相似三角形的应用题

合集下载

相似三角形的应用练习题(带答案

相似三角形的应用练习题(带答案

是矩形,
∵四边形
是正方形,







∴ ∴四边形
, 为正方形.
( 2 )仿照勤奋小组同学的作法作图,如图 与图 所示,矩形
即为所作.


( 3 )如图 ,作
的高 ,交 于 ,

的面积






,则











解得





∴矩形
的面积

同理,在矩形
中,若
,可求出




∴矩形
的面积




.若点 是 边上的一点,将
, 交 于,
,则

D
10
【答案】
;
【解析】 作
于,









由折叠及
得:

∴易得



又∵







【标注】【知识点】翻折问题与勾股定理;相似A字型
3. 如图,矩形
的顶点 在 轴的正半轴上,点 、点 分别是边 、 上的两个点.将
沿 折叠,使点 落在 边上的三等分点 上(点 靠近点 ),过点 作
,使 , 位于边 上, , 分别位于边 , 上.(在备用图中完成,不写作法,保
留作图痕迹)
( 3 )解决问题: 在( )的条件下,已知

相似三角形的应用经典练习题三套

相似三角形的应用经典练习题三套

相似三角形的应用经典练习题三套A卷:1、在阳光下,身高1.68m的小强在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为18m.则旗杆的高度为(精确到0.1m).2、如图,在河两岸分别有A、B两村,现测得A、B、D在一条直线上,A、C、E在一条直线上,BC//DE,DE=90米,BC=70米,BD=20米。

则A、B两村间的距离为。

3、(06湖州)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为________米(精确到0.1米)。

4、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED。

5、小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。

(根据光的反射定律:反射角等于入射角)6、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC=3.6米,墙上影子高CD=1.8米,求树高AB。

7、如图,甲楼AB 高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是 ,已知两楼相距20米,那么甲楼的影子落在乙楼上有多高?8、为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.9、如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

第27章 相似三角形应用举例 达标训练2022-2023学年人教版九年级数学下册

第27章  相似三角形应用举例 达标训练2022-2023学年人教版九年级数学下册

人教版九年级数学下册27.2.3 相似三角形应用举例达标训练一、单选题1.如图,阳光从教室的窗户射入室内,窗户框AB 在地面上的影子长DE =1.8m ,窗户下沿到地面的距离BC=1m ,EC =1.2m ,那么窗户的高AB 为( )A .1.5mB .1.6mC .1.86mD .2.16m2.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m ,影长是1m ,旗杆的影长是8m ,则旗杆的高度是( ) A .12mB .11mC .10mD .9m3.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m.已知王华的身高是1.5 m ,那么路灯A 的高度AB 等于( )A .4.5 mB .6 mC .7.2 mD .8 m4.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m ,CA=0.8m ,则树的高度为( )A .4.8mB .6.4mC .8mD .10m5.如图,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米,他继续往前走3米到达点E 处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A .4.5米B .6米C .7.2米D .8米6.如图所示的梯形梯子,AA′∥EE′,AB=BC=CD=DE ,A′B′=B′C′=C′D′=D′E′,AA′=60cm ,EE′=80cm .则BB′的长为( )A .0.65mB .0.675mC .0.725mD .0.75m7.现有一个测试距离为5m 的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m 的视力表,则图中的ab的值为( )A .32B .23C .35D .538.如图,A 、B 两点被池塘隔开,在AB 外任选一点C ,连接AC,BC分别取其三等分点M,N ,量得MN=38m .则AB 的长是( )A .76mB .104mC .114mD .152m二、填空题9.图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=cm10.小明在离路灯底部6m 处测得自己的影子长为1.2m ,小明的身高为1.6m ,那么路灯的高度为m .11.如图,AB 是斜靠在墙角的长梯,梯角B 距墙0.8m ,长梯上一点D 距墙0.7m ,BD 长0.55m ,则梯子的长度是 m .12.如图,某风景区在建设规划过程中,需要测量两岸码头A 、B 之间的距离.设计人员在O 点设桩,取OA 、OB 的三等分点C 、D ,测得CD=25m ,则AB= .13.为测量操场上悬挂国旗的旗杆的高度,设计的测量方案如图所示:标杆高度CD=3m ,标杆与旗杆的水平距离BD=15 m ,人的眼睛与地面的高度EF=1.6m ,人与标杆CD 的水平距离DF=2m ,E 、C 、A 三点共线,则旗杆AB 的高度为 米.14.如图;课外活动小组测量学校旗杆的高度.如图,在地面上C 处放一小镜子,当镜子离旗杆AB 底端6米,小明站在离镜子3米的E 处,恰好能看到镜子中旗杆的顶端,测得小明眼睛D 离地面1.5米,则旗杆AB 的高度约是 米.三、解答题15.如图,要测量河岸相对的两点A 、B 的距离,先从点B 出发与AB 成90°角方向,向前走50m 到C 处立一根标杆,然后方向不变继续朝前走10m 到D 处,在D 处转90°沿DE 方向再走17m ,这时A 、C 、E 在同一直线上.问A 、B 间的距离约为多少?16.如图,某人在点A 处测量树高,点A 到树的距离AD 为21米,将一长为2米的标杆BE 在与点A 相距3米的点B 处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,求树CD的高.17.又到了一年中的春游季节.某班学生利用周末去参观“三军会师纪念塔”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°; 乙:我站在此处看塔顶仰角为30°; 甲:我们的身高都是1.6m ; 乙:我们相距36m .请你根据两位同学的对话,计算纪念塔的高度.(精确到1米)18.如图,已知∥ABC 的面积S ∥ABC =1.在图(1)中,若11112AA BB CC AB BC CA ===, 则11114A B C S =; 在图(2)中,若22213AA BB CC AB BC CA ===, 则22213A B C S =; 在图(3)中,若33314AA BB CC AB BC CA ===, 则333716A B C S =; 按此规律,若44415AA BB CC AB BC CA ===, 则444A B C S = 若88819AA BB CC AB BC CA ===, 则888A B C S = . 19.如图,在直角梯形ABCD 中,AD∥BC ,∥A=90°,BD∥CD ,垂足为D .(1) 若AD=9,BC=16,求BD 的长; (2) 求证:AB 2•BC=CD 2•AD .答案解析部分1.【答案】A【解析】【解答】∵BE∥AD,∴∥BCE∥∥ACD,∴CB CEAC CD=,即CB CEAB BC DE EC=++,∵BC=1,DE=1.8,EC=1.2∴1 1.21 1.8 1.2 AB=++∴1.2AB=1.8,∴AB=1.5m.故答案为:A.【分析】先证明∥BCE∥∥ACD,再利用相似三角形的性质可得CB CEAC CD=,即CB CEAB BC DE EC=++,再将数据代入计算可得1 1.21 1.8 1.2AB=++,最后求出AB的长即可。

相似三角形的应用精选练习题

相似三角形的应用精选练习题

相似三角形的应用精选练习题1.XXX用自制的直角三角形纸板DEF测量树AB的高度。

测量时,使直角边DF保持水平状态,其延长线交AB于点G;使斜边DE所在的直线经过点A。

测得边DF离地面的高度为1m,点D到AB的距离等于7.5m。

已知DF=1.5m,EF=0.6m,求树AB的高度。

2.XXX测得2m高的标杆在太阳下的影长为1.2m,同时又测得一棵树的影长为3.6m。

请计算这棵树的高度。

3.XXX用下面的方法来测量学校教学大楼AB的高度。

在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20米。

当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B。

已知她的眼睛距地面高度DC=1.6米,请帮助小红测量出大楼AB的高度(注:入射角=反射角)。

5.XXX在晚上由路灯A走向路灯B。

当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部。

已知XXX的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB。

1) 求两个路灯之间的距离。

2) 当XXX走到路灯B的底部时,他在路灯A下的影长是多少?6.某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度。

他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上。

已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度。

7.△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm。

在BC边上取一点E,使AE=CD。

连接DE,求DE的长度。

8.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语XXX。

XXX想到了一个办法,他找到一面墙,让小军站在墙边,然后用一支笔在墙上画出小军头顶的位置,再测量墙顶到地面的距离,就能算出小军的身高了。

人教版三角形相似的应用练习题

人教版三角形相似的应用练习题

三角形相似的应用练习题
1、如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,
已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,
求电视塔的高ED 。

2、小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B ,他请同学协助量了镜子与教学楼的距离EA=21米,
以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度
DC=1.6米,请你帮助小强计算出教学楼的高度。

(根据光的反
射定律:反射角等于入射角)
3、如图,甲楼AB 高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是
1: 已知两楼相距20米,
那么甲楼的影子落在乙楼上有多高?
4、了测量路灯(OS )的高度
,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.
5、如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

A h S A C B B 'O C 'A 'E D
C A G。

利用相似三角形求解问题的练习题

利用相似三角形求解问题的练习题

利用相似三角形求解问题的练习题相似三角形是几何学中重要的概念之一,应用相似三角形的性质可以帮助我们解决许多问题。

以下是一些利用相似三角形求解问题的练习题,希望能帮助读者更好地理解和掌握这一概念。

练习题一:已知直角三角形ABC,其中∠C为直角,AB=5cm,AC=12cm。

在AB边上选一点D,连接CD并延长至与BC边交于点E。

若BD=DE,求CE的长度。

解答:由于∠C为直角,则∠CAB和∠CBA分别为对角ABC和ACB的对应角,即∠CAB∽∠ACB。

又因为BD=DE,所以可以得到∠BDC=∠CDE,同理有∠CBD=∠CED。

根据相似三角形的性质,可以得到以下比例关系:AB/AC = BD/CE代入已知数值,可得:5/12 = BD/CE解方程,可得:CE = (12/5) * BD由题目可知BD=DE,所以BD=5cm,代入可得:CE = (12/5) * 5 = 12cm所以CE的长度为12cm。

练习题二:在平面直角坐标系中,已知三角形ABC,其中A(-2,4)、B(1,2)、C(4,-2),直线DE与x轴和y轴分别交于点D(5,0)和E(0,-4),求证:△ABC∽△ADE,并计算其相似比。

解答:首先,计算△ABC和△ADE的边长:△ABC的边长:AB = √[(1-(-2))^2 + (2-4)^2] = √[3^2 + (-2)^2] = √13BC = √[(4-1)^2 + (-2-2)^2] = √[3^2 + 4^2] = 5AC = √[(4-(-2))^2 + (-2-4)^2] = √[6^2 + (-6)^2] = 6√2△ADE的边长:AD = √[(-2-5)^2 + (4-0)^2] = √[(-7)^2 + 4^2] = √65DE = √[(-2-0)^2 + (4-(-4))^2] = √[(-2)^2 + 8^2] = 2√4 = 4AE = √[(-2-0)^2 + (4-0)^2] = √[(-2)^2 + 4^2] = 2√5可以发现,AB/AD = 1/√5,BC/DE = 5/4,AC/AE = √2/√5。

初中数学相似三角形应用题及答案

初中数学相似三角形应用题及答案

初中数学相似三角形应用题及答案相似三角形是初中数学中的一个重要概念,通过相似三角形的性质和应用,我们可以解决很多实际问题。

本文将介绍几个常见的相似三角形应用题,并给出详细的解答。

1. 题目:甲地点的高楼上立有一块长度为6厘米的广告牌,乙地点的高楼上立有一块长度为8厘米的广告牌。

测得甲地点的高楼到乙地点的高楼的水平距离为12米。

求甲地点的高楼到乙地点的高楼的实际距离。

解答:我们可以构建两个相似三角形,分别是甲地点的高楼到广告牌的距离和甲地点的高楼到乙地点的高楼的距离。

设甲地点的高楼到广告牌的距离为x米,则根据相似三角形的性质有:x/6 = 12/8通过交叉相乘得到6x = 12*8,化简得到x = 16米。

因此,甲地点的高楼到乙地点的高楼的实际距离为16米。

2. 题目:甲、乙两地相距120公里。

已知甲地点的高楼高度为80米,乙地点的高楼高度为60米。

测得甲地点的高楼顶与乙地点的高楼顶的仰角为30度。

求甲地点的高楼底与乙地点的高楼底的水平距离。

解答:我们可以构建两个相似三角形,分别是甲地点的高楼到乙地点的高楼的距离和甲地点高楼的高度与乙地点高楼的高度的距离。

设甲地点的高楼底与乙地点的高楼底的水平距离为x米,则根据相似三角形的性质有:x/120 = 80/60通过交叉相乘得到60x = 120*80,化简得到x = 160米。

因此,甲地点的高楼底与乙地点的高楼底的水平距离为160米。

3. 题目:已知一艘船从A地点出发,以每小时20公里的速度顺水行驶,到达B地点。

然后从B地点回到A地点,以每小时16公里的速度逆水行驶。

整个行程共花费10小时。

求从A地点到B地点的距离。

解答:我们可以构建两个相似三角形,分别是从A地点到B地点的距离与船行驶的时间。

设从A地点到B地点的距离为x公里,则根据相似三角形的性质有:x/(20-16) = (10-10)/10通过交叉相乘得到4x = 0,化简得到x = 0公里。

因此,从A地点到B地点的距离为0公里。

相似三角形的应用及位似(习题及答案).

相似三角形的应用及位似(习题及答案).

相似三角形的应用及位似(习题)➢例题示范例1:小红用下面的方法来测量学校教学大楼AB 的高度:如图在水平地面点E 处放一面平面镜,镜子与教学大楼的距离AE=20 米.当她与镜子的距离CE=2.5 米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6 米,请你帮助小红测量出大楼AB 的高度(注:入射角=反射角).解:由题意,AE=20,CE=2.5,DC=1.6,∠FEB=∠FED∴∠BEA=∠DEC∵∠BAE=∠DCE=90°∴△BAE∽△DCE∴ AB=AEDC EC∴ AB=201.62.5∴AB=12.8∴大楼AB 的高为12.8 米.例2:如图,某一时刻,旗杆AB 的影子一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB 在地面上的影长BC 为9.6 m,在墙面上的影长CD 为2 m.同一时刻,小明又测得竖立于地面长1 m 的标杆的影长为1.2 m.请帮助小明求出旗杆的高度.解:如图,过点D 作DE∥BC 交AB 于点E,则四边形BCDE 为矩形.由题意,BC=9.6,CD=2,∴BC=DE=9.6,CD=BE=2由题意,AE=ED1 1.2∴AE=8∴AB=AE+EB=8+2=10∴旗杆的高度为10 m.➢巩固练习1.如图,AB∥CD,AD,BC 相交于点E,过E 作EF∥AB 交BD于点F,则图中相似的三角形有对.2.如图是测量河宽的示意图,AE 与BC 相交于点D,∠B=∠C=90°,测得BD=120 m,DC=60 m,EC=50 m,求得河宽AB= m.3.如图,在同一时刻,小明测得他的影长为1 m,距他不远处的一棵槟榔树的影长为5 m,若小明的身高为1.5 m,则这棵槟榔树的高度是.4.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25 尺B.57.5 尺C.6.25 尺D.56.5 尺5.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶()A.0.5 m B.0.55 m C.0.6 m D.2.2 m 6.如图是小明设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2 m,BP=1.8 m,PD=12 m,那么该古城墙的高度是()A.8 m B.10 mC.15 m D.18 m7.如图5,小明同学用自制的直角三角形纸板EFG 测量树的高度AB,他调整自己的位置,设法使斜边EG 保持水平,并且边EF 所在的直线经过点A,已知纸板的两条直角边EF=60 cm,FG=30 cm,测得小明与树的水平距离BD=8 m,边EG 离地面的高度DE=1.6 m,则树高为.8.如图,一同学在某时刻测得1 m 长的标杆竖直放置时影子长为1.6 m,同一时刻测量旗杆的影子长时,因旗杆靠近一栋楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影子长为11.2 m,留在墙上的影子高为1 m,则旗杆的高度是.第8 题图第9 题图9.如图,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD=4 m,BC=10 m,CD 与地面成30°角,且此时测得1 m 杆的影子长为2 m,则电线杆的高度为.10.如图,在斜坡的顶部有一竖直铁塔AB,B 是CD 的中点,且CD 是水平的.在阳光的照射下,塔影DE 留在坡面上,已知铁塔底座宽CD=14 m,塔影长DE=36 m,小明和小华的身高都是1.6 m,小明站在点E 处,影子也在斜坡面上,小华站在沿DE 方向的坡脚下,影子在平地上,两人的影长分别为4 m,2 m,那么塔高AB= .第10 题图第11 题图11.某兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m,一级台阶高为0.3 m,如图所示,若此时落在地面上的影长为4.4 m,则树高为.12.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10 cm,OA'=20 cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长比是.13.如图,△ABC 与△DEF,且直线AD,CF,BE 相交于点O,OA=OB=OC=2,已知AB=4,则DE 的长为.OD OE OF 314.如图,在△ABC 中,A,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2 倍,记所得的像是△A′B′C.设点B 的对应点B′的横坐标是a,则点B 的横坐标是.➢思考小结1.如图,四边形ABCD 的顶点坐标分别为A(4,2),B(8,6),C(6,10),D(-2,6).1 A B C D1()将,,,的横坐标、纵坐标都乘2,得到四个点,以这四个点为顶点的四边形与四边形ABCD 位似吗?如果位似,指出位似中心并求出相似比.(2)将A,B,C,D 的横坐标、纵坐标都乘 1,得到四个2点,以这四个点为顶点的四边形与四边形ABCD 位似吗?如果位似,指出位似中心并求出相似比.(3)在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形,位似中心是,它们的相似比为.2.实际生活中测量旗杆的高度,都是利用了相似三角形的原理进行的.下列三种方法都利用了物体与地面垂直的特性,除此之外,这三种方法还分别用了哪些实际生活中的原理呢?请把选项填到对应的横线上.①利用阳光下的影子:②利用标杆:③利用镜子的反射:A.镜子的反射定律:借助入射角、反射角相等B.视线与一组平行线相交,同位角相等C.同一时刻,太阳光线(平行光线)与水平地面的夹角相等3.影子上墙问题的常见处理方法:推墙法、砍树法、抬高地面法,这三种方法的实质都是构造三角形相似,在构造的时候,我们主要是想办法构造出来太阳光线与地面的夹角.【参考答案】➢ 巩固练习1. 32. 1003. 7.5 m4. B5. A6. A7. 5.6 m8. 8 m9. (7 + 3) m10. 20 m11. 11.8 m12. 1:213. 614. -3 +a 2➢思考小结1.(1)位似;位似中心是原点;相似比是1 2(2)位似;位似中心是原点;相似比是12(3)位似;原点;|k|.2.C;B;A。

相似三角形的应用用

相似三角形的应用用
A
B
D
C E
如图:为了估算河的宽度,我们可以在河对岸选定一 个目标作为点A,再在河的这一边选点B和C,使 AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和 AE的交点D.此时如果测得BD=120米,DC=60米,EC=50 米,求两岸间的大致距离AB.
解: ∵
∠ ADB = ∠ EDC ∠ ABC =∠ECD =900.
A
D
B O
C
拓展: 已知教学楼高为12米,在距教学楼9米的北 面有一建筑物乙,此时教学楼会影响乙的采光吗?

甲 12
12 乙
D
1.5
9
1.2

9.6
E
0.6

• 变式2:小明在某一时刻测得1m的杆子在阳光下的影子长为2m,他想测 量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得 CD=2m,BC=10m,CD与地面成45°,求电线杆的高度.
BO OA EF FD
OA EF 201 2 BO 134 FD 3
O B E
A(F)
D
因此金字塔的高为134m.
现在小穆罕穆德测得金字塔的的阴影AC的 长为32米,他还同时测得小木棒0′B的影长是1 米,在父亲的帮助下,他还测得了金字塔底边 CD的长度大约是230米。
你能不能帮助小穆罕穆德求出这 座金字塔的高度?
挑战自我
1、如图,△ABC是一块锐角三角形余料,边 BC=120毫米,高AD=80毫米,要把它加工成正方形 零件,使正方形的一边在BC上,其余两个顶点分 别在AB、AC上,这个正方形零件的边长是多少?
解:设正方形PQMN是符合要求的△ABC的高
AD与PN相交于点E。设正方形PQMN的边长为x 毫米。

相似三角形的应用专题

相似三角形的应用专题

相似三角形应用专题班级: 姓名:1、如图,一名同学(用AB 表示),站在阳光下,通过镜子C 恰好看到旗杆ED 的顶端,已知这名同学的身高是1.60米,他到影子的距离是2米,镜子到旗杆的距离是8米,求旗杆的高.2:如图,零件的外径为16cm ,要求它的壁厚x ,需要先求出内径AB ,现用一个交叉钳(AD 与BC 相等)去量,若测得OA:OD=OB:OC=3:1,CD =5cm ,你能求零件的壁厚x 吗?3、为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ‘),再把竹竿竖立在地面上, 测得竹竿的影长(B ‘C ‘)为1.8米,求路灯离地面的高度.h S A CB B 'OC 'A '4、晚上,小亮走在大街上,他发现:当他站在大街两边的两盏相同高度的路灯之间,并且自己被两边的路灯罩在地上的影子成一直线时,自己右边的影子长3米,左边影子长为1.5米,如图所示,已知自己身高为1.80米,两盏路灯之间相距12米,求路灯的高度。

5、小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).6、如图小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面HGFBC 上,量得CD=4 m ,BC=10 m ,CD 与地面成30°角,且此时测得1 m 杆的影子长为2 m ,则电线杆的高度约为多少米?(结果精确到0.1 m )7、如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED 。

相似三角形的应用(重点题专项讲练)(人教版)(原卷版)

相似三角形的应用(重点题专项讲练)(人教版)(原卷版)

相似三角形的应用【典例1】如图,身高1.5米的李强站在A处,路灯底部O到A的距离为20米,此时李强的影长AD=5米,李强沿AO所在直线行走12米到达B处.(1)请在图中画出表示路灯高的线段和李强在B处时影长的线段;(2)请求出路灯的高度和李强在B处的影长.【思路点拨】(1)利用中心投影的性质画出图形即可;(2)设HO=x米,由证得△AED∽△OHD得ADDO =AEHO求出HO的值,再证明△FBC∽△HOC得到BCCO=BFHO,从而求解.【解题过程】解:(1)如图HO,BC即为所求(2)由题意知:BF=AE=1.5米,OA=20米,AB=12米,∴BO=OA−AB=20−12=8米设HO=x米∴∠HOA=∠EAD=90°又∴∠D=∠D∴△AED∽△OHD∴AD DO =AEHO即1.5x =525解得,x=7.5∴∠FBC=∠HOD=90°又∴∠FCB=∠FCO∴△FBC∽△HOC∴BC CO =BFHO即BC8+BC =1.57.5解得BC=2答:路灯高度为7.5米,BC长2米1.(2022·浙江绍兴·模拟预测)如图,身高1.2m的小淇晚上在路灯(AH)下散步,DE为他到达D处时的影子.继续向前走8m到达点N,影子为FN.若测得EF=10m,则路灯AH的高度为()A.6m B.7m C.8m D.9m2.(2022·河北·石家庄二十三中九年级阶段练习)如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,则路灯杆AB的高度(精确到1米)为()A.5米B.6米C.7米D.8米3.(2022·河北·大名县束馆镇束馆中学三模)一种燕尾夹如图1所示,图2是在闭合状态时的示意图,图3是在打开状态时的示意图(数据如图,单位:mm),则从闭合到打开B,D之间的距离减少了()A.25 mm B.20mm C.15 mm D.8mm4.(2022·全国·九年级专题练习)有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲B.乙C.丙D.丁5.(2022·江苏无锡·九年级期中)一块直角三角形木板,它的一条直角边AC长为1cm,面积为1cm2,甲、乙两人分别按图∴、∴把它加工成一个正方形桌面,则∴、∴中正方形的面积较大的是()A.∴B.∴C.一样大D.无法判断6.(2022·全国·九年级单元测试)如图,大楼ABCD(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点M和点N处,M、N均在AD的中垂线上,且M、N到大楼的距离分别为60米和20√3米,又已知AB长40米,AD长120米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.7.(2022·全国·九年级专题练习)图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽AB=1.2厘米,托架斜面长BD=6厘米,它有C到F共4个档位调节角度,相邻两个档位间的距离为0.8厘米,档位C到B的距离为2.4厘米.将某型号手机置于托架上(图2),手机屏幕长AG是15厘米,O 是支点且OB=OE=2.5厘米(支架的厚度忽略不计).当支架调到E档时,点G离水平面的距离GH为__________cm.8.(2022·浙江金华·一模)将一本高为17cm(即EF=17cm)的词典放入高(AB)为16cm的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F离收纳盒最左端B处8cm,若此时将词典无滑动向右倒,书角H的对应点H′恰为CD中点.(1)收纳盒的长BC=_______;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有________本书可与边BC有公共点.9.(2022·浙江杭州·九年级专题练习)如图,某种吊车由固定机架和三根连杆组成.已知连杆AB=12米,CD=10米,CE=9米,其支点A,D的距离为5米,支点B,C的距离为3米,点A,D到地面l的垂直高度分别为4米和8米.当EC和CD共线时(如图1),点E到地面l的距离为__________米;改变连杆之间的夹角使CE与l平行(如图2),此时点E到地面l的高度为___________米.10.(2022·浙江·翠苑中学九年级期中)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子的示意图;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.11.(2022·河南·泌阳县光亚学校九年级阶段练习)延时课上,老师布置任务如下:让王林(AB)站在B点处去观测10m外的位于D点处的一棵大树(CD),所用工具为一个平面镜P和必要的长度测量工具(B、P、D在一直线上).已知王林身高1.6m,大树高6.4m,请问如何放置平面镜P才能观测到大树的顶端?12.(2022·辽宁·沈阳市第二十三中学九年级期中)如图,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用∴号“E”(大“E”)测得的视力与用∴号“E”(小“E”)测得的视力效果相同.(1)△P1D1O与△P2D2O相似吗?请说明理由.(2)图中b1,b2,l1,l2满足的数量关系为___________.(3)若b1=3.2cm,b2=2cm,∴号“E”的测量距离l1=8m,要使得测得的视力相同,则∴号“E”的测量距离l2为___________m.13.(2022·陕西·西安市西航一中九年级期中)如图,小明欲测量一座古塔的高度,他拿出一根杆CD竖直插在地面上,然后自己退后,使眼睛通过杆的顶端C刚好看到塔顶A,若小明的眼睛E离地面1.5米,杆顶端C离地面2.4米,小明到杆的距离DF=2米,杆到塔底的距离DB=32米,E、C、H在同一直线上且EH⊥AB 于H,交CD于点G,求这座古塔的高度.14.(2022·陕西·西安工业大学附中九年级期中)为了加快城市发展,保障市民出行方便,某市在流经该市的河流上架起一座桥,连通南北,铺就城市繁荣之路.小明和小颖想通过自己所学的数学知识计算该桥AF 的长.如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得DE∥BC.经测量,BC=120米,DE=210米,且点E 到河岸BC的距离为60米.已知AF∴BC于点F,请你根据提供的数据,帮助他们计算桥AF的长度.15.(2022·广东·佛山市南海区南海实验中学九年级期中)九年级二班的兴趣小组想去测量学校升旗杆的高度,如图所示,小逸同学眼睛A与标杆顶点F、升旗杆顶端E在同一直线上,已知小逸眼睛距地面AB的长为1.7m,标杆FC的长为3.2m,测得BC的长为2m,CD的长为4m,求升旗杆的高ED.16.(2022·山西省运城市运康中学校九年级阶段练习)小明想用镜子测量一棵松树AB的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A的像;第二次把镜子放在D点,人在H点正好看到树尖A的像.已知小明的眼睛到地面的距离EF=GH=1.7m,量得CD=12m,CF=1.8m,DH=3.8m.已知点B、C、F、D、H在一条直线上,AB⊥BH,EF⊥BH,GH⊥BH,请你求出松树AB的高.17.(2022·全国·九年级单元测试)某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB)的高度为4.8米,右侧路灯(CD)的高度为6.4米,两路灯之间的距离(BD)为12米,已知小明的身高(EF)为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F是BD的中点)时,小明测得自己在两路灯下的影长FP=米,FQ=米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP=FQ),请问时小明站在什么位置,为什么?18.(2022·全国·九年级专题练习)阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如1图).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如2图),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如3图).身高是1.6米的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2米.(1)在横线上直接填写甲树的高度为______米,乙树的高度为________米﹔(2)请求出丙树的高度.1112。

相似三角形应用举例

相似三角形应用举例

相似三角形应用举例利用三角形的相似,可以解决一些不能直接测量的物体的长度,宽度以及视线遮挡问题。

例1:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。

如图27.2-8,如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO练习:1、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高多少m。

3、小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为几米.OBDC A ┏┛OBA(F)ED例2、为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S 共线且直线PS与河垂直,接着在过点S且与PS 垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.练习、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为多少米.例3.已知左右并排的两棵大树高分别是AB=8cm,CD=12cm,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵数的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C.S TPQ R ba练习、1、如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度。

(精题)相似三角形应用题_含答案

(精题)相似三角形应用题_含答案

相似三角形练习题一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC_________AB•CE(用两种方法).2、如图,在△ABC中,D是AC上的一点,已知AB2=AD•AC,∠ABD=35°,则∠C=_________度.3、如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,则CO=_________ cm,DO=_________cm.4、如图,已知∠ABC=∠ACD,若AD=3cm,AB=7cm,则AC=_________cm.5、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,AD=4,BD=1.(1)求证:△ABC∽△CBD;(2)则cosB的值为_________.6、如图,在平行四边形ABCD中,过顶点A的直线AF交CD于E点,交BC的延长线于F 点.(1)则△ADE_________△FBA;(2)若E点为CD中点,则的值为_________.7、如图,在△ABC中,点D是AB中点,点E在边AC上,且∠AED=∠ABC,如果AE=3,EC=1,那么边AB=_________.8、如图,已知AB:AD=BC:DE=AC:AE,则∠ABD与∠ACE的关系_________.9、如图,已知△ABC中,点E、F分别是AC、AB边上的点,EF∥BC,AF=2,BF=4,BC=5,连接BE,CF相交于点G.(1)则线段EF=_________;(2)则=_________.10、如图,在△ABC中,AB=5,BC=3,AC=4,动点E(与点A,C不重合)在AC边上,EF ∥AB交BC于F点.(1)当△ECF的面积与四边形EABF的面积相等时,CE=_________;(2)当△ECF的周长与四边形EABF的周长相等时,CE=_________.11、如图,在梯形ABCD中,AD∥BC,∠B=90°,AC⊥CD,若AD=9,BC=4,则AC的长为_________.12、如图,△ABC中,AD平分∠BAC,CD=CE,则AB•CD_________AC•BD.13、(2010•宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD=_________度(精确到1°);(2)装饰画顶部到墙壁的距离DC=_________米(精确到0.01米).14、(2009•陕西)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).已知小明的身高EF是1.7m,楼高AB是_________m(结果精确到0.1m).15、(2009•德城区)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,颖颖的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,颖颖与楼之间的距离DN=30m(C,D,N在一条直线上),颖颖的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.住宅楼的高度为_________米.16、(2007•玉溪)如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ.建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N.小亮从胜利街的A处,沿着AB 方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);(2)已知:MN=20 m,MD=8 m,PN=24 m,求(1)中的点C到胜利街口的距离CM=_________ m.17、(2005•济南)如图,在一个长40m、宽30m的长方形小操场上,王刚从A点出发,沿着A⇒B⇒C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶.当张华跑到距B地2m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距_________米.(DE的长)(2)求张华追赶王刚的速度是_________m/s(精确到0.1m/s).18、如图,一油桶高AE为1m,桶内有油,一根木棒AB长为1.2m,从桶盖的小口(A)处斜插入桶内,一端插到桶底,另一端与小口(A)齐平,抽出木棒,量得棒上未浸油部分AC长为0.48m.桶内油面的高度DE=_________m.19、如图,某同学身高1.6米,由路灯下向前步行4米,发现自己的影子长有2米,此路灯高有_________米.20、兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米.(1)一个实际或现实的问题只有数学化后,才有可能用数学的思想方法解决.请你认真读题,画出示意图,并在示意图上标注必要的字母和数字.(2)利用示意图,树的高度是_________米.21、小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.教学大楼的高度AB是_________米(注意:根据光的反射定律:反射角等于入射角).22、有一块两直角边长分别为3cm和4cm的直角三角形铁皮,要利用它来裁剪一个正方形,有两种方法:一种是正方形的一边在直角三角形的斜边上,另两个顶点在两条直角边上,如图(1);另一种是一组邻边在直角三角形的两直角边上,另一个顶点在斜边上,如图(2).两种情形下正方形的面积哪个大?_________(填(1)或(2)即可).23、如图,灯泡在圆桌的正上方,当距桌面2m时,圆桌的影子的直径为2.8m,在仅仅改变圆桌的高度,其他条件不变的情况下,圆桌的桌面再上升_________米,其影子的直径变为3.2m.24、如图,马路MN上有一路灯O,小明沿着马路MN散步,当他在距路灯灯柱6米远的B 处时,他在地面上的影长是3米,问当他在距路灯灯柱10米远的D处时,他的影长DF是_________米.25、如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC高9m.①小亮在路灯D下的影长为_________m;②建筑物AD的高为_________m.26、在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行﹣千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K 位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),小城的边长为_________步.27、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED=_________米.28、已知:如图,一人在距离树21米的点A处测量树高,将一长为2米的标杆BE在与人相距3米处垂直立于地面,此时,观察视线恰好经过标杆顶点E及树的顶点C,此树的高是_________米.29、一位同学想利用树影测树高AB.在某一时刻测得1m的竹竿的影长为0.7m,但当他马上测树影时,发现影子不全落在地上,一部分落在了附近的﹣幢高楼上(如图).于是他只得测出了留在墙上的影长CD为 1.5m,以及地面部分上的影长BD为 4.9m.树高是_________米.30、如图,小龙要测量楼的顶层一根旗杆的顶端距地面的距离.他在地面上放置一面镜子,若小龙的眼睛距镜面中心点2米,镜面中心点距离小龙的脚1.2米,距离大楼底部12米,这根旗杆的顶端距地面的距离为_________米.答案与评分标准一、解答填空题(共30小题)1、已知BD,CE是△ABC的高,BD•AC=AB•CE(用两种方法).考点:相似三角形的判定与性质。

相似三角形的应用综合(五大类型)(题型专练)(原卷版)

相似三角形的应用综合(五大类型)(题型专练)(原卷版)

专题03 相似三角形的应用综合(五大类型)【题型1 利用相似三角形测量高度-平面镜测量法】【题型2 利用相似三角形测量高度-影子测量法】【题型3 利用相似三角形测量高度-手臂测量法】【题型4 利用相似三角形测量高度-标杆测量法】【题型5 利用相似三角形测量距离】【题型1 利用相似三角形测量高度-平面镜测量法】1.(2022秋•郑州期末)如图,小明探究“利用镜子反射测量旗杆的高度”.小明作为观测者,在旗杆和小明之间的地面上平放一面镜子,在镜子上作一个标记,小明看着镜子来回移动,当看到旗杆顶端在镜子中的像与镜子上的标记重合时,通过测量得到以下数据:小明的眼睛到地面的距离为1.5m,小明的站的位置到镜子上标记的距离是3.2m,旗杆的底部到小明的位置是19.2m,则旗杆的高度为()A.19.2B.16C.9D.7.5 2.(2023•龙华区一模)数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米B.28米C.24米D.16米3.(2023•深圳模拟)如图,九年级(1)班课外活动小组利用平面镜测量学校旗杆的高度,在观测员与旗杆AB之间的地面上平放一面镜子,在镜子上做一个标记E,当观测到旗杆顶端在镜子中的像与镜子上的标记重合时,测得观测员的眼睛到地面的高度CD为1.6m,观测员到标记E的距离CE为2m,旗杆底部到标记E的距离AE为16m,则旗杆AB的高度约是()A.22.5m B.20m C.14.4m D.12.8m 4.(2023•青原区校级一模)为了测量校园内一棵树的高度,学校数学应用实践小组做了如下的探索实践.根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB)9m的水平地面点E处,然后一同学沿着直线BE后退到点D,这时该同学恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3m,该同学身高CD=1.6m.请你计算树(AB)的高度.5.(2023•新城区校级一模)【学科融合】如图1,在反射现象中,反射光线,入射光线和法线都在同一个平面内;反射光线和入射光线分别位于法线两侧;反射角r等于入射角i.这就是光的反射定律.【同题解决】如图2.小红同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙、木板和平面镜,手电筒的灯泡在点G处,手电筒的光从平面镜上点B处反射后,恰好经过木板的边缘点F,落在墙上的点E处,点E 到地面的高度DE=3.5m,点F到地面的高度CF=1.5m,灯泡到木板的水平距离AC=5.4m,本板到墙的水平距离为CD=4m.图中点A,B,C,D在同一条直线上.(1)求BC的长;(2)求灯泡到地面的高度AG.6.(2023•灞桥区校级模拟)小雁塔位于西安市南郊的荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明同学对该塔进行了测量,测量方法如下,如图所示,先在点A处放一平面镜,从A处沿NA方向后退1米到点B处,恰好在平面镜中看到塔的顶部点M,再将平面镜沿NA方向继续向后移动15米放在D处(即AD=15米),从点D处向后退1.6米,到达点E处,恰好再次在平面镜中看到塔的顶部点M、已知小明眼睛到地面的距离CB=EF=1.74米,请根据题中提供的相关信息,求出小雁塔的高度MN﹒(平面镜的大小忽略不计)7.(2022秋•大名县校级期末)小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器CD,测得∠ACD=135°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF =1.6米,测量器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为多少米?(小平面镜的大小忽略不计)【题型2 利用相似三角形测量高度-影子测量法】8.(2021秋•蓝山县期末)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.9.(2022•兴化市模拟)如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM为m.【题型3 利用相似三角形测量高度-手臂测量法】10.(2022秋•房山区期中)在设计“利用相似三角形的知识测量树高”的综合实践方案时,晓君想到了素描课上老师教的方法,如图,请一位同学右手握笔,手臂向前伸直保持笔杆与地面垂直,前后移动调整自己的位置,直到看见笔杆露出的部分刚好遮住树的主干,这时测量同学眼睛到笔的距离AB、同学到树干的距离AC,以及露出笔的长度DE,就可通过计算得到树的高度,这种实践方案主要应用了相似三角形的性质定理:相似三角形对应高的比等于相似比.(填写定理内容)11.(2022•姑苏区一模)小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处时恰好能看到铁塔的顶部B 和底部A(如图).设小明的手臂长l=50cm,小尺长a=20cm,点D到铁塔底部的距离AD=20m,则铁塔的高度为m.12.(2023•长安区校级二模)如图,是位于西安市长安区香积寺内的善导塔,善导塔为楼阁式砖塔,塔身全用青砖砌成,平面呈正方形,原为十三层,现存十一层,建筑形式独具一格.数学兴趣小组测量善导塔的高度AB,有以下两种方案:方案一:如图1,在距离塔底B点45m远的D处竖立一根高1.5m的标杆CD,小明在F处蹲下,他的眼睛所在位置E、标杆的顶端C和塔顶点A三点在一条直线上.已知小明的眼睛到地面的距离EF=0.8m,DF=1m,AB⊥BM,CD ⊥BM,EF⊥BM,点B、D、F、M在同一直线上.方案二:如图2,小华拿着一把长为22cm的直尺CD站在离善导塔45m的地方(即点E到AB的距离为45m).他把手臂向前伸,尺子竖直,CD∥AB,尺子两端恰好遮住善导塔(即A、C、E在一条直线上,B、D、E在一条直线上),已知点E到直尺CD的距离为30cm.请你结合上述两个方案,选择其中的一个方案求善导塔的高度AB.我选择方案.【题型4 利用相似三角形测量高度-标杆测量法】13.(2023•费县二模)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=10.8m,则建筑物CD 的高是m.14.(2021秋•吉林期末)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.15.(2022秋•花都区期末)如图,利用标杆BE测量建筑物的高度,如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?16.(2023•雁塔区一模)为测量一棵大树的高度,设计的测量方案如图所示:标杆高度CD=3m,人的眼睛A、标杆的顶端C和大树顶端M在一条直线上,标杆与大树的水平距离DN=14m,人的眼睛与地面的高度AB=1.6m,人与标杆CD的水平距离BD=2m,B、D、N三点共线,AB⊥BN,CD⊥BN,MN⊥BN,求大树MN的高度.17.(2023•碑林区校级一模)某数学兴趣小组决定利用所学知识测量一古建筑的高度.如图2,古建筑的高度为AB,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古建筑AB,标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A,F,D在一直线上;从标杆GH后退4m到C处(即CG =4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C 在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请你根据以上测量数据,帮助兴趣小组求出该古建筑AB的高度.18.(2022秋•高新区期末)某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.19.(2023•碑林区一模)杭州市西湖风景区的雷峰塔又名“皇妃塔”,某校社会实践小组为了测量雷峰塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,雷峰塔的塔尖点B正好在同一直线上,测得EC=3米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,雷峰塔的塔尖点B正好又在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=5米,GC=60米,请你根据以上数据,计算雷峰塔的高度AB.20.(2022秋•益阳期末)大雁塔是现存最早规模最大的唐代四方楼阁式砖塔,被国务院批准列入第一批全国重点文物保护单位,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,古塔的塔尖点B正好在同一直线上,测得EC=1.28米,将标杆向后平移到点G处,这时地面上的点F,标杆的顶端点H,古塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与古塔底处的点A在同一直线上),这时测得FG=1.92米,CG=20米,请你根据以上数据,计算古塔的高度AB.21.(2022秋•雁塔区校级期中)青龙寺是西安最著名的樱花观赏地,品种达到了13种之多,每年3、4月陆续开放的樱花让这里成为了花的海洋,一天,小明和小刚去青龙守游玩,想利用所学知识测量一棵樱花树的高度(樱花树四周被围起来了,底部不易到达).小明在F处竖立了一根标杆EF,小刚走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上.此时测得小刚的眼睛到地面的距离DC=1.6米;然后,小明在地面上放一个镜子,恰好在G处时,小刚刚好能从镜子里看到树的顶端B.已知EF=3.2米,CF =3米,CG=2米,点小C、F、G在一条直线上,CD⊥AC,EF⊥AC,AB ⊥AC.根据以上测量过程及测量数据,请你求出这棵樱花树AB的高度.【题型5 利用相似三角形测量距离】22.(2022秋•开封期末)如图,某“综合实践”小组为估算开封护城河的宽度,可以在河对岸选定一个目标点P,在近岸取点A和点C,使AC=30m,且AC ⊥AP,再过点C作CD⊥BC,且CD=20m,PD与AC交于点B,若测得AB =20m,则河宽AP的宽度为()A.40m B.30m C.20m D.10m 23.(2022秋•上海月考)如图,A,B是河边上的两根水泥电线杆,C,D是河对岸不远处的两根木质电话线杆,且电线、电话线及河两边都是平行的.O 是A、B对岸河边上一点,且O与A、C在同一直线上,与B、D也在同一直线上,已知AB=35m,CD=20m,OD=20m,根据所给的已知条件是否一定能求出河的大约宽度能(填能或不能或不一定).24.(2023•山西模拟)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,在近岸取点B和点C,观察者在点E.适当调整,使得AB与EC 都与河岸BC垂直.此时AE与BC相交于点D,若测得BD=100m,DC=50m,EC=45m,请利用这些数据计算河的宽度.25.(2022秋•济南期末)如图,矩形ABCD为台球桌面,AD=280cm,AB=140cm,球目前在E点位置,AE=35cm,如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.26.(2023•西吉县一模)如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.27.(2023•莲湖区模拟)如图,为了测量平静的河面的宽度(EP),在离河岸D点3m远的B点,立一根长为1.5m的标杆AB,已知河岸高出水面0.6m,即DE=0.6m.在河对岸的水里有一棵高出水面4.6m的大树MP,大树的顶端M在河里的倒影为点N,即PM=PN.经测量此时A,D,N三点在同一直线上,并且点M,P,N共线,若AB,DE,MP均垂直于河面EP,则河宽EP 是多少米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的应用题
1.如图所示的交通标志中,内外两个三角形是否相似?为什么?
2.如图,铁道口的栏杆臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高_______米.
3.上午10时,校园内旗杆影长为a 米,同时高为b 米的直的影长为c 米,那么旗杆的高为___________米.
4.如图,要测量河两岸相对的两点B A ,间的距离,先从B 处出发与AB 成90°角方向,向前走50米到C 处,立一根标杆,然后方向不变继续朝前走10米到D 处,在D 处转90°,沿DE 方向再走17米,到达E 处,使目标A 标杆C 与E 在同一直线上,那么可测得B A ,的距离是___________.
5.如图,阳光通过窗口照亮到室内,在地面上留下2.7m 宽的亮区DE ,已知亮区DE 到窗口下的墙角距离7.8=EC m ,窗口高8.1=AB m ,那么窗口底边离地面的高____=BC .
6.同一时刻,一竿高2米,影长为1.5米,某古塔影长36米,求古塔的高.
7.为了测量一池塘的宽DE ,在岸边找到一点C ,测得30=CD m ,在DC 的延长线上找到一点5,=AC A m ,过A 作DE AB //交EC 的延长线于B ,测出5.6=AB m ,那么你能算出池塘的宽DE 吗?
8.如图,火焰AC 通过纸板EF 上的一个小孔O 照射到屏幕上形成倒立的实像.像的长度2=BD cm ,60=OA cm ,20=OB cm ,求火焰AC 的长.
9.如图,学校墙外有一烟囱需拆倒,为使周围建筑不受损失,需知道烟囱的高度.甲在操场上C 处直立3米高的竹竿CD ,乙从C 处退到E 处恰好看到竹竿顶端D 与烟囱顶端B 重合,量得3=CE 米,乙的眼睛到地面的距离5.1=EF 米;丙在M 处也直立3米高的竹竿MN ,乙从E 退后6米到H 处,恰好看到两根竹竿和烟囱重合,且竹竿顶端N 与烟囱顶端B 也重合.量得4=MH 米,求烟囱AB 的高度.
10.小明用这样的方法来测量建筑物的高度:如图,在地面上放一面镜子,他刚好能从镜中看到建筑物的顶端,他的眼睛距地面1.25米.如果小明与镜子的距离是1.50米,与建筑物的距离是181.50米,那么建筑物高多少米?
11.如图,ABC ∆是一块锐角三角形余料,边120=BC mm ,高80=AD mm ,要把它加工成正方形零件,使正方形一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?。

相关文档
最新文档