1.1.1函数的平均变化率

合集下载

1.1.1 变化率问题

1.1.1 变化率问题
A.两机关节能效果一样好 B.A 机关比 B 机关节能效果好 C.A 机关的用电量在[0,t0]上的平均变化率比 B 机关的用 电量在[0,t0]上的平均变化率大 D.A 机关与 B 机关自节能以来用电量总是一样大
第28页
高考调研 ·新课标 ·数学选修2-2
【解析】 由题图可知,A 机关所对应的图像比较陡峭,B 机关所对应的图像比较平缓,且用电量在[0,t0]上的平均变化率 都小于 0,故一定有 A 机关比 B 机关节能效果好.故选 B 项.
高考调研 ·新课标 ·数学选修2-2
第一章 导数及其应用
第1页
高考调研 ·新课标 ·数学选修2-2
1.1 变化率与导数 1.1.1 变化率问题
第2页
高考调研 ·新课标 ·数学选修2-2
要点 1 平均变化率
函数
y=f(x)从
x1

x2
的平均变化率为Δy=f(x2)-f(x1).
Δx
x2-x1
第3页
第20页
高考调研 ·新课标 ·数学选修2-2
探究 2 物体在 t 到 t+Δt 这段时间内的平均变化率即为物 体在这段时间内的平均速度.
第21页
高考调研 ·新课标 ·数学选修2-2
思考题 2 一质点作直线运动其位移 s 与时间 t 的关系 s(t) =t2+1,该质点在[2,2+Δt](Δt>0)上的平均速度不大于 5,求 Δt 的取值范围.
第16页
高考调研 ·新课标 ·数学选修2-2
思考题 1 求函数 f(x)=x3 在区间[x0,x0+Δx]上的平均变
化率. 【解析】 函数 f(x)=x3 在[x0,x0+Δx]上的平均变化率为
f(x0+Δx)-f(x0) (x0+Δx)3-x03

导数简单知识点总结归纳

导数简单知识点总结归纳

导数简单知识点总结归纳一、导数的定义1.1 函数的平均变化率在介绍导数之前,我们先来了解一下函数的平均变化率。

对于函数y=f(x),在区间[a,b]上的平均变化率可以用下式表示:\[\frac{f(b)-f(a)}{b-a}\]这个式子表示函数在区间[a,b]上的平均变化率,也就是在这个区间里函数值的变化程度。

1.2 导数的定义当我们希望了解函数在某一点的变化率时,平均变化率已经不能满足我们的需求了。

这时,我们需要引入导数的概念。

对于函数y=f(x),在点x处的导数可以用下式表示:\[f'(x)=lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\]这个式子表示函数在点x处的导数,也可以理解为函数在这一点的瞬时变化率。

导数的定义可以直观地理解为当自变量x的增量趋于0时,函数值的变化率。

1.3 导数的几何意义导数还有一个重要的几何意义,它可以表示函数在某一点的切线的斜率。

这个概念在几何学中有着很重要的作用,也为我们理解导数提供了一个直观的解释。

二、导数的计算方法2.1 导数的基本性质对于常见的基本函数,我们可以通过一些基本的求导规则来得到它们的导数。

常见的导数规则包括:(1) 常数函数的导数为0;(2) 幂函数的导数为幂函数的指数乘以常数;(3) 指数函数的导数为指数函数的底数乘以常数;(4) 对数函数的导数为分子的导数减去分母的导数的商。

这些基本的求导规则可以帮助我们快速求出一些常见函数的导数,后面我们将会介绍一些常见函数的导数。

2.2 链式法则和乘积法则在实际的求导过程中,有时候我们会遇到一些复合函数或者乘积函数,这时就需要用到链式法则和乘积法则来求导。

链式法则的表达式为:\[f(g(x))'=f'(g(x))\cdot g'(x)\]是说一个函数的导函数是以另一个函数的作为自变量,那么它的导数等于原函数对代入函数的导函数乘以代入函数的导数。

1.1.1变化率问题与导数概念

1.1.1变化率问题与导数概念
2004年雅典奥运会
法国《队报》网站的文章称刘翔以不可思议的速度 统治了赛场。这名21岁的中国人跑的几乎比炮弹还 快,赛道上显示的12.94秒的成绩已经打破了12.95 奥运会记录,但经过验证他是以12.91秒平了世界纪 录,他的平均速度达到8.52m/s。
1.1.1 变化率问题
问题1
吹气球
的值为-13.1 .
探1.运动员在某一时刻t0的瞬时速度 究 怎样表示? ?
瞬时速度,即是时间增量趋近于0时某一时刻的速度, 由极限的观点可知:当t 0, 时,
h t0Байду номын сангаас t h t0 瞬时速度为: lim t 0 t
2.函数f(x)在x=x0处的瞬时变化率怎样表示?
观 察 ?
当△t趋近于0时,平均 速度有什么样的变化趋 势?
我们发现:当△t趋近于0时,即无论t从 小于2的一边,还是从大于2的一边趋近 v 于2时,平均速度 都趋近于一个确定 的值-13.1。
从物理的角度看: 时间间隔| △t |无限变小时,平均速度 v 就无限趋近于t=2时的瞬时速度。 所以:运动员在t=2时的瞬时速度是-13.1m/s 为了表述方便,我们用:
令△x = x2 – x1 , △ y = f (x2) – f (x1) ,则
y f (x 2 ) f (x1 ) f (x 1 x) f (x 1 ) x x x 2 x1
问题: 平均变化率的几何意义是什么?
y f (x 2 ) f (x 1 ) x x 2 x1
y 及临近一点B(-1+Δx,-2+Δy), 则 =( x
)
A、3
B、3Δx-(Δx)2 D、3-Δx
C 、 3-(Δx)2

1.1.1变化率问题学案

1.1.1变化率问题学案

1.1.1变化率问题学案【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。

【学习重点】通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;1. 掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法; 【学习难点】平均变化率的概念.【自学点拨】一.阅读章引言,并思考章引言写了几层意思? 二、问题提出问题1气球膨胀率问题:气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________.如果将半径r 表示为体积V 的函数,那么___________. ⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________. 问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度. 思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以___________., 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xf xy ___________.思考:观察函数f (x )的图象 平均变化率=∆∆xf 1212)()(x x x f x f --表示什么?(1) 一起讨论、分析,得出结果;(2)计算平均变化率的步骤:①求自变量的增量x=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1)化率f x∆=∆注意:①Δ与x 相乘; ②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1;三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy .解:例2. 求2x y =在0x x =附近的平均变化率。

函数的平均变化率

函数的平均变化率

服/务/教/师
免/费/馈/赠
返回菜单
RB . 数学 . 选修2-2
求函数的平均变化率 已知函数f(x)=3x+1和g(x)=2x2+1,分别计算f(x)与g (x)在-3到-1之间和在1到1+Δx之间的平均变化率. 【思路探究】 后代入公式求解. 先求自变量的增量和函数值的增量,然
服/务/教/师
免/费/馈/赠
f(x)表示.自变量x表示某旅游者的水平位置,函数值y=f(x)表
示此时旅游者所在的高度.设点A的坐标为(x0,y0),点B的坐 标为(x1,y1).
服/务/教/师
免/费/馈/赠
返回菜单
RB . 数学 . 选修2-2
图 1-1-1
1.若旅游者从点A爬到点B,且这段山路是平直的,自变 量x和函数值y的改变量分别是多少?
【思路探究】 因为Δs 是质点在Δt 这段时间内的位移, Δs 所以 就是质点在Δt 这段时间内的平均速度. Δt
服/务/教/师
免/费/馈/赠
返回菜单
RB . 数学 . 选修2-2
【自主解答】 (1)由题设知,Δt=3 s, Δs=s(3)-s(0)=24 m, Δs ∴平均速度为 v= =8 m/s. Δt (2)由题设知:Δt=3-2=1 s,Δs=s(3)-s(2)=12 m. Δs ∴平均速度为 v= =12 m/s. Δt
服/务/教/师
免/费/馈/赠
返回菜单
RB . 数学 . 选修2-2 函数的平均变化率的定义
一般地,已知函数y=f(x),x0、x1是其定义域内不同的两
点,记Δx=x1-x0,Δy=y1-y0=f(x1)-f(x0)
称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx,x0])的平

§1.1.1平均变化率

§1.1.1平均变化率
只有微分学才能使自然科学有可能用数学来 不仅仅表明状态,而且也表明过程:运动。 ——恩格斯
世界充满着变化,有些变化几乎不为人们察 觉,而有些变化却让人们发出感叹与惊呼!下面
是一个案例: 某市2004年4月20日最高气温为33.4℃,而此前的两 天,4月19日和4月18日最高气温分别为24.4℃和18.6℃, 短短两天时间,气温“陡增” 14.8℃,闷热中的人们无不 感叹:“天气热的太快了!” 但是,如果我们将该市2004年3月18日的最高气温3.5℃ 与4月18日最高气温18.6℃进行比较,我们发现两者温差 为15.1℃,甚至超过了14.8℃。而人们却不会发出上述感 叹。这是什么原因呢? 原来前者变化得“太快”,而后者变化得“缓慢”。
请分别计算出下面两个图象表示的函 数h(t)在区间[0,3]上的平均变化率。
h
10
h
10
OLeabharlann 1A3t
O
1
3
B
t
容易看出点B,C之间的曲线较点A,B之间的曲 线更加“陡峭”, 陡峭的程度反映了气温变化的快与慢。 *如何量化陡峭程度呢? 联想到用斜率来量化直线的倾斜程度,我们用 比值 33 .4 18 .6 即( y c y B )
例4、已知函数 的平均变化率。
思考: y=kx+b在区间[m,n]上的平 均变化率有什么特点?
一次函数在任意区间上的平均变化率都是斜率.
分层训练:
必做题:P7
选做题: P7
练习 1
练习 3
2
作业: P7
练习 4
课堂小结
形 曲线陡峭程度
数 平均变化率
变量变化的快慢
用怎样的数学模型刻画变量变化的快与慢? 这样的数学模型有哪些应用?

1[1].1.1变化率问题

1[1].1.1变化率问题


2
65 探究 计算运动员在0 t 这段时间 49 里的平均速度, 并思考下面的问题 :
1 运动员在这段时间里是静止的吗 ? 2 你认为用平均速 度描述 运动员运 动
状态有什么问题吗 ?
h t2 h t1 h v t t2 t1
探究过程:如图是函数h(t)= -4.9t2+6.5t+10 65 的图像,结合图形可知, h( ) h(0) , 49 所以, h
65 探究 : 计算运动员在 0 t 这段时间里的平均速度 49 并思考下面的问题 :
,
1 运动员在这段时间里是 静止的吗 ? 2你认为用平均速 度描述 运动员运 动状态有什么问
题吗 ?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合 65 图形可知: h( ) h(0)
题型三:平均变化率的应用 例3:试比较正弦函数y=sinx在x=0和 x 附近的平均变化率哪一个大?

2
练习
1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临 近一点B(-1+Δx,-2+Δy),则Δy/Δx=( A.3 )D
B 3Δx-(Δx)2 C . 3-(Δx)2 D . 3-Δx
第一章 导数及其应用
1.1.1 变化率问题
问题1 气球膨胀率
在吹气球的过程中, 可发现,随着气球内空气 容量的增加, 气球的半径增加得越来越慢. 从数 学的角度, 如何描述这种现象呢?
我们知道, 气球的体积V 单位 : L 与半径 r (单 4 3 位 : dm)之间的函数关系是V r r , 3
r 1 r 0 0.62cm ,

第1章 1.1.1 平均变化率

第1章 1.1.1 平均变化率

1.1 导数的概念 1.1.1 平均变化率学习目标 1.了解平均变化率的实际背景.2.理解平均变化率的含义.3.会求函数在某一点附近的平均变化率,并能用平均变化率解释一些实际问题.知识点 平均变化率1.一般地,函数f (x )在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1.2.平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”.特别提醒:在函数平均变化率的定义中,应注意以下几点: (1)函数在区间[x 1,x 2]上有意义.(2)在式子f (x 2)-f (x 1)x 2-x 1中,x 2-x 1>0,而f (x 2)-f (x 1)的值可正、可负、可为0.(3)实质:函数值的增量与自变量的增量之比. (4)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.1.平均变化率一定为正值.( × )2.函数的平均变化率为零,说明函数没有发生变化.( × ) 3.在平均变化率中,函数值的增量为正值.( × )4.函数在区间上的变化速度与平均变化率的绝对值大小有关.( √ )一、实际问题中的平均变化率例1 (1)蜥蜴的体温与阳光的照射有关,其关系为T =120t +5+15,其中T 为体温(单位:℃),t 为太阳落山后的时间(单位:min),则t =0到t =10 min ,蜥蜴的体温的平均变化率为_______℃/min. 答案 -1.6解析 ΔT Δt =T (10)-T (0)10-0=⎝ ⎛⎭⎪⎫12010+5+15-⎝ ⎛⎭⎪⎫1200+5+1510=-1.6(℃/min),∴从t =0到t =10 min ,蜥蜴的体温的平均变化率为-1.6℃/min.(2)某森林公园在过去的10年里,森林占地面积变化如图所示,试分别计算前5年与后5年森林面积的平均变化率.解 前5年森林面积的平均变化率为6.5-2.55-0=0.8(公顷/年).后5年森林面积的平均变化率为14.5-6.510-5=1.6(公顷/年).反思感悟 平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度、膨胀率、经济效益等.分清自变量和因变量是解决此类问题的关键.跟踪训练1 某质点沿方程为y =f (x )=5x 2+3(x 表示时间,f (x )表示位移)的曲线运动,则该质点从x =10到x =11的平均速度等于________. 答案 105解析 因为f (x )=5x 2+3,则质点从x =10到x =11的平均速度为v =f (11)-f (10)11-10=(5×112+3)-(5×102+3)11-10=105.二、函数在某区间上的平均变化率例2 (1)求函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率; (2)求函数g (x )=3x -2在区间[-2,-1]上的平均变化率. 解 (1)函数f (x )=3x 2+2在区间[2,2.1]上的平均变化率为f (2.1)-f (2)2.1-2=(3×2.12+2)-(3×22+2)0.1=12.3.(2)函数g (x )=3x -2在区间[-2,-1]上的平均变化率为g (-1)-g (-2)(-1)-(-2)=[3×(-1)-2]-[3×(-2)-2](-1)-(-2)=(-5)-(-8)-1+2=3.反思感悟 求函数平均变化率的步骤 (1)求自变量的改变量x 2-x 1. (2)求函数值的改变量f (x 2)-f (x 1). (3)求平均变化率f (x 2)-f (x 1)x 2-x 1.跟踪训练2 (1)计算函数y =f (x )=x 2从x =1到x =1+Δx 的平均变化率,其中Δx 的值为: ①2;②1;③0.1;④0.01;(2)思考:当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率有怎样的变化趋势? 解 (1)因为f (1+Δx )-f (1)=(1+Δx )2-12=(Δx )2+2Δx , 所以f (1+Δx )-f (1)Δx =(Δx )2+2Δx Δx =Δx +2.①当Δx =2时,平均变化率Δx +2=4, 即函数f (x )=x 2在区间[1,3]上的平均变化率为4; ②当Δx =1时,平均变化率Δx +2=3, 即函数f (x )=x 2在区间[1,2]上的平均变化率为3;③当Δx =0.1时,平均变化率Δx +2=2.1,即函数f (x )=x 2在区间[1,1.1]上的平均变化率为2.1; ④当Δx =0.01时,平均变化率Δx +2=2.01,即函数f (x )=x 2在区间[1,1.01]上的平均变化率为2.01.(2)当Δx 越来越小时,函数f (x )在区间[1,1+Δx ]上的平均变化率逐渐变小,并接近于2. 三、函数平均变化率的应用例3 婴儿从出生到第24个月的体重变化如图,则婴儿体重在第________年增长较快.答案 一解析 ∵ΔW 1Δt 1=11.25-3.7512-0=0.625,ΔW 2Δt 2=14.25-11.2524-12=0.25, ∴ΔW 1Δt 1>ΔW 2Δt 2,故第一年婴儿体重的平均变化率大,婴儿体重增长较快. 反思感悟 平均变化率的绝对值反映函数在给定区间上变化的快慢,平均变化率的绝对值越大,函数在区间上的变化速度越快;平均变化率的绝对值越小,函数在区间上的变化速度越慢.跟踪训练3 汽车行驶的路程S 和时间t 之间的函数图象如图所示.在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系是______________.答案 v 3>v 2>v 1解析 v 1=S (t 1)-S (t 0)t 1-t 0=k OA ,v 2=S (t 2)-S (t 1)t 2-t 1=k AB ,v 3=S (t 3)-S (t 2)t 3-t 2=k BC ,由图象知,k OA <k AB <k BC , 所以v 3>v 2>v 1.1.如图,函数y =f (x )在A ,B 两点间的平均变化率等于( )A .1B .-1C .2D .-2答案 B解析 平均变化率为1-33-1=-1.故选B.2.一物体的运动方程是S =3+2t ,则在[2,2.1]这段时间内的平均速度是( ) A .0.4 B .2 C .0.3 D .0.2 答案 B解析 v =S (2.1)-S (2)2.1-2=7.2-70.1=2.3.函数f (x )=2x +4在区间[a ,b ]上的平均变化率为________. 答案 2 解析f (b )-f (a )b -a =(2b +4)-(2a +4)b -a =2(b -a )b -a=2. 4.一个半径为r 的圆面,当半径增大Δr 时,面积S 的平均变化率为________. 答案 2πr +π·Δr解析 半径增大Δr 时,面积增加ΔS =π(r +Δr )2-πr 2 =π(Δr )2+2πr ·Δr ,所以ΔS Δr =π(Δr )2+2πr ·Δr Δr=2πr +π·Δr .5.某市一天12小时内的气温变化图如图所示,则在区间[0,4]内温度的平均变化率为________ ℃/h.答案 -14解析 Δy Δx =f (4)-f (0)4-0=-14(℃/h).1.知识清单: (1)平均变化率.(2)平均变化率的几何意义及应用. 2.方法归纳:转化法.3.常见误区:对平均变化率的理解不透彻导致出错.1.已知函数y =2+1x ,当x 由1变到2时,函数的增量Δy 等于( )A.12 B .-12 C .1 D .-1 答案 B解析 Δy =⎝⎛⎭⎫2+12-(2+1)=-12. 2.已知函数f (x )=x 2+2,则该函数在区间[1,3]上的平均变化率为( ) A .4 B .3 C .2 D .1 答案 A解析 ∵f (3)=11,f (1)=3,∴该函数在区间[1,3]上的平均变化率为f (3)-f (1)3-1=11-33-1=4.3.某质点沿曲线运动的方程为f (x )=-2x 2+1(x 表示时间,f (x )表示位移),则该质点从x =1到x =2的平均速度为( ) A .-4 B .-8 C .6 D .-6 答案 D解析 由题意得该质点从x =1到x =2的平均速度为f (2)-f (1)2-1=-8+1-(-2+1)1=-6.4.一根金属棒的质量y (单位:kg)是长度x (单位:m)的函数,y =f (x )=3x ,则从4 m 到9 m 这一段金属棒的平均线密度是( )A.25kg/m B.35kg/m C.34kg/m D.12kg/m 答案 B解析 从4 m 到9 m 这一段金属棒的平均线密度是 f (9)-f (4)9-4=3(9-4)9-4=35(kg/m).5.质点运动规律的方程是S =t 2+3,则在时间[3,3+Δt ]内,相应的平均速度是( ) A .6+Δt B .6+Δt +9ΔtC .3+ΔtD .9+Δt答案 A解析 平均速度为(3+Δt )2+3-32-3Δt =6Δt +(Δt )2Δt=6+Δt .6.国庆黄金周7天期间,某大型商场的日营业额从1 300万元增加到4 100万元,则该商场国庆黄金周期间日营业额的平均变化率是______万元/天. 答案 400解析 日营业额的平均变化率为4 100-1 3007=400(万元/天).7.函数y =x 3+2在区间[1,a ]上的平均变化率为21,则a =________. 答案 4解析 (a 3+2)-(13+2)a -1=a 3-1a -1=a 2+a +1=21.解得a =4或a =-5.∵a >1,∴a =4.8.函数y =f (x )=-2x 2+5在区间[2,2+Δx ]内的平均变化率为________. 答案 -8-2Δx解析 ∵Δy =f (2+Δx )-f (2)=-2(2+Δx )2+5-(-2×22+5)=-8Δx -2(Δx )2, ∴ΔyΔx=-8-2Δx ,即平均变化率为-8-2Δx . 9.已知函数f (x )=x 2+3x 在[0,m ]上的平均变化率是函数g (x )=2x +1在[1,4]上的平均变化率的3倍,求实数m 的值.解 函数g (x )在[1,4]上的平均变化率为g (4)-g (1)4-1=9-33=2.函数f (x )在[0,m ]上的平均变化率为f (m )-f (0)m -0=m 2+3mm =m +3.令m +3=2×3,得m =3.10.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m/s 到0 m/s 花了5 s ,乙车从18 m/s 到0 m/s 花了4 s ,试比较两辆车的刹车性能. 解 甲车速度的平均变化率为0-255=-5(m/s 2).乙车速度的平均变化率为0-184=-4.5(m/s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.11.已知函数f (x )=-x 2+x 的图象上一点(-1,-2)及邻近一点(-1+Δx ,-2+Δy ),则ΔyΔx 等于( ) A .3 B .3Δx -(Δx )2 C .3-(Δx )2 D .3-Δx答案 D解析 ∵Δy =f (-1+Δx )-f (-1)=-(-1+Δx )2+(-1+Δx )-(-2)=3Δx -(Δx )2 ∴ΔyΔx=3-Δx . 12.(多选)如图显示物体甲、乙在时间0到t 1范围内,路程的变化情况,下列说法正确的是( )A .在0到t 0范围内,甲的平均速度大于乙的平均速度B .在0到t 0范围内,甲的平均速度等于乙的平均速度C .在t 0到t 1范围内,甲的平均速度大于乙的平均速度D .在t 0到t 1范围内,甲的平均速度小于乙的平均速度答案 BC解析 在0到t 0范围内,甲、乙的平均速度都为v =s 0t 0,故A 错误,B 正确;在t 0到t 1范围内,甲的平均速度为s 2-s 0t 1-t 0,乙的平均速度为s 1-s 0t 1-t 0.因为s 2-s 0>s 1-s 0,t 1-t 0>0,所以s 2-s 0t 1-t 0>s 1-s 0t 1-t 0,故C 正确,D 错误. 13.某人服药后,人吸收药物的情况可以用血液中药物的浓度c (单位:mg/mL)来表示,它是时间t (单位:min)的函数,表示c =c (t ),下表给出了c (t )的一些函数值: t /min 0 10 20 30 40 50 60 70 80 90 c (t )/ (mg/mL) 0.840.890.940.981.001.000.970.900.790.63服药后30~70 min 这段时间内,药物浓度的平均变化率为________mg/(mL·min). 答案 -0.002 解析c (70)-c (30)70-30=0.90-0.9840=-0.002mg/(mL·min).14.如图是函数y =f (x )的图象.(1)函数f (x )在区间[-1,1]上的平均变化率为______; (2)函数f (x )在区间[0,2]上的平均变化率为________.答案 12 34解析 (1)函数y =f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数y =f (x )的图象知, f (x )=⎩⎨⎧x +32,-1≤x ≤1,x +1,1<x ≤3,所以函数y =f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.15.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率为28π3,则m 的值为________. 答案 2解析 体积的增加量ΔV =4π3m 3-4π3=4π3(m 3-1),所以ΔV ΔR =4π3(m 3-1)m -1=28π3,所以m 2+m +1=7,所以m =2或m =-3(舍).16.圆柱形容器,其底面直径为2 m ,深度为1 m ,盛满液体后以0.01 m 3/s 的速率放出,求液面高度的平均变化率.解 设液体放出t 秒后液面高度为y m , 则π·12·y =π·12×1-0.01t , ∴y =1-0.01πt ,液面高度的平均变化率为 ΔyΔt =1-0.01π(t +Δt )-1+0.01πtΔt =-0.01π,故液面高度的平均变化率为-0.01π.。

2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率

2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率

【解析】质点在2到2+Δt之间的平均速度为
[(2 t)2 1] 22 1 4t (t)2
v
4 t.
t
t
又 v≤5,即4+Δt≤5,
所以Δt≤1.
又Δt>0,
所以Δt的取值范围为(0,1]. 答案:(0,1]
【易错误区案例】 求解函数的平均变化率问题 【典例】函数y=2x2+3x在[1,2]内的平均变化率为_-_9_.
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
33 3
所以函数f(x)=3-x2在x0=1附近的平均变化率最大.
【方法技巧】 比较平均变化率的方法步骤
(1)求出两不同点处的平均变化率. (2)作差(或作商),并对差式(或商式)作合理变形,以 便探讨差的符号(或商与1的大小). (3)下结论.
【补偿训练】一质点做直线运动,其位移s与时间t的 关系为s(t)=t2+1,该质点在2到2+Δt(Δt>0)之间的 平均速度不大于5,则Δt的取值范围是______.
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,

教学设计5:1.1.1变化率问题

教学设计5:1.1.1变化率问题

说教学设计《平均变化率》大家好,我说课的题目是《平均变化率》,我将从教材、目标、教法、教学过程和评价反馈分析五个方面进行陈述。

一、教材分析《导数及其应用》在整个高中教材中的地位和作用是非常重要的,它既是对函数知识的补充和完善,也为今后进一步学习微积分奠定基础。

新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,也有别于以往教材将导数仅仅作为一种特殊的极限、一种“规则”来学习的处理方式。

而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法,分别从代数上的减小区间长度,使区间长度逼近于一个点和几何上的减小割线两点间的距离,使割线逐渐逼近于切线,这两个数形结合的角度定义导数.这种概念建立的方式形象、直观、生动又容易理解,最重要的是能够突出了导数概念的本质。

而我今天说课的内容《平均变化率》又是《导数及其应用》的第一课时,对下一步瞬时变化率和导数概念的形成起到重要的奠基作用。

二、目标分析在讲课的过程中,我们要让学生有一个经历、体会、运用、感受的过程。

于是,我将本堂课的教学目标定为:(1)知识与技能目标要求学生能通过大量实例直观感知、构建平均变化率的概念,并初步运用和加深理解平均变化率的实际意义和数学意义.为后续建立瞬时变化率和导数的数学模型提供丰富的背景。

(2)过程与方法目标通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;(3)情感、态度、价值观感受数学模型在刻画客观世界中的作用,进一步领会变量数学的思想方法,提高能力。

根据课标要求,结合实际情况,我确定平均变化率的概念及其形成过程为教学重点,通过实例理解平均变化率的实际意义和数学意义是本节课的难点。

三、教法分析启发式教学与探究式学习相结合。

通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。

课件3:1.1.1 函数的平均变化率

课件3:1.1.1 函数的平均变化率

C.0.43
D.0.44
解析:Δy=f(2+0.1)-f(2)=2.12+1-(22+1)=0.41.
答案:B
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在 4到4+Δt之间的平均速度v. 解:Δs=s(4+Δt)-s(4) =3(4+Δt)2+(4+Δt)+4-(3×42+4+4) =25Δt+3(Δt)2. ∴v=ΔΔst=25+3Δt. 即物体在 4 到 4+Δt 之间的平均速度为 25+3Δt.
提示:从20 min到30 min变化快. 问题2:如何刻画体温变化的快慢? 提示:用平均变化率. 问题3:平均变化率一定为正值吗? 提示:不一定.可正,可负,可为零.
知识点解读
平均变化率
(1)定义:对一般的函数 y=f(x)来说,当自变f量(x2x)-从f(xx21)变为 x2 时,函数值从 f(x1)变为 f(x2),它的平均变化率为. x2-x1
其中自变量的变化 x2-x1 称作自变量的改变量,记作Δx ,
函数值的变化 f(x2)-f(x1) 称作函数值的改变量,记作Δy .这样,
函数的平均变化率就可以表示为函数值的改变量与自变量的改变
f(x2)-f(x1)
量之比,即ΔΔxy=
x2-x1 .
(2)作用:刻画函数值在 区间[x1,x2] 上变化的快慢.
瞬时变化率
(1)定义:对于一般的函数 y=f(x),在自变量 x 从 x0 变到 x1
的过程中,设 Δx=x1-x0,Δy=f(x1)-f(x0),则函数的平均变化
率是ΔΔxy=
fx1-fx0 = x1-x0
fx0+Δx-fx0 Δx
.而当 Δx趋于0
时,平
均变化率就趋于函数在 x0 点的瞬时变化率.

1.1.1函数的平均变化率

1.1.1函数的平均变化率
内不同的两点,记Δx=x1-x0,Δy=y1-y0 =f(x1)-f(x0)
称作函数y=f(x)在区间[x0,x0+Δx](或[x0+Δx, x0])的平均变化率.
1.函数的平均变化率:已知函数y=f(x),x0,x1是其定义域
本 课
内不同的两点,记Δx= x1-x0 ,Δy=y1-y0=f(x1)-
A. 2Δt+4 B. -2Δt+4 C. 2Δt-4 D. -2Δt-4
解析:ΔΔst=4-21+ΔtΔ2t-4+2×12
=-4Δt-Δt 2Δt2
=-2Δt-4. 答案:D
例 1 某婴儿从出生到第 12 个月的体重变化如图所示, 试分别计算从出生到第 3 个月与第 6 个月到第 12 个月 该婴儿体重的平均变化率.
本 课 时
y=f(x)上任意不同的两点,函数 y=f(x) 的平均变化率ΔΔyx=fxx22- -fx1x1=fx1+ΔΔxx-fx1
栏 目
为割线 AB 的斜率.
开 关
x1,x2 是定义域内不同的两点,因此 Δx≠0,但 Δx 可正也可
负;Δy=f(x2)-f(x1)是相应 Δx=x2-x1 的改变量,Δy 的值可
你能从数学的角度来反映山坡的 平缓和陡峭程度吗?
怎样用数量刻画弯曲山路的陡峭程度?
假设如图是一座山的剖面示意图,并建立如图所示平面直角坐标系.A 是出发点,H是山顶.爬山路线用函数y=f(x)表示.
自变量x表示某旅游者的水平位置,函数值y=f(x)表示此时旅游者所在 的高度.设点A的坐标为(x1,y1),点B的坐标为(x2,y2).
(3)实质: 函数值 的改变量与 自变量 的改变量 之比 .
(4)作用:刻画函数在区间[x0,x0+Δx](或[x0+Δx,x0])上变化的快慢.

1.1.1函数的平均变化率

1.1.1函数的平均变化率

以用起点、 以用起点、终点的纵坐标之差与横坐标之
由此我们引出函数平均变化率的概念。 由此我们引出函数平均变化率的概念。 函数平均变化率的概念
函数平均变化率的概念: 函数平均变化率的概念: 一般地,已知函数y=f(x),x0,x1是其定 一般地,已知函数 , 义域内不同的两点, 义域内不同的两点,记△x=x1-x0, △y=y1-y0=f(x1)-f(x0)=f(x0+△x)-f(x0). - △ - 则当△x≠0时 则当△x≠0时,商
= 2x0 + ∆x
由上式可以看出, 取定值时, 由上式可以看出,当x0取定值时,△x 取不同的值,函数的平均变化率不同, 取不同的值,函数的平均变化率不同,当 取定值, 取不同的值时, △x取定值,x0取不同的值时,该函数的平 取定值 均变化率也不一样。 均变化率也不一样。 例如, 取正值,并不断增大时, 例如,x0取正值,并不断增大时,该函 数的平均变化率也不断地增大, 数的平均变化率也不断地增大,曲线变得 越来越陡峭。 越来越陡峭。
2. 一质点运动的方程为s=1-2t2,则在一 一质点运动的方程为 - 段时间[1, 内的平均速度为 内的平均速度为( 段时间 ,2]内的平均速度为( C ) A.- .-4 .- C. -6 . B.- .-8 .- D.6 .
3. 将半径为 的球加热,若球的半径增加 将半径为R的球加热 的球加热, 等于( △R,则球的表面积增加△S等于( B ) ,则球的表面积增加△ 等于 A. 8πR∆R . B. 8πR∆R + 4π (∆R ) .
1.1.1 函数的平均变化率
微积分主要与四类问题的处理相关: 微积分主要与四类问题的处理相关 一、已知物体运动的路程作为时间的函数, 已知物体运动的路程作为时间的函数 求物体在任意时刻的速度 加速度等 速度与 求物体在任意时刻的速度与加速度等; 曲线的切线; 二、求曲线的切线 求已知函数的最大值与最小值 最大值与最小值; 三、求已知函数的最大值与最小值 四、求长度、面积、体积和重心等。 长度、面积、体积和重心等 导数是微积分的核心概念之一它是研究 函数增减、变化快慢、最大( 函数增减、变化快慢、最大(小)值等问 题最一般、最有效的工具。 题最一般、最有效的工具。

高中数学同步教学课件 函数的平均变化率

高中数学同步教学课件 函数的平均变化率

反思感悟
平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、 加速度、膨胀率、经济效益等,分清自变量和因变量是解决此类问题的 关键.
跟踪训练 3 蜥蜴的体温与阳光的照射有关,其关系为 T=t1+205+15,其中 T 为体温(单位:℃),t 为太阳落山后的时间(单位:min),则从 t=0 到 t= 10,蜥蜴的体温的平均变化率为__-__1_.6___℃/min.
(1)先计算函数值的改变量y2-y1.
(2)再计算自变量的改变量x2-x1.
(3)最后求平均变化率
y2-y1 x2-x1.
跟踪训练 2 已知函数 f(x)=-6x,则函数 f(x)在区间[1,1.5],[1,1.1]上的平 均变化率各是多少?
∵f(x)=-6x, ∴f(1)=-6,f(1.5)=-4,f(1.1)=-6110, ∴该函数在区间[1,1.5]上的平均变化率为 f11.5.5--1f1=02.5=4, 在区间[1,1.1]上的平均变化率为f11.1.1- -f11=-61010.1+6=6110.
率为a,则
A.v=2154 m/s,a=2154 m/s2
B.v=-1245 m/s,a=2154 m/s2
C.v=2154 m/s,a=-2154 m/s2
√D.v=-1245 m/s,a=-2154 m/s2
探测器与月球表面的距离逐渐减小,所以 v=01-4×1 56000=-2154(m/s); 探测器的速度逐渐减小,所以 a=01-4×1 56000=-1245(m/s2).



s2 - s0>s1 - s0 , t1 - t0>0 , 所 以
st21- -st00>st11- -st00,故 C 正确,D 错误.

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

高中数学 第1章 1.1第1课时 函数的平均变化率课件 新人教B版选修2-2

(3)平均变化率是指函数值的“增量”(即“改变量”)Δy与 相应的自变量的“增量”Δx的比,这也给出了平均变化率的 求法,可得平均变化率可正、可负,也可为零.
2.求函数平均变化率的步骤: 求函数y=f(x)在点x0附近的平均变化率: (1)确定函数自变量的改变量Δx=x1-x0; (2)求函数的增量Δy=f(x1)-f(x0); (3)求平均变化率ΔΔxy=fx0+ΔΔxx-fx0.当求函数在某点附近 的平均变化率时,可在函数图象上表示出来.
)
A.3
B.3Δx-(Δx)2
C.3-(Δx)2
D.3-Δx
[答案] D
[解析] ∵Δy=f(-1+Δx)-f(-1) =-(-1+Δx)2+(-1+Δx)-(-2) =-(Δx)2+3Δx, ∴ΔΔyx=-ΔxΔ2x+3Δx=-Δx+3. 故选D.
求运动物体的平均速度
以初速度v0竖直上抛一物体的位移(单位:m)与 时间(单位:s)的关系为:s(t)=v0t-12gt2.
成才之路 ·数学
人教B版 ·选修2-2
路漫漫其修远兮 吾将上下而求索
导数及其应用 第一章
研究函数,从量的方面研究事物运动变化是微积分的基本 方法.
从微积分成为一门学科来说,是在十七世纪,但是,微分 和积分的思想在古代就已经产生了.公元前三世纪,古希腊的 阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线面 积和旋转双曲体的体积的问题中,就隐含着近代积分学的思 想.作为微分学基础的极限理论来说,早在古代以有比较清楚 的论述.比如《庄子》一书中,记有“一尺之棰,日取其半, 万世不竭”.
二、平均速度 设物体运动路程与时间的关系是s=f(t),如图,从t0到t0+ Δt这段时间内,物体的平均速度是v0=ft0+ΔΔtt-ft0=ΔΔst. 可见平均速度v0就是函数f(t)在区间[t0,t0+Δt]上的平均变 化率.

高二数学选修2-2(B版)(人教版)

高二数学选修2-2(B版)(人教版)

第一章 应用
本意小结
导数及其
第一章 导数及其应用
阅读与欣赏
《原本》与公理化思想
3.1 数系的扩充与复数的概念
3.1.1 实数系
3.1.2 复数的概念 3.1.3 复数的几何意义
3.2 复数的运算
3.2.1 复数的加法与减法
3.2.2 复数的乘法 3.2.3 复数的除法 阅读与欣赏
第一章 导数及其应用
高二数学选修2-2(B版)(人教版)
演讲人
202X-06-08
目录
01. 第一章 导数及其应用 02. 第二章 推理与证明 03. 第三章 数系的扩充与复数 04. 附录 部分中英文词汇对照表 05. 后记
01 第一章 导数及其应用
1.1 导数
1.1.1 函数的平均变化率
1.1.2 瞬时速度与导数 1.1.3 导数的几何意义
1.2 导数的运算
1.2.1 常数函数与冥函数的导数
1.2.2 导数公式表及数学软件的应用 1.2.3 导数的四则运算法则
1.3 导数Leabharlann 应用1.3.1 利用导数判断函数的单调性
1.3.2 利用导数研究函数的极值 1.3.3 导数的实际应用
1.4
定积分与微积分基本定理
1.4.1 曲边梯形面积与定积分
本章小节
复平面与高斯
02 第二章 推理与证明
第二章 推理与证 明
03 第三章 数系的扩充与复数
第三章 数系的扩 充与复数
04
附录 部分中英文词汇对照表
附录 部分中英文词汇对照 表
05 后记
后记
一.
感谢聆听
1.4.2 微积分基本定理
第一章 应用
本章小结

湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 1.1.1 函数的平均变化率

湘教版高中同步学案数学选择性必修第二册精品课件 第1章 导数及其应用 1.1.1 函数的平均变化率
B.
e-1
e3 +2
C.
e-1
e3 +2
D.
e+1
解析 因为f(x)=x3-ln x,所以f(e)=e3-ln e=e3-1,f(1)=13-ln 1=1,所以f(x)=x3-ln x
(e)-(1) e3 -1-1 e3 -2
在区间[1,e]上的平均变化率为
.故选B.
=
=
e-1
e-1
e-1
1 2 3 4 5

5. 泰山为我国五岳之首,有“天下第一山”之美誉,当地用“紧十八,慢十八,不
紧不慢又十八”的俗语来形容爬十八盘的感受.上面是一段登山路线图,同
样是登山,但是从A处到B处会感觉比较轻松,而从B处到C处会感觉比较吃
力.想想看,为什么?
1 2 3 4 5
解 山路从 A 到 B 高度的平均变化率为ℎ =
所以
-(-2)
=
( 2 -)-[(-2)2 -(-2)]
=2,
+2
即t2-t-6=2t+4,即t2-3t-10=0,解得t=5或t=-2(舍去).
5
.
探究点三
函数的平均变化率的应用
【例3】 A,B两机关单位开展节能活动,活动开始后两机关单位的用电量
W1(t),W2(t)与时间t(单位:天)的关系如图所示,则一定有( B )
= =9(米/
2
2
3.若函数f(x)=x2-t在区间[1,m]上的平均变化率为4,则m等于( C )
A. √5
B.2
C.3
解析
D.1
()-(1)
由题意可得 -1
1 2 3 4 5
=
2 -1

选修2-2

选修2-2

1.1.1函数的平均变化率 1.1.2瞬时变化率与导数实验中学 崔明伟一、预习达标。

1.平均变化率就是 ,函数)(x f y =在),(00x x x ∆+内的平均变化率为xy∆∆,如我们常用到年产量的平均变化率 2.函数f (x )在区间[x 1,x 2]上的平均变化率为 。

3.导数的定义:)(x f y =在0x 点附近有定义,对自变量任一改变量x ∆,函数改变量为 ,若极限 xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,称 。

二、课前达标。

1.已知函数y=f(x),如果自变量x 在x 0处有增量,那么函数y 相应地有增量⊿y=—————————比值————————叫做函数y=f (x )在x 0到x 0+⊿x 之间的平均变化率。

如果当⊿x 0时————————————————我们就说函数y=f(x) 在x 0处可导,并把————————叫做函数y=f (x )在x 0处的导数。

2.如果函数f(x)在开区间(a ,b )内————————就说f(x)在开区间(a ,b )内可导)在开区间(a ,b )内得到一个新的函数f ′(x )称为———————。

3.三、例题。

设函数)(x f 在点0x 处可导,试求下列各极限的值.1.xx f x x f x ∆-∆-→∆)()(lim 000;2..2)()(lim000hh x f h x f h --+→3.若2)(0='x f ,则kx f k x f k 2)()(lim 000--→等于( )A .-1B .-2C .-1D .21四、双基达标。

1. 若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim 000等于( )A .k 2B .kC .k 21D .以上都不是2.已知函数y=f(x)在区间(a,b)内可导,且x 0∈(a ,b )则hh x f h x f h )()(000lim--+→的值为( )A 、)(0x f 'B 、)(20x f 'C 、)(20x f '-D 、0 3.若2)(0='x f ,则kx f k x f k 2)()(lim000--→等于( )A .-1B .-2C .-21D .214.已知曲线y=x 2+1在点M 处的瞬时变化率为-4,则点M 的坐标为()A .(1,3)B .(-4,33)C .(-1,3)D .不确定5.xx f x x f x ∆-∆-→∆)()(lim000= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案1.1 .1 函数的平均变化率
编者:刘志英2009.2.18
【课标点击】
(一)学习目标
(1)掌握平均变化率的概念;能通过计算平均变化率了解曲线的陡峭程度,能理解平均变化率的实际意义;
(2)能熟练计算函数在某区间上平均变化率.
(二)教学重点,难点
(1)掌握平均变化率的概念并能熟练地计算.
【课前准备】
(一)问题导引
问题一:
如图,某市2004年4月20号最高气温为33.4C,而此前的两天,4月19号和4月18号最高气温分别为24.4C和18.6C,短短两天时间气温“陡增”14.8C,人们无不感叹:“天气热得太快了”.
问题二:(1)将该市2004年3月18号最高气温为3.5C与4月18号最高气温18.6C进行比较,两者的温差为15.1C,甚至超过了14.8C,人们却不发出上述感叹,为什么?
(2)从图象上观察,,B C 之间的曲线较,A B 之间的曲线谁更“陡峭”?
问题答案: 用比值33.418.6()3432C B C B
y y x x ----来近似地量化,B C 之间的曲线的陡峭程度,并称该比值为气温在区间[32,34]上的平均变化率.
即气温在区间[1,32]上的平均变化率为
18.6 3.515.10.532131
-=≈-. 即气温在区间[32,34]上的平均变化率为33.418.614.87.434322-==-. 虽然,B C 与,A B 之间温差几乎相同,但平均变化率却相差很大.
【学习探究】
(一)自学课本第3、4页
知识点梳理:
1, 自变量的改变量
2, 函数值的该变量
3, 函数的平均变化率
(二)思考与讨论
函数()f x 在区间12[,]x x 上的平均变化率表示为:2121
()()f x f x x x --. 可以吗? 在图形上的表现为:平均变化率是曲线陡峭程度的“数量化”,或者说,曲线陡峭程度是平均变化率的“视觉化”。

(三).典例示范
例1.某婴儿从出生到第12个月的体重变化如图,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.
解:从出生到第3个月,婴儿体重的平均变化 率为:6.5 3.51(/)30
kg -=-月. 从第6个月到第12个月,婴儿体重的平均变化 率为:118.60.4(/)126
kg -=-月. 例2. 如图水经过缸吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()5t V t e
-=
(单位3)cm 计算第一个10s 内V 的平均变化率.
解:区间[0.10]上,体积V 的平均变化率为:
3(10)(0) 1.83950.3161(/)10010
V V cm s --≈=--. 负号表示容器甲中的水在减少.
例3.已知2()f x x =,分别计算()f x 在下列区
间上的平均变化率:
(1)[1,3]; (2)[1,2]; (3)[1,1.1] ; (4)[1,1.001].
解:(1)()f x 在[1,3]上的平均变化率为:22
(3)(1)3143131
f f --==--; (2)()f x 在[1,2]上的平均变化率为:22
(2)(1)2132121
f f --==--; (3)()f x 在[1,1.1]上的平均变化率为:22
(1.1)(1) 1.11 2.11.11 1.11
f f --==--; (4)()f x 在[1,1.001]上的平均变化率为:22
(1.001)(1) 1.0011 2.0011.0011 1.0011
f f --==--. 例4.已知函数()21f x x =+,()2
g x x =-,分别计算()f x ,()g x 在区间[31]--,
[0,5]上的平均变化率.
解:()f x 在区间[31]--上的平均变化率为:(1)(3)2(1)(3)
f f ---=---. ()f x 在区间[0,5]上的平均变化率为:(5)(0)250
f f -=-. ()
g x 在区间[31]--上的平均变化率为:
(1)(3)2(1)(3)g g ---=----. ()g x 在区间[0,5]上的平均变化率为:
(5)(0)250
g g -=--. (四)变式拓展
1、一次函数y kx b =+在区间[,]m n 上的平均变化率有什么特点?(等于它的斜率).
2.函数()f x 在区间[,]m n 上的平均变化率与曲线上两点(,())m f m ,(,())n f n 间的斜率有何关系?
3.练习:书5P 练习A 1,2,题
(五)归纳总结:
(六)当堂检测 书P 5练习A3题
【巩固提高】
A 组:书P 5练习B1、2题
B 组:
1.已知曲线212
y x =上两点的横坐标是0x 和0x x +∆,求过AB 两点的直线斜率;
2.一物体按规律210s t t =+作变速直线运动,求该物体从2秒末到6秒末这段时间内的平 均速度;。

相关文档
最新文档