2018高考数学异构异模复习第十四章推理与证明14.2直接证明与间接证明撬题理
2018高考数学(理科)异构异模复习对点练:12-4-2直接证明与间接证明
1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元答案 B解析 ∵x =10.0,y =8.0,b ^=0.76,∴a ^=8-0.76×10=0.4,∴回归方程为y ^=0.76x+0.4,把x =15代入上式得,y ^=0.76×15+0.4=11.8(万元),故选B.2.根据如下样本数据:得到的回归方程为y =bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <0 答案 B解析 由样本数据可知y 值总体上是随x 值的增大而减少的.故b <0,又回归直线过第一象限,故纵截距a >0.故选B.3.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3 B.y ^=2x -2.4 C.y ^=-2x +9.5 D.y ^=-0.3x +4.4 答案 A解析 由变量x 与y 正相关,可知x 的系数为正,排除C 、D.而所有的回归直线必经过点(x ,y ),由此排除B ,故选A.4.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β^=∑ni =1u i -uv i -v∑ni =1u i -u2,α^=v -β^u .解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2) 令w =x ,先建立y 关于w 的线性回归方程.由于d ^=∑8i =1w i -wy i -y∑8i =1w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值 y ^=100.6+6849=576.6, 年利润z 的预报值 z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12. 所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.5.某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -t-y i -y-∑i =1nt i -t-2,a ^=y --b ^t -.点击观看解答视频解 (1)由所给数据计算得 t -=17(1+2+3+4+5+6+7)=4,y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑7i =1 (t i -t -)2=9+4+1+0+1+4+9=28,∑7i =1(t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1t i -t-y i -y-∑7i =1t i -t -2=1428=0.5,a ^=y --b ^t -=4.3-0.5×4=2.3, 所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t =9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元.6.2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(2)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(3)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,有2天李师傅比张师傅早到小区的概率.附:临界值表参考公式:K2=n ad-bca+b c+d a+c b+d,n=a+b+c+d.解(1)记每户居民的平均损失为x元,则:x =(1000×0.00015+3000×0.00020+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.(2)如下表:K 2=39×11×35×15≈4.046>3.841.所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关.(3)设李师傅、张师傅到小区的时间分别为x ,y ,则(x ,y )可以看成平面中的点.试验的全部结果所构成的区域为Ω={(x ,y )|7≤x ≤8,7.5≤y ≤8.5},则S Ω=1,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为A ={(x ,y )|y ≥x ,7≤x ≤8,7.5≤y ≤8.5},即图中的阴影部分面积为S A =1-12×12×12=78,所以P (A )=S A S Ω=78,事件B 表示“连续3天内,有2天李师傅比张师傅早到小区”,则P (B )=C 23⎝⎛⎭⎫782⎝⎛⎭⎫18=147512.7.气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32 ℃的频率为0.9.(1)若把频率看作概率,求Y,Z的值;(2)把日最高气温高于32 ℃称为本地区的“高温天气”,根据已知条件完成下面2×2列联表,并据此推测是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.附:K2=n ad-bca+b c+d a+c b+d由概率知识得:P(t>32)=1-P(t≤32)=0.1,∴Z=30×0.1=3,Y=30-(6+12+3)=9.(2)由独立性检验知识得到如下2×2列联表:K2=n ad-bca+b c+d a+c b+d=-222×8×3×27≈2.727.∵2.727<3.841,∴没有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关.。
2018年高考数学总复习 7.4 直接证明与间接证明
知识梳理 考点自测
-6-
2.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=
(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了( B )
A.分析法
B.综合法
C.综合法、分析法综合使用 D.间接证明法
解析:因为证明过程是“从左往右”,即由条件推出结论.故选B.
-9-
考点一
考点二
考点三
证明 (1)因为 3an-2Sn=2, 所以 3an+1-2Sn+1=2, 所以 3an+1-3an-2(Sn+1-Sn)=0. 因为 Sn+1-Sn=an+1,所以������������������+������1=3, 所以{an}是等比数列. 当 n=1 时,3a1-2S1=2,又 S1=a1, 所以 a1=2. 所以{an}是以 2 为首项,以 3 为公比的等比数列, 其通项公式为 an=2×3n-1. (2)由(1)可得 Sn=3n-1,Sn+1=3n+1-1,Sn+2=3n+2-1, 故���������2���+1-SnSn+2=(3n+1-1)2-(3n-1)(3n+2-1)=4×3n, 即���������2���+1-SnSn+2=4×3n.
解析:因为“至少有一个盒子里不少于”的反面是“所有盒子里都 少于”,所以应填“每个盒子里都少于2个球”.
考点一
考点二
考点三
-8-
综合法的应用(多考向)
考向1 数列中的证明
例1设数列{an}的前n项和为Sn,已知3an-2Sn=2. (1)证明{an}是等比数列并求出通项公式an; (2)求证:���������2���+1-SnSn+2=4×3n.
高考数学直接证明与间接证明专项练习题附答案
高考数学直接证明与间接证明专项练习题附答案1.(2022山东,文4)用反证法证明命题设a,b为实数,则方程x3+ax+b=0至少有一个实根时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根2.要证:a2+b2-1-a2b20,只要证明( )A.2ab-1-a2b20B.a2+b2-1-0C.-1-a2b20D.(a2-1)(b2-1)03.设a,b,c均为正实数,则三个数a+,b+,c+( )A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于24.(2022天津模拟)p=,q=(m,n,a,b,c,d均为正数),则p,q的大小为( )A.pqB.pqC.pqD.不确定5.设f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,若x1+x20,则f(x1)+f(x2)的值( )A.恒为负值B.恒等于零C.恒为正值D.无法确定正负6.(2022福建三明模拟)命题如果数列{an}的前n项和Sn=2n2-3n,那么数列{an}一定是等差数列是否成立( )A.不成立B.成立C.不能断定D.与n取值有关7.用反证法证明如果ab,那么假设内容应是 .8.在不等边三角形中,a为最大边,要想得到角A为钝角的结论,三边a,b,c应满足 .9.已知a0,求证:a+-2.10.已知在数列{an}中,a1=5,且an=2an-1+2n-1(n2,且nN*).(1)证明:数列为等差数列;(2)求数列{an}的前n项和Sn.能力提升组11.已知m1,a=,b=,则以下结论正确的是( )A.abB.aa+b,那么a,b应满足的条件是 .13.设a,b,c均为正数,且a+b+c=1,证明:1.14.△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:.15.(2022福建宁德模拟)设函数f(x)定义在(0,+)上,f(1)=0,导函数f(x)=,g(x)=f(x)+f(x).(1)求g(x)的单调区间和最小值.(2)是否存在x00,使得|g(x)-g(x0)|对任意x0成立若存在,求出x0的取值范围;若不存在,请说明理由.高考数学直接证明与间接证明专项练习题参考答案1.A 解析:至少有一个的否定为没有.2.D 解析:因为a2+b2-1-a2b20(a2-1)(b2-1)0,故选D.3.D 解析:a0,b0,c0,6,当且仅当a=b=c=1时,等号成立,故三者不能都小于2,即至少有一个不小于2.4.B 解析:q==p.5.A 解析:由f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,可知f(x)是R上的单调递减函数.由x1+x20,可知x1-x2,即f(x1)b2+c2 解析:由余弦定理cos A=0,则b2+c2-a20,即a2b2+c2.9.证明:要证a+-2,只需要证+2a+.又a0,所以只需要证,即a2++4+4a2+2++2+2,从而只需要证2,只需要证42,即a2+2,而上述不等式显然成立,故原不等式成立.10.(1)证明:设bn=,则b1==2.因为bn+1-bn=[(an+1-2an)+1]=[(2n+1-1)+1]=1,所以数列为首项是2,公差是1的等差数列.(2)解:由(1)知,+(n-1)1,则an=(n+1)2n+1.因为Sn=(221+1)+(322+1)++(n2n-1+1)+[(n+1)2n+1], 所以Sn=221+322++n2n-1+(n+1)2n+n.设Tn=221+322++n2n-1+(n+1)2n,①2Tn=222+323++n2n+(n+1)2n+1.②②-①,得Tn=-221-(22+23++2n)+(n+1)2n+1=n2n+1,所以Sn=n2n+1+n=n(2n+1+1).11.B 解析:a=,b=,又,,即aa+b()2()0a0,b0,且ab.13.证明:因为+b2a,+c2b,+a2c, 所以+(a+b+c)2(a+b+c),即a+b+c.所以1.14.证明:要证,即证=3,也就是=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),即证c2+a2=ac+b2.又△ABC三内角A,B,C成等差数列,所以B=60,由余弦定理,得b2=c2+a2-2accos 60,即b2=c2+a2-ac, 故c2+a2=ac+b2成立.于是原等式成立.15.解:(1)因为(ln x)=,所以f(x)=ln x,g(x)=ln x+,g(x)=.令g(x)=0得x=1.当x(0,1)时,g(x)0,故(0,1)是g(x)的单调递减区间,当x(1,+)时,g(x)0,故(1,+)是g(x)的单调递增区间,因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g(1)=1.(2)满足条件的x0不存在.理由如下:假设存在x00,使得|g(x)-g(x0)|对任意x0成立,即对任意x0,有ln x0,使得|g(x)-g(x0)|对任意x0成立.。
高一数学直接证明与间接证明试题答案及解析
高一数学直接证明与间接证明试题答案及解析1.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0B.a、b至少有一个为0C.a、b全不为0D.a、b中只有一个为0【答案】A【解析】把要证的结论否定之后,即得所求的反设.解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.点评:本题考查用反证法证明数学命题,得到“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,是解题的关键.2.“用反证法证明命题“如果x<y,那么x<y”时,假设的内容应该是()A.x=yB.x<yC.x=y且x<yD.x=y或x>y【答案】D【解析】由于用反证法证明命题时,应先假设命题的否定成立,而“x<y”的否定为:“x≥y ”.解:∵用反证法证明命题时,应先假设命题的否定成立,而“x<y”的否定为:“x=y或x >y”,故选D.点评:本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.3.已知a、b、c是△ABC的三边长,A=,B=,则()A.A>B B.A<B C.A≥B D.A≤B【答案】A【解析】由题意得 c<a+b,故 B==<,变形后再放大,可证小于 A.解:∵a、b、c是△ABC的三边长,∴c<a+b,∴B==<==+<+=A,∴B<A,故选 A.点评:本题考查三角形的边长的性质,用放缩法证明不等式.4.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确顺序的序号为()A.①②③B.①③②C.②③①D.③①②【答案】D【解析】根据反证法的证法步骤知:第一步反设,假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确.第二步得出矛盾:A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;第三步下结论:所以一个三角形中不能有两个直角.从而得出正确选项.解:根据反证法的证法步骤知:假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°,正确A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;所以一个三角形中不能有两个直角.故顺序的序号为③①②.故选D.点评:反证法是一种简明实用的数学证题方法,也是一种重要的数学思想.相对于直接证明来讲,反证法是一种间接证法.它是数学学习中一种很重要的证题方法.其实质是运用“正难则反”的策略,从否定结论出发,通过逻辑推理,导出矛盾.5.用反证法证明:“a>b”,应假设为()A.a>b B.a<b C.a=b D.a≤b【答案】D【解析】用反证明法证明,要先假设原命题不成立,即先要否定原命题.解:用反证明法证明,要先假设原命题不成立,即先要否定原命题,故用反证法证明:“a>b”,应假设为“a≤b”,故选D.点评:本题考查反证法的解题过程和证明方法,解题时要认真审题,仔细解答.6.关于综合法和分析法说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法【答案】D【解析】根据综合法、分析法的定义可得结论.解:根据综合法的定义可得,综合法是执因导果法,是顺推法;根据分析法的定义可得,分析法是执果索因法,是直接证法.故选:D.点评:本题主要考查综合法、分析法的定义,属于基础题.7.某同学证明+<+的过程如下:∵﹣>﹣>0,∴<,∴<,∴+<+,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法【答案】A【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.解:从推理形式来看,从﹣>﹣>0入手,推出<,继而得到<,最后得到+<+,是“执因索果”,是综合法证明,故选:A.点评:本题考查综合法与分析法,掌握二者的推理形式(“执因索果”为综合法,“执果索因”为分析法)是关键,属于中档题.8.要证:a2+b2﹣1﹣a2b2≤0,只要证明()A.2ab﹣1﹣a2b2≤0B.a2+b2﹣1﹣≤0C.﹣1﹣a2b2≤0D.(a2﹣1)(b2﹣1)≥0【答案】D【解析】将左边因式分解,即可得出结论.解:要证:a2+b2﹣1﹣a2b2≤0,只要证明(a2﹣1)(1﹣b2)≤0,只要证明(a2﹣1)(b2﹣1)≥0.故选:D.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.9.下面叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的【答案】A【解析】根据综合法、分析法的定义与证题思路,可得结论.解:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式,是直接证明的方法.故选:A.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.10.求证:+>.证明:因为+和都是正数,所以为了证明+>,只需证明(+)2>()2,展开得5+2>5,即2>0,显然成立,所以不等式+>.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法混合D.间接证法【答案】B【解析】分析法是果索因,基本步骤:要证…只需证…,只需证…,分析法是从求证的不等式出发,找到使不等式成立的充分条件,把证明不等式的问题转化为判定这些充分条件是否具有的问题.解:分析法是果索因,基本步骤:要证…只需证…,只需证…结合证明过程,证明过程应用了分析法.故选:B.点评:解决本题的关键是对分析法的概念要熟悉,搞清分析法证题的理论依据,掌握分析法的证11.下列对分析法表述正确的是;(填上你认为正确的全部序号)①由因导果的推法;②执果索因的推法;③因果分别互推的两头凑法;④逆命题的证明方法.【答案】②【解析】根据分析法的定义可得,分析法是执果索因法.解:根据分析法的定义可得,分析法是执果索因法,是直接证法.故答案为:②.点评:本题主要考查综合法、分析法、反证法的定义,属于基础题.12.命题“对于任意角θ,cos4θ﹣sin4θ=cos2θ”的证明:“cos4θ﹣sin4θ=(cos2θ﹣sin2θ)(cos2θ+sin2θ)=cos2θ﹣sin2θ=cos2θ”过程应用了()A.分析发B.综合法C.综合法、分析法结合使用D.间接证法【答案】B【解析】在推理的过程中使用了因式分解,平方差公式,以及余弦的倍角公式,符合综合法的证明过程.解:在证明过程中使用了大量的公式和结论,有平方差公式,同角的关系式,所以在证明过程中,使用了综合法的证明方法.故选:B.点评:本题主要考查证明方法的选择和判断,比较基础.13.证明不等式的最适合的方法是()A.综合法B.分析法C.间接证法D.合情推理法【答案】B【解析】要证原不等式成立,只要证<,即证9+2<9+2,故只要证<,即证14<18,此种证明方法是分析法.解:要证明不等式,只要证<,即证9+2<9+2,故只要证<,即证14<18.以上证明不等式所用的最适合的方法是分析法.故选B.点评:本题考查的是分析法和综合法,解答此题的关键是熟知比较大小的方法.从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件,分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法.也称为因果分析,属于中档题.14.设()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【解析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选C.点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.15.已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,.则()A.A>B B.A<BC.A=B D.A与B的大小不确定【答案】C【解析】作出函数f(x)=|sinx|的图象,利用函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,确定切点坐标,然后利用三角函数的关系即可得到结论.解:作出函数f(x)=|sinx|的图象与直线y=kx(k>0)的图象,如图所示,要使两个函数有且仅有三个交点,则由图象可知,直线在()内与f(x)相切.设切点为A(α,﹣sinα),当x∈()时,f(x)=|sinx|=﹣sinx,此时f'(x)=﹣cosx,x∈().∴﹣cos,即α=tanα,∴==.即A=B.故选:C.点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.16.设函数f(x)=,类比课本推导等差数列的前n项和公式的推导方法计算f(﹣5)+f(﹣4)+f(﹣3))+…+f(0))+f(1))+…+f(5)+f(6)的值为()A.B.C.3D.【答案】C【解析】根据课本中推导等差数列前n项和的公式的方法﹣倒序相加法,观察所求式子的特点,应先求f(x)+f(1﹣x)的值.解:∵f(x)=∴f(x)+f(1﹣x)=+=+==,即f(﹣5)+f(6)=,f(﹣4)+f(5)=,f(﹣3)+f(4)=,f(﹣2)+f(3)=,f(﹣1)+f(2)=,f(0)+f(1)=,∴所求的式子值为3 .故选C.点评:本题为规律性的题目,要善于观察式子的特点,并且此题给出了明确的方法,从而降低了本题难度.17.(2014•北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【答案】B【解析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C 的学生各最多只有1个,继而推得学生的人数.解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.18.(2014•揭阳三模)对于正实数α,Mα为满足下述条件的函数f(x)构成的集合:∀x1,x2∈R且x2>x1,有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).下列结论中正确的是()A.若f(x)∈Mα1,g(x)Mα2,则f(x)•g(x)∈Mα1•α2B.若f(x)∈Mα1,g(x)∈Mα2,且g(x)≠0,则C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈Mα1+α2D.若f(x)∈Mα1,g(x)∈Mα2,且α1>α2,则f(x)﹣g(x)∈Mα1﹣α2【答案】C【解析】对于﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).变形有,令,不妨设f(x)∈Mα1,g(x))∈Mα2,利用不等式的性质可得f(x)+g(x)∈Mα1+α2.从而得出正确答案.解:对于﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1),即有,令,有﹣α<k<α,不妨设f(x)∈Mα1,g(x))∈Mα2,即有﹣α1<kf<α1,﹣α2<kg<α2,因此有﹣α1﹣α2<kf+kg<α1+α2,因此有f(x)+g(x)∈Mα1+α2.故选C.点评:本题考查的是元素与集合关系的判断、进行简单的合情推理、函数恒成立问题,在能力上主要考查对新信息的理解力及解决问题的能力.19.(2014•枣庄一模)在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(e x)*的最小值为()A.2B.3C.6D.8【答案】B【解析】根据性质,f(x)=(e x)*=1+e x+,利用基本不等式,即可得出结论.解:根据性质,f(x)=(e x)*=1+e x+≥1+2=3,当且仅当e x=时,f(x)=(e x)*的最小值为3.故选:B.点评:本题考查新定义,考查基本不等式的运用,正确理解新定义是关键.20.(2014•泸州一模)一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是()A.1025B.1035C.1045D.1055【答案】C【解析】由已知可设这只游行队伍的最少人数是n,则n﹣1是2,3,4的公倍数,即12的倍数,且n为5和倍数,进而可得答案.解:设这只游行队伍的最少人数是n∵每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.∴n﹣1是2,3,4的公倍数,即12的倍数即n﹣1=1008+12k,k∈N则n=1009+12k,k∈N又∵n为5的倍数故当k=3时,1045是满足条件的最少人数故选C点评:本题是典型的“韩信点兵”问题,解答的关键是将问题转化为公倍数问题.。
2018届高三高考数学复习课件:13-2直接证明与间接证明
• (2)用反证法证明的一般步骤:①反设——
• 【思考辨析】
• 判断下列结论是否正确(请在括号中打
“√”或“×”) • (1)分析法是从要证明的结论出发,逐步寻 找使结论成立的充要条件.( )
• (2)用反证法证明结论“a>b”时,应假设
“ a < b ” .( )
(3)在解决问题时,常常用分析法寻找解题的思路与方法,再 用综合法展现解决问题的过程.( )
1 1 1 1 1 1 1 + „+ = 1-2 + 2-3 + „ + n-n+1 = 1 - = n(n+1) n+1
n . n+1
1 1 1 1 1 1 方法二 S +S +„+S =12+22+„+n2>1, 1 2 n n 又∵1> , n+1 1 1 1 n ∴S +S +„+S > . n + 1 1 2 n
1 1 即 -a =2,故数列a 是以 1 为首项,2 为公差的等差数 n an+1 n
列.
1 (2)由(1)知a =2n-1, n n(1+2n-1) 2 ∴Sn= = n . 2 1 1 1 1 1 1 1 1 证明 方法一 S +S +„+S =12+22+ „+n2> + 1×2 2×3 1 2 n
a+b b+c c+a >lg lg · · 2 2 2
abc,
a+b b+ c c+a ∴lg 2 +lg 2 +lg 2 >lg a+lg b+lg c.
题型二
分析法的应用
π π x, x∈0, , 若 x1, x2∈0, , 2 2
【例 2】已知函数 f(x)=tan
假设的内容应为( )
• A.a,b都能被5整除 • B.a,b不都能被5整除 • C.a,b至少有一个能被5整除
高中数学第二章推理与证明2.2直接证明与间接证明2.2.1综合法和分析法优化练习新人教A版选修1-
2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.1 综合法和分析法优化练习新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.1 综合法和分析法优化练习新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.1 综合法和分析法优化练习新人教A版选修1-2的全部内容。
2。
2.1 综合法和分析法[课时作业][A组基础巩固]1.在证明命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的过程:“cos4θ-sin4θ=(cos2θ+sin2θ)(cos2θ-sin2θ)=cos2θ-sin2θ=cos 2θ”中应用了( )A.分析法B.综合法C.分析法和综合法综合使用D.间接证法答案:B2.已知函数f(x)=lg错误!,若f(a)=b,则f(-a)等于()A.b B.-bC.错误!D.-错误!解析:f(x)定义域为(-1,1),f(-a)=lg错误!=lg(错误!)-1=-lg错误!=-f(a)=-b.答案:B3.分析法又叫执果索因法,若使用分析法证明:设a〉b〉c,且a+b+c=0,求证:错误!<错误! a,则证明的依据应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)〈0解析:错误!〈错误!a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔(a-c)·(2a+c)>0⇔(a-c)(a-b)〉0.答案:C4.在不等边△ABC中,a为最大边,要想得到A为钝角的结论,对三边a,b,c应满足的条件,判断正确的是()A.a2〈b2+c2B.a2=b2+c2C.a2〉b2+c2D.a2≤b2+c2解析:要想得到A为钝角,只需cos A<0,因为cos A=错误!,所以只需b2+c2-a2<0,即b2+c2<a2。
高考数学(理科)异构异模复习考案撬分法习题:第十四章 推理与证明 14-1 Word版含解析
1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上 答案 A解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b2a ,则f ⎝ ⎛⎭⎪⎫-b 2a =3,则4ac -b 24a =3;由D 知4a +2b +c =8.假设A 选项错误,则⎩⎪⎪⎨⎪⎪⎧a -b +c ≠02a +b =04ac -b 24a =34a +2b +c =8,得⎩⎪⎨⎪⎧a =5b =-10c =8,满足题意,故A 结论错误.同理易知当B 或C 或D 选项错误时不符合题意,故选A.2.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 ( )A.2人B.3人C.4人D.5人答案 B解析用A,B,C分别表示优秀、及格和不及格.显然,语文成绩得A的学生最多只有一人,语文成绩得B的也最多只有1人,得C的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.3.观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;……照此规律,当n∈N*时,C02n-1+C12n-1+C22n-1+…+C n-1=________.2n-1点击观看解答视频答案4n-1解析第一个等式,n=1,而右边式子为40=41-1;第二个等式,n=2,而右边式子为41=42-1;第三个等式,n=3,而右边式子为42=43-1;第四个等式,n=4,而右边式子为43=44-1;……归纳可知,第n个等式的右边为4n-1.4.一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0. 现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.答案 5解析 因为x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=0⊕0⊕1=0⊕1=1≠0,所以二元码1101101的前3位码元都是对的;因为x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=1⊕0⊕1=1⊕1=0,所以二元码1101101的第6、7位码元也是对的;因为x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1⊕1⊕1=0⊕1=1≠0,所以二元码1101101的第5位码元是错的,所以k =5.5.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.点击观看解答视频答案 A解析根据甲、乙、丙说的可列表得6..答案F+V-E=2解析由表可知,三棱柱:5+6-9=2;五棱锥:6+6-10=2;立方体:6+8-12=2.由上面的结论可判定:凸多面体中面数(F),顶点数(V),棱数(E)的关系为F+V-E=2.7.对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。
高中数学第二章推理与证明2.2直接证明与间接证明2.2.2反证法优化练习新人教A版选修1-2(20
2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章推理与证明2.2 直接证明与间接证明2.2.2 反证法优化练习新人教A版选修1-2的全部内容。
2。
2。
2 反证法[课时作业][A组基础巩固]1.用反证法证明:“自然数a,b,c中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数解析:自然数a,b,c的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a,b,c中恰有一个偶数”时正确的反设为“a,b,c 中都是奇数或至少有两个偶数.”答案:D2.实数a,b,c满足a+2b+c=2,则()A.a,b,c都是正数B.a,b,c都大于1C.a,b,c都小于2D.a,b,c中至少有一个不小于1 2解析:假设a,b,c中都小于错误!,则a+2b+c<错误!+2×错误!+错误!=2,与a+2b+c=2矛盾∴a,b,c中至少有一个不小于错误!。
答案:D3.(1)已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2,(2)已知a,b∈R,|a|+|b|〈1,求证方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是( )A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确;(2)的假设错误D.(1)的假设错误;(2)的假设正确解析:(1)的假设应为p+q>2;(2)的假设正确.答案:D4.设a,b,c大于0,则3个数:a+错误!,b+错误!,c+错误!的值( )A.都大于2 B.至少有一个不大于2C.都小于2 D.至少有一个不小于2解析:假设a+错误!,b+错误!,c+错误!都小于2则a+错误!<2,b+错误!〈2,c+错误!〈2∴a+错误!+b+错误!+c+错误!<6,①又a,b,c大于0所以a+错误!≥2,b+错误!≥2,c+错误!≥2。
直接证明与间接证明 知识点+例题+练习
教
学
过
程
1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。
2018届高考数学第一轮讲义复习课件26直接证明与间接证
变式训练 2
(1)用分析法证明:ac+bd≤ a2+b2· c2+d2. 1 1 1 (2)已知 a>0,b-a>1,求证: 1+a> . 1-b
综合法
a2 b2 c2 例 1 设 a,b,c>0,证明: b + c + a ≥a+b+c.
本题因为有三项分式,不主张用分析法.综合法证明不等式, 要特别注意基本不等式的运用和对题设条件的运用.这里可 从去分母的角度去运用基本不等式. 证明 ∵a,b,c>0,根据基本不等式, a2 b2 c2 有 b +b≥2a, c +c≥2b, a +a≥2c.
要点梳理
(2)分析法
忆一忆知识要点
①定义:从要证明的结论出发,逐步寻求使它成立的充分条 件,直至最后,把要证明的结论归结为判定一个明显成立的 条件(已知条件、定理、定义、公理等 )为止.这种证明方法 叫做分析法. ②框图表示: Q⇐P1 → P1⇐P2 → P2⇐P3 →…→ 得到一个明显成立的条件 . 2.间接证明
反证法:假设原命题不成立,经过正确的推理,最后得 出矛盾,因此说明假设错误,从而证明了原命题成立, 这样的证明方法叫做反证法.
[难点正本
疑点清源]
证明数学问题的方法比较多,只是我们比较常用的方法有综 合法、分析法和反证法.在证明问题时,既可独立运用,又可 综合应用. (1)对于较复杂问题的解决,往往既使用综合法又使用分析法,其 结合使用的基本格式为:P⇒P1⇒P2…⇒Pn⇒Qm⇐Qm-1⇐…⇐ Q1⇐Q(P 是已知的条件、公理、定义、公式,Q 则表示要证明 的结论.) (2)反证法是从反面的角度思考的证明方法,即肯定题设而否定结 论,从而导出矛盾推理而得.适合使用反证法证明的命题有:① 否定性命题;②唯一性命题;③至多、至少型命题;④明显成立 的命题;⑤直接证明有困难的问题.
高中数学证明题的解题方法有哪些
高中数学证明题的解题方法有哪些1高中数学证明题的解题方法(一)加强证明题读题审题能力加强我们对证明题读题审题的能力,以提高证明题解题思路,进而提高证明题解题能力.在学习的过程中进一步优化数学知识结构,提高思维方法,确保我们在解题的过程中更加灵活地利用数学基本定义和概念.所以,要做到审题时做好标记,加强对证明题读题能力的培养;得到已知条件和简单的结论,找到最简单、最快捷的证明题解题思路;反复思考,总结证明题解题的思路、技巧和经验.(二)使用技巧性方法解决证明题时,选择向量或者辅助线的方式是一个不错的选择,防止使用普通解题方法导致解题过程繁杂,进而出现错误.加强证明题的灵活性,重点关注题目的变形以及与其他题型的综合,研究典型的证明题题型,多思考.(三)培养发散思维,逻辑训练在学习的过程中我们可以摘选某些典型的数学证明题题型,然后,让学生独立思考解题,并总结解题技巧.最后,学生间互相讨论自己的证明题解题方法和技巧,主要目的在于对解题方法进行更深入、更多样化的分析,以提高学生的发散思维能力,提高证明题解题技巧.(四)提高对数学的学习兴趣俗话说:“兴趣是最好的老师.”因此,提高高中生对数学的学习兴趣可以说是提高数学证明题解题能力的重要方法.因此,在高中数学学习的过程中应该找到学习数学的乐趣,并且充分调动解证明题积极性,并培养独立思考的能力,进而培养其解决数学证明题的能力.2如何提高数学几何证明题的解题能力指导学生用数学方法中的“分析法”,执果索因,一步一步探究证明的思路和方法.教师用启发性的语言或提问指导学生,学生在教师的指导下经过一系列的质疑、判断、比较、选择,以及相应的分析、综合、概括等认识活动,思考、探究,小组内讨论、交流、发现解决问题的思路和方法.而对于分析证明题,有三种思考方式:?正向思维.对于一般简单的题目,我们正向思考,轻而易举可以做出.?逆向思维.顾名思义,就是从相反的方向思考问题.运用逆向思维解题,能使学生从不同角度、不同方向思考问题,探索解题方法,从而拓宽学生的解题思路.这种方法是推荐学生一定要掌握的.在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法.如果学生已经上九年级了,证明题不好,做题没有思路那一定要注意了:从现在开始,总结做题方法.有些学生认真读完一道题的题干后,不知道从何入手,建议从结论出发.例如:可以有这样的思考过程:要证明某两个角相等,那么结合图形可以看出,有可能是通过证两条边相等,等边对等角得出;或通过证某两个三角形全等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要什么,是否需要做辅助线,这样思考下去……我们就找到了解题的思路,然后把过程正着写出来就可以了.这是非常好用的方法.?正逆结合.对于从结论很难分析出思路的题目,我们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们某个角的角平分线,我们就要想到会得到哪两个角相等,或者根据角平分线的性质会得到哪两条线段相等.给我们梯形,我们就要想到是否要做辅助线,是作高,或平移腰,或平移对角线,或补形等等的辅助线.正逆结合,战无不胜.3高中数学证明题解题方法设置小组讨论制度,让学生多多思考证明题和其他题目的解题方法与众不同,解决证明题需要学生多多思考、自己探索。
数学中的推理和证明 共77页
证明:先考虑特殊情形:
(1)当 n3 ,pqr1 时不等 a3b 式 3c3 即 3 a,b 是 不 c : 等 .
(2)当 n3 ,p2 , q 1 , r0 时不等 a3b 3 式 c3 即 a2bb2 是 cc2a .:
下证不(等 2)成 式立 .
受1( )的启发,可以得到:
在a3b3c3 3ab中 c ,a令 c有:
2a3b3 3 a3a3b3 a2b,同理有 2b3: c3 b2c,2c3a3 c2a.
3
3
3
三式相加a3有 b3: c3 a2bb2cc2a成立 .
(3)一般的情形:由( 2),由于 n N , p 、 q 、 r都 是非负整数,且 p q r n. 根据类比有:
归纳法.
特殊
一般
归纳 不 法 完 完全 全归 归 — — 纳 纳 纳 属 法 法 法 于 ( 、 演 实 经 绎 验 — 数 验 — 推 归 学 归 属 理 归 纳 于 ( 纳 法 归 比
我们借助于归纳推理可以从大量的个别事例中发现数学 真理,引出新的数学命题.但此时的数学命题还只是一种猜想, 它往往是冒风险的、有争议的和暂时成立的。要使它成为真 正的普遍命题,还要借助于论证推理进行严格的证明.
学习合情推理的意义——还数学的 本来面目,把数学知识的学术形态 的“冰冷的美丽”转化为数学知识 的教育形态的“火热的思考”.
数学中的合情推理主要有:归纳推 理、类比推理、直觉、顿悟等.
这里主要谈谈归纳推理与类比推理.
2. 归纳推理
1)定义
Байду номын сангаас
把某类事物中个别事物所具有的规律 作为该类事物的普遍规律,这种思维进程 中由特殊到一般的推理称为归纳推理或称
2018高考数学一轮复习课件第十二章 推理与证明、算法、复数 第二节 直接证明与间接证明、数学归纳法
fb-fa fb-fa =f′(x0), =f′(x′0)成立, b-a b-a 即 f′(x0)=f′(x′0). ex 因为 f′(x)= -m,记 g(x)=f′(x), 1+ex ex 所以 g′(x)= f′(x)是(a, b)上的单调递增函数. 所 x 2>0, 1+e 以 x0=x′0,这与 x′0≠x0 矛盾,所以 x0 是唯一的.
第二节 直接证明与间接证 明、数学归纳法
本节主要包括3个知识点: 1.直接证明; 3.数学归纳法. 2.间接证明;
突破点(一)
基础联通
直接证明
抓主干知识的“源”与“流”
内容
综合法
分析法
证明的结论 出发,逐步寻 从要___________
充分条件 求使它成立的 _________,直至
利用已知条件和某些
[解] (1)当 n=1 时,a1+S1=2a1=2,则 a1=1. 又 an+Sn=2, 所以 an+1+Sn+1=2,
1 两式相减得 an+1=2an, 1 1 所以{an}是首项为 1,公比为2的等比数列, 所以 an= n-1. 2
(2)求证:数列{an}中任意三项不可能按原来顺序成等差数列. [解] 证明: 假设存在三项按原来顺序成等差数列, 记为 ap+1,
突破点(二)
基础联通
1.反证法
间接证明
抓主干知识的“源”与“流”
不成立 (即在原命题的条件下, 假设原命题_______ 结论不成立),
矛盾 ,因此说明假设错误,从而 经过正确的推理,最后得出_____
证明了原命题成立,这样的证明方法叫做反证法.
2.用反证法证明问题的一般步骤
第一步
分清命题“p⇒q”的条件和结论
2018年高中数学第2章推理与证明2.2直接证明与间接证明学案苏教版选修1-2
2.2 直接证明与间接证明第1课时直接证明1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式本题条件已知定义已知公理已知定理…?本题结论.2.综合法和分析法直接证明定义推证过程综合法从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法已知条件?…?…?结论分析法从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止,这种证明方法称为分析法结论?…?…?已知条件1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例1] 已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2≥1 3 .[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论.[精解详析] ∵a2+19≥2a3,b2+19≥2b3,c2+19≥2c3,∴a2+19+b2+19+c2+19≥23a+23b+23c=23(a+b+c)=23.∴a2+b2+c2≥1 3 .[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a,b,c为不全相等的正数,且abc=1,求证:1a+1b+1c>a+b+c.证明:∵a>0,b>0,c>0,且abc=1,∴1a+1b+1c=bc+ca+ab.又bc+ca≥2bc·ca=2abc2=2c,同理bc+ab≥2b,ca+ab≥2a.∵a、b、c不全相等.∴上述三个不等式中的“=”不能同时成立.∴2(bc+ca+ab)>2(c+a+b),即bc+ca+ab>a+b+c,故1a+1b+1c>a+b+c.2.(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n),因为a⊥b,所以a·b=0,又因为aπ,n⊥π,所以a·n=0,故a·c=0,从而a⊥c.法二:如图,记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.∵PO⊥π,aπ,∴直线PO⊥a.又a⊥b,b平面PAO,PO∩b=P,∴a⊥平面PAO.又c平面PAO,∴a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c 是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.[例2] 已知a>b>0,求证:(a-b)28a<a+b2-ab<(a-b)28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a-b)28a<a+b2-ab<(a-b)28b成立,只需证(a-b)24a<a+b-2ab<(a-b)24b成立,即证(a-b)24a<(a-b)2<(a-b)24b成立.只需证a-b2a<a-b<a-b2b成立.只需证a+b2a<1<a+b2b成立,即证a+b<2a且a+b>2b,即b<a.∵a>b>0,∴b<a成立.∴(a-b)28a<a+b2-ab<(a-b)28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P=a+a+7,Q=a+3+a+4,a≥0,求证:P<Q.证明:要证P<Q,主要证P2<Q2,只要证2a+7+2a(a+7)<2a+7+2(a+3)(a+4),即证a2+7a<a2+7a+12,即证0<12.因为0<12成立,所以P<Q成立.4.已知a、b是正实数,求证:ab+ba≥ a+b.证明:要证ab+ba≥ a+b,只需证a a+b b≥ab(a+b).即证(a+b-ab)(a+b)≥ab(a+b),即证a+b-ab≥ab.也就是要证a+b≥2ab.因为a,b为正实数,所以a+b≥2ab成立,所以ab+ba≥ a+b.[例3] 已知0<a≤1,0<b≤1,0<c≤1,求证:1+ab+bc+caa+b+c+abc≥1.[思路点拨] 因为0<a≤1,0<b≤1,0<c≤1,所以要证明1+ab+bc+caa+b+c+abc≥1成立,可转化为证明1+ab+bc+ca≥a+b+c+abc成立.[精解详析] ∵a>0,b>0,c>0,∴要证1+ab+bc+caa+b+c+abc≥1,只需证1+ab+bc+ca≥a+b+c+abc,即证1+ab+bc+ca-(a+b+c+abc)≥0.∵1+ab+bc+ca-(a+b+c+abc)=(1-a)+b(a-1)+c(a-1)+bc(1-a)=(1-a)(1-b-c+bc)=(1-a)(1-b)(1-c),又a≤1,b≤1,c≤1,∴(1-a)(1-b)(1-c)≥0,∴1+ab+bc+ca-(a+b+c+abc)≥0成立,即证明了1+ab+bc+caa+b+c+abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC中,三个内角A、B、C成等差数列.求证:1a+b+1b+c=3a+b+c.证明:要证1a+b+1b+c=3a+b+c,只需证a+b+ca+b+a+b+cb+c=3,即ca+b+ab+c=1,只需证c(b+c)+a(a+b)(a+b)(b+c)=1,即a2+c2+ab+bcb2+ab+ac+bc=1.下面证明:a2+c2+ab+bcb2+ab+ac+bc=1.∵A+C=2B,A+B+C=180°,∴B=60°. ∴b2=a2+c2-ac.∴a2+c2+ab+bcb2+ab+ac+bc=a2+c2+ab+bca2+c2-ac+ab+ac+bc=1.故原等式成立.6.若a,b,c是不全相等的正数.求证:lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c.证明:要证lg a+b2+lgb+c2+lgc+a2>lg a+lg b+lg c成立,即证lg a+b2·b+c2·c+a2>lg(abc)成立,只需证a+b2·b+c2·c+a2>abc成立,∵a+b2≥ab>0,b+c2≥bc>0,c+a2≥ca>0,∴a+b2·b+c2·c+a2≥abc>0,(*)又∵a,b,c是不全相等的正数,∴(*)式等号不成立,∴原不等式成立.1.综合法:由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法:执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是____________________.解析:a a+b b>a b+b a?a a-a b>b a-b ba(a-b)>b(a-b)?(a-b)(a-b)>0(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.答案:a≥0,b≥0且a≠b4.若三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在底面ABC上的射影为△ABC的________.(填重心、垂心、内心、外心之一)解析:如图,设S在底面ABC上的射影为点O,∴SO⊥平面ABC,连接AO,BO,∵SA⊥BC,SO⊥BC,∴BC⊥平面SAO,∴BC⊥AO.同理可证,AC⊥BO.∴O为△ABC的垂心.答案:垂心5.已知函数f(x)=10x,a>0,b>0,A=f a+b2,B=f()ab,C=f2aba+b,则A,B,C的大小关系为____________________.解析:由a+b2≥ab≥2aba+b,又f(x)=10x在R上是单调增函数,所以fa+b2≥f()ab≥f 2aba+b,即A≥B≥C.答案:A≥B≥C二、解答题6.已知函数f(x)=log2(x+2),a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断f(a)+f(c)与2f(b)的大小关系,并证明你的结论.解:f(a)+f(c)>2f(b).证明如下:因为a,b,c是两两不相等的正数,所以a+c>2ac.因为b2=ac,所以ac+2(a+c)>b2+4b,即ac+2(a+c)+4>b2+4b+4,从而(a+2)(c+2)>(b+2)2.因为f(x)=log2(x+2)是增函数,所以log2(a+2)(c+2)>log2(b+2)2,即log2(a+2)+log2(c+2)>2log2(b+2).故f(a)+f(c)>2f(b).7.已知a>0,用分析法证明:a2+1a2-2>a+1a-2.证明:要证a2+1a2-2≥a+1a-2,只需证a2+1a2+2≥a+1a+ 2.因为a>0,故只需证a2+1a2+22≥a+1a+22,即a2+1a2+4 a2+1a2+4≥a2+2+1a2+2 2a+1a+2,从而只需证2a2+1a2≥2a+1a,只需证4a2+1a2≥2a2+2+1a2,即a2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*).证明:由c=0,得b n=S nn=a+n-12d.又b1,b2,b4成等比数列,所以b22=b1b4,即a+d22=a a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.第2课时间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:肯定条件p否定结论q→导致逻辑矛盾→“p且q”为假→“若p则q”为真(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:a,b,c不成等差数列.证明:假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b,而b2=ac,即b=ac,∴a+c+2ac=4ac,所以(a-c)2=0.即a=c,从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在)至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .证明:假设(1-a)b,(1-b)c,(1-c)a都大于1 4 .∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴(1-a)+b2≥(1-a)b>14=12.同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于1 4 .7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题的三个注意点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“1+ba,1+ab中至多有一个小于2”的反设为__________________.答案:1+ba,1+ab都小于 22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根3.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为______________________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{a n}是公比为q的等比数列.(1)推导{a n}的前n项和公式;(2)设q≠1,证明数列{a n+1}不是等比数列.解:(1)设{a n}的前n项和为S n,当q=1时,S n=a1+a1+…+a1=na1;当q≠1时,S n=a1+a1q+a1q2+…+a1q n-1,①qS n=a1q+a1q2+…+a1q n,②①-②得,(1-q)S n=a1-a1q n,∴S n=a1(1-q n)1-q,∴S n=na1,q=1,a1(1-q n)1-q,q≠1.(2)证明:假设{a n+1}是等比数列,则对任意的k∈N*,(a k+1+1)2=(a k+1)(a k+2+1),a2k+1+2a k+1+1=a k a k+2+a k+a k+2+1,a21q2k+2a1q k=a1q k-1·a1q k+1+a1q k-1+a1q k+1,∵a1≠0,∴2q k=q k-1+q k+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{a n+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2 .证明:假设|f(1)|<12,|f(2)|<12,|f(3)|<12,则有-12<1+a+b<12,-12<4+2a+b<12,-12<9+3a+b<12.于是有-32<a+b<-12,①-92<2a+b<-72,②-192<3a+b<-172. ③由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平形.。
2018高考数学异构异模复习 第十四章 推理与证明 14.3 数学归纳法撬题 理
2018高考数学异构异模复习考案 第十四章 推理与证明 14.3 数学归纳法撬题 理1.已知数列{a n }的各项均为正数,b n =n ⎝ ⎛⎭⎪⎫1+1n na n (n ∈N +),e 为自然对数的底数. (1)求函数f (x )=1+x -e x的单调区间,并比较⎝⎛⎭⎪⎫1+1n n 与e 的大小;(2)计算b 1a 1,b 1b 2a 1a 2,b 1b 2b 3a 1a 2a 3,由此推测计算b 1b 2…b na 1a 2…a n的公式,并给出证明;(3)令c n =(a 1a 2…a n ) 1n,数列{a n },{c n }的前n 项和分别记为S n ,T n ,证明:T n <e S n . 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1-e x. 当f ′(x )>0,即x <0时,f (x )单调递增; 当f ′(x )<0,即x >0时,f (x )单调递减.故f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). 当x >0时,f (x )<f (0)=0,即1+x <e x. 令x =1n ,得1+1n <e 1n,即⎝ ⎛⎭⎪⎫1+1n n<e.①(2)b 1a 1=1·⎝ ⎛⎭⎪⎫1+111=1+1=2;b 1b 2a 1a 2=b 1a 1·b 2a 2=2·2⎝ ⎛⎭⎪⎫1+122=(2+1)2=32; b 1b 2b 3a 1a 2a 3=b 1b 2a 1a 2·b 3a 3=32·3⎝ ⎛⎭⎪⎫1+133=(3+1)3=43. 由此推测:b 1b 2…b n a 1a 2…a n=(n +1)n.②下面用数学归纳法证明②.a .当n =1时,左边=右边=2,②成立.b .假设当n =k 时,②成立,即b 1b 2…b k a 1a 2…a k=(k +1)k.当n =k +1时,b k +1=(k +1)⎝⎛⎭⎪⎫1+1k +1k +1·a k +1,由归纳假设可得b 1b 2…b k b k +1a 1a 2…a k a k +1=b 1b 2…b k a 1a 2…a k ·b k +1a k +1=(k +1)k (k +1)·⎝ ⎛⎭⎪⎫1+1k +1k +1=(k +2)k +1. 所以当n =k +1时,②也成立.根据a 、b ,可知②对一切正整数n 都成立.(3)证明:由c n 的定义,②,算术几何平均不等式,b n 的定义及①得T n =c 1+c 2+c 3+…+c n≤b 11×2+b 1+b 22×3+b 1+b 2+b 33×4+…+b 1+b 2+…+b n n n +1=b 1⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n n +1+b 2⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n n +1+…+b n·1n n +1 =b 1⎝ ⎛⎭⎪⎫1-1n +1+b 2⎝ ⎛⎭⎪⎫12-1n +1+…+b n ⎝ ⎛⎭⎪⎫1n -1n +1<b 11+b 22+…+b n n =⎝ ⎛⎭⎪⎫1+111a 1+⎝ ⎛⎭⎪⎫1+122a 2+…+⎝⎛⎭⎪⎫1+1n na n <e a 1+e a 2+…+e a n =e S n .即T n <e S n .2.已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解 (1)S 6={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,4),(2,6),(3,1),(3,3),(3,6)},所以f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立;②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1=(k +1)+2+k +-12+k +-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+k +-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+k +-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+k +-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+k +-12+k +-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立. 3.函数f (x )=ln (x +1)-axx +a(a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln (a n +1),证明:2n +2<a n ≤3n +2. 解 (1)f (x )的定义域为(-1,+∞),f ′(x )=x [x -a 2-2ax +x +a2.①当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a,0),则f ′(x )<0,f (x )在(a 2-2a,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,f (x )在(0,+∞)是增函数.②当a =2时,f ′(x )≥0,f ′(x )=0成立当且仅当x =0,f (x )在(-1,+∞)是增函数; ③当a >2时,若x ∈(-1,0),则f ′(x )>0,f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0,f (x )在(0,a 2-2a )是减函数; 若x ∈(a 2-2a ,+∞),则f ′(x )>0,f (x )在(a 2-2a ,+∞)是增函数. (2)证明:由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0, 即ln (x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0, 即ln (x +1)<3xx +3(0<x <3). 下面用数学归纳法证明2n +2<a n ≤3n +2. ①当n =1时,由已知23<a 1=1,故结论成立;②设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln (a k +1)>ln ⎝ ⎛⎭⎪⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln (a k +1)≤ln ⎝ ⎛⎭⎪⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时有2k +3<a k +1≤3k +3,结论成立. 根据①,②知对任何n ∈N *结论都成立.4.已知函数f 0(x )=sin x x(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22都成立.解 (1)由已知,得f 1(x )=f 0′(x )=⎝⎛⎭⎪⎫sin x x ′=cos x x -sin x x 2,于是f 2(x )=f 1′(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sinx x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1.(2)证明:由已知,得xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x ,即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎪⎫x +π2,类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎪⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立. ①当n =1时,由上可知等式成立.②假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎪⎫x +k π2成立. 因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′ =sin ⎣⎢⎡⎦⎥⎤x +k +π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +k +π2. 因此当n =k +1时,等式也成立.综合①,②可知等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4 =sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *).所以⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22(n ∈N *).。
2018版高考数学复习第十三章推理与证明课时撬分练13.2直接证明与间接证明
2018高考数学异构异模复习考案 第十三章 推理与证明 课时撬分练13.2 直接证明与间接证明 文时间:50分钟基础组1.[2016·冀州中学模拟]下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 由A 可知其为椭圆的定义;B.由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式,属于归纳推理;C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πab ,是类比推理;D.科学家利用鱼的沉浮原理制造潜艇,也属于类比推理,故选B.2.[2016·衡水二中周测]分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a⇔b 2-ac <3a 2 ⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0.3.[2016·枣强中学仿真]“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错 答案 A解析 “指数函数y =a x是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的.4.[2016·衡水二中月考]已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2015=( ) A .3 B .-3 C .6 D .-6答案 D解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2015=6×335+5,∴a 2015=a 5=-6.选D.5.[2016·武邑中学热身]观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92答案 B解析 个数按顺序构成首项为4,公差为4的等差数列,因此|x |+|y |=20的不同整数解(x ,y )的个数为4+4(20-1)=80,故选B.6.[2016·冀州中学猜题]用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 答案 B解析 因为结论“自然数a ,b ,c 中恰有一个偶数”可得题设为:“a ,b ,c 中恰有一个偶数”,所以反设为a ,b ,c 中至少有两个偶数或都是奇数.7.[2016·武邑中学仿真]当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于( )A .n nB .n 2C .nD .n +1答案 A解析 ∵x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,∴在p 位置出现的数恰好是不等式左边分母x n 的指数n 的n 次方,即p =n n.8.[2016·衡水中学模拟]观察下列等式13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+…+n 3=n 2n +24解析 观察表达式的底数可知,1=1,1+2=3,1+2+3=6,1+2+3+4=10,故第n 个等式的底数为1+2+3+…+n =n+n 2,故第n 个等式为13+23+…+n 3=n 2n +24.9.[2016·枣强中学周测]已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2014(x )的表达式为________.答案x1+2014x解析 依题意,f 1(x )=f (x )=x 1+x ,f 2(x )=f (f 1(x ))=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x 1+x=x 1+2x ,f 3(x )=f (f 2(x ))=f ⎝⎛⎭⎪⎫x 1+2x =x1+2x 1+x 1+2x=x 1+3x ,…,由此可猜测f n (x )=x1+nx ,故f 2014(x )=x1+2014x.10.[2016·衡水中学仿真]请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 21+a 22+…+a 2n =1时,你能得到的结论为________.答案 a 1+a 2+…+a n ≤n解析 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2+…+a n )2-4n ≤0, 所以a 1+a 2+…+a n ≤n .11.[2016·枣强中学预测]已知a >0,1b -1a>1,求证:1+a >11-b.证明 由已知1b -1a>1及a >0可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1, 只需证1+a -b -ab >1, 只需证a -b -ab >0即a -bab>1, 即1b -1a>1,这是已知条件,所以原不等式得证.12.[2016·冀州中学一轮检测]已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数根.证明 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2<0,a 2--2a ⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.能力组13.[2016·武邑中学一轮检测]若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q2 B .q 2C.qD.nq答案 C解析 由题设有,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1qn -1=b n 1q1+2+…+(n -1)=b n1qn -n2,∴n T n =b 1qn -12,∴等比数列{nT n }的公比为q ,故选C.14. [2016·武邑中学月考]设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3.观察上述结果,按照上面规律,可推测f (128)>_______.答案 92解析 观察f (2)=32,f (4)>2,f (8)>52,f (16)>3可知,等式及不等式右边的数构成首项为32,公差为12的等差数列,故f (128)=f (27)>32+6×12=92. 15.[2016·衡水中学热身]已知函数f (x )=ln x -a x -x +1.(1)若函数f (x )在(0,+∞)上为单调递增函数,求a 的取值范围;(2)设m ,n ∈R +,且m >n ,求证:m -n ln m -ln n <m +n2.解 (1)f ′(x )=1x-ax +-a x -x +2=x +2-2ax x x +2=x 2+-2a x +1x x +2.因为f (x )在(0,+∞)上为单调递增函数, 所以f ′(x )≥0在(0,+∞)上恒成立. 即x 2+(2-2a )x +1≥0在(0,+∞)上恒成立. 当x ∈(0,+∞)时,由x 2+(2-2a )x +1≥0, 得2a -2≤x +1x.设g (x )=x +1x,x ∈(0,+∞).g (x )=x +1x≥2x ·1x=2, 当且仅当x =1x,即x =1时取等号,即g (x )的最小值为2,则2a -2≤2,即a ≤2. 故a 的取值范围是(-∞,2].(2)证明:要证m -n ln m -ln n <m +n2,只需证m n -1ln m n<m n +12,即证ln m n >2⎝ ⎛⎭⎪⎫mn-1m n +1,则只需证ln m n -2⎝ ⎛⎭⎪⎫mn-1mn+1>0.设h (x )=ln x -x -x +1.由(1)知,h (x )在(1,+∞)上是单调递增函数,又m n>1,所以h ⎝ ⎛⎭⎪⎫m n >h (1)=0.即ln m n -2⎝ ⎛⎭⎪⎫mn -1mn+1>0成立.所以m -n ln m -ln n <m +n2.16.[2016·枣强中学周测]已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .解 (1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}. 可得,A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n qn -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i=1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=q--q n-11-q-q n-1=-1<0.所以,s<t.。
2018高考数学(文科)异构异模复习考案撬分法习题第十三章推理与证明课时撬分练13-2Word版含答案
……………………………………………… ………………………………………………时间:50分钟基础组1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 由A 可知其为椭圆的定义;B.由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式,属于归纳推理;C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a2+y 2b 2=1的面积S =πab ,是类比推理;D.科学家利用鱼的沉浮原理制造潜艇,也属于类比推理,故选B.2.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0 ⇔(a -c )(a -b )>0.3.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以函数y =⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误在于( )A .大前提错误导致结论错B .小前提错误导致结论错C .推理形式错误导致结论错D .大前提和小前提错误导致结论错 答案 A解析 “指数函数y =a x是增函数”是本推理的大前提,它是错误的,因为实数a 的取值范围没有确定,所以导致结论是错误的.4.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2015=( ) A .3 B .-3 C .6 D .-6答案 D解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又2015=6×335+5,∴a 2015=a 5=-6.选D.5.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92 答案 B解析 个数按顺序构成首项为4,公差为4的等差数列,因此|x |+|y |=20的不同整数解(x ,y )的个数为4+4(20-1)=80,故选B.6.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 答案 B解析 因为结论“自然数a ,b ,c 中恰有一个偶数”可得题设为:“a ,b ,c 中恰有一个偶数”,所以反设为a ,b ,c 中至少有两个偶数或都是奇数.7.当x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,由此可以推广为x +pxn ≥n +1,取值p 等于( ) A .n nB .n 2C .nD .n +1答案 A解析 ∵x ∈(0,+∞)时可得到不等式x +1x ≥2,x +4x 2=x 2+x 2+⎝ ⎛⎭⎪⎫2x 2≥3,∴在p 位置出现的数恰好是不等式左边分母x n 的指数n 的n 次方,即p =n n.8.观察下列等式13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第n 个等式为________.答案 13+23+…+n 3=n 2n +24解析 观察表达式的底数可知,1=1,1+2=3,1+2+3=6,1+2+3+4=10,故第n 个等式的底数为1+2+3+…+n =n 1+n2,故第n 个等式为13+23+…+n 3=n 2n +24.9.已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2014(x )的表达式为________.答案x1+2014x解析 依题意,f 1(x )=f (x )=x1+x ,f 2(x )=f (f 1(x ))=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x 1+x=x1+2x ,f 3(x )=f (f 2(x ))=f ⎝ ⎛⎭⎪⎫x 1+2x =x1+2x 1+x 1+2x=x 1+3x ,…, 由此可猜测f n (x )=x1+nx ,故f 2014(x )=x1+2014x.10.请阅读下列材料:若两个正实数a 1,a 2满足a 21+a 22=1,那么a 1+a 2≤ 2. 证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 21+a 22+…+a 2n =1时,你能得到的结论为________.答案 a 1+a 2+…+a n ≤n解析 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2+…+a n )2-4n ≤0, 所以a 1+a 2+…+a n ≤n .11.已知a >0,1b -1a>1,求证:1+a >11-b.证明 由已知1b -1a>1及a >0可知0<b <1,要证1+a >11-b,只需证1+a ·1-b >1, 只需证1+a -b -ab >1, 只需证a -b -ab >0即a -bab>1, 即1b -1a>1,这是已知条件,所以原不等式得证.12.已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实数根.证明 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2<0,a 2--2a ⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,∴-32<a <-1.这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.能力组13.若等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q2B .q 2C.qD.nq答案 C解析 由题设有,T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1qn -1=b n 1q1+2+…+(n -1)=b n 1qn -n2,∴n T n =b 1qn -12,∴等比数列{nT n }的公比为q ,故选C.14. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3.观察上述结果,按照上面规律,可推测f (128)>_______.点击观看解答视频答案 92解析 观察f (2)=32,f (4)>2,f (8)>52,f (16)>3可知,等式及不等式右边的数构成首项为32,公差为12的等差数列,故f (128)=f (27)>32+6×12=92.15.已知函数f (x )=ln x -a x -x +1.(1)若函数f (x )在(0,+∞)上为单调递增函数,求a 的取值范围;(2)设m ,n ∈R +,且m >n ,求证:m -n ln m -ln n <m +n2.解 (1)f ′(x )=1x-ax +-a x -x +2=x +2-2ax x x +2=x 2+-2a x +1x x +2.因为f (x )在(0,+∞)上为单调递增函数, 所以f ′(x )≥0在(0,+∞)上恒成立. 即x 2+(2-2a )x +1≥0在(0,+∞)上恒成立. 当x ∈(0,+∞)时,由x 2+(2-2a )x +1≥0, 得2a -2≤x +1x.设g (x )=x +1x,x ∈(0,+∞).g (x )=x +1x≥2x ·1x=2, 当且仅当x =1x,即x =1时取等号,即g (x )的最小值为2,则2a -2≤2,即a ≤2. 故a 的取值范围是(-∞,2].(2)证明:要证m -n ln m -ln n <m +n2,只需证m n -1ln m n<m n +12,即证ln m n >2⎝ ⎛⎭⎪⎫mn-1m n +1,则只需证ln m n -2⎝ ⎛⎭⎪⎫mn-1mn+1>0.设h (x )=ln x -x -x +1.由(1)知,h (x )在(1,+∞)上是单调递增函数,又m n>1,所以h ⎝ ⎛⎭⎪⎫m n >h (1)=0.即ln m n -2⎝ ⎛⎭⎪⎫mn -1mn+1>0成立.所以m -n ln m -ln n <m +n2.16.已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .解 (1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3}. 可得,A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M ,i=1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q+…+(q -1)q n -2-qn -1=q --q n -11-q-qn -1=-1<0.所以,s <t .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考数学异构异模复习考案 第十四章 推理与证明 14.2 直接
证明与间接证明撬题 理
1.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )
A .方程x 3+ax +b =0没有实根
B .方程x 3+ax +b =0至多有一个实根
C .方程x 3+ax +b =0至多有两个实根
D .方程x 3+ax +b =0恰好有两个实根
答案 A
解析 因为至少有一个的反面为一个也没有,所以要做的假设为方程x 3+ax +b =0没有实根,故选A.
2.已知数列{a n }满足:a 1∈N *,a 1≤36,且a n +1=⎩⎪⎨⎪⎧ 2a n ,a n ≤182a n -36,a n >18(n =1,2,…).记集
合M ={a n |n ∈N *}.
(1)若a 1=6,写出集合M 的所有元素;
(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;
(3)求集合M 的元素个数的最大值.
解 (1)6,12,24.
(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数.
由a n +1=⎩⎪⎨⎪⎧ 2a n ,a n ≤18,2a n -36,a n >18,可归纳证明对任意的n ≥k ,a n 是3的倍数.
如果k =1,则M 的所有元素都是3的倍数.
如果k >1,因为a k =2a k -1或a k =2a k -1-36,所以2a k -1是3的倍数,
于是a k -1是3的倍数.类似可得,a k -2,…,a 1都是3的倍数.从而对任意的n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数.
综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数.
(3)由a 1≤36,
a n =⎩⎪⎨⎪
⎧ 2a n -1,a n -1≤18,2a n -1-36,a n -1>18,
可归纳证明a n ≤36(n =2,3,…).
因为a 1是正整数,
a 2=⎩⎪⎨⎪⎧ 2a 1,a 1≤18,2a 1-36,a 1>18,
所以a 2是2的倍数.
从而当n ≥3时,a n 是4的倍数.
如果a 1是3的倍数,由(2)知对所有正整数n ,a n 是3的倍数.
因此当n ≥3时,a n ∈{12,24,36}.这时M 的元素个数不超过5.
如果a 1不是3的倍数,由(2)知对所有正整数n ,a n 不是3的倍数.因此当n ≥3时,a n ∈{4,8,16,20,28,32}.这时M 的元素个数不超过8.
当a 1=1时,M ={1,2,4,8,16,20,28,32}有8个元素.
综上可知,集合M 的元素个数的最大值为8.
3.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS n n 2+c ,n ∈N *,其中c 为实数.
(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *);
(2)若{b n }是等差数列,证明:c =0.
证明 由题意得,S n =na +n n -1 2
d . (1)由c =0,得b n =S n n =a +n -12
d . 又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,
即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭
⎪⎫a +32d ,化简得d 2-2ad =0. 因为d ≠0,所以d =2a .
因此,对于所有的m ∈N *,有S m =m 2a .
从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .
(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即nS n
n 2+c =b 1+(n -1)d 1,n ∈N *
,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+⎝ ⎛⎭
⎪⎫b 1-d 1-a +12d n 2+cd 1n =c (d 1-b 1). 令A =d 1-12d ,B =b 1-d 1-a +12
d , D =c (d 1-b 1),则对于所有的n ∈N *,有
An 3+Bn 2+cd 1n =D .(*)
在(*)式中分别取n =1,2,3,4,得
A +
B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,
从而有⎩⎪⎨⎪⎧ 7A +3B +cd 1=0, ①19A +5B +cd 1=0, ②
21A +5B +cd 1=0, ③
由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.
即d 1-12d =0,b 1-d 1-a +12
d =0,cd 1=0. 若d 1=0,则由d 1-12
d =0,得d =0, 与题设矛盾,所以d 1≠0.
又因为cd 1=0,所以c =0.。