人教A版高中数学必修第一册《函数的概念及其表示》PPT
合集下载
新教材高中数学人教A版(2019)必修第一册第三章第一节函数的概念课件
对于任一时刻t,都有唯一确定的路程S和它对应.
A1 {t 0 t 0.5}
自变量的集合
S=350t 对应关系
B1 {S 0 S 175}
函数值的集合
对于 数集A1中 任一时刻t, 按照对应关系S 3,50t 在数集B1中都有唯一确定的路程S和它对应
问题2 某电器维修公司要求工人每周工作至 少1天,至多不超过6天,公司确定工资标准 是每人每天350元,而且每周付一次工资
3
⑶当a 0时,求 f (a), f (a 1)的值。
例2下列哪个函数与 y = x 是同一函数?
⑴ y ( x)2;
⑵ y 3 x3;
⑶ y x2;
x2 ⑷ y .
x
当定义域、对应法则和值域完全一
致时,两个函数才相同.
牛刀小试:下列各组中的两个函数是否为 相同的函数?
⑴
y1
(
x
3)( x
(4)问题1和问题2中函数的对应关系相同,你 认为它们是同一个函数吗?你认为影响函数的要 素有哪些?
对于 数集A2中 任一个工作天数d, 按照对应关系W 3,50d 在数集B2中都有唯一确定的工资w和它对应
自变量 的集合
对应关系
函数值的 集合
问题3 图3.1-1是北京市2016年11月23日空 气质量指数变化图,如何根据改图确定这一 天内任一时刻t h的空气指数的值I
年份y
2006 2007 2008 2009 2010 2011 2012 2013
恩格尔系数r 36.69 36.81 38.17 35.69 32.15 33.53 33.87 29.89
2014
29.35
2015
28.57
表3.1-1某城镇居民恩格尔系数变化情况
人教版高中数学《函数的概念及其表示》教学课件
B1={S|0≤S≤175}
函数值的集合
对于 数集A1 中的任意时刻t,按照对应关系 S=350t,在
唯一确定的路程S和它对应。
数集B中都有
1
二、创设情境、兴趣导入
问题2:某电气维修公司要求工人每周工作至少1天,至多不超过6天。如果公司
确定的工资标准是每人每天350元,而且每周付一次工资.那么
(1) 你认为该怎样确定一个工人每周的工资?(使用w表示工资,d表示天数)
f ,
那么就称 f:A→B 为从集合A到集合B的一个函数,
记作y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域,
与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫
做函数的值域.
{| = (). ∈ }
函数三要素:
定义域
对应关系f
值域
四、巩固理解、知识应用
二、创设情境、兴趣导入
食物支出金额
× 100%)反映一个地区生活质量的
总支出金额
高低,恩格尔系数越低,生活质量越高。表3.1-1是我国某省城镇居民恩格尔系数变化
情况,从中可以看出,该省城镇居民的生活质量越来越高.
问题4:国际上常用恩格尔系数r(r =
(1)你认为按表3.1-1给出的对应关系,恩格尔系数r是年份y的函数吗?
}
4
{y|y≠0, ∈ }
29.35、28.57}
函数值的集合
对于 数集A4 中的任意一个年份y,按照对应关系 表3.1-1 ,
在 数集C4 中都有唯一确定恩格尔系数r和它对应。
二、创设情境、兴趣导入
A4={2006、2007、2008、2009、
2010、2011、2012、2013、2014、
高中数学人教A版必修第一册函数的概念课件
2.下列函数中哪个与函数y=x是同一个函数?
2
(1)y x
(2) y 3 x3
解:函数 y=x 定义域为{x|x∈R},值域为{y|y∈R}。
(1)y=( x)2定义域{x|x≥0},
但y=x定义域为{x|x∈R}。 ∴两个函数不是同一个函数。
(2)函数 y= 3 x3 定义域{x|x∈R},和y=x相同。 y= 3 x3=x, 对应关系与y=x相同
一般的,在一个变化过程中,有两个变量x与y, 如果对于x的每一个值,y都有惟一的值与它对 应,则称x是自变量,把y称为因变量,y是x的 函数。
那么在高中,我们又要怎么定义函数呢?
二、新课引入:
问题一:某“复兴号”高速列车加速到350km/h后保 持匀速运行半小时。这段时间内,列车行进的路程 S(单位:km)与运行时间t(单位:h)的关系可 以表示为
值域(range):函数值的集合 f (x) x A 叫做函数
的值域。显然,值域是集合B的子集。
高中数学人教A版(2019)必修第一册 第三章 3.1.1 函数的 概念(1) 课件
高中数学人教A版(2019)必修第一册 第三章 3.1.1 函数的 概念(1) 课件
1.判断下列图形,y是x的函数吗?
三、讲解新课
(一)函数的有关概念 定义:设A、B是非空的数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数x,在集合B中 都有唯一确定的数f(x)和它对应,那么就称 f: A→B 为从集合A到集合B的一个函数(function),
记作y=f (x),x∈A。 (二)定义域(domain):x的取值范围A叫做函数的定义 域; 与x值相对应的y值叫做函数值。
从图中曲线可知,t的变化范围是数值A3={t|0≤t≤24},I的变化范围都 在B3={I|0<I<150}中。对于A3中的任一时刻t,在数集B3中都有唯一确 定的I与之对应。因此,这里的I是t的函数。
人教A版高中数学必修1.1函数的概念PPT课件
【变式训练】(2013·武汉高一检测)已知集合 A={1,2,3},B={4,5,6},f:A→B是从集合A到集合B的一个函数, 那么该函数的值域C的不同情况有( ) A.6种 B.7种 C.8种 D.9种 【解题指南】依据函数的定义来判断函数个数,进而求值域. 【解析】选B.结合函数定义,可知能构成7个函数,其值域有7 种不同情况. 即值域为{4},{5},{6},{4,5},{4,6},{5,6},{4,5,6}.
第2课时 函数概念的综合应用
函数相等 1.条件:①_定__义__域_相同;②_对__应__关__系_完全一致. 2.结论:两个函数相等. 判断:(正确的打“√”,错误的打“×”) (1)对应关系相同的两个函数一定是相等函数.( ) (2)函数的定义域和对应关系确定后,函数的值域也就确定 了.( )
义域为{x|x≥1或x≤-1}.所以两函数的定义域不同,故不是
相等函数.
人 教 A 版 高中 数学必 修1.1 函数的 概念PP T课件
人 教 A 版 高中 数学必 修1.1 函数的 概念PP T课件
(2)对于函数y= 1 x 1, x
1 x 0,
由1 x 得0-,1≤x≤1,故定义域为{x|-1≤x≤1}. 对于函数y= 1 x,2 由 1≥0x,2 得-1≤x≤1, 故定义域为{x|-1≤x≤1}. 所以两函数定义域相同,又对应关系相同,故是相等函数.
类型 三 求形如f(g(x))的函数的定义域
• 例6.已知函数 f (x) 5 x 1
x2 (1)求f(x)的定义域; (2)求f(x+3)的表达式,以及f(x+3)的定义域。 (3)求f(2x+1)的表达式,以及f(2x+1)的定义域。
注意: 1. 函数f(x+3)的定义域指的是x的取值范围,而不是x+3 的取值范围。 2.本题中函数f(x+3)的定义域为-1<x≤2,则2<x+3 ≤5
人教版高中数学必修一1.2.1函数的的概念_ppt课件
题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
【课件】函数的概念及其表示+课件高一上学期数学人教A版(2019)必修第一册
闭区间
开区间
左开右闭区间
左闭右开区间
≤<
常见区间的含义及表示方法如下表所示:
例1
判断下列各题中的两个函数是否表示同一个函数
(1) = + 1, =
2 −1
;(2)
−1
(3) = , = 2 ;
= , =
3
3;
(4) = 1, = 0
函数,其中叫做中间变量, = 叫做内层函数, = 叫做
外层函数.Leabharlann 注意:①定义域永远是的范围;
②同一个下,括号内作用对象范围相同.
*抽象函数或复合函数的定义域
例3
1.已知函数()的定义域为 1,4 ,求函数 3 + 1 的定义域.
2.已知函数( 2 )的定义域为 1,4 ,求函数 的定义域.
食物支出金额
× 100%)反
总支出金额
映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越
高.表3.1-1是我国某省城镇居民恩格尔系数变化情况,从中可以看
出,该省城镇居民的生活质量越来越高.
问题4:国际上常用恩格尔系数( =
①年份 的变化范围是什么?恩格尔系数的变化范围是什么?
②恩格尔系数是年份的函数吗?
=
.
2.已知函数 =
是
.
−1
3
的定义域为,则实数的取值范围
2 +4+3
,
求下列函数的值域
例1 = + 1, ∈ 1,2,3,4,5 .
例2(1) = 2 − 2 + 3, ∈ 0,3 ;(2) =
− 2 + + 2;
高中数学人教A版(2019)必修第一册3.1.1 函数的概念(1)课件
2.2016年11月2日8时至次日八时,北京的温度走势如图 所示。 (1)求对应关系为图中曲线的函数的定义域与值域 (2)根据图像求,这一天中,12时所对应的温度
解(1)设从今日八点起24小时内经过时间t的温度为 y0C,则定义域为{t|0≤t≤24},值域为{y|2≤y≤12}. (2)由图知12时的温度约为9.70C
(3)你认为如何表述s与t的对应关系才是更为精确的?
列车行进的路程s与运行时间t的对应关系是s=350t①,其 中t的变化范围是数集A1={t|0≤t≤0.5},S的变化范围是数 集B1={S|0≤S≤175}, 对于数集A1中的任意时刻t,按照对应关系①在数集B1中都 有唯一确定的路程s和它对应
问题2:某电器维修公司要求工人每周工作至少1天,至多不超过6
你认为它们是同一函数吗?为什么?
问题3:图中是北京市2016年11月23日的空气质量指数
(Air Quality Index,简称AQI)变化图。
(1)如何根据该图确定这一天内任意时刻t的空气质量指数(AQI) 的值I? (2)你认为这里的I是t的函数吗?如果是你能仿照前面的方法描 述I与t的对应关系吗?
可见,构成函数的要素为:定义域,对应关系和值域。因为值 域是由定义域和对应关系决定的,所以如果两个函数的定义 域相同,并且对应关系完全一致,即相同的自变量对应的函 数值相同,那么这两个函数是同一个函数.
• 对函数概念的五点说明 • (1)对数集的要求:集合A,B为非空数集. • (2)任意性和唯一性:集合A中的数具有任意性,
民生活质量的高低,恩格尔系数越低,生活质量越高,表中是我国某省城镇居 民恩格尔系数变化情况,从中可以看出,该省城镇居民的生活质量越来越高
(1)你认为按表中给出的对应关系,恩格尔系数r是年份y的函数吗?为 什么? (2)如果是,你能仿照前面的方法给出精确刻画吗? (3)三如果我们引入集合B4={r|0≤r≤1},将对应关系表示为对于任何任意一 个年份y都有B4中唯一确定的r与之对应,你认为有道理吗?
高中数学人教A版必修1课件:1.2函数及其表示
2.分式1x有意义的条件是 x≠0,无理式 x有意 义的条件是 x≥0,x0 有意义的条件是 x≠0.
1.函数的概念
(1)函数的定义 设A,B是非空的_数__集__,如果按照某种确定的对 应关系f,使对于集合A中的_任__意__一__个__数__x_,在集
合B中都有_唯__一__确__定__的__数__f_(x_)__和它对应,那么就 称_f:__A__→__B___为从集合A到集合B的一个函数,记 作_y_=__f(_x_)_,__x_∈__A. 函数y=f(x)中,x叫自变量,_x_的__取__值__范__围___叫函 数的定义域,与x的值相对应的y值叫做_函__数__值__, 函数值的集合_{_f(_A_)_|x_∈__A__}_叫做函数的值域.显 然,值域是集合B的_子__集__.
①明确求的量,如本例求的是x的范围,而不是m 的范围; ②明确是对哪个量进行的分类讨论,如本例是对 m进行分类,而不是对x分类; ③如果求的量与分类的量是同一个量,则结果取 并集,如在解|x-1|+|2x+1|≤5时,求的是x范围, 也是对x进行分类,因此最后是将各种分类结果取 并集; ④如果求的量与分类的量不是同一个量,如本例, 则最后既不取交集也不取并集. [注意] 分类讨论的问题最后需进行总的概括.
,即
x≤5
x≠2 x≠-1
∴原函数的定义域为(-∞,-1)∪(-1,2)∪
(2,5]
[题后感悟] 定义域的求法: (1)如果f(x)是整式,那么函数的定义域是实数 集R; (2)如果f(x)是分式,那么函数的定义域是使分 母不为0的实数的集合; (3)如果f(x)为偶次根式,那么函数的定义域是 使根号内的式子大于或等于0的实数的集合;
2.区间与无穷的概念 (1)区间定义及表示 设a,b是两个实数,而且a<b.
1.函数的概念
(1)函数的定义 设A,B是非空的_数__集__,如果按照某种确定的对 应关系f,使对于集合A中的_任__意__一__个__数__x_,在集
合B中都有_唯__一__确__定__的__数__f_(x_)__和它对应,那么就 称_f:__A__→__B___为从集合A到集合B的一个函数,记 作_y_=__f(_x_)_,__x_∈__A. 函数y=f(x)中,x叫自变量,_x_的__取__值__范__围___叫函 数的定义域,与x的值相对应的y值叫做_函__数__值__, 函数值的集合_{_f(_A_)_|x_∈__A__}_叫做函数的值域.显 然,值域是集合B的_子__集__.
①明确求的量,如本例求的是x的范围,而不是m 的范围; ②明确是对哪个量进行的分类讨论,如本例是对 m进行分类,而不是对x分类; ③如果求的量与分类的量是同一个量,则结果取 并集,如在解|x-1|+|2x+1|≤5时,求的是x范围, 也是对x进行分类,因此最后是将各种分类结果取 并集; ④如果求的量与分类的量不是同一个量,如本例, 则最后既不取交集也不取并集. [注意] 分类讨论的问题最后需进行总的概括.
,即
x≤5
x≠2 x≠-1
∴原函数的定义域为(-∞,-1)∪(-1,2)∪
(2,5]
[题后感悟] 定义域的求法: (1)如果f(x)是整式,那么函数的定义域是实数 集R; (2)如果f(x)是分式,那么函数的定义域是使分 母不为0的实数的集合; (3)如果f(x)为偶次根式,那么函数的定义域是 使根号内的式子大于或等于0的实数的集合;
2.区间与无穷的概念 (1)区间定义及表示 设a,b是两个实数,而且a<b.
《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)
栏目 导引
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
人教版A版必修一《函数的概念及其表示》课件ppt
自主诊断 2.(多选)(2023·南宁质检)下列图象中,是函数图象的是
√
√
√
在函数的对应关系中,一个自变量只对应一个因变量,在图象中, 图象与平行于y轴的直线最多有一个交点,故选项B中的图象不是函 数图象.
自主诊断
3.(多选)下列选项中,表示的不是同一个函数的是
A.y= x3+-3x与 y=
x+3 3-x
(4)若对任意实数x,均有f(x)-2f(-x)=9x+2,求f(x)的解析式.
0
(解方程组法)∵f(x)-2f(-x)=9x+2,
①
∴f(-x)-2f(x)=9(-x)+2,
②
由①+2×②得-3f(x)=-9x+6,
∴f(x)=3x-2(x∈R).
思维升华
函数解析式的求法 (1)配凑法.(2)待定系数法.(3)换元法.(4)解方程组法.
√B.y=x2 与 y=(x-1)2 √C.y= x2与 y=x
√D.y=1 与 y=x0
自主诊断
对于 A 选项,y= x3+-3x的定义域是[-3,3), y= x3+-3x的定义域是[-3,3), 并且 x3+-3x= x3+-3x,所以两个函数的定义域相同,对应关系相同, 所以是同一个函数;
√C.f(x)=x-,xx,≥x0<,0, g(t)=|t|
D.f(x)=x+1,g(x)=xx2--11
对于 A,f(x)= x2的定义域为 R,g(x)=( x)2 的定义域为[0,+∞), 不是同一个函数; 对于B,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x≠1},不是同一 个函数; 对于C,两个函数的定义域、对应关系均相同,是同一个函数; 对于 D,f(x)=x+1 的定义域为 R,g(x)=xx2--11的定义域为{x|x≠1}, 不是同一个函数.
人教A版数学必修一《函数的概念》教学课件
A中的任意一个时间t,按照表格, 在数集B中都有唯一确定的系数和它对 应
不同点 实例(1)是用解析式刻画变量之间的对应关系, 实例(2)是用图象刻画变量之间的对应关系, 实例(3)是用表格刻画变量之间的对应关系;
共同点
(1)都有两个非空数集A,B;
(2)两个数集间都中的任意一个数,数集B中 都有唯一确定的数和它对应.
(5)以 或 为区间一端时,这一端必
须用小括号;
例1 已知函数
f (x) x 3 1 x2
(1)求函数的定义域;
(2)求f(-3),f(2/3)的值;
(3)当a>0时,求f(a),f(a-1) 的值.
分析:求函数的定义域就是指使这个式子
有意义的实数x的集合
说明:①对于函数y=ƒ(x),如果不加说明,函数的定义域 是指使这式子有意义的x的取值范围.
其中,x叫做自变量,x的取值范围A叫做 函数的定义域.与x的值对应的y值叫做函数
值,函数值的集合f ( x) x A叫做函数的值域.
值域是集合B的子集。
1 1234
149 112233
123456 123
乘2
平方
A (1) B
- A -
B -
(2)
求倒数
1
A
12B
3
1 4
(3)
人 教 A 版 数学 必修一 《函数 的概念 》课件
人 教 A 版 数学 必修一 《函数 的概念 》课件
人 教 A 版 数学 必修一 《函数 的概念 》课件
实例分析1 一枚炮弹发射后,经过26s落到地面
击中目标. 炮弹的射高为845m, 且炮弹距 地面的高度h(单位:m)随时间 t (单位: s ) 变化的规律是h=130t-5t2.
不同点 实例(1)是用解析式刻画变量之间的对应关系, 实例(2)是用图象刻画变量之间的对应关系, 实例(3)是用表格刻画变量之间的对应关系;
共同点
(1)都有两个非空数集A,B;
(2)两个数集间都中的任意一个数,数集B中 都有唯一确定的数和它对应.
(5)以 或 为区间一端时,这一端必
须用小括号;
例1 已知函数
f (x) x 3 1 x2
(1)求函数的定义域;
(2)求f(-3),f(2/3)的值;
(3)当a>0时,求f(a),f(a-1) 的值.
分析:求函数的定义域就是指使这个式子
有意义的实数x的集合
说明:①对于函数y=ƒ(x),如果不加说明,函数的定义域 是指使这式子有意义的x的取值范围.
其中,x叫做自变量,x的取值范围A叫做 函数的定义域.与x的值对应的y值叫做函数
值,函数值的集合f ( x) x A叫做函数的值域.
值域是集合B的子集。
1 1234
149 112233
123456 123
乘2
平方
A (1) B
- A -
B -
(2)
求倒数
1
A
12B
3
1 4
(3)
人 教 A 版 数学 必修一 《函数 的概念 》课件
人 教 A 版 数学 必修一 《函数 的概念 》课件
人 教 A 版 数学 必修一 《函数 的概念 》课件
实例分析1 一枚炮弹发射后,经过26s落到地面
击中目标. 炮弹的射高为845m, 且炮弹距 地面的高度h(单位:m)随时间 t (单位: s ) 变化的规律是h=130t-5t2.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
例题讲解 例 1.函数的解析式是舍弃问题的实际背景而抽象出来的,它所反映的两个
量之间的对应关系,可以广泛地用于刻画一类事物中的变量关系和规律. 例如,正比例函数 y kx( k 0)可以用来刻画匀速运动中路程与时间的关系、
人教A(2019版)高一上
3.1.1 函数的概念(第1课时)
学习目标
1.理解函数的概念,了解构成函数的三要素. 2.能正确使用区间表示数集. 3.会求一些简单函数的定义域、函数值.
情景引入
问题:某“复兴号”高速列车加速到 350km/h 后保持匀速运行半小时.这段 时间内,列车行进的路程 S (单位: km) 与运行时间 t (单位: h)的关系可以 表示为 S= 350t.
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
学习新知——函数的概念 1.二次函数 y ax2 bx c ( a 0 )的定义域、值域分别是什么?对应关系 f 把定义域
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
例题讲解
求函数定义域的常用依据 1.若f(x)是分式,则应考虑使分母不为零; 2.若f(x)是偶次根式,则被开方数大于或等于零; 3.若f(x)是由几个式子构成的,则函数的定义域要使各个式子都有意义; 4.若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
例题讲解
判断对应关系是否为函数,主要从以下三个方面去判断: 1.A,B必须是非空实数集; 2.A中任何一个元素在B中必须有元素与其对应; 3.A中任何一个元素在B中的对应元素必须唯一.
例题讲解
例 2.下列对应关系式中是 A 到 B 的函数的是( D )
A.A=R,B=R,f:x→y= 1 B.A=Z,B=Z,f:x→y= 2x-1 x-2
C.A⊆R,B⊆R,x2+y2=1
D.A={-1,0,1},B={1,2},f:x→y=|x|+1
分析:A:2∈A,在此时对应关系无意义,故不符合函数的定义; B:-1∈A,但在集合 B 中找不到与之相对应的数,故不符合函数的定义. C:因为 x2+y2=1,所以 y=± 1-x2,对任意 x∈A(x =±1 除外),y 值不唯一; D:符合函数的定义.
中的任意一个数 x ,对应到值域中唯一确定的什么数?
答案:二次函数 y ax2 bx c ( a 0 )的定义域是 R,值域是 B.
当 a 0 时, B
y
y
4ac 4a
b2
;当
a
0
时,
B
y
y
4个数 x ,对应到 B 中唯一确定的数 ax2 bx c ( a 0 ).
函数的定义
函数的记法 定义域 值域
设A,B是非空的实数集,如果对于集合A中任意一个数x,按 照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f:A→B为从集合A到集合B的一个函数
y=f(x),x∈A
x叫做自变量,x的取值范围A叫做函数的定义域
函数值的集合{fx|x∈A}叫做函数的值域
这里,t 和 S 是两个变量,而且对于 t 的每一个确定的值,S 都有唯一确定 的值与之对应,所以 S 是 t 的函数.
列车行进的路程 S 与运行时间 t 的对应关系是 S= 350t.其中 t 的变化范围是
数集 A t 0 t 0.5 ,S 的变化范围是数集 B S 0 S 175 .
学习新知——函数的概念
x 1 2
解:(1)要使函数有意义,必须: 4 x2 1 解得 3 x 3
所以函数 f (x) 4 x2 1 的定义域为: x 3 x 3 .
(2)使函数有意义,必须:
x
2
x
3x 4 0 1 20
解得
x x
1或x 3且x
4 1
所以 x 3或 3 x 1或x 4,因此定义域为:{ x| x 3或 3 x 1或x 4}.
一定密度的物体的质量与体积的关系、圆的周长与半径的关系等. 试构建一个问题情境,使其中的变量关系可以用解析式 y x2 来描述. 答案:边长为 x 的正方形的面积.
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
例题讲解
例 3. 求下列函数的定义域:(1)f (x) 4 x2 1 ;(2)f (x) x2 3x 4 .
人教A版(2019)高中数学必修第一册 《3.1 函数的 概念及 其表示 》第1课 时(共 15张pp t)
学习新知——函数的概念
1.一次函数 y ax b ( a 0 )的定义域、值域分别是什么?对应关系 f 把定 义域中的任意一个数 x ,对应到值域中唯一确定的什么数?
答案:一次函数 y ax b ( a 0 )的定义域是 R,值域也是 R. 对应关系 f 把 R 中的任意一个数 x ,对应到 R 中唯一确定的数 ax b ( a 0 ).