北师大版数学必修三综合测试题
北师大版高中数学必修三模块综合测评(A卷)(含解析)
模块综合测评(一)必修3(北师大版·A卷)
(时间:90分钟满分:120分)
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在指定答题栏内.1.对于算法的三种基本逻辑结构,下面说法正确的是()
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可以含有上述三种逻辑结构的任意组合
解析:事实上,许多算法都不是独立的,尤其是想解决一些复杂的问题,必须综合使用多种结构,并且没有结构数量的限制.当然一个程序如果使用的结构太多也会让人混淆的,所以在编写程序时要注意尽量使用简单、容易理解的结构.
答案:D
2.下列说法错误的是()
A.在统计里,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量
B.一组数据的平均数一定大于这组数据中的每个数据
C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动性越大
解析:本题主要考查统计中的几个定义,A选项是统计中最基本的定义,C和D都是对几个概念含义的叙述,都是正确的.我们知道,平均数是反映一组数据的平均值,也是一组数据的期望值,它不是一组数据中的最大和最小值,所以B是错误的.。
北师大版高中数学必修三四综合测试卷(含答案)
图1乙甲7518736247954368534321高一数学试题一、选择题(本题共12小题,每题5分,共60分。
每题只有一个正确答案) 1.已知点P (ααcos ,tan )在第三象限,则角α在 A .第一象限B .第二象限C .第三象限D .第四象限2.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为A .45,75,15B .45,45,45C .30,90,15D .45,60,303.已知a 与b 均为单位向量,它们的夹角为60︒,那么|3|a b -等于 ABCD .44. 图1是某赛季甲、乙两名篮球运动员每场比赛得分的 茎叶图,则甲、乙两人这几场比赛得分的中位数之和是 A .62 B .63 C .64 D .65 5.在ABC ∆中,有如下四个命题:①BC AC AB =-;②AB BC CA ++=0 ;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.其中正确的命题序号是A .① ②B .① ③ ④C .② ③D .② ④6. 将函数sin (0)y x ωω=>的图象沿x 轴方向左平移6π个单位,平移后的图象如右图所示.则平移后的图象所对应函数的解析式是A .sin()6y x π=+B .sin()6y x π=-C .sin(2)3y x π=+D .sin(2)3y x π=-7.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”; ③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”; ④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”, 其中属于互斥事件的有( ) A .1对 B .2对 C .3对 D .4对 8.200所示,则时速在[60,70)的汽车大约有( ) A .30辆 B . 40辆C . 60辆 D .80辆9. 函数)cos[2()]y x x ππ-+是 A 周期为4π的奇函数 B 周期为4π的偶函数组距频率C 周期为2π的奇函数 D 周期为2π的偶函数 10.如果下边程序执行后输出的结果是990,那么在程序中 WHILE 后面的“条件”应为A. i>10B. i<8C. i<=9D. i<911.下列各式中,值为12的是 A .sin15cos15B . 22cos sin 1212ππ- C .6cos 2121π+ D .2tan 22.51tan 22.5- 12.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率为 A .π B .π C .π D .π二、填空题(每题4分,共16分)13.已知扇形半径为8, 弧长为12, 则中心角为 弧度, 扇形面积是 14. 已知x 与y 之间的一组数据为则y 与x 的回归直线方程a bx y +=必过定点_____15.已知样本9,10,11,,x y 的平均数是10xy = 16.已知tan2α=2,则αtan 的值为_________;6sin cos 3sin 2cos αααα+-的值为____________三、解答题17.已知(1,2)a =,)2,3(-=,当k 为何值时,(1) ka b + 与3a b - 垂直?(2) ka b + 与3a b -平行?平行时它们是同向还是反向?18.一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.(Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率;(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.19.某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60) ...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.20.已知,cos )a x m x =+ ,(cos ,cos )b x m x =-+ , 且b a x f∙=)((1) 求函数()f x 的解析式;(2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.第19题图21.已知向量 a =(cos α,sin α),b =(cos β,sin β),|b a-.(Ⅰ)求cos (α-β)的值;(Ⅱ)若0<α<2π,-2π<β<0,且sin β=-513,求sin α的值.22.(本小题满分14分) 函数f (x)=|sin2x |+|cos2x |(Ⅰ)求f (127π-)的值;(Ⅱ)当x ∈[0,4π]时,求f (x)的取值范围;(Ⅲ)我们知道,函数的性质通常指函数的定义域、值域、周期性、奇偶性、单调性等,请你探究函数f (x)的性质(本小题只需直接写出结论)高一数学试题第二学期质量检测答案一、BDACC CBDCD DB 二、13.23,48 14.(1.5,4) 15.96 16.—34,76三、17.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥ (3)a b -,得()ka b + (3)10(3)4(22)2380,19a b k k k k -=--+=-==(2)()//ka b + (3)a b - ,得14(3)10(22),3k k k --=+=-此时1041(,)(10,4)333ka b +=-=-- ,所以方向相反。
北师大版高中数学必修三综合试卷(附答案)
北师大版高中数学必修三综合试卷(附答案)一、单选题1.如图放置的边长为1的正方形沿轴顺时针滚动一周,设顶点的运动轨迹与轴所围区域为,若在平面区域内任意取一点,则所取的点恰好落在区域内部的概率为A.B.C.D.2.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为()A.10B.9C.11D.83.19世纪德国工程师勒洛发现了一种神奇“三角形”能够象圆一样当作轮子用,并将其命名为勒洛三角形,这种三角形是三个等半径的圆两两互相经过圆心,三个圆相交的部分就是勒洛三角形,如图所示,现从图中的勒洛三角形内部随机取一点,则此点取自阴影部分的概率为()A.B.C.D.4.若执行如图所示的程序框图,其中表示区间上任意一个实数,则输出数对的概率为()A.B.C.D.5.设有算法如图所示:如果输入A=144,B=39,则输出的结果是()A.144B.3C.0D.126.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A)的概率为,取到方片牌(事件B)的概率是,则取到红色牌(事件C)的概率和取到黑色牌(事件D)的概率分别是()A.B.C.D.7.某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为,则该学校学生的总数为()A.200B.400C.500D.10008.执行如图所示的程序框图,当输入的为6时,输出的的值为A.B.C.D.9.已知下列说法:①对于线性回归方程,变量增加一个单位时,平均增加5个单位;②甲、乙两个模型的分别为0.98和0.80,则模型甲的拟合效果更好;③对分类变量X与Y,随机变量的观测值k越大,则判断“X与Y有关系”的把握程度越大;④两个随机变量的线性相关性越强,则相关系数就越接近1.其中说法错误的个数为()A.1B.2C.3D.410.下列抽取样本的方式属于简单随机抽样的个数为( )①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1C.2D.3二、填空题11.下列说法正确的是:①在做回归分析时,残差图中残差点分布的带状区域的宽度越窄表示回归效果越差;②回归分析模型中,残差平方和越小,说明模型的拟合效果越好;③在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.1个单位④若,,则;⑤已知正方体,为底面内一动点,到平面的距离与到直线的距离相等,则点的轨迹是抛物线的一部分.正确的序号是:______.12.为了解学生答卷情况,某市教育部门在高三某次测试后抽取了n名同学的第Ⅱ卷进行调查,并根据所得数据画出了样本的频率分布直方图(如图),已知从左到右第一小组的频数是50,则n=______.。
2019-2020学年北师大版高中数学必修三综合测评 Word版含解析
姓名,年级:时间:综合测评时间:90分钟满分:120分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列事件中,随机事件是()A.掷一枚硬币一次,出现两个正面B.同性电荷,互相排斥C.当a为实数时,|a|〈0D.2015年中秋节你的家乡下雨解析:A。
一枚硬币抛一次,至多出现一个正面,出现二个正面是不可能事件;B.由物理知识可知,同性电荷,互相排斥,是必然事件;C。
对于实数a,|a|≥0,而|a|<0是不可能事件;D。
2015年中秋节你的家乡可能下雨,也可能不下雨,所以是随机事件.答案:D2.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2 000元以下罚款.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A.2 160 B.2 880 C.4 320 D.8 640解析:由题意及频率分布直方图可知,醉酒驾车的频率为(0。
01+0.005)×10=0。
15,故醉酒驾车的人数为28 800×0.15=4 320。
答案:C3.从一组数据2,3,5,6,9,11中任取一个数,则这个数大于这组数据的平均数的概率为( )A。
错误! B。
错误! C.错误! D。
错误!解析:这组数据的平均数为错误!(2+3+5+6+9+11)=6,数据中大于6的数有9,11两个,故所求概率为错误!.答案:B4.将一个长与宽不等的长方形,沿对角线分成四个区域,如图所示涂上四种颜色,中间装个指针,使其可以自由转动,对指针停留的可能性下列说法正确的是( )A.一样大B.蓝白区域大C.红黄区域大D.由指针转动圈数决定解析:指针停留在哪个区域的可能性大,即表明该区域的张角大,显然,蓝白区域大.答案:B5.阅读如图的程序框图,运行相应的程序,则输出s的值为( )A.-1 B.0 C.1 D.3解析:当i=1时,s=1×(3-1)+1=3;当i=2时,i=3×(3-2)+1=4;当i=3时,s=4×(3-3)+1=1;当i=4时,s=1×(3-4)+1=0;紧接着i=5,满足条件i>4,跳出循环,输出s的值为0故选择B.答案:B6.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员的中位数分别是( )A 。
北师大版高中数学必修三模块综合测评(A卷)(含解析).docx
模块综合测评(一)必修3(北师大版·A卷)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在指定答题栏内.1.对于算法的三种基本逻辑结构,下面说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合解析:事实上,许多算法都不是独立的,尤其是想解决一些复杂的问题,必须综合使用多种结构,并且没有结构数量的限制.当然一个程序如果使用的结构太多也会让人混淆的,所以在编写程序时要注意尽量使用简单、容易理解的结构.答案:D2.下列说法错误的是()A.在统计里,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动性越大解析:本题主要考查统计中的几个定义,A 选项是统计中最基本的定义,C 和D 都是对几个概念含义的叙述,都是正确的.我们知道,平均数是反映一组数据的平均值,也是一组数据的期望值,它不是一组数据中的最大和最小值,所以B 是错误的.答案:B3. 如图是2011年海南中学十大歌手年度总决赛中,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:去掉93与79,剩下五个数的平分数与方差分别为85,1.6. 答案:C4.把12个人平均分成两组,每组任意指定正、副组长各1人,则甲被指定为正组长的概率为( )A.112B.16C.14D.13解析:12个人被平均分成两组,每组6人,则甲必被分到其中一组,在该组6个人中,甲被选为正组长的概率是16.答案:B5.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余部分相同)上爬来爬去,它最后随意停在黑色地板砖上的概率为( )A.13B.23C.14D.18解析:其概率等于黑色地板砖块数与全部地板砖块数的比值. 答案:A6.运行下图所示的程序,如果输出结果为sum =1 320,那么判断框中应填( )A .i ≥9B .i ≥10C .i ≤9D .i ≤10解析:执行该程序,结合题目所给选项,不难发现应该选B.答案:C7.2013年度有12万名学生参加大学学科的能力测验,各学科成绩采用15级分,数学学科测验成绩分布图如图所示,请问有多少考生的数学成绩级分高于11级分?选出最接近的数目()A.4 000人B.10 200人C.15 000人D.20 000人解析:人数约为120 000×(2.5%+3.5%+1%+1.5%)=10 200.答案:B8.下面程序段能分别正确显示1!、2!、3!、4!的值的一个是()解析:本题主要考查For 循环语句的使用及理解,这里的B 中n =1语句不能放在内循环体内,应放在内循环体外;C 中只能输出4!.答案:A9.已知函数f (x )=ax 2-bx -1,其中a ∈(0,2],b ∈(0,2],在其取值范围内任取实数a 、b ,则函数f (x )在区间[1,+∞]上为增函数的概率为( )A.12B.13C.23D.34解析:若函数f (x )在区间[1,+∞)上为增函数,则⎩⎨⎧a >0,b2a ≤1,即⎩⎪⎨⎪⎧a >0,b ≤2a .又a ∈(0,2],b ∈(0,2],如图所示,当点(a ,b )位于四边形OABC (包括边界)上时满足题意,所以所求概率为P =4-12×1×24=34. 答案:D10.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下(单位:cm):甲:9.0,9.2,9.0,8.5,9.1,9.2; 乙:8.9,9.6,9.5,8.5,8.6,8.9.据以上数据估计两人的技术的稳定性,结论是( ) A .甲优于乙 B .乙优于甲 C .两人没区别D .无法判断解析:x 甲=16(9.0+9.2+9.0+8.5+9.1+9.2)=9.0, x 乙=16(8.9+9.6+9.5+8.5+8.6+8.9)=9.0;s 2甲=16[(9.0-9.0)2+(9.2-9.0)2+(9.0-9.0)2+(8.5-9.0)2+(9.1-9.0)2+(9.2-9.0)2]=0.346,s 2乙=16[(8.9-9.0)2+(9.6-9.0)2+(9.5-9.0)2+(8.5-9.0)2+(8.6-9.0)2+(8.9-9.0)2]=1.046.因为s 2甲<s 2乙,所以甲的技术比乙的技术稳定.答案:A第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中横线上.11.某公司共有1 000名员工,下设若干部门,现采用分层抽样方法从全体员工中抽取一个容量为80的样本,已知广告部被抽取了4个员工,则广告部的员工人数是__________.解析:设广告部有员工n 人, 则801 000=4n ,n =50. 答案:5012.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为__________.解析:由已知质量在497.5~501.5 g 的样本数为5袋,故质量在497.5~501.5 g的概率为520=0.25.答案:0.2513.某企业职工的月工资数统计如下:经计算,该企业职工月工资的平均值为1 565元,中位数是________元,众数是________元;如何选取该企业的月工资代表数呢?企业法人主张用平均值,职工代表主张用众数,监管部门主张用中位数;请你站在其中一立场说明理由:___________________ _____________________________________________________.答案:1 200900“企业法人为了显示本企业职工的收入高,用少数人的高工资来提高平均数,故主张用平均值1 565元作为该企业的月工资代表数”(或“职工代表以每月拿900元的人最多,故主张用众数900元作为该企业的月工资代表数”;或“监管部门认为月工资在中位数附近的人数比较集中,以此来制定有关政策,可以维护多数人的利益,故主张用中位数作为该企业的月工资代表数”.)14.某种电子元件在某一时刻是否接通的可能性是相同的,有3个这样的电子元件,则出现至少有一个接通的概率为__________.解析:设电子元件接通记为1,不通记为0.设A表示“3个电子元件至少有一个接通”,显然A表示“3个电子元件都没有接通”,Ω表示“3个电子元件的状态”,则Ω={(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1),(0,0,0)}.Ω由8个基本事件组成,而且这些基本事件的出现是等可能的,A ={(0,0,0)}.事件A 由1个基本事件组成,因此P (A )=18,∵P (A )+P (A )=1,∴P (A )=1-P (A )=1-18=78.答案:78三、解答题:本大题共4小题,满分50分.解答应写出文字说明、证明过程或演算步骤.15.(12分)为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别 频数 频率 [145.5,149.5) 1 0.02 [149.5,153.5) 4 0.08 [153.5,157.5) 20 0.40 [157.5,161.5) 15 0.30 [161.5,165.5) 8 0.16 [165.5,169.5) m n 合 计MN(1)求出表中m ,n ,M ,N 所表示的数; (2)画出频率分布直方图;解:(1)M=10.02=50,m=50-(1+4+20+15+8)=2;N=1,n=250=0.04.(6分)(2)如图:(12分)16.(12分)经统计,在某储蓄所一个营业窗口等候人数及相应概率如下:排队人数012345人及5人以上概率0.100.160.300.300.100.04(1)求至多2人排队等候的概率是多少?(2)求至少3人排队等候的概率是多少?解:记“等候的人数为0”为事件A,“1人等候”为事件B,“2人等候”为事件C,“3人等候”为事件D,“4人等候”为事件E,“5人及5人以上等候”为事件F,则易知A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C.∴P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56;(6分)(2)记“至少3人排队等候”为事件H,则G与H为对立事件.∴P(H)=1-P(G)=1-0.56=0.44.(12分)17.(12分)已知算法如下表所示:(这里S1,S2,…分别代表第一步,第二步,…)(1)指出其功能(用数学式子表达);(2)画出该算法的算法框图.S1输入x.S2若x<-2,执行S3;否则,执行S6.S3y=2x+1.S4输出y.S5执行S12.S6若-2≤x<2,执行S7;否则执行S10.S7y=x.S 8 输出y .S 9 执行S 12.S 10 y =2x -1.S 11 输出y .S 12 结束.解:(1)该算法的功能是:x 已知时,求函数y =⎩⎪⎨⎪⎧ 2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(6分)(2)算法框图是:(12分)18.(14分)佛山市在每年的春节后,市政府都会发动公务员参与到植树活动中去.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,测出的高度如下(单位:厘米):甲:37,21,31,20,29,19,32,23,25,33;乙:10,30,47,27,46,14,26,10,44,46.(1)根据抽测结果,完成下面的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度的平均值为x,将这10株树苗的高度依次输入按程序框图进行的运算,输出的S大小为多少?并说明S的统计学意义.解:(1)茎叶图如图.统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度;②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(注:可以从中选两个作答)(7分)(2)由题可得x=27,再由程序框图知输出S=35.S表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量,S值越小,表示长得越整齐;S值越大,表示长得越参差不齐.(14分)。
最新北师大版高中数学必修三测试题全套及答案
最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。
【北师大版】高中数学必修三:本册综合测试(1)(含解析)
本册综合测试(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·四川文,3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法 B.系统抽样法 C .分层抽样法 D.随机数法[答案] C[解析] 按照各种抽样方法的适用范围可知,应使用分层抽样.选C.2.为了了解高一1 500名新生的年龄情况,从中抽取100名新生.就这个问题,有下列说法:①1 500名新生是总体; ②每个新生是个体;③所抽取的100名新生是一个样本; ④样本容量为100;⑤每个新生被抽到的概率相等. 其中正确的个数为( ) A .1 B.2 C .3 D.4[答案] B[解析] 1500名新生的年龄情况是总体;每个新生的年龄是个体;因而④、⑤正确,其它错误.解决本题的前提是正确理解总体、个体、样本、样本容量的概念.3.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C .25 D.15 [答案] B[解析] 利用几何概型公式求解,在区间为[-2,3]上随机选取一个数x ,则x ≤1,即-2≤x ≤1的概率为P =35.4.甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为( )甲 乙8 0 93 2 1 1 34 8 765420 2 0 0 1 1 373A.22,20B.24,18 C .23,19 D.23,20[答案] C[解析] 甲命中个数:8、12、13、20、22、24、25、26、27、37,中位数为12(22+24)=23,同理乙的中位数为12(18+20)=19.5.阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18 B.20 C .21 D.40[答案] B[解析] 本题考查程序框图,当n =1时,S =3,当n =2时,S =3+22+2=9,当n =3时,S =9+23+3=20>15,故输出S =20.对于较为简单的循环结构的框图问题,可直接令n =1,2,3……进行求解.6.某单位有职工150人,其中业务人员110人,管理人员15人,后勤服务人员25人,为了了解职工对工资调整的意见,采用分层抽样的方法抽取管理人员3人,则样本容量为( )A .15 B.30 C .20D.10[答案] B[解析] 由题意知管理人员一层中的样本抽取比例为315=15,则样本容量在总体中的比例也为15,故样本容量为150×15=30.7.甲、乙、丙、丁4人分乘两辆车,每辆车乘两人,则甲、乙同车的概率是( ) A.12 B.13 C .14 D.23[答案] B[解析] 乘车的所有可能情况是甲、乙→丙、丁;甲、丙→乙、丁;甲、丁→乙、丙,所以甲、乙同车的概率为13.8.在箱子中装有10张卡片,分别写有1~10的10个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为( )A.12 B.14 C .15 D.110 [答案] D[解析] 先后两次抽取卡片,形成的有序数对有(1,1),(1,2),…,(1,10),…,(10,10),共计100个,因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10),共10对数,故x +y 是10的倍数的概率P =10100=110. 9.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2015年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A.2 160 B.2 880C.4 320 D.8 640[答案] C[解析]由题意及频率分布直方图可知,醉酒驾车的频率为(0.01+0.005)×10=0.15,故醉酒驾车的人数为28 800×0.15=4 320.10.一组数据的方差是s2,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( )A.12s2 B.2s2C.4s2 D.s2 [答案] C[解析]设一组数据x1,x2,…,x n,则s2=x2-x2+x2-x2+…+x n-x2n,将每一个数乘以2,则x′=2x.所以s′2=x1-2x2+x2-2x2+…+x n-2x2n=4n[(x1-x)2+(x2-x)2+…+(x n-x)2]=4s2.11.已知直线y=x+b,b∈[-2,3],则直线在y轴上的截距大于1的概率为( )A.15B.25C.35D.45[答案] B[解析]根据几何概型的概率公式,P=3-13--=25.12.根据如下样本数据A .a >0,b <0 B.a >0,b >0 C .a <0,b <0 D.a <0,b >0[答案] A[解析] 本题考查散点图的应用. 作出散点图如下:由图像不难得出:回归直线y =bx +a 的斜率b <0,截距a >0.所以a >0,b <0.解答本题若没有想到画出散点图,直观通过数据来判断系数b ,a 与0的大小好像无头绪,容易造成错解.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.[答案] 160[解析] 本题考查了分层抽样的特点,因抽样比为280560+420=27,所以男生数应为560×27=160.分层抽样是按比例抽取,一定要先找出抽样比.14.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.(结果用数值表示)[答案] 0.3[解析] 在五个数字1,2,3,4,5中,随机取出三个数字,剩下两个数字,基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},其中事件“两个数字都是奇数”={(1,3),(1,5),(3,5)},故概率为0.3.15.(2015·江苏,4)根据如图所示的伪代码,可知输出的结果S 为________.S ←1 I ←1While I <8S ←S +2 I ←I +3End While Print S[答案] 7[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I =10;结束循环,输出S =7.16.下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.[答案] 9[解析] 本题考查频率分布直方图,考查阅读图表的能力. 平均气温不低于25.5℃的城市T 数设为x , 则0.12+0.1011=0.18x. ∴x =9.本题也可以利用矩形面积求解.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. [解析] (1)有关,收看新闻节目多为年龄大的. (2)应抽取的人数为:5×2745=3(人).(3)由(2)知,抽取的5名观众中,有2名观众年龄处于20至40岁,3名观众的年龄大于40岁.由古典概型的概率公式得,所求概率P =610=35.18.(本小题满分12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12.(1)求n 的值;(2)记从袋中随机取出一个小球为白球得二分,为黑球得一分,为红球不得分.现从袋子中取出1个小球,求总得分为二分的概率.[解析] (1)由题意可知n 1+1+n =12,解得n =2.(2)设红球为a ,黑球为b ,白球为c 1,c 2,从袋中取出2个小球的所有等可能基本事件为(a ,b ),(a ,c 1),(a ,c 2),(b ,c 1),(b ,c 2),(c 1,c 2),共6个,记事件A 为“总得分为二分”,包含的基本事件为(a ,c 1),(a ,c 2),共2个. ∴P (A )=26=13.19.(本小题满分12分)已知算法如下所示:(这里S1,S2,…分别代表第一步,第二步,…) S1 输入x ;S2 若x <-2,执行S3;否则,执行S6; S3 y =2x +1; S4 输出y ; S5 执行S12;S6 若-2≤x <2,执行S7;否则执行S10; S7 y =x ; S8 输出y ; S9 执行S12; S10 y =2x -1;S11 输出y ; S12 结束.(1)指出其功能(用数学式子表达); (2)画出该算法的算法框图.[解析] (1)该算法的功能是:x 已知时,求函数 y =⎩⎪⎨⎪⎧2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(2)算法程序图如下.20.(本小题满分12分)(2015·天津文,15)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.[解析] (1)应从甲、乙、丙这三个协会中抽取的运动员人数分别为3,1,2.(2)(i)从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.(ii)编号为A 5,A 6的两名运动员至少有一人被抽到的结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种,所以事件A 发生的概率P (A )=915=35.21.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[分析](1)根据条件可画出图;(2)用求平均数与方差的公式可求;(3)算出不低于95的频率可求得本题.[解析](1)(2)质量指标值的样本平均数为x=80×0.06×+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104. (3)质量指标值不低于95的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.22.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b =n i =1t i -ty i -yn i =1t i -t2,a =y -b t[解析] (1)∵t =1+2+…+77=4,y =2.9+3.3+3.6+4.4+4.8+5.2+5.97=4.3,设回归方程为y =bt +a ,代入公式,经计算得b =3×14+2+0.7+0+0.5+1.8+4.8+4+=1414×2=12.a =y -b t =4.3-12×4=2.3所以,y 关于t 的回归方程为y =0.5t +2.3.(2)∵b =12>0,∴2007年至2013年该区人均纯收入稳步增长,预计到2015年,该区人均纯收入y =0.5×9+2.3=6.8(千元)所以,预计到2015年,该区人均纯收入约6千8百元左右.。
新高中数学(北师大版,必修3)练习:本册综合测试1(含答案解析)
本册综合测试 (一 )第Ⅰ卷 ( 选择题共50分)一、选择题( 本大题共10 个小题,每题 5 分,共50 分,)1.为了认识高一 1 500 名重生的年纪状况,从中抽取100 名重生.就这个问题,有下列说法:①1 500 名重生是整体;②每个重生是个体;③所抽取的 100 名重生是一个样本;④样本容量为 100;⑤每个重生被抽到的概率相等.此中正确的个数为 ()A. 1 B . 2C. 3 D . 4[答案 ]B[分析 ]1500 名重生的年纪状况是整体;每个重生的年纪是个体;因此④、⑤正确,其它错误.解决此题的前提是正确理解整体、个体、样本、样本容量的观点.2.一个年级有 12 个班,每个班有 50 名同学,随机编号 1,2,,50,为了认识他们在课外的兴趣,要求每班第40 号同学留下来进行问卷检查,这里运用的抽样方法是() A.抽签法 B .有放回抽样C.随机数表法 D .系统抽样[答案 ]D[分析 ]因为抽取样本时间隔的距离相等,所以是系统抽样.3. (2014 湖·南文, 5)在区间 [ - 2,3] 上随机选用一个数 X ,则 X≤1的概率为 ()43A. 5 B .521C.5 D .5[答案 ]B[分析 ]利用几何概型公式求解,在区间为[- 2,3]上随机选用一个数x,则 x≤1,即-2≤ x≤1的概率为 P=3 5.4.甲,乙两名运动员练习罚球,每人练习10 组,每组罚球40 个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为()甲乙80 932 1 134 876542 0 2 011373A.22,20 B . 24,18 C . 23,19 D . 23,20[答案 ]C1[分析 ]甲命中个数: 8、 12、 13、 20、22、 24、 25、 26、 27、 37,中位数为 2(22 + 24)= 23,同理乙的中位数为 12(18+ 20)= 19.5.甲、乙、丙、丁 4 人分乘两辆车,每辆车乘两人,则甲、乙同车的概率是()1 1 A. 2B . 31 2 C.4D . 3[答案 ] B[分析 ]搭车的所有可能状况是甲、乙 →丙、丁;甲、丙 →乙、丁;甲、丁 →乙、丙,所以甲、乙同车的概率为1 3.6.(2014 福·建理,5)阅读以下图的程序框图, 运转相应的程序, 输出的 S 的值等于 ( )A . 18B .20C . 21D .40[答案 ] B[分析 ]此题考察程序框图,当2n = 1 时, S = 3,当 n = 2 时, S = 3+ 2 + 2= 9,当 n =3时, S = 9+ 23+ 3= 10>15,故输出 S = 20.对于较为简单的循环构造的框图问题,可直接令n=1,2,3 进行求解.7.某中学高一、高二、高三三个年级共有学生3 000 人,采纳分层抽样的方法从全体学生中抽取一个容量为 60的样本,已知高一年级学生为 1 200 人,则该年级抽取的学生数为 ()A. 20B.30C. 24D.25[答案 ]C601[分析 ]抽样比:3 000=50,1∴高一抽取: 1 200 ×=24.508.在箱子中装有10 张卡片,分别写有1~ 10 的 10 个整数,从箱子中任取一张卡片,记下它的读数x,而后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y,则 x+ y 是 10 的倍数的概率为 ()11A. 2 B .411C.5D.10[答案 ]D[分析 ]先后两次抽取卡片,形成的有序数对有(1,1) ,(1,2) ,, (1,10) ,,(10,10) ,合计 100 个,因为 x+ y 是 10 的倍数,这些数对应当是(1,9) ,(2,8) ,(3,7),(4,6),(5,5) ,(6,4),10=1.(7,3) ,(8,2), (9,1) ,(10,10) ,共 10 对数,故 x+ y 是 10 的倍数的概率 P=10010 9. (2014 湖·北文, 6)依据以下样本数据x345678y 4.0 2.5-0.50.5- 2.0- 3.0获得的回归方程为y=bx+ a,则 ()A. a>0, b<0 B . a>0, b>0C. a<0, b<0 D . a<0, b>0[答案 ]A[分析 ]此题考察散点图的应用.作出散点图以下:由图像不难得出:回归直线y = bx + a 的斜率 b<0,截距 a>0.所以 a>0,b<0.解答此题若没有想到画出散点图,直观经过数据来判断系数 b , a 与 0 的大小仿佛无眉目,简单造成错解.10.一组数据的方差是s 2,将这组数据中的每一个数都乘以2,获得一组新数据,其方差是 ()122A. 2sB . 2sC . 4s 2D . s 2[答案 ] C[分析 ]设一组数据 x 1 ,x 2, , x n ,2 - x2+ - x2+ +- x2则 s 2=2n,将每一个数乘以2,则 x ′=2 x .n所以21-2 x2+2- 2 x2+ +n -2 x242+ (x 2- x ) 2s ′=n=[(x 1- x )n+ + (x n - x )2] = 4s 2.第Ⅱ卷 (非选择题 共 100 分)二、填空题 ( 本大题共 5 个小题,每题 5 分,共 25 分,将正确答案填在题中横线上 )11.某个年级有男生560 人,女生 420 人,用分层抽样的方法从该年级全体学生中抽取一个容量为 280 的样本,则此样本中男生人数为________.[答案 ]16028022 [分析 ]此题考察了分层抽样的特色,因抽样比为560+ 420 =,所以男生数应为 560×77= 160.分层抽样是按比率抽取,必定要先找出抽样比.12.在五个数字 1,2,3,4,5 中,若随机拿出三个数字, 则剩下两个数字都是奇数的概率是________ .(结果用数值表示)[答案 ] 0.3[分析 ]在五个数字1,2,3,4,5中,随机拿出三个数字,剩下两个数字,基本领件空间Ω= {(1,2) , (1,3) , (1,4), (1,5), (2,3) , (2,4), (2,5),(3,4) ,(3,5) ,(4,5)} ,此中事件“两个数字都是奇数”= {(1,3) , (1,5) , (3,5)} ,故概率为 0.3.13. (2014 辽·宁文, 13)履行下边的程序框图,若输入n= 3,则输出 T= ________.[答案 ] 20[分析 ]考察程序框图的循环构造.i= 1 时, S= 1,T= 1;i= 2 时, S= 3,T= 4; i= 3 时, S= 6,T= 10;i = 4 时, S=10,T = 20,i = 4>3,∴输出 T=20.注意:找准i 与 n 的关系.14.下列图是依据部分城市某6 月份的均匀气温(单位:℃)数据获得的样本频次散布直年方图,此中均匀气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5) , [21.5,22.5),[22.5,23.5) , [23.5,24.5) , [24.5,25.5) , [25.5, 26.5] .已知样本中均匀气温低于22.5℃的城市个数为11,则样本中均匀气温不低于25.5℃的城市个数为________.[答案]9[分析 ]此题考察频次散布直方图,考察阅读图表的能力.均匀气温不低于25.5℃的城市 T 数设为 x,则 0.12+ 0.10=0.18.11x∴ x=9.此题也能够利用矩形面积求解.15.某种电子元件在某一时辰能否接通的可能性是同样的,有 3 个这样的电子元件,则出现起码有一个接通的概率为________.[答案 ]7 8[分析 ]设电子元件接通记为1,不通记为 0.设 A 表示“3个电子元件起码有一个接通”,明显 A 表示“3个电子元件都没有接通”,Ω表示“3个电子元件的状态”,则Ω= {(1,0,0) ,(0,1,0) , (0,0,1) , (1,1,0) , (1,0,1) , (0,1,1), (1,1,1) , (0,0,0)} .Ω中由 8个基本领件构成,而且这些基本领件的出现是等可能的. A = {(0,0,0)} .事件 A 由一个事件构成,所以P( A )=1,又因为 P(A) +P( A )= 1,817所以 P(A) = 1-P( A )= 1-= .三、解答题 ( 本大题共 6 个小题,共 75 分 )16.(本小题满分 12 分)某公司在过去几年使用了某种型号的灯管 1 000 支,该公司对这些灯管的使用寿命 (单位:小时 )进行了统计,统计结果以下表所示:分组频数频数[700,900)48[900,1 100)121[1 100,1 300)208[1 300,1 500)223[1 500,1 700)193[1 700,1 900)165[1 900 ,+∞)42(1)将各组的频次填入表中;(2)依据上述统计结果,计算灯管使用寿命不足 1 500 小时的概率.[分析 ] (1)频次挨次是 0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中灯管使用寿命不足 1 500 小时的频数是 48+ 121+208+ 223= 600,所以灯管使用寿命不足 1 500 小时的概率是 0.6.17. (本小题满分 12分 )袋子中装有大小和形状同样的小球,此中红球与黑球各 1 个,白球 n 个.从袋子中随机拿出 1 个小球,取到白球的概率是1 2 .(1)求 n 的值;(2)记从袋中随机拿出一个小球为白球得二分,为黑球得一分,为红球不得分.现从袋子中拿出 1 个小球,求总得分为二分的概率.[分析 ] (1)由题意可知n=1,解得 n=2.1+ 1+ n2(2)设红球为 a,黑球为 b,白球为c1, c2,从袋中拿出 2 个小球的所有等可能基本领件为 (a, b), (a, c1) ,(a,c2), (b, c1), (b, c2), (c1, c2),共 6 个,记事件 A 为“总得分为二分”,包括的基本领件为(a, c1), (a,c2),共 2 个.2 1∴P(A) =6=3.18.(本小题满分12 分 )已知算法以下所示: (这里 S1,S2,分别代表第一步,第二步, ) S1 输入 x;S2 若 x< - 2,履行 S3;不然,履行S6;S3 y= 2x+ 1;S4 输出 y;S5 履行 S12;S6 若- 2≤ x<2,履行 S7;不然履行S10;S7 y= x;S8 输出 y;S9 履行 S12;S10 y= 2x- 1;S11 输出 y;S12结束.(1)指出其功能 (用数学式子表达);(2)画出该算法的算法框图.[分析 ](1)该算法的功能是:x 已知时,求函数2x+ 1, x<- 2,y=x,- 2≤ x<2,的值.2x- 1, x≥2(2)算法程序图以下.19. (本小题满分12 分 )从某公司生产的某种产品中抽取100 件,丈量这些产品的一项质量指标值,由丈量表得以下频数散布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在答题卡上作出这些数据的频次散布直方图;(2)估计这类产质量量指标值的均匀数及方差(同一组中的数据用该组区间的中点值作代表 );(3)依据以上抽样检查数据,可否定为该公司生产的这类产品切合的产品起码要占所有产品的80%”的规定?[剖析 ] (1)依据条件可画出图;(2) 用求均匀数与方差的公式可求;“质量指标值不低于95(3)算出不低于95 的频次可求得此题.[分析 ](1)(2)质量指标值的样本均匀数为x =80×0.06 ×+90×0.26+100 ×0.38+ 110 ×0.22+120 ×0.08= 100.质量指标值的样本方差为s2= (- 20)2×0.06+ (- 10)2×0.26+ 0×0.38+ 102×0.22+202×0.08=104.所以这类产质量量指标值的均匀数的估计值为100,方差的估计值为104.(3)质量指标值不低于95 的产品所占比率的估计值为0. 38+ 0.22+0.08= 0.68.因为该估计值小于0.8,故不可以以为该公司生产的这类产品切合“质量指标值不低于95的产品起码要占所有产品80%”的规定.20.(本小题满分13 分) 某园林局对1 000株树木的生长状况进行检查,此中槐树600 株,银杏树400 株.现用分层抽样的方法从这1 000株树木中随机抽取100 株,此中银杏树树干周长 (单位:cm)的抽查结果以下表:树干周长 (单位: cm)[30,40)[40,50)[50,60)[60,70)株数418x6(1)求x 的值;(2)若已知树干周长在30 cm至40 cm之间的 4 株银杏树中有 1 株患有虫害, 现要对这4株树逐个进行排查直至找出患虫害的树木为止.求排查的树木恰巧为2 株的概率.[分析 ](1)因为用分层抽样方法从这1 000株树木中随机抽取100 株,所以应当抽取银400杏树 100×= 40 株.所以在 4+ 18+x + 6= 40,所以 x = 12.(2)记这 4 株树分别为树1,树 2,树 3,树 4,且不如设树 4 为患虫害的树,记 “恰幸亏排查到第二株时发现患虫害树 ”为事件 A ,则 A 是指第二次排查到的是树4,因为求恰幸亏排查到第二株时发现患虫害树的概率,所以基本领件空间为:Ω= {( 树 1,树 2),(树 1 ,树 3),(树 1,树 4),(树 2,树 1 ),(树 2,树 3),(树 2,树 4),( 树3 ,树 1 )(树 3,树2) ,(树 3,树 4), (树 4,树 1), (树 4,树 2) ,(树 4,树3)} ,共12 个基本领件.又事件 A 中包括的基本领件有 3 个,所以恰幸亏排查到第二株时发现患虫害树的概率P(A) =3 112= .421. (本小题满分 14 分 )(2014 新·课标Ⅱ理, 19)某地域 2007 年至 2013 年乡村居民家庭纯收入 y(单位:千元 )的数据以下表:年份 20072008 2009 2010 2011 2012 2013 年份代号 t1 2 3 4 56 7人均纯收入 y2.93.33.64.44.85.25.9(1)求 y 对于 t 的线性回归方程;(2)利用 (1) 中的回归方程,剖析2007 年至 2013 年该地域乡村居民家庭人均纯收入的变化状况,并展望该地域2015 年乡村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:ni - t i - yb =i=1,a = y - b tn i - t2i =1[分析] (1)∵t= 1+ 2++ 7=4,y=2.9+ 3.3+ 3.6+ 4.4+4.8+ 5.2+ 5.9=4.3,77设回归方程为 y= bt+ a,代入公式,经计算得b=3×14+ 2+ 0.7+ 0+ 0.5+ 1.8+4.8=14 =1.+ 4+14×221a= y - b t = 4.3-2×4= 2.3所以, y对于t 的回归方程为y= 0.5t+ 2.3.1∵ b=2>0,∴ 2007 年至2013 年该区人均纯收入稳步增加,估计到2015年,该区人均纯收入y= 0.5 ×9+ 2.3= 6.8(千元 )所以,估计到2015 年,该区人均纯收入约 6 千8 百元左右.。
高中数学北师大版必修三、选修二--1、选修二--2综合检测试题
高二期末复习一、选择题1. 在下列命题中:①若向量,a b 共线,则向量,a b所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b一定不共面;③若三个向量,,a b c 两两共面,则向量,,a b c共面;④已知是空间的三个向量,,a b c,则对于空间的任意一个向量p 总存在实数x,y,z 使得p x a y b z c =++;其中正确的命题的个数是 ( A )(A )0 (B )1 (C )2 (D )3 2. 方程 2x +6x +13 =0的一个根是( )A -3+2iB 3+2iC -2 + 3iD 2 + 3i3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i+为纯虚数”的( B )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B.4.执行如图所示的程序框图,输出S 值为(A )2 (B )4 (C )8 (D )16 【答案】C5.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( C )(A )2211612xy+= (B )221128xy+=(C )22184xy+= (D )221124xy+=6.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是( C )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a7.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0. ( C )给出下列结论: ① 命题“q p ∧”是真命题③命题“q p ∨⌝”是真命题;② 命题“q p ⌝∨⌝”是假命题 ④命题“q p ⌝∧”是假命题 其中正确的是A .②③B .②④C .③④D .①②③8.设a ,b 是两个实数,且a ≠b ,①22(3)2611a a a +>++;②)1(222--≥+b a b a ;③332a b a b a b +>+;④2>+ab b a 。
新北师大版高中数学必修三、必修四综合测试题
新北师大版高中数学必修三、必修四综合测试题一、选择题1.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上述2项调查应采用的抽样方法是( )A.①用随机抽样法,②用系统抽样法B.①用分层抽样法,②用随机抽样法C.①用系统抽样法,②用分层抽样法D.①用分层抽样法,②用系统抽样法2.已知),1,5(),2,3(---N M 若,21MN MP =则P 点的坐标为( ) A.)1,8(- B.)1,8(- C.)23,1(-- D.)23,1( 3.若f(x)=cos2x ,且f(x+b)是奇函数,则b 可能是( ) A.12π B.6π C.4π D.3π 4.x 是三角形的一个内角,且sinx+cosx=15,则tanx 的值是( ) A.43- B.43 C.34- D.34 5.已知,3,2,==⊥b a b a 且b a 23+与b a -λ垂直,则实数λ的值为( )A.;23-B.;23C.;23± D.;1 6.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为( )A .60%B .30%C .10%D .50%7.已知点)2,1(),1,0(),1,2(),0,1(--D C B A ,则AB 与CD 的夹角大小为( )A. 180B. 120C. 90D. 608、函数y =lncos x ,⎪⎭⎫ ⎝⎛<<-22ππx 的图象是( )8 7 9 2 1 3 1 2 3 4 57 9.有下列四种变换方式:①向左平移4π,再将横坐标变为原来的21;②横坐标变为原来的21,再向左平移8π;③横坐标变为原来的21,再向左平移4π;④向左平移8π,再将横坐标变为原来的21;其中能将正弦曲线x y sin =的图像变为)42sin(π+=x y 的图像的是() A.①和② B.①和③ C.②和③ D.②和④10.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( ) A.49 B.29C.23 D.1311.右面程序框图的功能是( ) A.求满足200421>+⋯⋯++n 的最小整数B.求满足2004121>-+⋯⋯++n 的最小整数C.求满足200421<+⋯⋯++n 的最大整数D.求满足2004121<-+⋯⋯++n 的最大整数12.若对任意实数a ,函数⎪⎭⎫⎝⎛-+=6312sin 5ππx k y (k ∈N)在区间[a ,a +3]上的值45出现不少于4次且不多于8次,则k 的值是( )A.2B.4C.3或4D.2或3。
高中数学(北师大版,必修3)本册综合测试(2份)本册综合测试2
本册综合测试(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
时间120分钟,满分150分。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校共有20个班级,每班各有40名学生,其中男生25人,女生15人,若从全校800人中利用简单随机抽样的方法抽出80人,则下列选项中正确的是( )A .每班至少会有一人被抽中B .抽出来的男生人数一定比女生人数多C .已知甲是男生,乙是女生,则甲被抽中的概率大于乙被抽中的概率D .每位学生被抽中的概率都是110[答案] D[解析] 由简单随机抽样的特点知每位学生被抽中的概率都是110.2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5 C .91和91.5 D .92和92[答案] A[解析] 数据从小到大排列后可得其中位数为91+922=91.5,平均数为87+89+90+91+92+93+94+968=91.5.3.(2014·天津理,3)阅读下边的程序框图,运行相应的程序,输出S 的值为( )A .15B .105C .245D .945[答案] B[解析] 本题考查循环框图的输出问题. 第一次运行结果T =3,S =3,i =2; 第二次运行结果T =5,S =15,i =3; 第三次运行结果T =7,S =105,i =4; 输出S =105.选B.注意,准确写出每次运行结果再结合判断框条件写出结果.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x -=3,y -=3.5,则由该观测数据算得线性回归方程可能为( )A .y =0.4x +2.3B .y =2x -2.4C .y =-2x +9.5D .y =-0.3x +4.4 [答案] A[解析] 本题考查了线性回归方程,将点(3,3.5)代入个方程中可知,选项A 成立,所以选A ,线性回归方程一定经过点(x ,y ).5.一箱产品中有正品4件,次品3件,从中任取2件,其中事件: ①恰有1件次品和恰有2件次品; ②至少有1件次品和全是次品; ③至少有1件正品和至少有1件次品; ④至少有1件次品和全是正品. 四组中是互斥事件的有( ) A .1组B .2组C .3组D .4组[答案] B[解析] 是互斥事件的为①与④这2组;②中至少有1件次品包括“1件次品”“2件次品”两种情况,而全是次品指的是“2件次品”,故可能同时发生,故②不是互斥事件;③中至少有1件正品包括“一正一次”,“两正”两种情况,而至少有一件次品包括“一正一次”“两次”两种情况,故③中两事件不互斥.6.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率( ) A.334π B .2πC.4π D .33π4[答案] A[解析] 设圆O 的半径为R ,“所投点落在△ABC 内”为事件A ,则P (A )=34AB 2πR 2=34(3R )2πR 2=334π. 7.在样本的频率分布直方图中,一共有n 个小矩形,若中间一个小矩形的面积等于其余n -1个小矩形面积和的14,且样本容量为160,则中间一组的频数是( )A .32B .20C .40D .25 [答案] A[解析] 频率分布直方图中所有小矩形的面积和等于1,设中间一个小矩形的面积为S ,则其余n -1个小矩形的面积为4S .∴S +4S =1,S =15,所以频数为15×160=32.8.从所有的两位数中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B .45C.23 D .12[答案] C[解析] 设在10~99中能被2,3,6整除的整数分别为2k,3m,6n ,其中k ,m ,n ∈Z ,令10≤2k ≤99,10≤3m ≤99,10≤6n ≤99,解得5≤k ≤4912,313≤m ≤33,123≤n ≤1612,所以有45个被2整除的整数,30个被3整除的整数,15个被6整除的整数,共有45+30-15=60(个)能被2或3整除的整数,10~99中只有99-10+1=90(个)整数,故所求事件的概率P =6090=23.9.(2014·重庆理,5)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >45[答案] C[解析] 本题考查了算法与程序框图,第一次循环k =9,S =1×910=910,第二次循环k =8,S=910×89=45 ,第三次循环,k =7,S =710循环后k =6,即可输出,所以满足条件的S >710.所以选C.计算程序框图有关的问题要注意判断框中的条件,同时要注意循环节中各个量的位置.10.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4 [答案] D[解析] 点P (a ,b )共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)6种情况,得x +y 分别等于2,3,4,3,4,5, ∴出现3与4的概率最大. ∴n =3或n =4.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上) 11.(2014·湖北文,11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[答案] 1800[解析] 本题考查分层抽样.设乙厂生产的总数为n 件,则80-50n =804800,解得n =1800.分层抽样也叫等比例抽样,解决与分层抽样有关的问题,要紧扣等比例.12.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492,497,496,503,494,506,495,508,498,507,497,492,501,496,502,500,504,501,496,499.根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.[答案] 0.25.[解析] 由已知质量在497.5~501.5 g 的样本数为5袋,故质量在497.5~501.5 g 的概率为520=0.25.13.阅读下图所示的程序框图,运行相应的程序,输出的s 值等于________.[答案] -3[解析] 本题考查了程序框图中的循环结构.第1次循环k =1,k =1<4,s =2×1-1=2,k =1+1=2; 第2次循环k =2<4,s =2×1-2=0,k =1+1=3; 第3次循环k =3<4,s =2×0-3=-3,k =3+1=4; 当k =4时,k <4不成立,循环结束,此时s =-3. 在循环次数不多的情况下,逐一循环检验即可.14.对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中a 是这8个数据的平均数),则输出的S 的值是________.[答案] 7[解析] ∵a =44,∴由已知S 为数据的方差,等于18[(40-44)2+(41-44)2+(43-44)2+(43-44)2+(44-44)2+(46-44)2+(47-44)2+(48-44)2]=7.15.设b 和c 分别是先后抛掷一枚骰子得到的点数,则方程x 2+bx +c =0有实根的概率为________.[答案]1936[解析] 基本事件总数为6×6=36,若使方程有实根,则Δ=b 2-4c ≥0,即b ≥2c . 当c =1时,b =2,3,4,5,6; 当c =2时,b =3,4,5,6;当c =3时,b =4,5,6;当c =4时,b =4,5,6; 当c ==5时,b =5,6;当c =6时,b =5,6,目标事件个数为5+4+3+3+2+2=19,因此方程x 2+b +c =0有实根的概率为1936.三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm之间的频率.[解析](1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm之间的学生有14+13+4+3+1=35人,=0.5.样本容量为70,所以样本中学生身高在170~185 cm之间的频率f=357017.(本小题满分12分)根据下面的程序,仔细观察后画出其算法的流程框图.输入nS=0For i=1 To nS=S+(i+1)/iNext输出S[解析]流程框图如图所示.18.(本小题满分12分)(2014·山东文,16)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解析]按分层抽样在各层中所占比例确定出来自A、B、C各地区商品的数量,列举6个选2个的不同取法,找出对应事件的基本事件数.用古典概型的概率公式去求.(1)A、B、C各地区商品的数量之比为50∶150∶100=1∶3∶2.故从A地区抽取样本6×16=1件,故从B地区抽取样本6×36=3件,故从C地区抽取样本6×26=2件.(2)将这6件样品分别编号a1,b1,b2,b3,c1,c2,随机选取2件,不同的取法共有{(a1,b1)(a1,b2)(a1,b3)(a1,c1)(a1,c2)(b1,b2)(b1,b3)(b1,c1)(b1,c2)(b2,b3)(b2,c1)(b2,c2)(b3,c1)(b3,c2)(c1,c2)}15种.设“2件商品来自相同地区”为事件A,则A含有{(b1,b2)(b1,b3)(b2,b3)(c1,c2)}共4种,故所求概率P(A)=415.19.(本小题满分12分)假定以下数据是甲、乙两个供货商的交货天数:甲:10,9,10,10,11,11,9,11,10,10乙:8,10,14,7,10,11,10,8,15,12估计两个供货商的交货情况,并指出哪个供货商的交货时间短一些,哪个供货商的交货时间比较具有一致性与可靠性?[解析]x甲=110(10+9+10+10+11+11+9+11+10+10)=10.1(天).s2甲=110[(10-10.1)2+(9-10.1)2+(10-10.1)2+(10-10.1)2+(11-10.1)2+(11-10.1)2+(9-10.1)2+(11-10.1)2+(10-10.1)2+(10-10.1)2]=0.49.x乙=110(8+10+14+7+10+11+10+8+15+12)=10.5(天),s2乙=110[(8-10.5)2+(10-10.5)2+(14-10.5)2+(7-10.5)2+(10-10.5)2+(11-10.5)2+(10-10.5)2+(8-10.5)2+(15-10.5)2+(12-10.5)2]=6.05.从交货天数的平均数来看,甲供货商的供货天数短一些;从方差来看,甲供货商的交货天数较稳定,因此甲供货商的交货时间比较具有一致性与可靠性.20.(本小题满分13分)(2014·重庆文,17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.[解析]由频率之和为1,求a,然后求出落在[50,60)和[60,70)中的人数,最后用列举法求古典概型的概率.解:(1)∵组距为10,∴(2a+3a+6a+7a+2a)×10=200a=1,∴a=1=0.005.200(2)落在[50,60)中的频率为2a×10=20a=0.1,∴落在[50,60)中的人数为2.落在[60,70)中的学生人数为3a×10×20=3×0.005×10×20=3.(3)设落在[50,60)中的2人成绩为A1,A2,落在[60,70)中的3人为B1,B2,B3.则从[50,70)中选2人共有10种选法,Ω={(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)}其中2人都在[60,70)中的基本事件有3个:(B1,B2),(B1,B3),(B2,B3),故所求概率p=310.21.(本小题满分14分)对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:mg):甲:131514914219101114乙:1014912151411192216(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;(2)计算甲种商品重量误差的样本方差;(3)现从重量误差不低于15的乙种商品中随机抽取2件,求重量误差为19的商品被抽中的概率.[解析](1)茎叶图如图所示甲,乙两种商品重量误差的中位数分别为13.5,14. (2)x甲=13+15+14+14+9+14+21+11+10+910=13.∴甲种商品重量误差的样本方差为110[(13-13)2+(15-13)2+(14-13)2+(14-13)2+(9-13)2+(14-13)2+(21-13)2+(11-13)2+(10-13)2+(9-13)2]=11.6.(3)设重量误差为19的乙种商品被抽中的事件为A .从重量误差不低于15的乙种商品中随机抽取两件共有(15,16),(15,19),(15,22),(16,19),(16,22),(19,22)6个基本事件,其中事件A 含有(15,19),(16,19),(19,22)3个基本事件.∴P (A )=36=12.。
北师大高一数学《必修三综合练习》
必修三综合练习1.算法共有三种逻辑结构,即顺序结构、条件分支结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合2.用更相减损之术求186和98的最大公约数为()A.2B.4C.6D.83.(2013·天津高考)阅读如图1所示的程序框图,运行相应的程序,则输出n的值为()A.7B.6C.5D.44.(2013·重庆高考)如图1是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()图1A.0.2B.0.4C.0.5D.0.65.在下列各图中,两个变量不具有任何关系的是()A.①②B.①③C.②④D.④6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①.在丙地区有20个特大型销售点,要从中抽7个,调查其销售收入和售后服务情况.记这项调查为②.则完成①②这两项调查应采用的抽样方法依次为()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法7.(2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为() 7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.018.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为32、0.25,则n的值是()A.240B.160C.128D.3249.一个社会调查机构就某地居民的月收入调查了20000人,并根据所得数据画出了样本频率分布直方图(如图2所示).为了分析居民的收入与年龄、学历、职业等方面的关系,按月收入用分层抽样方法抽样,若从月收入[3000,3 500](元)段中抽取了30人,则这20000人中共抽取的人数为()图2A.200B.100C.20000D.4010.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.11.2013年武汉电视台问政直播节目首场内容是“让交通更顺畅”,A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:满意一般不满意A部门50%25%25%B部门80%020%C部门50%50%0D部门40%20%40%图4(1)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;(2)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.1.【解析】任何一个算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种,也可以是两种或三种.【答案】D2.【解析】由更相减损之术可知:(186,98)→(98,88)→(88,10)→(78,10)→(68,10)→(58,10)→(48,10)→(38,10)→(28,10)→(18,10)→(8,10)→(8,2)→(6,2)→(4,2)→(2,2).【答案】A3.【解析】n=1,S=0.第一次:S=0+(-1)1×1=-1,-1<2,n=1+1=2,第二次:S=-1+(-1)2×2=1,1<2,n=2+1=3,第三次:S=1+(-1)3×3=-2,-2<2,n=3+1=4,第四次:S=-2+(-1)4×4=2,2=2,满足S≥2,跳出循环,输出n=4.【答案】D4.【解析】由题意知,这10个数据落在区间[22,30)内的有22、22、27、29,共4个,所以其频率为410=0.4,故选B.【答案】B5.【解析】①具有函数关系;②③具有相关关系;④无关系.【答案】D6.【解析】调查①中,由于四个地区产品销售情况有较大差别,故应用分层抽样法;调查②中总体与样本容量较小,故可用简单随机抽样法.【答案】B7.【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】D8.【解析】由32n=0.25得n=128.【答案】C9.【解析】由题意得,月收入在[3000,3500](元)段中的频率是0.0003×500=0.15,该收入段的人数是20000×0.15=3000,从中抽取了30人,说明从每100人中抽取1人,故共抽取20000100=200(人).【答案】A10.【解析】用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,共15种选法,其中都是女同学的选法有3种,即ab,ac,bc,故所求概率为315=15.【答案】1 511.【解】(1)由条形图可得,分别负责问政A,B,C,D四个管理部门的现场市民代表共有200人,其中负责问政A部门的市民为40人.由分层抽样可得从A部门问卷中抽取了20×40200=4份.设事件M=“市民甲被选中进行问卷调查”,所以P(M)=440=0.1.∴若甲选择的是A部门,甲被选中问卷调查的概率是0.1.(2)由图表可知,分别负责问政A,B,C,D四部门的市民分别接受调查的人数为4,5,6,5.其中不满意的人数分别为1,1,0,2个.记对A部门不满意的市民是a;对B部门不满意的市民是b;对D部门不满意的市民是c,d.设事件N=“从填写不满意的市民中选出2人,至少有一人选择的是D部门的”.从填写不满意的市民中选出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6个基本事件;而事件N有(a,c),(a,d),(b,c),(b,d),(c,d)共5个基本事件,所以P(N)=5 6 .∴这两人中至少有一人选择的是D部门的概率是5 6 .。
北师大版高中数学必修三第一章《统计》综合测试题
必修三第一章《统计》综合测试题
1、为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有;
①2000名运动员是总体;
②每个运动员是个体;
③所抽取的100名运动员是一个样本;
④样本容量为100;
⑤这个抽样方法可采用按年龄进行分层抽样;
⑥每个运动员被抽到的概率相等。
2、某单位有A,B,C三部门,其人数比例为3:4:5,现欲用分层抽样方法抽调n
名志愿者支援西部大开发.若在A部门恰好选出了6名志愿者,那么n=
3、某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全
体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196—200号).若第5组抽出的号码为22,则第10组抽出的号码应是.
4、要从编号(1〜50)的50枚最新研制的奥运会特型烟花中随机抽取5枚来进行
燃放试验。
用每部分选取的号码间隔一样的系统抽样的方法确定所选取的5枚烟花的编号可能是()
A.5,10,15,20,25
B.3,13,23,33,43
C.1,2,3,4,5
D.2,4,8,16,32
5、如图是某学校抽取的学生体重的频率分布直方图,已知图中从左到右的前3
个小组的频率依次成等差数列,第2小组的频数为15,则抽取的学生人数为。
最新【北师大版】高中数学必修三:本册综合测试(1)(含解析)
最新北师大版数学精品教学资料本册综合测试(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·四川文,3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法 B.系统抽样法 C .分层抽样法 D.随机数法[答案] C[解析] 按照各种抽样方法的适用范围可知,应使用分层抽样.选C.2.为了了解高一1 500名新生的年龄情况,从中抽取100名新生.就这个问题,有下列说法:①1 500名新生是总体; ②每个新生是个体;③所抽取的100名新生是一个样本; ④样本容量为100;⑤每个新生被抽到的概率相等. 其中正确的个数为( ) A .1 B.2 C .3 D.4[答案] B[解析] 1500名新生的年龄情况是总体;每个新生的年龄是个体;因而④、⑤正确,其它错误.解决本题的前提是正确理解总体、个体、样本、样本容量的概念.3.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C .25 D.15 [答案] B[解析] 利用几何概型公式求解,在区间为[-2,3]上随机选取一个数x ,则x ≤1,即-2≤x ≤1的概率为P =35.4.甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个,命中个数的茎叶图如图,则甲,乙两命中个数的中位数分别为( )甲 乙8 0 93 2 1 1 34 8 765420 2 0 0 1 1 373A.22,20B.24,18 C .23,19 D.23,20[答案] C[解析] 甲命中个数:8、12、13、20、22、24、25、26、27、37,中位数为12(22+24)=23,同理乙的中位数为12(18+20)=19.5.阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( )A .18 B.20 C .21 D.40[答案] B[解析] 本题考查程序框图,当n =1时,S =3,当n =2时,S =3+22+2=9,当n =3时,S =9+23+3=20>15,故输出S =20.对于较为简单的循环结构的框图问题,可直接令n =1,2,3……进行求解.6.某单位有职工150人,其中业务人员110人,管理人员15人,后勤服务人员25人,为了了解职工对工资调整的意见,采用分层抽样的方法抽取管理人员3人,则样本容量为( )A .15 B.30 C .20 D.10[答案] B[解析] 由题意知管理人员一层中的样本抽取比例为315=15,则样本容量在总体中的比例也为15,故样本容量为150×15=30.7.甲、乙、丙、丁4人分乘两辆车,每辆车乘两人,则甲、乙同车的概率是( ) A.12 B.13 C .14 D.23[答案] B[解析] 乘车的所有可能情况是甲、乙→丙、丁;甲、丙→乙、丁;甲、丁→乙、丙,所以甲、乙同车的概率为13.8.在箱子中装有10张卡片,分别写有1~10的10个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为( )A.12 B.14 C .15 D.110 [答案] D[解析] 先后两次抽取卡片,形成的有序数对有(1,1),(1,2),…,(1,10),…,(10,10),共计100个,因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10),共10对数,故x +y 是10的倍数的概率P =10100=110. 9.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2015年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A.2 160 B.2 880C.4 320 D.8 640[答案] C[解析]由题意及频率分布直方图可知,醉酒驾车的频率为(0.01+0.005)×10=0.15,故醉酒驾车的人数为28 800×0.15=4 320.10.一组数据的方差是s2,将这组数据中的每一个数都乘以2,得到一组新数据,其方差是( )A.12s2 B.2s2C.4s2 D.s2 [答案] C[解析]设一组数据x1,x2,…,x n,则s2=x2-x2+x2-x2+…+x n-x2n,将每一个数乘以2,则x′=2x.所以s′2=x1-2x2+x2-2x2+…+x n-2x2n=4n[(x1-x)2+(x2-x)2+…+(x n-x)2]=4s2.11.已知直线y=x+b,b∈[-2,3],则直线在y轴上的截距大于1的概率为( )A.15B.25C.35D.45[答案] B[解析]根据几何概型的概率公式,P=3-13--=25.12.根据如下样本数据A .a >0,b <0 B.a >0,b >0 C .a <0,b <0 D.a <0,b >0[答案] A[解析] 本题考查散点图的应用. 作出散点图如下:由图像不难得出:回归直线y =bx +a 的斜率b <0,截距a >0.所以a >0,b <0.解答本题若没有想到画出散点图,直观通过数据来判断系数b ,a 与0的大小好像无头绪,容易造成错解.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.[答案] 160[解析] 本题考查了分层抽样的特点,因抽样比为280560+420=27,所以男生数应为560×27=160.分层抽样是按比例抽取,一定要先找出抽样比.14.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.(结果用数值表示)[答案] 0.3[解析] 在五个数字1,2,3,4,5中,随机取出三个数字,剩下两个数字,基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},其中事件“两个数字都是奇数”={(1,3),(1,5),(3,5)},故概率为0.3.15.(2015·江苏,4)根据如图所示的伪代码,可知输出的结果S 为________.S ←1 I ←1While I <8S ←S +2 I ←I +3End While Print S[答案] 7[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I =10;结束循环,输出S =7.16.下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为________.[答案] 9[解析] 本题考查频率分布直方图,考查阅读图表的能力. 平均气温不低于25.5℃的城市T 数设为x , 则0.12+0.1011=0.18x. ∴x =9.本题也可以利用矩形面积求解.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. [解析] (1)有关,收看新闻节目多为年龄大的. (2)应抽取的人数为:5×2745=3(人).(3)由(2)知,抽取的5名观众中,有2名观众年龄处于20至40岁,3名观众的年龄大于40岁.由古典概型的概率公式得,所求概率P =610=35.18.(本小题满分12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12.(1)求n 的值;(2)记从袋中随机取出一个小球为白球得二分,为黑球得一分,为红球不得分.现从袋子中取出1个小球,求总得分为二分的概率.[解析] (1)由题意可知n 1+1+n =12,解得n =2.(2)设红球为a ,黑球为b ,白球为c 1,c 2,从袋中取出2个小球的所有等可能基本事件为(a ,b ),(a ,c 1),(a ,c 2),(b ,c 1),(b ,c 2),(c 1,c 2),共6个,记事件A 为“总得分为二分”,包含的基本事件为(a ,c 1),(a ,c 2),共2个. ∴P (A )=26=13.19.(本小题满分12分)已知算法如下所示:(这里S1,S2,…分别代表第一步,第二步,…) S1 输入x ;S2 若x <-2,执行S3;否则,执行S6; S3 y =2x +1; S4 输出y ; S5 执行S12;S6 若-2≤x <2,执行S7;否则执行S10; S7 y =x ; S8 输出y ; S9 执行S12; S10 y =2x -1;S11 输出y ; S12 结束.(1)指出其功能(用数学式子表达); (2)画出该算法的算法框图.[解析] (1)该算法的功能是:x 已知时,求函数 y =⎩⎪⎨⎪⎧2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(2)算法程序图如下.20.(本小题满分12分)(2015·天津文,15)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.[解析] (1)应从甲、乙、丙这三个协会中抽取的运动员人数分别为3,1,2.(2)(i)从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.(ii)编号为A 5,A 6的两名运动员至少有一人被抽到的结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种,所以事件A 发生的概率P (A )=915=35.21.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?[分析](1)根据条件可画出图;(2)用求平均数与方差的公式可求;(3)算出不低于95的频率可求得本题.[解析](1)(2)质量指标值的样本平均数为x=80×0.06×+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104. (3)质量指标值不低于95的产品所占比例的估计值为 0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.22.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:b =n i =1t i -ty i -yn i =1t i -t2,a =y -b t[解析] (1)∵t =1+2+…+77=4,y =2.9+3.3+3.6+4.4+4.8+5.2+5.97=4.3,设回归方程为y =bt +a ,代入公式,经计算得b =3×14+2+0.7+0+0.5+1.8+4.8+4+=1414×2=12.a =y -b t =4.3-12×4=2.3所以,y 关于t 的回归方程为y =0.5t +2.3.(2)∵b =12>0,∴2007年至2013年该区人均纯收入稳步增长,预计到2015年,该区人均纯收入y =0.5×9+2.3=6.8(千元)所以,预计到2015年,该区人均纯收入约6千8百元左右.。
高中数学北师大版必修三期末综合含解析
必修3期末综合达标练习(时间:120分钟,总分值:150分)一、选择题:此题共12小题,每题5分,在每题给出四个选项中,只有一项为哪一项符合题目要求.1.算法三种根本结构是( ).顺序结构、模块结构、选择结构.顺序结构、循环结构、模块结构C.顺序结构、选择结构、循环结构.选择结构、条件结构、循环结构答案:C2.一个射手进行射击,记事件E1:“脱靶〞,E2:“中靶〞, E3:“中靶环数大于4〞,E4:“中靶环数不小于5〞,那么在上述事件中,互斥而不对立事件共有()A.1对B.2对C.3对D.4对解析:选1与E3,E1与E4均为互斥而不对立事件.任取3.如果3个正整数可作为一个直角三角形三条边边长,那么称这3个不同数,那么这3个数构成一组勾股数概率为()3个数为一组勾股数,从1,2,3,4,5中3A.101B.511D.20解析:选C.从1,2,3,4,5中任取3个不同数共有如下10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,15),所以概率为10.应选C.4.总体容量为161,假设采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体() A.4B.5C.6D.7解析:选D.由于161=7×23,即161在四个选项中只能被7整除,故间隔为7时不需剔除个体.5.为积极倡导“学生每天锻炼一小时〞活动,某学校举办了一次以班级为单位播送操比赛,9位评委给高三(1)班打出分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中x)无法看清,假设记分员计算无误,那么数字x应该是()A.2B.3C.4D.5解析:选A.易知x≤4.由题意知记分员在去掉一个最高分94和一个最低分87后,余下7个数字平均数是91,即89+88+92+90+x+93+92+91=91.7所以635+x=91×7=637,所以x=2.6.执行如下列图程序框图,如果输入t=,那么输出n=()A.5B.6 C.7D.8解析:选C.经推理分析可知,假设程序能满足循环,那么每循环一次,S值减少一半,循环6次后S值变为1=2611164,循环7次后S值变为27=128,此时不再满足循环条件,所以结束循环,于是输出n=7.7.在棱长为2正方体ABCD-A1B1C1D1中,点O为底面ABCD中心,在正方体ABCD-A1B1C1D1内随机取一点P,那么点P到点O距离大于1概率为()ππA.12B.1-12ππC.6D.1-6解析:选B.正方体体积为2×2×2=8,以O为球心,1为半径且在正方体内部半球体积为1×4πr3=1×4π23238-2ππ×13=2π31概率为=1-3.那么点P到点O距离大于812.8.5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品概率为() A.B.C.D.1解析:选B.记3件合格品为a1,a2,a3,2件次品为b1,b2,那么任取2件构成根本领件空间为Ω={(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},共10个元素.记“恰有1件次品〞为事件A,那么A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)},共6个元素.故其概率为P(A)=6=0.6.109.从分别写有A、B、C、D、F五张卡片中任取两张,那么这两张卡片上字母顺序恰好相邻概率为() 21A.5B.537C.10D.10答案:A10.甲、乙两名选手参加歌手大赛时,5名评委打分数用茎叶图表示(如图).s1、s2分别表示甲、乙选手分数标准差,那么s1与s2关系是()A.s1>s2B.s1=s2C.s1<s2D.不确定解析:选C.由茎叶图可知:甲得分为78,81,84,85,92;乙得分为--76,77,80,94,93.那么x甲=84,x乙=84,那么s1=1[〔78-84〕2++〔92-84〕2]=22,同理s2=62,故s1<s2,所以选C. 511.对一批产品长度(单位:毫米)进行抽样检测,如图为检测结果频率分布直方图.根据标准,产品长度在区间20~25上为一等品,在区间15~20和25~30上为二等品,在区间10~15和30~35上为三等品.用频率估计概率,现从该批产品中随机抽取1件,那么其为二等品概率是()A.B.C.D.解析:选D.由频率分布直方图性质可知,样本数据在区间25~30上频率为1-5×+++0.03)=,那么二等品频率为+×5=,故任取1件为二等品概率为0.45.a-2 12.设a∈[0,10)且a≠1,那么函数f(x)=log a x在(0,+∞)内为增函数且g(x)=x在(0,+∞)内也为增函数概率为()13A.10B.1012C.5D.5解析:选A.由条件知,a所有可能取值为a∈[0,10)且a≠1,使函数f(x),g(x)在(0,+∞)内都为增函数aa>1,取值范围为所以1<a<2.a-2<0,2-11由几何概型知, P==.二、填空题:此题共4小题,每题5分.13.某中学期中考试后,对成绩进行分析,求出了外语成绩x 对总成绩 y 线性回归方程是y =-,如果该校李明外语成绩是95分,那么他总成绩可能是________分.(精确到整数)解析:当x =95时,y =×95-≈597.答案:59714.一机构为调查某地区中学生平均每天参加体育锻炼时间x(单位:分钟),分以下四种情况统计:①0≤x ≤10;②10<x ≤20;③20<x ≤30;④x>30.调查了10000名中学生,如图是此次调查中某一项程序框图,其输出结果是7300,那么平均每天参加体育锻炼时间在[0,20]分钟内学生频率是________.解析:分析程序中各变量、各语句作用,再根据程序框图所示顺序,可知该程序作用是统计10000名中学生中,平均每天参加体育锻炼时间超过20分钟人数.由输出结果为7300,那么平均每天参加体育锻炼时间不超过2700=20分钟人数为 10000-7300=2700,故平均每天参加体育锻炼时间不超过20分钟(≤20分钟)频率P =100000.27.答案:15.在区间[-2,2]上,随机地取一个数x ,那么x 2∈[0,1]概率是________.解析:因为x 2∈[0,1],所以x ∈[-1,1].所以P =[-1,1]的区间长度 1[-2,2]的区间长度=.2答案:1216.某射击选手射击一次,击中 10环、9环、8环概率分别为 ,,,那么该射击选手射击一次,击中大于或等于 9环概率是________,击中小于 8环概率是________.解析:设“击中10环〞“击中9环〞“击中8环〞分别为事件 A ,B ,C ,那么P(A)=,P(B)=,P(C)=,所以P(A +B)=P(A)+P(B)=,P(A +B +C)=P(A)+P(B)+P(C)=,所以P =1-=0.2.答案:三、解答题:本大题共 6小题,共 70分.解容许写出必要文字说明、证明过程或演算步骤.17.(本小题总分值10分)某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球直径(单位:mm),将数据分组如下:分组频数频率~10~20~50~20合计100请在上表中补充完成频率分布表(结果保存两位小数),并在图中画出频率分布直方图;(2)假设以上述频率作为概率,标准乒乓球直径为mm,试求这批球直径误差不超过mm概率;统计方法中,同一组数据经常用该组区间中点值(例如区间~中点值是40.00)作为代表.据此估计这批乒乓球直径平均值(结果保存两位小数).解:(1)频率分布表如下:分组频数频率频率组距~105~2010~5025~2010合计1001频率分布直方图如图.(2)误差不超过mm,即直径落在~内概率为++=0.9.(3)整体数据平均值约为×+×+×+×≈40.00(mm).18.(本小题总分值12分)某车间为了规定工时定额,需要确定加工零件所花费时间,为此做了四次试验,得到数据如下表所示:零件个数x(个)2345加工时间y(h)在给定坐标系中画出表中数据散点图;求出y 关于x 线性回归方程y =bx +a ,并在坐标系中画出回归直线;试预测加工10个零件需要多少时间.解:(1)散点图如图.4--=,(2)由表中数据得:∑=x i y i =,x=,yi14∑x i 2=54.i =1代入公式得 b =,a =,所以y =+1.05.回归直线如下列图.将x =10代入线性回归方程,得y =×10+=8.05(h).所以预测加工10个零件需要h.19.(本小题总分值 12分)如图,OA =1,在以O 为圆心,OA 为半径半圆弧上任取一点 B ,求使△AOB 面积大于或等于 1概率.4解:如下列图,作 OC ⊥OA ,过OC 中点D 作OA 平行线EF.︵1 .连接OE ,OF ,那么当点B 位于EF 上时,S △AOB ≥41 1因为OD =OC =OF ,且OC ⊥EF ,22所以∠DOF =60°,所以∠EOF =120°,所以l EF =120°·π·1=2π,︵180°32π︵l EF 32所以所求概率 P = ==.20.(本小题总分值 12分)一家商场为了确定营销策略,进行了投入促销费用 x 和商场实际销售额 y 试验,得到如下四组数据.投入促销费用 x(万元) 2 35 6 商场实际营销额 y(万元)100200300400画出上述数据散点图,并据此判断两个变量是否具有较好线性相关性;求出x ,y 之间线性回归方程y =bx +a ;假设该商场方案营销额不低于600万元,那么至少要投入多少万元促销费用?解:(1)如下列图,从散点图上可以看出两个变量具有较好线性相关性.- 2+3+5+6(2)因为x = 4=4,- 100+200+300+400=250 ,y = 44--∑〔x i -x 〕〔y i-y 〕所以b = i =14=70,-∑〔x i -x 〕2i =1- -a =y -bx =250-70×4=-30.故所求线性回归方程为y =70x -30.(3)由题意得 70x -30≥600,即x ≥600+30=9,70所以假设该商场方案营销额不低于 600万元,那么至少要投入9万元促销费用.21.(本小题总分值12分)设甲、乙、丙三个乒乓球协会运发动人数分别为27,9,18.现采用分层抽样方法从这三个协会中抽取 6名运发动组队参加比赛.求应从这三个协会中分别抽取运发动人数.(2)将抽取6名运发动进行编号,编号分别为 A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运发动中随机抽取 2人参加双打比赛.①用所给编号列出所有可能结果;②设 A 为事件“编号为 A 5和 A 6两名运发动中至少有1人被抽到〞,求事件A 发生概率.解:(1)应从甲、乙、丙三个协会中抽取运发动人数分别为3,1,2.(2)①从6名运发动中随机抽取2人参加双打比赛所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A5和A6两名运发动中至少有1人被抽到所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.3因此,事件A发生概率P(A)==.15522.(本小题总分值12分)某产品三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品等级.假设S≤4,那么该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A A3A4A 25质量指标(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1) (x,y,z)产品编号A6A7A8A9A10质量指标(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2) (x,y,z)利用上表提供样本数据估计该批产品一等品率;(2)在该样本一等品中,随机抽取2件产品,①用产品编号列出所有可能结果;②设事件B为“在取出2件产品中,每件产品综合指标S都等于4〞,求事件B发生概率.解:(1)计算10件产品综合指标S,如下表:产品A1A2A3A4A5A6A7A8A9A10编号S4463454535其中S≤4有A1,A2,A4,A5,A7,A9,共6件,故该样本一等品率为6=,10从而可估计该批产品一等品率为.6.(2)①在该样本一等品中,随机抽取2件产品所有可能结果为( A1,A2),(A1,A4),(A1,A5),(A1,A7),(A1,A9),(A2,A4),(A2,A5),(A2,A7),(A2,A9),(A4,A5),(A4,A7),(A4,A9),(A5,A7),(A5,A9),(A7,A9),共种.②在该样本一等品中,综合指标S等于4产品编号分别为A1,A2,A5,A7,那么事件B发生所有可能结果为( A1,A2),(A1,A5),(A1,A7),(A2,A5),(A2,A7),(A5,A7),共6种.2所以P(B)=15=5.。
2019_2020学年高中数学综合水平测试北师大版必修3
综合水平测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.下面的四个问题中必须用选择结构才能实现的有( ) ①已知梯形上、下两底长为a ,b ,高为h ,求梯形面积; ②求方程ax +b =0(a 、b 为常数)的根; ③求三个实数a ,b ,c 中的最小者;④计算函数f (x )=⎩⎪⎨⎪⎧x 2(x >0),2x -7(x ≤0)的函数值.A .4个B .3个C .2个D .1个答案 B解析 ①中无需用选择结构,只需用顺序结构即可,其他三个问题都有条件要求,故都应用选择结构.2.要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的( )A .平均数B .方差C .众数D .频率分布答案 D解析 由样本的频率分布可以估计总体在某一范围内的分布情况.3.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48 答案 B 解析606=10,间隔应为10,故选B. 4.有5张卡片上分别写有数字1,2,3,4,5,将它们混合,然后再任意排成一行,则得到的数能被2或5整除的概率为( )A .0.2B .0.4C .0.6D .0.8答案 C解析 能够被2或5整除的数个位上只能是2,4,5.个位上的数字选定后,把其余4个数字排列,共得到72种.而基本事件的数目为5个数字全排,共有120种排法,所以P =72120=35=0.6,故选C. 5.为了解某县甲、乙、丙三所学校高三数学模拟的考试成绩,采取分层抽样方法,从甲校的1260份试卷、乙校的720份试卷、丙校的900份试卷中进行抽样调研.如果从丙校的900份试卷中抽取了45份试卷,那么这次调研共抽查的试卷份数为( )A .88B .99C .63D .144答案 D解析 从丙校的900份试卷中抽取了45份试卷,说明抽样比是45900=120,所以这次调研共抽查的试卷份数为(1260+720+900)×120=144.6.阅读下列程序: Input x If x <0 Theny =π2x +3ElseIf x >0,Theny =-π2x +5Elsey =0End If End If Print y End如果输入x =-2,则输出结果y 为( ) A .3+π B .3-π C .π-5 D .-π-5答案 B解析 输入x =-2,则x =-2<0成立,则y =π2×(-2)+3=-π+3,则输出3-π.7.若在利用计算器求30个数据的平均数时,把其中一个数据105输入时输为15,则由此求出的平均数与实际平均数的差为( )A .-3B .3.5C .3D .-0.5答案 A解析 设其余29个数据和为A ,则由题意设实际平均数为x -,由错误数据求出的平均数为x -′,则⎩⎪⎨⎪⎧A +10530=x -,A +1530=x -′.得x -′-x -=-3.8.如下图中,有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应当选择的游戏盘为( )答案 A解析 P (A )=38,P (B )=26=13,P (C )=4r 2-πr 24r 2=4-π4,P (D )=r 2πr 2=1π. 9.统计某校400名学生数学学业水平测试成绩,得到样本频率分布直方图如下图,规定不低于60分为及格,不低于80分为优秀,则及格率与优秀人数分别是( )A .80%,80B .80%,60C .60%,80D .60%,60答案 A解析 观察频率分布直方图可得,不及格率为(0.005+0.015)×10=0.2,优秀率为(0.01+0.01)×10=0.2,所以及格率是1-0.2=0.8=80%,优秀人数是400×0.2=80.10.袋中有红,黄,白色球各一个,每次任取一个,有放回地抽取3次,则下列事件中概率是89的是( )A .颜色全相同B .颜色不全相同C .颜色全不相同D .无红色答案 B解析 可画树状图得所有可能结果有27种,颜色全相同有3种可能,故颜色全相同的概率为19.因此,颜色不全相同的概率为1-19=89,故选B.11.连续抛掷一枚硬币3次,则至少有一次正面向上的概率是( ) A.18 B.78 C.17 D.58答案 B解析 连续抛掷一枚硬币3次的结果有有限个,属于古典概型.设(x ,y ,z )表示第一次上面的结果是x ,第二次上面的结果是y ,第三次上面的结果是z ,则全部结果是(正,正,正)、(正,正,反)、(正,反,正)、(正,反,反)、(反,正,正)、(反,正,反)、(反,反,正)、(反,反,反),共8种情况,三次都是反面的结果仅有(反,反,反)1种情况,所以至少有一次正面向上的概率是1-18=78.12.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23答案 C解析 本题考查了几何概型的概率公式的应用,同时考查了三角形、矩形的面积公式的应用.由题意知,可设事件A 为“点Q 落在△ABE 内”,构成试验的全部结果为矩形ABCD 内所有点,事件A 为△ABE 内的所有点,又因为E 是CD 的中点,所以S △ABE =12AD ×AB ,S矩形ABCD=AD ×AB ,所以P (A )=12,故选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数据70,71,72,73的标准差是________. 答案52解析 x -=70+71+72+734=71.5,s =14[(70-71.5)2+(71-71.5)2+(72-71.5)2+(73-71.5)2] =52. 14.下图是一个程序框图,则其运行结果(即输出S 的值)是________.答案 30解析 程序框图表示2+4+6+8+10,为30.15.如图,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为13a 与12a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.答案512解析几何概型P (A )=构成事件A 的面积试验全部结果所构成的面积=12⎝ ⎛⎭⎪⎫12a +13a b ab =512. 16.如图所示,沿“田”字型路线从A 往N 走,且只能向右或向下走,随机地选一种走法,则经过点C 的概率为________.答案 23解析 由A 到N 所有走法有6种,经过点C 的走法有4种,故P =46=23.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤) 17.(10分)根据下面的程序,仔细观察后画出其算法的算法框图. i =-1For i =-1 To 1 x =i y =x *x *x i =i +0.2 PRINT “y =”;y Next END解由给出的程序可以看出,这是一个用循环语句编写的程序,第一次循环取x=-1,第二次取x=-1+0.2,…,最后一次取x=1,这实际上就是把区间[-1,1]平均分成10等份,求函数f(x)=x3在区间的端点及各个等分点处的函数值问题.由程序写出程序框图,关键是将循环语句(For或Do Loop语句)中的循环条件及循环体所表达的内容填入算法框图的循环结构中去.算法框图如右图所示.18.(12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1234 5f a 0.20.45 b c(1)若所抽取的205的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2.现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.解本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力及分类与整合思想.(1)由频率分布表得a+0.2+0.45+b+c=1,即a+b+c=0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=0.35-b-c=0.1.所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取两件,所有可能的结果为:(x 1,x 2),(x 1,x 3),(x 1,y 1),(x 1,y 2),(x 2,x 3),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2).设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取两件,其等级系数相等”,则A 包含的基本事件为:(x 1,x 2),(x 1,x 3),(x 2,x 3),(y 1,y 2),共4个. 又基本事件的总数为10, 故所求的概率P (A )=410=0.4.19.(12分)甲盒中有1个红色球,2个白色球,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意地取出1个球,计算下列事件的概率.(1)取出的2个球都是白球; (2)取出的2个球中至少有1个白球.解 设红色球为1号,2个白色球分别为2号、3号,用(x ,y )表示第一次取出的号码为x 的球,第二次取出的号码为y 的球,则有放回地连续抽取2个包含基本事件有有限个,分别是(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9个.(1)设取出的2个球都是白球为事件A ,事件A 包含的基本事件有(2,2)、(2,3)、(3,2)、(3,3)共4个, 所以P (A )=49,即取出的2个球都是白球的概率是49.(2)设取出的2个球中至少有1个白球为事件B ,则事件B 的对立事件是取出的2个球没有白球即都是红球,仅有(1,1),所以P (B )=1-19=89,即取出的2个球中至少有1个白球的概率是89.20.(12分)在试图破坏一座军火库的行动中,一架轰炸机将要在一个边长为1 km 的正方形区域中投下炸弹,这个区域的每个角上都有一座被遗弃的建筑.若炸弹落在距任一建筑物13km 的范围内,该建筑将被摧毁(建筑物的大小可忽略不计),试求如下概率:(1)没有任何建筑物被摧毁; (2)其中有一座建筑物被摧毁; (3)至少有两座建筑物被同时摧毁;(4)炸弹落在了距一特定的建筑物恰为14 km 处.解 试验发生的范围为图形中的正方形区域面积为1.(1)设事件A ={没有任何建筑物被摧毁},则只有当着弹点落在距四边形的任一顶点都必须超过13 km 时建筑物不会被摧毁.事件发生的区域如右图所示,所以事件发生的区域面积可由1减去事件不发生的区域面积,事件A 的概率为P (A )=1-π91=1-π9.(2)设事件B ={其中有一座建筑物被摧毁},则当着弹点落在距建筑物13 km 以内时,该建筑物被摧毁,因此其中有一座建筑物被摧毁的事件恰好是问题(1)的补集,即图中阴影以外的部分.因此事件B 的概率值为P (B )=π91=π9或P (B )=1-P (A )=1-⎝⎛⎭⎪⎫1-π9=π9.(3)设事件C ={至少有两座建筑物被同时摧毁},从图中可知没有这样的着弹点距两建筑物都在13km 以内.因此至少有两座建筑物被同时摧毁是空集,概率P (C )=0.(4)设事件D =⎩⎨⎧⎭⎬⎫炸弹落在了距一特定的建筑物恰为14 km 处,则此事件是一个半径为14 km的圆弧,圆弧的面积可看作是0,因此事件的概率为0.21.(12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(1)假设n =2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表:应该种植哪一品种?附:样本数据x 1,x 2,…,x n 的样本方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为样本平均数.解 本小题考查概率以及平均数和方差的求法且要求对数据进行分析并给出合理的结果.(1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4.令事件A =“第一大块地都种植品种甲”,从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以P (A )=16.(2)品种甲的每公顷产量的样本平均数和样本方差分别为: x -甲=18×(403+397+390+404+388+400+412+406)=400,s 2甲=18×[32+(-3)2+(-10)2+42+(-12)2+02+122+62]=57.25.品种乙的每公顷产量的样本平均数和样本方差分别为: x -乙=18×(419+403+412+418+408+423+400+413)=412,s 2乙=18×[72+(-9)2+02+62+(-4)2+112+(-12)2+12]=56.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.22.(12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:- 11 -(1)估计该校男生的人数;(2)估计该校学生身高在170~185 cm 之间的概率;(3)从样本中身高在180~190 cm 之间的男生中任选2人,求至少有1人身高在185~190 cm 之间的概率.解 (1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170~185 cm 之间的学生有14+13+4+3+1=35人,样本容量为70,所以样本中学生身高在170~185 cm 之间的频率f =3570=0.5,故由f 估计该校学生身高在170~185 cm 之间的概率p 1=0.5.(3)样本中身高在180~185 cm 之间的男生有4人,设其编号为①,②,③,④,样本中身高在185~190 cm 之间的男生有2人,设其编号为⑤,⑥.从上述6人中任取2人的树状图为:故从样本中身高在180~190 cm 之间的男生中任选2人的所有可能结果数为15,至少有1人身高在185~190 cm 之间的可能结果数为9,因此,所求概率p 2=915=35.。
2019-2020高中北师版数学必修3章末综合测评 3
章末综合测评(三)(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.随机事件的概率总在[0,1]内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对C[随机事件的概率总在(0,1)内,不可能事件的概率为0,必然事件的概率为1.]2.下列事件中,随机事件的个数为()①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4 ℃时结冰.A.1B.2C.3 D.4C[①在某学校校庆的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.]3.甲、乙、丙三人随意坐一排座位,乙正好坐中间的概率为()A.12 B.13 C.14 D.16B[甲、乙、丙三人随意坐有6个基本事件,乙正好坐中间,甲、丙坐左右两侧有2个基本事件,故乙正好坐中间的概率为26=13.]4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是 ( )A .A 与C 互斥B .B 与C 互斥 C .任何两个均互斥D .任何两个均不互斥B [因为事件B 是表示“三件产品全是次品”,事件C 是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.]5.从含有3个元素的集合中任取一个子集,所取的子集是含有2个元素的集合的概率是( )A.310B.112C.4564D.38D [设集合为{a ,b ,c },则所有子集共8个,其中含有2个元素的为{a ,b },{a ,c },{b ,c },所以概率为38.]6.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是( )A.2-32 B.2+32 C.1+32 D.1-32A [易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S=4-234=2-32.]7.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34C [基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.]8.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S 3的概率是( )A.23B.13C.34D.14A [如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S 3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.]9.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4D [事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1);当n =3时,落在直线x +y =3上的点为(1,2)、(2,1);当n =4时,落在直线x +y =4上的点为(1,3)、(2,2);当n =5时,落在直线x +y =5上的点为(2,3).显然当n =3,4时,事件C n 的概率最大,为13.]10.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B .1-π4C.π8 D .1-π8B [长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.]11.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512A [若方程有两个不相等的实数根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.]12.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1 C.12<p 2<p 1 D .p 1<12<p 2D [如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一个盒子中有10个相同的球,分别标有号码1,2,3,…,10,从中任选一球,则此球的号码为偶数的概率是________.12 [取2号,4号,6号,8号,10号是互斥事件,且概率均为110,故有110+110+110+110+110=12.]14.如图的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.235 [由题意得138300=S 阴5×2,S 阴=235.]15.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为______.110 [先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.]16.在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.23[∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎨⎧ Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.[解] (1)从甲、乙、丙、丁四个人中选两名代表,共有{甲、乙},{甲、丙},{甲、丁},{乙、丙},{乙、丁},{丙、丁}6个基本事件,甲被选中的事件有{甲、乙},{甲、丙},{甲、丁}共3个,若记甲被选中为事件A ,则P (A )=36=12.(2)记丁被选中为事件B ,则P (B )=1-P (B )=1-12=12.18.(本小题满分12分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料.公司要求此员工从5杯饮料中选出3杯A 饮料一一品尝后,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.[解] 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.19.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率;(2)求事件“|x -y |=2”的概率.[解] 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件.所以P (A )=336=112.即事件“x +y ≤3”的概率为112.(2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件.所以P (B )=836=29.即事件“|x -y |=2”的概率为29.20.(本小题满分12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12.(1)求n 的值;(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.[解] (1)由题意可得n 1+1+n=12,解得n =2, (2)设红球为a ,黑球为b ,白球为c 1,c 2,从袋子中取出2个小球的所有基本事件为:(a ,b ),(a ,c 1),(a ,c 2),(b ,c 1),(b ,c 2),(c 1,c 2),共有6个,其中得2分的基本事件有(a ,c 1),(a ,c 2),所以总得分为2分的概率为26=13.21.(本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.[解] (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎨⎧ a =1,b =2或⎩⎨⎧ a =2,b =4或⎩⎨⎧ a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎨⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎨⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0, 即⎩⎪⎨⎪⎧ 2a >b ,2a >3,b <3,a >0,b >0,或⎩⎪⎨⎪⎧ 2a <b ,2a <3,b >3,a >0,b >0,时,x >0,y >0.当b =1或2时,a =2,3,4,5,6;当b =4或5或6时,a =1.所以方程组只有正数解的概率为P =1336.22.(本小题满分12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A ,B ,C 三个区中抽取7个工厂进行调查,已知A ,B ,C 区中分别有18,27,18个工厂.(1)求从A ,B ,C 区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.[解] (1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为763=19,所以从A,B,C三个区中应分别抽取的工厂个数为2,3,2.(2)设A1,A2为在A区中抽得的2个工厂,B1,B2,B3为在B区中抽得的3个工厂,C1,C2为在C区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共有21种.随机地抽取的2个工厂至少有1个来自A区的结果(记为事件X)有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2)共有11种,所以这2个工厂中至少有1个来自A区的概率为P(X)=11 21.。
2022-2021学年高中数学北师大版必修3模块综合测评
模块综合测评一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个班级共有12个班,每个班同学的学号都从1到50,为了沟通学习阅历,要求每班学号为14的同学留下,这里运用的是()A.分层抽样法B.抽签法C.随机数表法D.系统抽样法【解析】依据各种抽样的特点知该抽样方法为系统抽样法.【答案】 D2.下列选项中,正确的赋值语句是()A.A=x2-1=(x+1)(x-1)B.5=AC.A=A*A+A-2D.4=2+2【解析】赋值语句的表达式“变量=表达式”,故C正确.【答案】 C3.执行如图1所示的程序框图,则输出的k的值是()图1A.3 B.4C.5 D.6【解析】k=1,s=1+02=1;k=2,s=1+12=2;k=3,s=2+22=6;k=4,s=6+32=15,k=5,s=15+42=31>15.故输出k=5,选C.【答案】 C4.已知x,y的取值如下表所示:x 23 4y 54 6假如y与x呈线性相关,且线性回归方程为y=bx+72,则b等于() A.-12 B.12C.-110 D.110【解析】由表格数据x=3,y=5,又线性回归方程过(x,y),即过点(3,5),∴5=3b+72,∴b=12.【答案】 B5.用二分法求方程的近似解,精确度为ε,则循环结构的终止条件为()A.|x1-x2|>εB.|x1-x2|<εC.x1<ε<x2D.x2<ε<x1【解析】本题考查二分法的实际应用.结合二分法关于精确度的要求可知,当精确度为ε时,只要|x1-x2|<ε时,循环终止,故选B.【答案】 B6.奥林匹克会旗中心有5个相互套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则大事“甲分得红色”与“乙分得红色”是()图2A.对立大事B.不行能大事C.互斥但不对立大事D.不是互斥大事【解析】甲、乙不能同时得到红色,因此这两个大事是互斥大事;又甲、乙可能都得不到红色,即“甲或乙分得红色”的大事不是必定大事,故这两个大事不是对立大事.【答案】 C7.某中学高三班级从甲、乙两个班级中各选出7名同学参与数学竞赛,他们取得的成果(满分100分)的茎叶图如图3,其中甲班同学的平均分是85,乙班同学成果的中位数是83,则x+y的值为()图3A.7 B.8C.9 D.10【解析】∵85×7=2×70+3×80+2×90+30+x,∴x=5.又∵乙班同学成果的中位数是83,∴y=3,∴x+y=5+3=8,故选B.【答案】 B8.(2022·潍坊月考)执行如图4所示的程序框图,若输入n=10,则输出S=()图4A.511 B.1011C.3655 D.7255【解析】由于S=13,i=4<10,所以S=13+115=25,i=6<10,所以S=25+135=37,i=8<10,所以S=37+163=49,i=10=10,所以S=49+199=511,i=12>10,输出S=511.【答案】 A9.某校进行2022年元旦汇演,七位评委为某班的小品打出的分数茎叶统计图如图5,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()56798446479 3图5A.85,1.6 B.85,4C.84,1.6 D.84,0.8【解析】由已知的茎叶图七位评委为某班的小品打出的分数为79,84,84,86,84,87,93.去掉一个最高分93和一个最低分79后.x=84+84+86+84+875=85.方差s2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=1.6.【答案】 A10.(2021·广东高考)已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1【解析】记3件合格品为a1,a2,a3,2件次品为b1,b2,则任取2件构成的基本大事空间为Ω={(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},共10个元素.记“恰有1件次品”为大事A,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2)},共6个元素.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学期中复习题(2015.04.24)
一、选择题(本大题共12小题,每小题5分,共60分.)
1.下列描述不是解决问题的算法的是( )
A .从中山到北京先坐汽车,再坐火车
B .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为1
C .方程x 2-4x +3=0有两个不等的实根
D .解不等式ax +3>0时,第一步移项,第二步讨论
2.用二分法求方程的近似解,精确度为ε,则循环结构的终止条件为( )
A .|x 1-x 2|>ε
B .|x 1-x 2|<ε
C .x 1<ε<x 2
D .x 2<ε<x 1
3.一个年级有20个班,每班都是50人,每个班的学生的学号都是1~50.学校为了了解这个年级的作业量,把每个班中学号为5,15,25,35,45的学生的作业留下,这里运用的是( )
A.系统抽样
B.分层抽样
C.简单随机抽样 D .随机数表法抽样
4.某单位有职工750人,其中青年职工350人,中年职工250
人,老年职工150人,为了了解该单位职工的健康情况,用分层
抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本
容量为( )
A .7
B .15
C .25
D .35
5.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 [15.5,19.5) 4
[19.5,23.5) 9 [23.5,27.5) 18
[27.5,31.5) 11 [31.5,35.5) 12
[35.5,39.5) 7 [39.5,43.5) 3
据样本的频率分布估计,数据落在[31.5,43.5)的概率是( )
A .16
B .13
C .12
D .23
6.把红、黑、白4张纸牌随机地分发给甲、乙、丙、丁,1个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )
A .不可能事件
B .互斥但不对立事件
C .对立事件
D .以上答案都不对
7.执行如图所示的程序框图,若输入n =10,则输出S =( )
A .511
B .1011
C .3655
D .7255
8.一块各面均有油漆的正方体被锯成1000个同样大小的正方体,若将这些小正方体均匀搅混在一起,则任意取出的一小正方体其两面均涂有油漆的概率是( )
A .12512
B .253
C .101
D . 12
1 9.将数字1,2,3,4填入标号为1,2,3,4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是( )
A .41
B .83
C .241
D .44
9 10.某人从甲地去乙地共走了500 m ,途经一条宽为x m 的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已
知该物品能被找到的概率为2425
,则河宽为( )
A .80 m
B .20 m
C .40 m
D .50 m
11.甲、乙两人的各科成绩如下茎叶图,则下列说法不正确的是( )
A .甲、乙两人的各科平均分相同
B .甲的中位数是83,乙的中位数是85
C .甲各科成绩比乙各科成绩稳定
D .甲的众数是89,乙的众数为87
12.从分别写有A ,B ,C ,D ,F ,的五张卡片中任取两张,这两张卡片上的字母
顺序恰好相邻的概率为( )A .52 B .51 C .103 D .10
7 二、填空题(本大题共4小题,每小题4分,共16分.)
13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为________.
14.下列程序运行的结果是________.
15.两个骰子各掷一次,至少有一个骰子是3点的概率
为___________.
16.下表是某厂1~4月份用水量(单位:百吨)的一组数
据:
月份x 1 2 3 4
用水量y 4.5 4 3 2.5
由其散点图可知,用水量y 与月份x 之间有较好的线性
相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=
________.
三、解答题(本大题共6小题,共74分.)
17.(本题满分12分)已知一组数据10321,,,,x x x x 的方差是2,并且21)3(-x +22)3(-x +…+120)3(210=-x ,求x .
18.(本题满分12分)(2014·湖南文,17)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下: (a ,b),(a ,b -),(a ,b),(a -,b),(a -,b -),(a ,b),(a ,b),(a ,b -),(a -,b),(a ,b -),(a -,b -),(a ,b),(a ,b -),(a -,b),(a ,b)
其中a ,a -分别表示甲组研发成功和失败;b 、b -分别表示乙组研发成功和失败.
(1)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.
19.(本题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100
(1)中的概率及纤度小于1.40的概率是多少?
20.(本题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A、B、C(单位:人).
(1)求x、y;(2)2人都来自高校C的概率.
21.(本题满分12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器
(1)
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?
22.(本题满分14分)某超市为了解顾客的购物量及结算时间等信息,安排一名
(1)确定x,y的值,并求顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过
...2min的概率.(注:将频率视为概率)。