化学键理论与分子几何构型
第四章化学键与分子结构
B2
1 2py 2 2 2 2 10e:(1s ) (1s ) ( 2s ) ( 2s ) 1 2pz
1 2 py 2 2 或: KK ( ) ( ) 1 2s 2s 2pz
键级为1,2个单电子 键,分子有单电子,有顺磁性。 18
思考:为什么会有二套轨道? (书 p173-174 )
遵循:能量近似、最大重叠、 对称性匹配原则。p171-172 15
第二周期,同核双原子分子的分子轨道能级图 p175
16
第二周期,同核双原子分子的分子轨道
Li2,Be2,B2,C2,N2 分子轨道排布顺序:
2py 2py (1s )(1s )( 2s )( 2s ) ( 2px ) ( 2px ) 2pz 2pz
(4) 画出结构图 (5) 确定排斥力最小的稳定结构。
请大家练习: H2O,NH3 等。
5
举例:p162-163
价 电 子 对 数 是 4
E 指孤对电子
6
价 电 子 对 数 是 5
价 电 子 对 数= 4
孤对电子优先 代替平伏位置上 的原子和键对电 子(见后说明)
7
自上而下,数目 越小越好
8
X
⑶ 通常采取对称结构。
1
2. 推断分子空间构型的原则
夹角越小,排斥力越大
p160
孤对电子-孤对电子的排斥力 >> 孤对电子-成键电子对的排斥力 > 成键 - 成键
电子对的排斥力 在包括有多重键的分子中,多重键作单键处理,多重键对成键电子对的排斥 力大小次序为: 叁键 > 双键 > 单键 中心原子相同时,配体电负性越大,键角越小 (由于对成键电子对吸引力较大,使共用电子对偏离中心原子较远,占据空间 角度较小) NF3和 NH3 SCl2 和 SF2 配位原子相同时,中心原子电负性越大,键角越大 NH3 > PH3 H2O > H2S
化学键与分子结构(1)
头碰头
p-p
肩并肩
s-s s-p p-p
―头碰头”σ键
p-p
―肩并肩” π 键
共价键的特征
1、具有饱和性
2、具有方向性
共价键的方向性是指一个原子与周围原子形成 共价键有一定的角度。共价键具有方向性的原 因是因为原子轨道(p、d、f)有一定的方向性, 它和相邻原子的轨道重叠成键要满足最大重叠 条件。
心键等。
σ键的特点是重叠的电子在两核连线上,受原子核束 缚力较大,重叠程度也大,比较牢固,σ键绕轴旋转 时,电子云重叠程度不受影响。
π键的特点是重叠的电子云分布在两核连线的两方, 受原子核束缚力小,电子云重叠程要比σ键小得多, 所以π键不如σ键牢固。π键绕键轴(两轴连线)旋转后 会发生破裂。 所以π键电子的能量较高,易活动,其化学性质较σ 键活泼。 一般来说,π健不能独立存在,总是和σ键一起形成 双键或叁键。
二、σ键和π键——价键理论(一)
又称电子配对法:共价键是由不同原子的电子 云重叠形成的,是1927年海特勒(Heitler)和伦 敦(London)用量子力学处理H2问题所得结果的 推广。
两个核外电子自旋方向相反的氢原子靠近
V势能
0
r核间距
r0
v势能
0
r0
r核间距
r0
v势能
0
r0
r核间距
两个核外电子自旋方向相同的氢原子靠近
激发
↑ 2s
↑
↑ 2p
↑
sp3杂化
↑
↑
↑
↑
4个sp3轨道 重叠
↑↓ ↑↓ ↑↓ ↑↓
形成4个(sp3-s) σ键
sp3杂化轨道的形成过程
BF3
sirlee化学键理论与分子结构
③ 9~17电子构型:ns2np6nd1-9。如Mn2+、Fe2+、 Fe3+、Co2+、Ni2+等d区元素的离子。(这些离子相应 的原子结构为:ns2np6nd1-10(n+1)s1-2,失去最外层的 s电子及部分次外层nd电子成离子) ④ 18电子型:ns2np6nd10。如Cu+、Ag+、Zn2+、 Cd2+、Hg2+等ds区元素的离子及Sn4+、Pb4+等p区高 氧化态金属正离子。 ⑤(18+2)电子型(n-1)s2(n-1)p6(n-1)d10ns2。如Sn2+、 Pb2+、Sb3+、Bi3+等p区低氧化态金属正离子。
(4) 共价键的类型 根据原子轨道重叠方式的不同, 共价键可分为σ键和π键两种 主要类型。
① σ键:成键的两个原子轨道 沿键轴方向,以“头碰头”的 方式发生重叠,其重叠部分集 中在键轴周围,对键轴呈圆柱 形对称性分布,即沿键轴旋转 任何角度,形状和符号都不会 改变。这种共价键键称为σ键。
2.离子键的特征 (1) 无方向性 由于离子电荷的分布可看作是球形对称的,在各个 方向上的静电效应是等同的。 (2) 无饱和性 同一个离子可以和不同数目的异性电荷离子结合, 只要离子周围的空间允许,每一离子尽可能多地吸 引异号电荷离子,因此,离子键无饱和性。但不应 误解为一种离子周围所配位的异性电荷离子的数目 是任意的。恰恰相反,晶体中每种离子都有一定的 配位数,它主要取决于相互作用的离子的相对大小, 并使得异性离子间的吸引力应大于同性离子间的排 斥力。
二、共价键 1.共价键理论的发展历史
或用短线“-”表示共用电子对:
H—H Cl—Cl H—Cl N≡N
化学键与分子结构
化学键与分子结构化学键理论简介一、原子间相互作用力原子是由带电粒子组成的,我们预计原子间相互作用力大多是静电相互作用,主要取决于两个方面,一是原子的带电状态(中性原子或离子),二是原子的电子结构,按原子最外价电子层全满状态(闭壳层)或未满状态(开壳层)来分类。
闭壳层包括中性原子,如稀有气体He、Ne、Kr……,及具有稀有气体闭壳层结构的离子如Li+、Na+、Mg2+、F-、Cl-等。
开壳层则包括大多数中性原子,如H、Na、Mg、C、F 等。
显然,闭壳层原子(或离子)与开壳层原子之间相互作用很不相同。
原子间相互作用大致可分为以下几类:(1)两个闭壳层的中性原子,例如He-He,它们之间是van der Waals(范德华)引力作用。
(2)两个开壳层的中性原子,例如H-H,它们之间靠共用电子对结合称为“共价键”。
(3)一个闭壳层的正离子与一个闭壳层的负离子,例如Na+-C l-,它们之间是静电相互作用,称之为“离子键”。
(4)一个开壳层离子(一般是正离子)与多个闭壳层离子(或分子),例如过渡金属配合物M n+(X-)m,它们之间形成配位键(属共价键范围)。
(5)许多金属原子聚集在一起,最外层价电子脱离核的束缚,在整个金属固体内运动——金属键。
讨论这些成键原理的理论称化学键理论。
二、化学键理论从二十世纪初发展至今,化学键理论已形成三大流派:分子轨道理论(Molecular Orbital)、价键理论(Valence Bond)和密度泛函理论(Density Functional Theory)。
1.分子轨道理论:分子轨道理论(MO)要点:(1)分子轨道采用原子轨道线性组合(LCAO),例如CH4分子,C原子有1s,2s,2p等5个轨道,加上4个H原子1s轨道,共有9个原子轨道,可组合成9个分子轨道。
( 其中为分子轨道,为原子轨道)(2)分子中每个电子看作是在核与其它电子组成的平均势场中运动,每个电子在整个分子中运动——称为单电子近似。
高中化学竞赛总训练4化学键理论与分子几何构型
中学化学竞赛总训练四、化学键理论与分子几何构型1.NO的生物活性已引起科学家高度重视,它与O2-反应,生成A。
在生理pH条件下,A的t1/2= 1~2秒。
⑴写出A的可能的Lewis结构式,标出形式电荷。
推断它们的稳定性。
⑵A与水中的CO2快速一对一地结合,试写出此物种可能的路易斯结构式,表示出形式电荷,推断其稳定性。
⑶含Cu+的酶可把NO2-转化为NO,写出此反应方程式。
⑷在固定器皿中,把NO压缩到100atm,发觉气体压强快速降至略小于原压强的2/3,写出反应方程式,并说明为什么最终的气体总压略小于原压的2/3。
2.试画出N5+离子的Lewis全部可能结构式,标出形式电荷,探讨各自稳定性,写出各氮原子之间的键级。
你认为N5+的性质如何?它应在什么溶剂中制得。
3.在地球的电离层中,可能存在下列离子:ArCl+、OF+、NO+、PS+、SCl+。
请你预料哪一种离子最稳定?哪一种离子最不稳定?说明理由。
4.硼与氮形成类似苯的化合物,俗称无机苯。
它是无色液体,具有芳香性。
⑴写出其分子式,画出其结构式并标出形式电荷。
⑵写出无机苯与HCl发生加成反应的方程式⑶无机苯的三甲基取代物遇水会发生水解反应,试推断各种取代物的水解方程式,并以此推断取代物可能的结构式。
⑷硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有导电性。
⑸画出Ca2(B5O9)Cl·2H2O中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷与硼的哪种结构式有关。
5.用VSEPR理论推断下列物种的中心原子实行何种杂化类型,指出可能的几何构型。
(1)IF3(2)ClO3-(3)AsCl3(CF3)2(4)SnCl2(5)TeCl4(6)GaF63-170℃ 6.试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子(1)画出各分子的立体构型,并标明各原子间成键状况(σ、π、Πmn ) (2)估计分子中碳—氧键的键长改变规律7.近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6 —二异丙基苯胺(B)为原料,通过两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4其次步:□C □D + □CH 4 (□中填入适当系数)请回答下列问题:(1)分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2)写出D 的结构式(3)设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后的混合物进行元素分析,得到其质量分数如下:C (碳):73.71%,N (氮):6.34% 试求混合物中B 和C 的质量分数(%)(已知相对原子量:Al :26.98、C :12.01、N :14.01、H :1.01)8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S (原子个数比)=1:1:1,结构分析证明:存在一种正四面体和一种三角锥型的分子或离子,呈逆磁性。
化学键与分子结构
分子间力的产生
分子 非极性分子-非极性分子 非极性分子-极性分子 分子间力种类 色散力 色散力、诱导力 色散力、诱导力、取 向力
极性分子-极性分子
分子间力的特点
是一种电性作用力,存在于分子之间。 作用距离短,作用范围仅为几百皮米(pm)。 作用能小,一般为几到几十千焦每摩尔。 比键能小 1~2个数量级。 无饱和性和方向性。 对大多数分子来说,以色散力为主(除极 性很大且存在氢键的分子,如H2O外)
电 2.1-2.1=0 H H 负 性 ¨ 2.5-2.1=0.4 H ·I: 差 ¨ 值 ¨ Br: 越 2.8-2.1=0.7 H · ¨ 大 , 键 的 极 性 越 强
△χ
非极性键
¨ Cl: 3.0-2.1=0.9 H · ¨ ¨ F: 4.0-2.1=1.9 H · ¨ F: 4.0-0.9=3.1 Na ¨ · ¨
取向力:
固有偶极之间的作用力叫取向力。 发生于极性分子与极性分子之间
+
_
+
_
诱导力:
非极性分子在极性分子固有偶极作用下,发生 变形,产生诱导偶极,诱导偶极与固有偶极之 间的作用力称为诱导力。存在于极性分子与非 极性分子之间,也存在于极性分子之间。
_ +
色散力:
色散力——分子间由于瞬时偶极所产生 的作用力。存在于非极性分子与非极性 分子之间;存在于极性分子与非极性分 子之间;也存在于极性分子之间。
离子键:这种原子间发生电子转移,
形成正、负离子,然后正、负离子间 由静电引力形成的化学键称为离子键
离子化合物:由离子键形成的化合物
。例如:NaCl,KCl, CaF2
6.1.2 离子键的特点
本质:阳、阴离子之间的静电引力 存在:离子晶体和少量气态分子中
化学键和分子结构
r < r0 ,当 r 减小时,V 急剧上升。因为 Na+ 和 Cl- 彼此再接近时,电子云之间的斥力急剧增加,导致势能骤然上升。
因此,离子相互吸引,保持一定距离时,体系最稳定。这就意味着形成了离子键。 r0和键长有关,而V和键能有关。
σ键 π键
原子轨道重叠方式 头碰头 肩并肩
能单独存在 不能单独存在
沿轴转180O 符号不变 符号变
牢固程度 牢固 差
含共价双键和叁键的化合物重键容易打开,参与反应。
② 非极性共价键和极性共价键
根据共价键的极性分(电子云在两核中的分布),由同种原子组成的共价键为非极性共价键。
例: H2 ,O2 ,N2等
3、 SP3杂化和分子的几何构型 例:CH4
如CH4 ,SiH4 ,SiCl4 ,CCl4等也是SP3杂化
不等性杂化:
(1) 有孤对电子参加的不等性杂化
①H2O分子的几何构型
孤对电子不成键,能量较低,对成键电子云排斥更大,使两个O-H键角压缩成104.5O,(而正四面体型为109.5O) (两孤对电子之间夹角>109.5O)
a: 在正规的共价键中,氢与卤素每个原子各提供一个共用电子(CH4 CCl4)
b: 在形成共价键时,作为配体的氧原子可认为不提供电子(PO43- AsO43-中氧原子不提供共用电子)
c: 当氧族元素原子作为分子的中心原子时,则可以认为他们提供所有的6个价电子(SO2),而卤族元素原子作为分子的中心原子时候将提供所有7个价电子(ClF3)
键能:共价键的强度
键长、键角:以共价键形成的分子的空间构型(几何构型)
分子结构
H-N=N=N
H-N-N≡N
(3) 可以判断原子之间键长的长短 一般来说键级越大,键能越大,键长越短 在HN3中,N(a)-N(b) 的键长>N(b)-N(c) 的键长 在C6H6中,C-C键的键长都是一样的,都可以通 过键级来判断。
6、Lewis八电子结构式的例外(Special conditions)
形式电荷与元素性质没有任何直接联系,它是共价 键形成的平等与否的标志。
(2) QF的计算公式:
QF = 原子的价电子数 键数 孤电子数 在CO中: QF(C) = 4 3 2 = 1 QF(O) = 6 3 2 = +1
0 0 0
H N N N
H N N N
2
H N N N
(二)共价键的类型
1、σ键 原子轨道沿键轴(两原子核间联线)方向以 “头碰头” 方式重叠所形成的共价键称为σ键。 形成σ键时,原子轨道的重叠部分对于键轴呈圆 柱形对称,沿键轴方向旋转任意角度,轨道的形 状和符号均不改变。
2、π键 原子轨道垂直于键轴以 “肩并肩” 方式重叠 所形成的共价化学键称为π键。形成π键时,原子 轨道的重叠部分对等地分布在包括键轴在内的平面 上、下两侧,形状相同,符号相反,呈镜面反对称。
Positive overlap
Negative overlap Zero overlap
σ bond
π bond
δ bond
综上所述,形成共价键的条件: (i) 要有单电子 (ii) 原子轨道能量相近 (iii) 电子云最大重叠 (iv) 必须相对于键轴具有相同对称性原子轨道(即 波函数角度分布图中的 +、+ 重叠, 、 重叠, 称为对称性一致的重叠)。
(1) 对于奇电子化合物,如NO、NO2等,只能用 特殊的方法表示:
《无机化学》第7章化学键理论与分子结构
根据共用电子对来源不同, 可分为: 一般共价键 共价键 特殊共价键(配位键)
◎配位共价键(共价键的一个特例) ◆定义:在成键的两原子中,由一方单独 提供孤对电子进入另一方的价层空轨道共 用所形成的共价键。 ◆形成条件 (1)一个原子的价电子层有孤对电子。 (2)另一个原子的价电子层有空轨道。
现代价键理论 NH3 + H+ NH4+
2 Be 的外层电子排布: 2s 4
已知实验事实: 有2个等同的Be—Cl键
键角180。
直线形分子
BeCl2分子空间构型—等性sp杂化 2p 2p
激发
2s (基态)
2s (激发态)
杂 化
2p
σ sp—p
与2个Cl的3p (化合态)轨道重叠成键
2pLeabharlann sp (杂化态)2个sp杂化轨道
BeCl2的空间构型—sp杂化
■当相互靠近的两个氢原子中的单电子自
旋方向相同时
不能成键 ψ2
排斥态 0
0
电子云稀疏区
r(pm)
排斥态:
图9-2 两个氢原子接近时的能量变化曲线(排斥态)
【例】两个H原子所处状态
n=1, l=0, m=0, ms = +1/2 可配对成键 n=1, l=0, m=0, ms = -1/2
若两个H原子的ms同为+1/2 (或-1/2), 则不能配对成键。
原子轨道杂化后,其角度分布发生 了变化。 杂化轨道的角度波函数在某个方向 的值比杂化前大得多(从角度分布图形 可看出),更有利于原子轨道间最大程 度的重叠,提高了成键能力。其大小顺 序为:
s<p<sp<sp2<sp3
杂化轨道理论
y
+ x y
化学键与分子结构
子键。
Na+ + [:C·l·:]- NaCl
首页
上··一页
下一页
末页
6
❖ 键的离子性与元素电负性的关系
离子键形成的重要条件是相互作用的原子的电
负性差值较大。一般电负性差值越大,形成键的离子
性越强。以电负性差值为1.7作标准。
在CsF中离子性约占92%。
❖ 晶格能U 由气态离子生成一摩尔稳定的固态晶体所放出的
首页
上一页
下一页
末页
15
现代价键理论
1927年, Heitler和London用量子力学处理H2分 子的形成过程,得到 E—R关系曲线。
首页
上一页
下一页
末页
16
共价键的本质是由于原子相互接近时轨道重叠(即波 函数叠加),原子间通过共用自旋相反的电子对使能 量降低而成键。
首页
上一页
下一页
末页
17
一、价键理论
杂化轨道数 2 3 4
4
成键轨道夹角 180 120 10928' 10928'
分子空间构型
s+(2)p 3
120
直线形 三角形 四面体 三角锥
实例
BeCl 2 BF3 CH4 NH 3
HgCl 2 BCl 3 SiCl 4 PH 3
中心原子 Be(ⅡA) B(ⅢA) C,Si N,P
1.理论要点 a.具有自旋相反的未成对电子的原子相互接近时,
自旋相反的单电子可以相互配对成键—共价键。
H-H H-Cl 共价单键
O=O 共价双键
N≡N 共价叁键
b. 成键双方的原子轨道对称性匹配,最大程度重叠。
化学键与分子结构全解
② 原子轨道最大重叠原理:
共价键应尽可能地沿原子轨道最大重叠方向形成 即成键电子的原子轨道只有沿轨道伸展方向进行 重叠(s 轨道除外),才会有最大重叠。
+
+
+
+
不是最大重叠
+
+
+
+
轨道最大重叠
请指出下列哪种p -s重叠方式正确? x
p -s x
p -s x
p -s x
共价键的类型
成键原子的电负性相差越大,则键的 极性越强。
➢ 离子键的本质是正、负离子之间的静电引力
➢ 离子键没有方向性和饱和性 ➢ 离子键的离子性与元素的电负性值有关
P79-80 P80
离子键的强度
➢ 离子键的强度用晶格能(U)表示
P80
离子的特征
➢ 离子电荷 ➢ 离子的电子层构型 ➢ 离子半径
➢ 离子电荷
✓ 指原子形成离子化合物过程中失去或得到电子的数目它是影响离子键强度的重 要因素。
HCl中的σ键
Cl 中的σ键 2
ss pp
sp
σ键s -的s 轨特道点重叠: 在键轴上成键,轨道重叠最大,最稳定 ,键能最大
s - p 轨道重叠 x
p - p 轨道重叠 xx
π键
原子轨道在键轴两侧以肩并肩的方式发生重叠而形成 的键称为π键。
常见的π键有:p — p 轨道重叠 py — py m)
Fe3+
Fe2+
e.周期表中处于相邻族的左上方和右下方斜对角线上的正离子半 径近似相等 (对角线规则)。
Li+(60pm)≈Mg2+(65pm); Sc3+(81pm)≈Zr4+(80pm)
键类型、分子构型、分子极性判断方法
谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的
位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最 小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此, 我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分 子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个 电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对 互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方 式排布。这样就决定了CH4的正四面体结构。
用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层
电子对数目的关系如下表所示:
这样已知价层电子对的数目,就可及确定它们的空间构型。 ③分子空间构型的确定。价层电子对有成键电子对和孤电子对之分。
中心原子周围配位原子(或原子团)数,就是健对数,价层电子对的总 数减去键对数,得孤对数。根据键对数和孤对敌,可以确定相应的较稳 定的分子几何构型,如下表所示:
而 SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象 一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上, 而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离 子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立
体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子
成
电
孤
电子 键
子
电
对的 电
对
子
空间 子
数
对
构型 对
目
数
数
电子对的 排列方式
分子的 空间构 实 例
化学键和分子结构几个问题的讨论
知识探究: 化学键和分子结构Chemical Bonds and Structures of Molecules这一章是化学的核心,因为结构决定性质。
如白磷、红磷的结构不同,性质也不同;石墨、金刚石和C 60等的结构不同,性质也不同。
这一章重点讲授共价键、离子键、金属键以及分子几何构型、金属晶体、原子晶体和离子晶体的晶体结构。
另外我们也讨论分子间的作用力以及对分子晶体的一些性质的影响。
共价键与分子几何构型Covalent Bonds and Molecular Geometric Structure*(要求了解)一、经典共价键理论(Classical Covalent Bond Theory ) − LewisStructure (Octet Rule)(八电子规则)1.基本思想:当n s 、n p 原子轨道充满电子,会成为八电子构型,该电子构型是稳定的,所以在共价分子中,每个原子都希望成为八电子构型(H 原子为2电子构型)。
2.共价分子中成键数和孤电子对数的计算:例如:P 4S 3、HN 3、N +5、H 2CN 2(重氮甲烷)、NO -3 (1) 计算步骤:a .令n o − 共价分子中,所有原子形成八电子构型(H 为2电子构型)所需要的电子总数b .令n v − 共价分子中,所有原子的价电子数总和c .令n s − 共价分子中,所有原子之间共享电子总数 n s = n o - n v ,n s /2 = (n o - n v ) / 2 = 成键电子对数d .令n l − 共价分子中,存在的孤电子数。
(或称未成键电子数)3.Lewis 结构式的书写P 4S 3HN 3HN N N H N N HNNNN 5+,,,N N NNNNNN NNNNNN N N NCH 2N 2(重氮甲烷) ,HCHNN HC HN N当Lewis 结构式不只一种形式时,如何来判断这些Lewis 结构式的稳定性呢?如HN 3可以写出三种可能的Lewis 结构式,5N +可以写出四种可能的Lewis 结构式,而重氮甲烷只能写出两种可能的Lewis 结构式。
化学键理论与分子几何构型例题
170℃四、化学键理论与分子几何构型1. NO 的生物活性已引起科学家高度重视,它与O 2-反应,生成A 。
在生理pH 条件下,A 的t 1/2= 1~2秒。
(1) 写出A 的可能的Lewis 结构式,标出形式电荷。
判断它们的稳定性。
(2) A 与水中的CO 2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示出形式电荷,判断其稳定性。
(3) 含Cu +的酶可把NO 2-转化为NO ,写出此反应方程式。
(4) 在固定器皿中,把NO 压缩到100atm ,发现气体压强迅速降至略小于原压强的2/3,写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。
2. 试画出N 5+离子的Lewis 所有可能结构式,标出形式电荷,讨论各自稳定性,写出各氮原子之间的键级。
你认为N 5+的性质如何?它应在什么溶剂中制得。
3. 在地球的电离层中,可能存在下列离子:ArCl +、OF +、NO +、PS +、SCl +。
请你预测哪一种离子最稳定?哪一种离子最不稳定?说明理由。
4. 硼与氮形成类似苯的化合物,俗称无机苯。
它是无色液体,具有芳香性。
(1) 写出其分子式,画出其结构式并标出形式电荷。
(2) 写出无机苯与HCl 发生加成反应的方程式(3) 无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式,并以此判断取代物可能的结构式。
(4) 硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有导电性。
(5) 画出Ca 2(B 5O 9)Cl·2H 2O 中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷与硼的哪种结构式有关。
5. 用VSEPR 理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。
(1)IF 3 (2)ClO 3-(3)AsCl 3(CF 3)2 (4)SnCl 2 (5)TeCl 4 (6)GaF 63-6. 试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子(1) 画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πmn ) (2) 估计分子中碳—氧键的键长变化规律7. 近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6 —二异丙基苯胺(B)为原料,通过两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4第二步:□C □D + □CH 4 (□中填入适当系数)请回答下列问题: (1) 分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2) 写出D 的结构式(3) 设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后的混合物进行元素分析,得到其质量分数如下:C (碳):73.71% ,N (氮):6.34%试求混合物中B和C的质量分数(%)(已知相对原子量:Al:26.98、C:12.01、N:14.01、H:1.01)8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S(原子个数比)=1:1:1,结构分析证实:存在一种正四面体和一种三角锥型的分子或离子,呈逆磁性。
分子的构造与化学键的角度理论
分子的构造与化学键的角度理论分子的构造和化学键的角度理论是化学中关于分子结构的重要理论之一。
通过研究分子的构造和分子中各个原子之间的联系,人们可以更好地理解分子的行为和性质。
本文将就分子的构造以及化学键的角度理论展开论述。
一、分子的构造分子的构造是指分子中原子排列的方式和原子之间的相互作用。
理解分子的构造有助于解释分子的性质和反应行为。
从分子结构的角度考虑,分子可以分为线性分子、非线性分子和平面分子。
1. 线性分子线性分子是指分子中原子按照直线排列的分子。
典型的例子是二氧化碳(CO2)分子,其中碳原子与两个氧原子连接,形成线性分子结构。
线性分子通常具有较高的极性,易于形成离子化合物。
2. 非线性分子非线性分子是指分子中原子按照曲线或不规则的方式排列的分子。
典型的例子是水(H2O)分子,其中两个氢原子连接到一个氧原子上,形成非线性分子结构。
非线性分子通常具有较低的极性,易于形成共价化合物。
3. 平面分子平面分子是指分子中原子按照平面的方式排列的分子。
典型的例子是苯(C6H6)分子,其中六个碳原子连接成一个环状结构,形成平面分子结构。
平面分子通常具有较高的共轭性,易于发生共轭反应。
二、化学键的角度理论化学键的角度理论是指在分子中,原子之间化学键的形成和稳定存在所涉及的几何角度关系。
通过对化学键的角度进行研究,人们可以推测出分子的形状和立体构型。
1. 线性分子的键角对于线性分子而言,化学键之间的角度理论上为180度。
这是由于线性分子结构中原子排列在一条直线上,两个化学键形成直角。
例如,氧气(O2)分子中的氧原子与氧原子之间的键角为180度。
2. 非线性分子的键角对于非线性分子而言,化学键之间的角度理论上会略有偏离180度。
这是由于原子间的库仑斥力和键角张力的存在。
例如,水分子中的氧原子和两个氢原子之间的键角为104.5度。
3. 平面分子的键角对于平面分子而言,化学键之间的角度理论上为120度或109.5度,取决于分子的具体结构。
化学键及分子结构
化学键及分子结构化学键是指原子间相互作用的力,它决定了化学物质的性质和反应行为。
而分子结构是由化学键的连接方式所确定的,它决定了分子的稳定性、形状和性质。
本文将介绍不同类型的化学键以及它们在分子结构中的作用。
一、离子键离子键是由带正电荷的阳离子和带负电荷的阴离子之间的静电作用力所形成的化学键。
阳离子和阴离子之间的电荷吸引使得它们结合在一起,形成一个离子晶体的结构。
离子键通常在具有明显电荷差异的化合物(如盐类)中存在。
二、共价键共价键是由两个原子间共享电子而形成的化学键。
共价键可以分为极性共价键和非极性共价键。
在非极性共价键中,两个原子之间电子的共享是均匀的,如氢气分子(H2)中的氢原子之间的共价键;在极性共价键中,两个原子之间电子的共享不均匀,如水分子(H2O)中的氢氧键。
三、金属键金属键是金属元素之间的化学键,其特点是金属元素中的价电子形成一个“海洋”,所有金属原子都共享这些价电子。
金属键的存在使得金属物质具有良好的导电性和热导性。
四、π键π键是共价键的一种特殊形式,是由两个原子之间一个或多个未配对电子的重叠形成的。
它存在于双键和三键中,并决定了分子的平面性和刚性。
五、氢键氢键是指氢原子与电负性较高的原子间的键。
氢键虽然比较弱,但在生物分子和有机分子的结构和功能中起着重要的作用。
例如,在DNA双螺旋结构中,氢键维持了两个DNA链的稳定连接。
在分子结构中,化学键的连接方式决定了分子的三维形状。
分子的三维结构又直接影响着其化学性质和反应活性。
例如,分子间的距离和角度的改变可能导致分子的立体异构体的形成,使得同一分子的不同异构体具有不同的化学性质。
化学键和分子结构的研究对于理解和预测化学物质的性质和反应至关重要。
通过对不同类型的化学键的深入研究,我们可以设计出具有特定性质和功能的新材料,促进科学和技术的发展。
总结起来,化学键是原子间的相互作用力,决定了化学物质的性质和反应行为;而分子结构由化学键的连接方式所决定,决定了分子的稳定性、形状和性质。
高中化学的归纳化学键与分子构型的关系
高中化学的归纳化学键与分子构型的关系化学键是化学中最基本的概念之一,它揭示了原子之间如何相互结合形成分子。
而分子的构型则决定了分子在空间中的排列方式。
在高中化学中,理解化学键和分子构型之间的关系对于学生们来说至关重要。
本文将探讨化学键的分类与特征,以及不同类型的化学键对分子构型的影响。
1. 金属键金属键是指金属元素之间通过电子海模型相互结合形成的键。
这些金属键通常是无定形的,电子可以在整个金属晶格中自由移动。
因此,金属在固态时常具有良好的导电性和导热性。
然而,由于金属键的无定形性,金属分子的构型往往无法具体确定。
2. 离子键离子键是由阳离子和阴离子之间的静电引力相互作用形成的键。
在离子键中,正离子失去了一个或多个电子,成为阳离子,而负离子则获得了额外的电子。
这种电子的转移导致离子之间形成强大的电荷吸引力。
因此,离子键通常具有很高的熔点和沸点,是不导电的固体。
分子构型方面,离子键的特点是晶格结构有序且紧密。
3. 共价键共价键是非金属元素之间共享电子对形成的键。
在共价键中,电负性较大的原子会吸引更多的电子,形成部分负电的区域(δ-),而电负性较小的原子则形成部分正电的区域(δ+)。
这种电子的共享使得共价键往往具有一定的极性。
根据电子的共享程度,共价键又可分为极性共价键和非极性共价键。
极性共价键的分子构型可根据电子云的偏移方向来确定,电子云离电负性较大的原子较近。
而非极性共价键的分子构型往往是对称的。
4. 配位键配位键主要存在于过渡金属化合物中。
在配位键中,一个或多个配体通过共享电子对与中心金属原子相连。
配位键的特点是通过配合物的配位数来确定分子构型。
配位数是指配体与中心金属原子之间形成的化学键的个数。
例如,四个配体形成的配位键构成了正四面体构型,而六个配体形成的配位键构成了八面体构型。
总结起来,化学键的类型和性质决定了分子的构型。
金属键因其无定形性而无法确定具体构型,离子键的构型通常为有序晶体结构,共价键的构型与共享电子对的位置有关,而配位键的构型取决于配位数。
化学键和分子形状
化学键和分子形状化学键以及分子形状是化学世界中极为重要的概念,它们对于我们理解物质的性质和反应起着至关重要的作用。
本文将深入探讨化学键的类型以及它们对分子形状的影响,帮助读者更好地理解这一主题。
一、化学键的类型化学键是由原子之间的相互作用形成的,它们连接原子并保持分子的稳定性。
根据原子之间的电子共享与转移情况,化学键可分为离子键、共价键和金属键三种类型。
1. 离子键离子键是由于正负电荷之间的相互吸引而形成的。
它通常发生在金属和非金属之间,金属原子往往失去电子,形成正离子(阳离子),非金属原子则获得这些电子,形成负离子(阴离子)。
正负离子之间的相互吸引力形成了离子键。
离子键在化合物中呈现出高熔点、良好的溶解性和电导性等特点。
2. 共价键共价键是由两个或更多原子的电子对之间共享而形成的。
原子之间共享电子的数量决定了键的强度和类型。
共价键可分为单键、双键和三键。
单键由两个原子共享一个电子对形成,双键由两个原子共享两个电子对形成,三键则由两个原子共享三个电子对形成。
共价键可在分子间形成稳定的化学键,并决定了分子的性质和相互作用。
3. 金属键金属键通常发生在金属元素之间。
在金属中,原子失去了外层电子形成正离子核心,而剩余的电子则形成了自由电子云。
这些自由电子云贡献给金属中所有原子之间的相互吸引力,形成了金属的结晶格,同时也形成了金属键。
金属键解释了金属中的导电和热传导性能。
二、化学键与分子形状化学键的类型对于分子的形状产生了重要的影响。
分子形状是由于原子之间的键的类型和键角的大小而确定的。
1. 线性分子当分子由两个原子通过共价键连接而成,且两个原子之间氢原子的数量相等时,分子的形状将呈现出线性的结构。
例如,氧气分子(O2)中的两个氧原子通过双键连接在一起,形成一个线性的分子。
2. 角型分子当分子由三个原子连接而成时,分子的形状将呈现出角型的结构。
这种分子通常具有一个中心原子和两个或多个连接到中心原子的原子。
四化学键理论与分子几何构型
四、化学键理论与分子几何构型1. (1),(I)的稳定性大于(Ⅱ)。
(2)C OOO N O C OO O N O O (I)O C OO N OOCOO ONOO(II)O N O O CO OO NOOC O O (III)ONOOC ON OOCO O(IV)第(III)式最稳定。
(3) Cu + + NO 2–+ 2H + Cu 2+ + NO + H 2O(4) 若压强降到原来的2/3,则说明3 mol NO 变成2 mol 气态物质:3NO NO 2 + N 2O ,又由于2NO 2N 2O 4,所以最后的气体总压还要略小于原压的2/3。
2. N NN N NNNN N(IV)(V)(II)、(V)不稳定,舍去,(I)比(III)、(IV)稳定。
N (a)N (b)N (c)N (d)N (e) N (a)—N (b)的键级为5/2~3,N (b)—N (c)的键级为1~3/2,N (c)—N (d)的键级为1~3/2,N (d)—N (e)的键级为5/2~3。
N 5+有极强的氧化性。
应在液态HF 中制备N 5+。
3. ArCl + OF + NO + PS + SCl + 键级: 1 2 3 3 2ArCl +键级最小,最不稳定;虽然NO +与PS +的键级都是3,但NO +是2p —2p 轨道重叠的π键,而PS +是3p —3p 轨道重叠的π键。
前者重叠程度大,E π大,所以NO +比PS +稳定,即NO +离子最稳定。
4. (1)B 3N 3H 6N H H H H H N B N B B H H H H H H NB B H N BNO N O O O N O O (I)(II)N N N N N N N N N N (I)(II)N N N N N(III)(2) HH HH H H Cl HH H ClClB 3N 3H 6 3HCl N N N B BB(3) 无机苯的三甲基取代物有:B N B N B N HHHCH 3H 3CCH 3B NB N B N CH 3CH 3H 3CH HHB B N B N CH 3HHHCH 3CH 3(I)(Ⅱ)(III)B N B N B N CH 3HCH 3HCH 3H B N B N B N CH 3H H CH 3HH 3CB NB N B N CH 3H 3CH 3HH(IV) (V) (Ⅵ)实际上只有四种类型,因为II 、IV ;IV 、VI 属于同类型中的几何异构体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学键理论与分子几何构型1.NO的生物活性已引起科学家高度重视,它与O2-反应,生成A。
在生理pH条件下,A的t1/2= 1~2秒。
(1)写出A的可能的Lewis结构式,标出形式电荷。
判断它们的稳定性。
(2)A与水中的CO2迅速一对一地结合,试写出此物种可能的路易斯结构式,表示出形式电荷,判断其稳定性。
(3)含Cu+的酶可把NO2-转化为NO,写出此反应方程式。
(4)在固定器皿中,把NO压缩到100atm,发现气体压强迅速降至略小于原压强的2/3,写出反应方程式,并解释为什么最后的气体总压略小于原压的2/3。
2.试画出N5+离子的Lewis所有可能结构式,标出形式电荷,讨论各自稳定性,写出各氮原子之间的键级。
你认为N5+的性质如何?它应在什么溶剂中制得。
3.在地球的电离层中,可能存在下列离子:ArCl+、OF+、NO+、PS+、SCl+。
请你预测哪一种离子最稳定?哪一种离子最不稳定?说明理由。
4.硼与氮形成类似苯的化合物,俗称无机苯。
它是无色液体,具有芳香性。
(1)写出其分子式,画出其结构式并标出形式电荷。
(2)写出无机苯与HCl发生加成反应的方程式(3)无机苯的三甲基取代物遇水会发生水解反应,试判断各种取代物的水解方程式,并以此判断取代物可能的结构式。
(4)硼氮化合物可形成二元固体聚合物,指出这种聚合物的可能结构,并说明是否具有导电性。
(5)画出Ca2(B5O9)Cl·2H2O中聚硼阴离子单元的结构示意图,指明阴离子单元的电荷与硼的哪种结构式有关。
170℃5. 用VSEPR 理论判断下列物种的中心原子采取何种杂化类型,指出可能的几何构型。
(1)IF 3 (2)ClO 3- (3)AsCl 3(CF 3)2 (4)SnCl 2 (5)TeCl 4 (6)GaF 63-6. 试从结构及化学键角度回答下列问题:一氧化碳、二氧化碳、甲醛、甲酸等分子(1) 画出各分子的立体构型,并标明各原子间成键情况(σ、π、Πm n )(2) 估计分子中碳—氧键的键长变化规律7. 近期报导了用二聚三甲基铝[Al(CH 3)3]2 (A)和2, 6 —二异丙基苯胺(B)为原料,通过两步反应,得到一种环铝氮烷的衍生物(D): 第一步:A + 2B === C + 2CH 4第二步:□C □D + □CH 4 (□中填入适当系数) 请回答下列问题:(1) 分别写出两步反应配平的化学方程式(A 、B 、C 、D 要用结构简式表示 (2) 写出D 的结构式(3) 设在第一步反应中,A 与过量B 完全反应,产物中的甲烷又全部挥发,对反应后的混合物进行元素分析,得到其质量分数如下: C (碳):73.71% , N (氮): 6.34% 试求混合物中B 和C 的质量分数(%)(已知相对原子量:Al :26.98、C :12.01、N :14.01、H :1.01)8.四氨合铜(II)离子在微酸性条件下,与二氧化硫反应生成一种沉淀物(A),该沉淀物中Cu:N:S (原子个数比)=1:1:1,结构分析证实:存在一种正四面体和一种三角锥型的分子或离子,呈逆磁性。
该沉淀物与硫酸混合,受热分解成纳米粒子B 、溶液C 和气体D 。
(1) 试推断出沉淀物(A)的化学式 (2) 写出生成(A)的离子方程式 (3) 写出A 与硫酸反应的方程式(4) 按(3)的操作,B 的最大理论产率为多少?(5) 若在密闭容器中完成(3)操作,B 的最大理论产率为多少?9.最近,我国一留美化学家参与合成了一种新型炸药,它跟三硝基甘油一样抗打击、抗震,但一经引爆就发生激烈爆炸,据信是迄今最烈性的非核爆炸品。
该炸药的化学式为C8N8O16,同种元素的原子在分子中是毫无区别的。
(1) 试画出它的结构式。
(2) 试写出它的爆炸反应方程式。
(3) 它具有强烈爆炸性的原因是什么?(注:只需给出要点即可)10.1964年Eaton合成了一种新奇的烷,叫立方烷,化学式C8H8(A)。
20年后,在Eaton 研究小组工作的博士后XIONGYUSHENG(译音熊余生)合成了这种烷的四硝基衍生物(B),它是一种烈性炸药。
最近,有人计划将B的硝基用19种氨基酸取代,得到立方烷的四酰胺基衍生物(C),认为极有可能从中筛选出最好的抗癌、抗病毒,甚至抗爱滋病的药物来。
回答如下问题:(1) 四硝基立方烷理论上可以有多种异构体,往往只一种是最稳定的,它就是(B),请画出它的结构式。
(2) 写出四硝基立方烷(B)爆炸反应方程式。
(3) C中每个酰胺基是一个氨基酸基团。
请估算,B中的硝基被19种氨基酸取代,理论上总共可以合成多少种氨基酸组成不同的四酰胺基立方烷(C)?(4) C中有多少对对映异构体?11.锇的名称源自拉丁文,愿意“气味”,这是由于锇的粉末会被空气氧化为有恶臭的OsO4(代号A,熔点40℃、沸点130℃)。
A溶于强碱转化为深红色[OsO4(OH)2]2 –离子(代号B)。
向含B的水溶液通入氨,生成C,溶液的颜色转为淡黄色。
C十分稳定,是A的等电子体,其中锇的氧化态仍为+8。
红外谱图可以检出分子中某些化学键的振动吸收。
红外谱图显示C有一个四氧化锇所没有的振动吸收。
C的含钾化合物是黄色的晶体,与高锰酸钾类质同晶。
(1) 给出C的化学式。
(2) 给出A、B、C最可能的立体结构。
12.PCl5是一种白色固体,加热到160℃,不经过液态阶段就变成蒸汽,测得180℃下的蒸气密度(折合成标准状况)为9.3g · dm–3,极性为零,P—Cl键长为204pm和211pm两种。
继续加热到250℃时,测得压力为计算值两倍。
加压下PCl5于148℃液化,形成一种能导电的熔体,测得P—Cl键长为198pm和206pm两种(P、Cl相对原子质量为31.0、35.5)。
回答如下问题:(1) 180℃下、PCl5蒸气中,存在什么分子?为什么?写出分子式,画出立体结构。
(2) 250℃下、PCl5蒸气中,存在什么分子?为什么?写出分子式,画出立体结构。
(3) PCl5熔体为什么能导电?用最简洁的方式作出解释。
(4) PBr5气态分子结构与PCl5相似,它的熔体也能导电,但经测定,其中只存在一种P—Br键长。
PBr5熔体为什么导电?用最简洁的方式作出解释。
13.用价层电子对互斥理论预言下列分子或离子的尽可能准确的几何形状。
(1) PCl3(2) PCl5(3) SF2(4) SF4(5) SF6(6) ClF3(7) IF4-(8) ICl2+14.用价层电子对互斥理论解释:(1)氮、磷、砷、锑的氢化物的键角为什么从上到下变小?(2)为什么NH3的键角是107°,NF3的键角是102.5°,而PH3的键角是93.6°,PF3的键角是96.3°?15.用记号Πm写出丁二烯、苯、丙烯基,NO2、NO3-、SO3、CO2中的离域π键。
n16.画出重氮甲烷CH2N2的共振结构。
如果重氮甲烷进行热分解,其产物是什么?17.画出S4N3+(S—S—N—S—N—S—N七元环)的可能的共振结构,并标出形式电荷。
在S4N3+七元环中,你预期哪些S—N键是最短的?18.(1) 根据价层电子对互斥理论预测SCl3+和ICl4-的几何构型,给出每种情况下中心原子的氧化态和杂化类型。
(2) 给出Cl—S—Cl键角的合理的数值范围。
(3) 试比较S—Cl和I—Cl键中,哪一个键长?为什么?(4) SCl3+和PCl3是等电子体,结构也相同,比较S—Cl和P—Cl的键长大小,说明理由。
19.(1) 填满下表,要使NO、N2O、NO+、NH3OH+和NO3-等分子与表中最后一栏所对应的N—O键长相匹配。
(2) N2O4和N2O3都是平面型的,画出这两种型体的价键结构,并根据第(2)部分的结构,估算N—O的键长。
(3) 定性说明在N2O4、N2O32-和N2H4中N—N键的键长大小次序。
20.试从分子轨道理论写出双原子分子OF、OF-和OF+的电子构型,求出它们的键级,并解释它们的键长、键能和磁性的变化规律。
21.制备含O2-、O22-甚至O2+的化合物是可能的。
通常它们是在氧分子进行下列各种反应时生成的:O2-O2O2+O22-(1)明确指出上述反应中哪些相当于氧分子的氧化?哪些相当于还原?(2)对上述每一种离子给出含该离子的一种化合物的化学式。
(3)已知上述四种型体O—O原子间距为112、121、132和大约149pm,有三种型体的键能约200、490和625kJ ·mol-1,另一种因数值不定未给出,试把这些数值填在下表合适的位置。
(4)确定每一型体的键级,把结果填入表中:(5)指出按你设想有没有可能制备含F22-离子的化合物。
理由是什么?22.选取下表中的最佳..物质的字母代号(A~H)填入相应标题(①~⑧)后的括号中(单选,每种物质只能用一次),并按要求填空。
②()存在两种异构,其中一种异构体的结构为:。
③()具有线型结构,Lewis结构式中每个键的键级为2.0。
④()是无色的,平面分子,它的一种等电子体是。
⑤()既有酸性,又有碱性,可作制冷剂。
⑥()既有酸性,又有碱性;既是氧化剂,又是还原剂,主要做剂。
⑦()是顺磁性分子。
⑧()水溶液会分解生成N2O,反应式为。
23.非水溶剂化学是无机化学的重要领域。
现有无水叠氮酸钾与液态N2O4反应,在低温下进行真空升华,得到淡黄色的二元化合物固体(A)。
其中N的质量分数为77.78%。
(1) 试写出(A)的化学式,该化合物应命名是什么?(2) 试写出(A)的化学方程式。
这属于非水体系中的什么反应?(3) 试画出(A)的所有共振结构式并标出形式电荷。
(4) 用Pauling的杂化轨道理论,指出化合物A中每个原子的杂化类型和原子之间的化学键型。
(5) (A)不稳定,易分解,试写出(A)分解的反应方程式。
(6) (A)也可以由无水NaN3与NOCl反应制得,试写出生成(A)的反应方程式。
24.氰氨化钙(CaCN2)是一种多用途的有效肥料。
它可以用CaCO3来生产。
CaCO3热分解产生白色固体X A和无色气体X B,后者不支持燃烧。
用碳还原X A,生成灰色固体X C和气体X D,X C和X D能进一步反应。
X C与氮气反应,最终生成CaCN2。
(1) 如何合成合成氰氨化钙?完成下列反应式。
C+ N2 CaCN2 + CCaCO3A+ X BX A + 3C X C + X D(2) CaCN2水解产生什么气体?写出水解反应方程式。
(3) 在固体化学中,CN22-离子呈现异构化。
CN22-离子的酸有两种是已知的(至少在气态)。
画出这两种异构化的酸的共振结构式并标明每个原子的形式电荷。
(4) 指出这两种异构化的酸中哪一种稳定?25.PHF3+可以画出多种共振结构式(1) 试画出PHF3+离子所有可能的Lewis结构式(包括共振结构式),标出形式电荷。