导体 ..................................... 12 小结 ................................................ 15 参 考 文 献 ......................................... 16 致 谢 .............................................. 17

英文期刊缩写3.0

英文期刊缩写3.0

文献命名规则为建立磁学室的文献数据库,请大家把各自的所有文献按照如下规则命名,然后再汇集在一起。

(一)我们文献命名的规则是:1, 期刊缩写+卷+下划线+页数。

2, 对于有补充材料的文章,把补充材料加到原文章。

可以用Adobe Acrobat软件中“文档”中“插入页面”来完成。

3,期刊名中英语单词的缩写原则和常见期刊缩写见下面。

(二)期刊名中英语单词的缩写原则Journal = J.Review = Rev.Reports = Rep.Research = Res.Communications= Commun.Progress = prog.Society = Soc.Physica,Physical,Physics= Phys.Chemistry,Chemical= Chem.Materials = Mater.Superconductivity = Supercond.Vacuum = Vac.Scienc = Sci. (Science magzine 除外)Chinese, China = Chin.Japanese, Japan = Jan.European = Euro.Germany = Germ.Applied = Appl.Annual = Annu.Advanced = Adv.Technology= Technol.Nanotechnology = Nanotechnol.(二)常见期刊缩写例如,我想保存文章Physical Review Letters 106, 097002(2011) 。

我把该文件命名Phys.Rev.Lett.106_097002。

现在我说明这样命名的原因:1,在文件名中没有加年份,而是只有卷和页数,即没有把文件命名成Phys.Rev.Lett.106_097002(2011),这样做是为了简单;同时卷和页数已经足够的唯一确定是哪篇文章。

2,我们使用了期刊名得缩写(Phys.Rev.Lett.),这样做同样是为了简单,同时已经足够唯一确定是哪种期刊。

超导高分子聚合物--综述

超导高分子聚合物--综述

超导高分子聚合物超导电性(superconductivity)是指许多金属、合金、化合物在温度低于某一临界温度时,电阻率完全消失即物质的这种零电阻现象。

此时的导体材料称为超导体。

超导体没有电阻,电流流经超导体时就不会发生热损耗,电流可以毫无阻力地在导线中形成强大的电流而无损耗,也可以产生超强磁场。

超导的发现不仅有极大理论价值,而且展现了极好的应用前景。

高温超导微观机理的探索通常认为,在1985年以前发现的工作在液氦温区(4.2K)的超导材料称为低温超导体;在1986年以后发现的工作在液氮温区(77K)的超导材料称为高温超导体。

1957年发表的BCS理论认为,低温超导电性源于电子通过声子相互吸引形成库珀电子对,使材料处于超导状态。

1986年后发现的高温超导电性,则不能用BCS 理论来解释,它的微观机制与声子无关,至今还未发现一个公认的高温超导微观理论。

东京大学和斯坦福大学的科学家在2001年的英国《自然》杂志上发表的研究成果中称,已经通过实验找到了声子与高温超导电性有关的直接证据。

这一新发现推翻了认为声子与高温超导电性无关的定论;这一新理论不但能解释低温超导电性,同时也能有效的解释高温超导的微观机理,为建立统一的超导微观理论向前迈出了可喜的一步,同时也为寻找新型的超导材料提供了有益的启示和线索。

超导高分子的研究进展1975年,美国科学家Greene[1]等在试验中发现链状聚合物聚氮化硫(PSN)具有超导电性,这是世界上发现的第一个具有超导的聚合物。

虽然其转变温度仅为0.26K,但这一超导聚合物的发现具有极大理论意义。

1989年,俄罗斯科学家报道了在经过长期氧化的聚丙烯体系中发现了是问超导体[2],其超导转变温度达300K,但是没有看到后继报道,成为孤证。

不过这种高分子材料掺杂得到超导材料的思路和超导陶瓷合金材料的思路很接近。

2001年3月,美国朗讯科技公司贝尔实验室的科学家发现,一种有机聚合物在低温下表现出超导电性,这是人们首次发现有机聚合物能够成为超导材料,贝尔实验室的这些科学家在英国《Nature》杂志上撰文说[3],他们利用有机聚合物---聚3已基噻吩(P3HT)的溶液,研制出结构有规则的P3HT薄膜,在绝对温度2.35K 时,具有超导电性,尽管它的Tc相当低,但是这个发现的科学意义是不可低估的。

2-5_离子导电与超导简介

2-5_离子导电与超导简介

2.6 超导性 (Superconductivity)
超导性-电阻突降为零 1911年 H K Onnes 比较:结构完整的“纯”金属电阻率 在极低温下减小为零——不同方式 之后,人们相继发现了大量的材 料具有超导特性。不过,发具有 超导特性的材料一度局限于金属 合金及金属间化合物材料,最高 临界温度长期不能超过23.2K, 故此超导性离不开液He。 1986年,陶瓷材料中发现了高温超 导性。临界温度超过液氮沸点77K 超导性的临界温度TC
作业讲评
• 加深理解—— 思考题使概念清晰化,准确;避免模棱两可 习题:通过定量化帮助定性理解;呼应课堂 例子:半导体导电性习题,Cu的导电性分析习题;思考题 • 专业化发展——专业圈内交流都是量化的具体数值,“入围” • 基本训练——数值计算 数值计算——算准,不出错(实际的错误率很高!) 生产、科研—废品,额外损失,错误! 问题1:加入Ni的含量使Cu的电阻率温度系数降低的问题 忽略室温与摄氏0度的差别,得到加入两为7.6at%,正确值 为7.0at%。 ——正误问题,经济因素
超导体分类— 第I类超导体 — 始终保持自身内部磁通量为零、直到磁场达到 超导性破坏的临界磁场强度为止的超导体。其中,磁通线仅渗 透到超导体表面大约微米量级的厚度层中,而且强度随着渗透 厚度呈指数规律衰减 第II类超导体 — 允许磁通进入自身内 部(呈现特定分布)并能将磁通线钉扎 住的超导体
当超导体所处的磁场达到临界值Hc时,超导性遭破坏
⎧ ⎛ Q − eEa 2 ⎞ ⎟ ⎪v + = a ⋅ υ exp⎜ − ⎜ ⎟ k BT ⎪ ⎝ ⎠ ⎨ ⎛ Q + eEa 2 ⎞ ⎪v = a ⋅ υ exp⎜ − ⎟ ⎟ ⎜ ⎪ − k BT ⎠ ⎝ ⎩
净速度为

热力学第三定律-规定熵-低温热力学

热力学第三定律-规定熵-低温热力学
63.3
160
0.3
H2
20.3
14.0
31.8
4He
4.21
--
2.56
4
3He
3.19
--
0.48
5x104
the cooling power diminishes rapidly with decreasing T (at T0, S becomes small for all processes)
0.47
0.66
1.03
1.79
Substance
boiling T (P=1 bar)
melting T (P=1 bar)
Latent heat kJ/liter
Price $ / liter
H2O
373.15
273.15
2252
Xe
165.1
161.3
303
O2
90.2
54.4
245
N2
77.4
He3-He4低温恒温器
Heinz London (1907–1970) ,1962 T<0.87K, He3-He4不互溶 上层He3蒸发10μK 铜核磁矩在He3-He4低温恒温器中被强磁场磁化,绝热退磁 1.5μK
He3-He4低温恒温器
He3-He4 T-x相图
Dilution Refrigerator (down to a few mK)
Nern20年,Lewis和 Gibson指出,Planck的假定只适用于完整晶体,即只有一种排列方式的晶体。
在1912年,Planck把热定理推进了一步,他假定:
在热力学温度0 K时,纯凝聚物的熵值等于零,即:

SuperconductivityforLargeScaleWindTurbines-F

SuperconductivityforLargeScaleWindTurbines-F
(COE). The 6 month project focused on the design of the generator, an evaluation
of the commercial viability of the design together with an identification of high risk components.
Project Objectives
The primary objective of the project was to apply low temperature superconducting technology to the design of a direct-drive wind turbine generator at the 10MW power level in order to reduce the Cost of Energy
畔桃柔行翰卓缓愤案吃邮象粥署应上窥柱喘梗哮踢勤工矩幽葛醛田弃褒却仆掷桓膨哀嘻同涣鳞媒陡灰紧够萍阻叫船甚酮并警侈矩拼钠媒苯飞着案讳产啥鞍淘优巩迎玲妮吐腺饥马缘岳踌梯抄碍瞧柠莫蝉困准幽霹胀哨纬刮稍妓练步逝怖杨驳种狂纲菱宏藤钠九叮键馅掳搬上汲倡咳食心亥蹿遁攀泄班额莫缆炊岩助卡速辅伪顷魏也令芍幽幂焙冉凹持佩朝釜著瑰酿衬捕苟曰腔勺骆踩遵蔡场海蜂掷毅桨臆泡改查卷追承宋庇绽圣唯矗毖贺荔瘴甜菲港鸭彻啊锗蔽豢晓捻姨谋秸年揩稼巷惠骄寐中铂趁藐哗代尊揍樱换辖吟汤映份资漠崖狼雏充媒奥甚艺谓按七僧黎没禽摧溜臂酵湛抚兄粤听杰逾良撇凸拙SuperconductivityforLargeScaleWindTurbines-F秒碉该噪逊辜锯靶薛恭残整吻矾候缨蜜亚正驹瘤氮控界沪竭蚌狐驯搽剁琵桨墟奄球酸僧筐票菜页牡敝襟畦宰库慨头县俞梦掷滑渠弱啼铱卢炊奎表脂圾味纯课撇踏恒坏恢丁亦啸僳嫡辐枢鸟甭韭蛹姆夺壬悠毡颂墅痕翠莆奉慧扭钠束吟蓑蜜漠粮弯龋钩罢乔馆星翅钟蹲酝汀艰想螺袋痪屯父坷胞懈硕春坞庶醉胶字涛赖躇缓鞠僳骡俄迄饰绩尚班篆浊滞泌捧造域秩臆钳见斜计刃惠仰盖织圾糯雕豆早察捧浮则劲巾抵引紧薄峭造殆磁碧显涸届酌琉拙产形宣疆偶铬顿愉虾砸阳戈抛恭谤脸昂历宗诞掺招侥垮怨劝仗茂庭斩毯地癣郁幅铜电铭咒涟沸剁交赫瞎根琐陵瘟示眯汽耐辈仔涪顷钡茨赫慰戴挽炼解岗SuperconductivityforLargeScaleWindTurbines-F箔梳殖柜骇品泊谨拥拭唱疟寇逛膘一阶炙戳忽镀尖误乙卵将憋批窍痪盅兴富酝刽幸昼膏旭姥香貉络合薄役产蛰丘猛峙恢添痘锐垫酬殴菇咨比练安谩凶代菌破菱休屈页噎藕泪亢窑劣证埔蒋陇纬楷府颜寐姚贫眶纱乾奉尘蘑僚祷簧念吝稳焙扬闲纺揍蛇迎屏吟肠却淌来采棋襄刀犊宦辟诞变臀腊野盅柒叙破林羚泄征呸椎残酉蕴二锁絮婆魏妒谰昔瘴杜缄项昼奋赐骚狭手诵卧溉倪惟惯卤瞧接灯阁芝眺换嫂失刹啡藤孵含豺难恩痈谭负绢配鸦刀边帘盎桩随痉穿歇懦蚊颗救夷崖誉硝违称晾捏甄讫欲逗吧盾砰演弧架萝横炙莽捌实梭淋雅碰刚教旬峻杆瓷彬澜皿吧猫痕晰辙酱婿闷栗混翼澄艺欢奉颅碟惊廉畔桃柔行翰卓缓愤案吃邮象粥署应上窥柱喘梗哮踢勤工矩幽葛醛田弃褒却仆掷桓膨哀嘻同涣鳞媒陡灰紧够萍阻叫船甚酮并警侈矩拼钠媒苯飞着案讳产啥鞍淘优巩迎玲妮吐腺饥马缘岳踌梯抄碍瞧柠莫蝉困准幽霹胀哨纬刮稍妓练步逝怖杨驳种狂纲菱宏藤钠九叮键馅掳搬上汲倡咳食心亥蹿遁攀泄班额莫缆炊岩助卡速辅伪顷魏也令芍幽幂焙冉凹持佩朝釜著瑰酿衬捕苟曰腔勺骆踩遵蔡场海蜂掷毅桨臆泡改查卷追承宋庇绽圣唯矗毖贺荔瘴甜菲港鸭彻啊锗蔽豢晓捻姨谋秸年揩稼巷惠骄寐中铂趁藐哗代尊揍樱换辖吟汤映份资漠崖狼雏充媒奥甚艺谓按七僧黎没禽摧溜臂酵湛抚兄粤听杰逾良撇凸拙SuperconductivityforLargeScaleWindTurbines-F秒碉该噪逊辜锯靶薛恭残整吻矾候缨蜜亚正驹瘤氮控界沪竭蚌狐驯搽剁琵桨墟奄球酸僧筐票菜页牡敝襟畦宰库慨头县俞梦掷滑渠弱啼铱卢炊奎表脂圾味纯课撇踏恒坏恢丁亦啸僳嫡辐枢鸟甭韭蛹姆夺壬悠毡颂墅痕翠莆奉慧扭钠束吟蓑蜜漠粮弯龋钩罢乔馆星翅钟蹲酝汀艰想螺袋痪屯父坷胞懈硕春坞庶醉胶字涛赖躇缓鞠僳骡俄迄饰绩尚班篆浊滞泌捧造域秩臆钳见斜计刃惠仰盖织圾糯雕豆早察捧浮则劲巾抵引紧薄峭造殆磁碧显涸届酌琉拙产形宣疆偶铬顿愉虾砸阳戈抛恭谤脸昂历宗诞掺招侥垮怨劝仗茂庭斩毯地癣郁幅铜电铭咒涟沸剁交赫瞎根琐陵瘟示眯汽耐辈仔涪顷钡茨赫慰戴挽炼解岗SuperconductivityforLargeScaleWindTurbines-F箔梳殖柜骇品泊谨拥拭唱疟寇逛膘一阶炙戳忽镀尖误乙卵将憋批窍痪盅兴富酝刽幸昼膏旭姥香貉络合薄役产蛰丘猛峙恢添痘锐垫酬殴菇咨比练安谩凶代菌破菱休屈页噎藕泪亢窑劣证埔蒋陇纬楷府颜寐姚贫眶纱乾奉尘蘑僚祷簧念吝稳焙扬闲纺揍蛇迎屏吟肠却淌来采棋襄刀犊宦辟诞变臀腊野盅柒叙破林羚泄征呸椎残酉蕴二锁絮婆魏妒谰昔瘴杜缄项昼奋赐骚狭手诵卧溉倪惟惯卤瞧接灯阁芝眺换嫂失刹啡藤孵含豺难恩痈谭负绢配鸦刀边帘盎桩随痉穿歇懦蚊颗救夷崖誉硝违称晾捏甄讫欲逗吧盾砰演弧架萝横炙莽捌实梭淋雅碰刚教旬峻杆瓷彬澜皿吧猫痕晰辙酱婿闷栗混翼澄艺欢奉颅碟惊廉 畔桃柔行翰卓缓愤案吃邮象粥署应上窥柱喘梗哮踢勤工矩幽葛醛田弃褒却仆掷桓膨哀嘻同涣鳞媒陡灰紧够萍阻叫船甚酮并警侈矩拼钠媒苯飞着案讳产啥鞍淘优巩迎玲妮吐腺饥马缘岳踌梯抄碍瞧柠莫蝉困准幽霹胀哨纬刮稍妓练步逝怖杨驳种狂纲菱宏藤钠九叮键馅掳搬上汲倡咳食心亥蹿遁攀泄班额莫缆炊岩助卡速辅伪顷魏也令芍幽幂焙冉凹持佩朝釜著瑰酿衬捕苟曰腔勺骆踩遵蔡场海蜂掷毅桨臆泡改查卷追承宋庇绽圣唯矗毖贺荔瘴甜菲港鸭彻啊锗蔽豢晓捻姨谋秸年揩稼巷惠骄寐中铂趁藐哗代尊揍樱换辖吟汤映份资漠崖狼雏充媒奥甚艺谓按七僧黎没禽摧溜臂酵湛抚兄粤听杰逾良撇凸拙SuperconductivityforLargeScaleWindTurbines-F秒碉该噪逊辜锯靶薛恭残整吻矾候缨蜜亚正驹瘤氮控界沪竭蚌狐驯搽剁琵桨墟奄球酸僧筐票菜页牡敝襟畦宰库慨头县俞梦掷滑渠弱啼铱卢炊奎表脂圾味纯课撇踏恒坏恢丁亦啸僳嫡辐枢鸟甭韭蛹姆夺壬悠毡颂墅痕翠莆奉慧扭钠束吟蓑蜜漠粮弯龋钩罢乔馆星翅钟蹲酝汀艰想螺袋痪屯父坷胞懈硕春坞庶醉胶字涛赖躇缓鞠僳骡俄迄饰绩尚班篆浊滞泌捧造域秩臆钳见斜计刃惠仰盖织圾糯雕豆早察捧浮则劲巾抵引紧薄峭造殆磁碧显涸届酌琉拙产形宣疆偶铬顿愉虾砸阳戈抛恭谤脸昂历宗诞掺招侥垮怨劝仗茂庭斩毯地癣郁幅铜电铭咒涟沸剁交赫瞎根琐陵瘟示眯汽耐辈仔涪顷钡茨赫慰戴挽炼解岗SuperconductivityforLargeScaleWindTurbines-F箔梳殖柜骇品泊谨拥拭唱疟寇逛膘一阶炙戳忽镀尖误乙卵将憋批窍痪盅兴富酝刽幸昼膏旭姥香貉络合薄役产蛰丘猛峙恢添痘锐垫酬殴菇咨比练安谩凶代菌破菱休屈页噎藕泪亢窑劣证埔蒋陇纬楷府颜寐姚贫眶纱乾奉尘蘑僚祷簧念吝稳焙扬闲纺揍蛇迎屏吟肠却淌来采棋襄刀犊宦辟诞变臀腊野盅柒叙破林羚泄征呸椎残酉蕴二锁絮婆魏妒谰昔瘴杜缄项昼奋赐骚狭手诵卧溉倪惟惯卤瞧接灯阁芝眺换嫂失刹啡藤孵含豺难恩痈谭负绢配鸦刀边帘盎桩随痉穿歇懦蚊颗救夷崖誉硝违称晾捏甄讫欲逗吧盾砰演弧架萝横炙莽捌实梭淋雅碰刚教旬峻杆瓷彬澜皿吧猫痕晰辙酱婿闷栗混翼澄艺欢奉颅碟惊廉

人类的超导发现史

人类的超导发现史

人类的超导发现史《阿凡达》中的哈利路亚悬浮山超导既不是电影里介绍的超级导弹,也不是电商里宣传的超导风扇、超导浴霸,而科幻世界《阿凡达》里奇妙的哈利路亚悬浮山,则是真正的超导的杰作。

电影里哈利路亚山中有一种名为“Unobt-ainum”(中译:不可获得的元素)的室温超导矿石,这种矿石通过排斥行星的地磁场来实现悬浮。

超导的英文名字叫superconductivity,全称为“超级导电” ,是20世纪最伟大的科学发现之一。

按照电阻率随温度变化的不同特性,介质材料可分为绝缘体、半导体、导体和超导体,超导指的是某些材料在温度降低到某一临界温度(或超导转变温度)以下时,电阻突然消失(零电阻效应),同时外磁场磁力线全部排出体外(完全抗磁性)的一种电磁现象。

具备以上特性的材料称为超导体。

超导到底是啥?超导的研究起于人们的一个疑问:超导材料的电阻随温度的持续下降会达到怎样的一种状态呢?大概就是这样啦科学家要解决这一个问题,首先需要得到更低的温度。

传统的低温环境主要依靠液化气体来实现,比如液氢的沸点是20 K(热力学温标中0 K对应着零下273摄氏度,20 K即相当于零下253摄氏度)。

1873年,来自荷兰莱顿大学的范德华创建了气体液化理论。

而到了1908年,同样来自荷兰莱顿大学的昂内斯等将最难液化的气体——氦气成功液化,并获得液氦的沸点为4.2 K。

液氦通过进一步节流膨胀技术可以获得低至1.5 K的低温环境。

甚至通过He3-He4,可以达到5mK(毫开)。

液态氦在温度下降至2.18K 时(HeⅡ),性质发生突变,成为一种超流体,能沿容器壁向上流动。

汞,常温下是液态,蒸发或电解就可以得到纯度极高的材料,堪称完美金属。

昂内斯等人测量金属汞在低温下的电阻时,惊讶地发现当温度降至4.2 K以下时,汞的电阻突然下降到仪器测量不到的最小值,基本可认为是零电阻态,第一个超导体——金属汞就此被发现,其超导临界温度Tc为4.2 K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

λp = λL ( j (r ) = −a js = −
ξ0 1/2 ) ξp ξp A (r ) ξ0
ns e 2 m
)º ξp ~ §=ßÝOŒ§Bß ÝOŒ ¢ ¯¢" À4• l→∞ ξp ∼ ξ0 λ
8
c
m ˆ+ js · dl ns e 2
B dσ = ΦL "
üëÏ ‡ NΦL (C ) = 0 EëÏ ‡ Na^ÏØ´"§ÓÔ £´a^σ
4.1
r^|¥

Aµ¥m
.^ "
‡ N k Ü © 3 | uHc ž Ò ® k Ü © « • ^ |‡ L |§=C• ~ §Ñy ‡ «Ú ~« • ( §¡•¥ m ^0ŸSÜ^|• Hi = H0 + H Ù¥H = −σ M •0Ÿ^z ò^|§••† ^|ƒ‡"
5
5.1
1
a‡
CÚ'9
NS•kÛÑ
m ∂ js ∂B )=− 2 ns e ∂t ∂t ∂ m [ ∇ × js + B ] = 0 ∂t ns e2 ∇×( Ï m ∇ × js + B = C ns e 2 ∇×( m js ) = −B ns e 2 4
l eC = 0§K
•Ôí1 •§"§`² ‡ >6Ú^| |^5" • {B§3- œ¹e?ص d ∇ × B = µ0 (js + jn ) + µ0 ε ‘\ Ôí1 •§ ∇×(
1
1.2
»€‡ ª
. ^ | Hc Ú
>5¤I •
. > 6 Ic
>6• .^|§Ù‘§ÝT ,p T2 ) Tc2 eü§² ú
Hc (T ) = Hc (0)(1 −
B-H-‚½M-H-‚ ‰^z-‚§B = 0, M = −H
.>6
2
1.3
Ó
ƒ
A
Tc † fŸþ ²•Š¤‡' Tc ∝ Ó ƒ fŸþ §Tc 1 , α = 1/2 Mα
XJ>{•3§a)>6¬•êP~§>{ §>6PC ú"8c − 27 UuÿÑ • Š•10 Ω · m§Œ±@•>{•"´Ün " n Ž N §=>{Ç•"§> Çσ = ∞§dî0½Æj = σ E Œ•§ nŽ NSÜ>|rÝE 7,??•"§ÄK>6—Ýj òªuáŒ"d §dðŽd‰•§Œ• ∂B ∇×E =− ∂t
µ0
0
M dHa = −
2 µ0 Hc 2
Gibbs9åƳ˜„/ª• G = F (B ) − BH ~ƒ Gn = Fn (0) + ‡ ƒ Gs = Fs (Bs ) − Bs Ha ¦ k ∂ (Gn − Gs ) = Bs − B = Bs − µ0 (Ha + M ) = Bs − µ0 Ha ∂Ha 9 1 2 B − BHa 2 µ0
10
'9NaC 3÷X-‚Ha = Hij (T )þSi = Sj K dSi dSj = dT dT ‡©• dSi ∂Si ∂Si dHij )T =( )Ha + ( dT ∂T ∂Ha dT Ù'9N• ci = T ( '9NaC• cj − ci = T dHij (T ) ∂Sj ∂Si [( )T − ( )T ] dT ∂Ha ∂Ha ∂Si )H ∂T a
ξ0 • ƒZ• ݧ ξp •PippardƒZ• ݧŒ †,Ÿk'" Œ±wѧ,:r >6—Ý´Œ7T:ξ ålSA(r )È© Šû½ § Ø==2´::éA Û•'X" † ð Ž d ‰ • § éá § \ þ > . ^ ‡ §Pippard• § K þ Œ ± ¦ ч N ^|Ú>6©Ù" 'X 1 1 1 = + ξp ξ0 l Œ±• ξp ‘ X ² þ g d §l ~ Ý Œ¤§Bß Ýλ Œ" 94•½Ôí4• ξp ≈ l λ Pippard Bß Ý ~ " ² þ g d §l £ξp §,Ÿß
'X§£

N
∂E = µ0 js ∂t
m m js ) = ∇ × (∇ × B ) = −B 2 ns e ns µ0 e2
|^úªa@(b@c) =b(a#c) -c(a#b) ∇ × (∇ × B ) = ∇(∇ · B ) − ∇2 B ∇·B =0 B= λ2 = {z• 1 B=0 λ2 ù‡•§‡¦‡ NSÜB é¯P~•"" 3N «•≡ Be j ;3NS§÷v ∇2 B − 1 d2 By (x) − 2 by (x) = 0 2 dx λ >.^‡• By (x)|x=0 = Be = By (0) ) By (x) = By (0)e−x/λ x = λž § ^ | ® ² P ~ 5 λ½Â•Bß Ý" dL P~ ^| ) p >6 1/e§xŒ u A ‡λ §^|ž”§ m ∇2 B n s e 2 µ0 m ns e2 µ0
Superconductivity
Wang Jinlong June 13, 2014
1
1.1

>5
L
">{
Ï~r>{â,C•" §Ý¡•‡ =C §Ý§½ .§Ý §PŠTC " ± Y > 6 { µò7႘u^|¥§ü$§Ý¦ ¬u)=C§Ý§, ’ ^|§ù´ )a)>6"XJ±LL«‚ ga§RL«>{§K L dI + IR = 0, I (t) = I (0)e−Rt/L dt
B Ï•E = 0,¤± ∂∂t = 0"ù`²B ≡ B0 §•dЩG û½" ‡ N%ØÓ§Šâ¢ •§B ≡ 0"òBd AL²ØC •U u"" ‡ NB ≡ 0 d>^Æúª

B = µ0 (H + M ) Œ• M = −H qÏ• M = χH , B = µ H ^zÇχ = −1 ,^ ǵ = 0
cj − ci = T ( du
dHij 2 ∂Bj ∂Bi ) [( )T − ( )T ] dT ∂Ha ∂Ha ∂Bβ |H = ∞ ∂Ha c1
Ïd3Hc1 (T )?'9N
aC´Ã• "
11
5.2
GinzN" ‡ >f 1•dk żêψ (r)5£ " |ψ (r)|2 = ns (r), ψ (r) ns (r)eiϕ(r) ϕ(r)•ƒ §éu ~ƒψ (r) = 0 ùpM§ψ (r)†þfåÆ Å¼êkƒqƒ?"§£ã÷*‡ XÚ NG §=XÚ¥Œþ m∗ ,e∗ >fÑ/và03Ó˜þf þ§Ïd ‡ •^˜‡Ú˜ żê£ã" , §kïáG-L•§ 1 b µψ (r)´I“XÚkSz§Ý Së þ§ÙŠdU—Ýf 3²ïG 4 Šû½" ‡ Ú ~ gdUƒ Œ±Ðm•|ψ (r)|2 ˜?ê" "|e§3 .:Tc NC§ns → 0 Ðmª 3 1 ‘ 1 fs (0, T ) − fn (T ) = α(T )|ψ |2 + β (T )|ψ |4 + · · · 2 α,β ´=•6u§ÝT •ƒëþ§d²ï^‡ ∂f =0 ∂ns Ú α2 = µ0 Hc (T ) β Œ α=− ?Øk^| œ¹" g =f −B·H u´ 1 fs (0, T ) − fn (T ) = α(T )|ψ |2 + β (T )|ψ |4 + · · · 2
(
∂Si ∂Bi ∂ 2 Fi ∂Bi ∂Si )T = ( )T ( )T = −( )( )T ∂Ha ∂Bi ∂Ha ∂Bi ∂T ∂Ha
½Ha ÚT §Gi 7L´4 §Ïd ( = ( ∂Fi )H ,T = Ha ∂Bi a ∂Gi )H ,T = 0 ∂Bi a
( oĤ
∂Si ∂Ha ∂Bi )T = −( )Bi ( )T ∂Ha ∂T ∂Ha
Pippardu y , Ÿ ß Ý O Œ § = > f ² þ g d § á § ^ | 3 ‡ N ¥ Bß Ýλ •‘ƒOŒ"ù´dÔínØλL = m/ns e2 µ0 Ã{)º "• 7
Ÿoλ ¬‘X>f²þgd§l UCQº Pippard @•^|ÚåkSݽ‡ >f—Ý Cz§¿Ø•u^|B ß S§ ´u)3• ˜ ‰ŒS§ù«^|K• *Ð ‰š Û • A"ù‡*Ð ål^ξp 5L«§ ‰ƒZ •Ý" ξp “ L ‡ > f ' é å l § = u ) 3r : ? , « 6 Ä § Ø = K • r =f§ …ér :NCξp ‰ŒS >fѬkK•" r : ‡ > f — Ýns Ø = û u T : ^ | § •‡ dξp ‰ Œ S ˆ : ^ |5û½"éuXÀ ‡ N§ù‡ål‡ŒuλL . Pippard•§´Ô핧 šÛ•í2" Pippard•§ j (r , t) = Ù¥ a= 1 ns e2 = 2 m λ µ0 −3a 4πξ0 d3 r R[R · A(r )] −r/ξ0 e R4
µ0 js = ∇ × B òBy (x) = By (0)e−x/λ “\ òdB A Ÿ µŠâmÃÚ^{K§L ‡ >6 ^|3‡ N S† ^|‡•ƒž§ L 6Ä ‡ >6¶^|§¦ƒØ U?\§ù´/¤òdB A Ÿ" 5
相关文档
最新文档