北京市通州区2019年中考数学模拟试卷(精品解析) (1)

合集下载

【精品】2019年通州区初三数学一模参考答案

【精品】2019年通州区初三数学一模参考答案

(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.

………………
26. 解:( 1)∵ 二次函数 y x2 ax b 在 x 0 和 x 4时的函数值相等.
∴对称轴为直线 x 2 .
( 2)① 不妨设点 M 在点 N 的左侧 .
……………… 1 分
∵对称轴为直线 x 2, MN 2 ,
CA CB, ACG BCF ,
CG CF ,
A G
D
B
C
F
E
∴△ ACG ≌△ BCF .
∴ AG BF .
……………… 5 分
∵点 B 关于射线 AD 的对称点为 E ,
∴ BF ∴ AF ∴ AF
EF . AG GF . EF CF .
另一种证法:作 FAH
………………
………………
60 交 FC 的延长线于点 H ,连接 BF.
13. 40 14. E,两点之间线段最短
15. 10
16. 4
三、解答题 (本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第 27, 28 题,每小题 7 分)
17. 解 : 原式 = 2 6
3 1 23
3
= 2 2 3 1 23
…………………
4分
=1 .
……………… 6 分
y 10
另解二:连接 CD. 先求 AE 的长,再证 FC =FD .
9
24. ( 1)补全表格: 7.6 .
……………… 1 分
8
( 2)描点,画图象 .
……………… 3 分
7
( 3)结合画出的函数图象,解决问题:
6

【精品】北京市通州区2019年中考数学模拟试卷(Word版,含答案)

【精品】北京市通州区2019年中考数学模拟试卷(Word版,含答案)

北京市通州区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对2.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.化简的结果是()A .B .C .a ﹣bD .b ﹣a7.二次函数y =ax 2+bx+c (a ≠0)的图象如图,给出下列四个结论:①a <0;②b >0;③b2﹣4ac >0;④a+b+c <0;其中结论正确的个数有( )A .1个B .2个C .3个D .4个8.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是( )A .B .C .D .9.在平面直角坐标系中,已知线段AB 的两个端点分别是A (4,﹣1),B (1,1)将线段AB 平移后得到线段A ′B ′,若点A 的坐标为(﹣2,2),则点B ′的坐标为( ) A .(﹣5,4)B .(4,3)C .(﹣1,﹣2)D .(﹣2,﹣1)10.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是( )A .甲运动员得分的平均数小于乙运动员得分的平均数B .甲运动员得分的中位数小于乙运动员得分的中位数C .甲运动员得分的最小值大于乙运动员得分的最小值D .甲运动员得分的方差大于乙运动员得分的方差二.填空题(共6小题,满分18分,每小题3分)11.在函数中,自变量x的取值范围是_______.12.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为__________.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.14.如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是_________.15.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作_________.16.在△ABC中,已知∠CAB=60°,D.E分别是边AB.AC上的点,且∠AED=60°,ED+DB =CE,∠CDB=2∠CDE,则∠DCB等于___________.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.20.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(5分)已知关于x的一元二次方程x2+mx﹣6=0.(1)求证:不论m为何实数,方程总有两个不相等的实数根;(2)若m=1,用配方法解这个一元二次方程.22.(5分)某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1.表2和表3.表1:小张抽样调查单位3名职工的健康指数表2:小王抽样调查单位10名职工的健康指数表3:小李抽样调查单位10名职工的健康指数根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为_______(2)小张、小王和小李三人中,______的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.24.(5分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.25.(5分)阅读下列材料:阅读下列材料:在《北京城市总体规划(2004 年﹣2020 年)》中,房山区被确定为城市发展新区和生态涵养区,承担着首都经济发展、生态涵养、人口疏解和休闲度假等功能.近年来房山区地区生产总值和财政收入均稳定增长.2011 年房山区地方生产总值是 416.0 亿元;2012 年是科学助力之年,地方生产总值 449.3 亿元,比上一年增长8.0%;2013 年房山努力在区域经济发展上取得新突破,地方生产总值是 481.8 亿元,比上年增长 7.2%;2014 年房山区域经济稳中提质,完成地方生产总值是 519.3 亿元,比上年增长 7.8%;2015 年房山区统筹推进稳增长,地区生产总值是 554.7 亿元,比上年增长了 6.8%;2016 年经济平稳运行,地区生产总值是 593 亿元,比上年增长了 6.9%.根据以上材料解答下列问题:(1)选择折线图或条形图将 2011 年到 2016 年的地方生产总值表示出来,并在图中标明相应数据;(2)根据绘制的统计图中的信息,预估 2017 年房山区地方生产总值是________ 亿元,你的预估理由是_________.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是________;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=_________.(4)结合函数的图象,写出该函数的一条性质:_________.27.(7分)对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:①不论m为何值,函数图象一定过定点(﹣1,﹣3);②当m=﹣1时,函数图象与坐标轴有3个交点;③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.28.(7分)已知如图是边长为10的等边△ABC.(1)作图:在三角形ABC中找一点P,连接PA.PB.PC,使△PAB.△PBC.△PAC面积相等.(不写作法,保留痕迹.)(2)求点P到三边的距离和PA的长.29.(8分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD.BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x (0<x<3).(1)填空:PC=_______,FC=_______-;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.参考答案一.选择题1.解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故选:C.2.解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.3.解:∵530060是6位数,∴10的指数应是5,故选:B.4.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.5.解:A.是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项正确;C.是中心对称图形,故本选项错误;D.是中心对称图形,故本选项错误;故选:B.6.解:原式==.故选:B.7.解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.8.解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.9.解:∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选:A.10.解:A.由图可知甲运动员得分8场得分大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项错误;B.由图可知甲运动员8场得分大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误;C.由图可知甲运动员得分最小值是5分以下,乙运动员得分的最小值是5分以上,甲运动员得分的最小值小于乙运动员得分的最小值,此选项正错误;D.由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,甲运动员得分的方差大于乙运动员得分的方差,此选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:根据题意,知,解得:x≥4,故答案为:x≥4.12.解:S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.13.解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.14.解:∵BC=AC,∴=,∵直线AD∥BE∥CF,∴=,即=解得:EF=3,故答案为:3.15.解:根据正数和负数的定义可知,“减少6%”可以记作﹣6%.故答案为:﹣6%.16.解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB 中,∴△ACD≌△FCB (SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.20.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.21.(1)证明:△=m2﹣4×1×(﹣6)=m2+24.∵m2≥0,∴m2+24>0,即△>0,∴不论m为何实数,方程总有两个不相等的实数根;(2)解:当m=1时,原方程为x2+x﹣6=0,移项,得:x2+x=6,配方,得:x2+2×x+()2=6+()2,即(x+)2=()2,开方,得:x+=±,∴x1=2,x2=﹣3.22.解:(1)扇形统计图中老年职工所占部分的圆心角度数为360°×20%=72°,故答案为:72°;(2)小李的抽样调查的数据能够较好地反映出该单位职工健康情况,小张的抽样调查的数据只有3个,样本容量太少.小王的抽样调查的数据主要集中在中青年职工,样本不够全面.故答案为:小李.23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.24.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=25.解:(1)2011 年到 2016 年的地方生产总值如图所示;(2)设2014到2016的平均增长率为x,则519.3(1+x)2=593,解得x≈14%,用近3年的平均增长率估计2017年的增长率,则2017年房山区地方生产总值是593×(1+14%)≈656.02亿元,理由是用近3年的平均增长率估计2017年的增长率.故答案分别为:656.02,用近3年的平均增长率估计2017年的增长率.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:①是真命题,理由:∵y=mx2+(5m+3)x+4m=(x2+5x+4)m+3x,∴当x2+5x+4=0时,得x=﹣4或x=﹣1,∴x=﹣1时,y=﹣3;x=﹣4时,y=﹣12;∴二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)的图象一定过定点(﹣1,﹣3),故①是真命题;②是假命题,理由:当m=﹣1时,则函数为y=﹣x2﹣2x﹣4,∵当y=0时,﹣x2﹣2x﹣4=0,△=(﹣2)2﹣4×(﹣1)×(﹣4)=﹣12<0;当x=0时,y=﹣4;∴抛物线与x轴无交点,与y轴一个交点,故②是假命题;③是假命题,理由:∵y=mx2+(5m+3)x+4m,∴对称轴x=﹣=﹣=﹣﹣,∵m<0,x≥﹣时,函数y随x的增大而减小,∴,得m=,∵m<0与m=矛盾,故③为假命题;28.解:(1)如图所示,点P即为所求;(2)由(1)可得,点P为△ABC的内角平分线的交点,∴∠DBP=30°,∠ADB=90°,BD=BC=5,∴PD=tan30°×BD=,∴点P到三边的距离为,∵Rt△ABD中,AD=tan60°×BD=5,∴AP=AD﹣PD=5﹣=.29.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.。

北京市通州区2019年中考数学第三次模拟练习试题(含解析)

北京市通州区2019年中考数学第三次模拟练习试题(含解析)

北京市通州区2019届九年级第三次中考模拟练习数学试题一、选择题(本题共16分,每小题2分)1.如图所示,AD,BE,CF分别是△ABC的角平分线,高线和中线,则下列求△ABC的面积正确的公式是()A.B.C.D.S△ABC=BE•CE2.2018年1月11日,北京市举行“缓解交通拥堵,服务市民出行”新闻发布会,会议指出,2018年,在改善交通状况,缓解交通拥堵方面,北京市将把机动车保有量控制在6100000辆以内,中心城区路网交通指数控制在5.7左右.轨道交通运营里程增加到632公里以上,治理自行车道900公里,使绿色出行比例提高到73%.将6100000用科学记数法表示为()A.61×105 B.6.1×105 C.6.1×106 D.6.1×1073.下面是四个手机APP的图标,其中既不是轴对称图形,也不是中心对称图形的是()A.神州租车B.中国移动C.百度外卖D.微信4.一个几何体的三视图如图所示,则该几何体的直观图可以是()A.B.C.D.5.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.ab>0 C.|a|+b<0 D.a﹣b>06.下列关于统计和概率知识的说法正确的是()A.为了搜集一个问题的数据,可以采取多种方式,如实验采集,问卷调查,查询资料等B.只要是通过真实数据推断的结论都一定是可信的C.只有通过平均数,众数,中位数难以做出推断时,才需要计算方差D.概率很小的事件一定不会发生7.下表反映了我国高速铁路基本情况,根据统计表提供的信息,下列推断不合理的是()(上表摘自《2017中国统计年鉴》)A.2008﹣2016年,我国高速铁路营业里程逐年增长B.2008﹣2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2016年C.2008﹣2016年,我国高速铁路客运量逐年增长D.到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%8.中国共产党第十八届中央委员会第五次全体会议认为,到二〇二〇年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番(即二〇二〇年国内生产总值和城乡居民人均收入是二〇一〇年二倍),产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二〇一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了关于p的四个判断:①p的值大于100;②p的值是50;③p的值是20;④p的值是7.2.其中符合要求的是()A.①B.②C.③D.④二、填空题(本题共16分,每小题2分)9.分解因式:a3﹣ab2=________.10.已知.在数轴上,表示数x的点的右侧的第一个整数是________.11.在平面直角坐标系xOy中,点A在第三象限,且在一次函数y=x的图象上,写出一个符合条件的点A坐标_________.12.现有几个学生合买一本书,每人出9元,会多出11元;每人出6元,又差16元.问:有几个学生,买这本书需要多少元?设有x个学生,买这本书需要y元,那么可列方程组为_________.13.如图,点A,B,C,D是⊙O上的四个点,点B是的中点.如果∠ABC=60°,那么∠ADB=_______.14.每年小明生日这一天,妈妈都会量一下他的身高并记录数据.现在小明学习了统计图,知道用扇形图、折线图、频数直方图可以直观、有效的描述数据,于是他想用统计图来描述这些年来自己的身高数据.上述三种统计图中,适合描述小明身高数据的是______.15.在一个不透明的袋子里装有红、黄、蓝、黑四种颜色的小球各2个,这些球除颜色外,没有任何区别.现从这个袋子中随机摸出一个球,摸到红球的概率是________.16.画图、测量、填空画一个半径为2cm的圆,画出角度分别为30°、45°、60°、90°、120°的圆心角,测量不同圆心角所对弦的长度,并填入下面的表格中.(数据保留一位小数)依据表格中的数据,当圆心角小于平角时,圆心角与它所对弦长之间的变化规律是________________.三、解答题(本题共68分,第17-25题每题5分,第26题7分,第27-28题,每题8分)17.(5分)计算:2sin60°﹣﹣(3﹣π)0+|﹣2|.18.(5分)解不等式组,并求不等式组的所有整数解.19.(5分)如图,在△ABC中,∠ABC=90°,点D是AC中点,DE⊥AC于点D,交BC于E,连接BD.求证:∠ABD=∠CED.20.(5分)在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限交于点M(2,1).(1)求反比例函数的表达式;(2)如果S△AMO=S△AOB,求一次函数y=ax+b的表达式.21.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.22.(5分)如图,在矩形纸片ABCD中,点P在边AB上,沿着PC折叠纸片使B点落在边AD 上的E点处,过点E作EF∥AB交PC于F,连接BF.(1)求证:四边形BFEP为菱形;(2)若tan∠BCP=,AB=3cm,求AE的长.23.(5分)如图,四边形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若OD∥AB,BF=24,OE=5,求AD的长度.24.(5分)家庭过期药品属于“国家危险废物”处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.设计调查方式:(1)有下列选取样本的方法①在市中心某个居民区以家庭为单位随机抽取②在全市医务工作者中以家庭为单位随机抽取③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是________.(只需填上正确答案的序号)收集整理数据:本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表:描述数据:(2)此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;分析数据:(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?说明你的理由;(4)家庭过期药品的正确处理方式是送回收点,若该市有500万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.25.(5分)在课外活动中,我们要研究一种四边形﹣﹣“垂直四边形”.定义:我们把对角线互相垂直的四边形叫做垂直四边形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对垂直四边形进行了研究.下面是小聪的研究过程,请补充完整:概念理解:(1)根据垂直四边形的定义,在你学过的四边形中,满足垂直四边形的定义的是;(写出一种即可)(2)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由.性质探索:(3)试探索垂直四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).26.(7分)已知二次函数y=x2+mx+n的图象经过点A(1,0)和D(5,8),与x轴的另一个交点为B,与y轴交于点C.(1)求二次函数的表达式及顶点坐标;(2)将二次函数y=x2+mx+n的图象在点C,D之间的部分(包含点C,D)记为图象G.已知直线l:y=x+b,且直线l与图象G有两个公共点,请直接写出b的取值范围;(3)在第(2)题的条件下,b取最大值时,将直线l向下平移,交抛物线于点P(x1,y1)和点Q(x2,y2),交线段BC于点M(x3,y3),结合函数的图象,求x1+x2+x3的取值范围.27.(8分)小明同学遇到两个数学问题:问题一,一个数x加上这个数的倒数,和为1,试求这个数.问题二,一个数y减去这个数的倒数,差为1,试求这个数.(1)在探索问题一时,进行了以下操作:依题意,列出方程x+=1,化简得x2﹣x+1=0,于是小明认为这个数不存在,请帮小明证明这个数不存在.(2)在探索问题二时,进行了以下操作:依题意,列出方程y﹣=1,变形得y=1+=1+=1+=1+于是得到形如1+这样的数,我们称之为连分数.如果设一条线段AB的长度设为1,点M是这条线段的黄金分割点,设其中较短的线段的长度为z,试将z表示为连分数的形式.28.(8分)小文同学在一本数学读本中看到这样一句话:线段的垂直平分线可以看作是到线段的两个端点距离相等的点的集合.小文进行了以下操作:①作线段AB和射线OM,②在射线OM上选取一点N,满足ON=AB,③分别以点A和点B为圆心,ON为半径画弧,两弧的交点为P,④当改变点N的位置,使得ON>AB,重复操作③,得到一系列点P1,2,3,4…这些点P1,2,3,4…和P就构成了线段AB的垂直平分线.(1)按照上面的操作,画出两个点P1和P2,并证明直线P1P2垂直平分线段AB.(2)在该数学读本中还有这样一句话:角的平分线可以看作是到角的两边距离相等的点的集合.仿照小文的思路,画出一个到∠AOB的两边距离相等的点,并写出详细的操作步骤.参考答案一、选择题1.如图所示,AD,BE,CF分别是△ABC的角平分线,高线和中线,则下列求△ABC的面积正确的公式是()A.B.C.D.S△ABC=BE•CE【分析】根据三角形面积公式即可求解.【解答】解:∵BE是△ABC的高线,∴求△ABC的面积正确的公式是S△ABC=CA•BE.故选:B.【点评】考查了三角形的角平分线、中线和高,三角形的面积,关键是熟练掌握三角形面积公式.2.2018年1月11日,北京市举行“缓解交通拥堵,服务市民出行”新闻发布会,会议指出,2018年,在改善交通状况,缓解交通拥堵方面,北京市将把机动车保有量控制在6100000辆以内,中心城区路网交通指数控制在5.7左右.轨道交通运营里程增加到632公里以上,治理自行车道900公里,使绿色出行比例提高到73%.将6100000用科学记数法表示为()A.61×105 B.6.1×105 C.6.1×106 D.6.1×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示6100000,应记作6.1×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下面是四个手机APP的图标,其中既不是轴对称图形,也不是中心对称图形的是()A.神州租车B.中国移动C.百度外卖D.微信【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.不是中心对称图形,是轴对称图形,故本选项错误;B.是中心对称图形,不是轴对称图形,故本选项错误;C.不是中心对称图形,是轴对称图形,故本选项错误;D.既不是中心对称图形,也不是轴对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.一个几何体的三视图如图所示,则该几何体的直观图可以是()A.B.C.D.【分析】首先由几何体的俯视图断定原几何体的最上面的平面图形应是圆,再由俯视图内部只有一个虚圆,断定原几何体下部分的图形不可能是棱柱,由此可排除前三个选项.【解答】解:由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选:D.【点评】本题考查了简单空间几何体的三视图,由三视图还原原几何体,首先是看俯视图,然后结合主视图和侧视图得原几何体,解答的关键是明白三种视图都是图形在与目光视线垂直面上的投影,此题是基础题.5.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.ab>0 C.|a|+b<0 D.a﹣b>0【分析】根据数轴得出﹣2<a<﹣1,b>2,根据A.b的范围,即可判断每个式子的值.【解答】解:A.∵根据数轴可知:﹣2<a<﹣1,b>2,∴a+b>0,故本选项正确;B.∵根据数轴可知:a<0,b>2,∴ab<0,故本选项错误;C.∵根据数轴可知a<0,b>2,∴|a|>0,∴|a|+b>0,故本选项错误;D.∵根据数轴可知:a<0,b>0,∴a﹣b<0,故本选项错误;故选:A.【点评】本题考查了数轴和实数的应用,关键是能根据A.b的取值范围判断每个式子是否正确,题型比较好,但是一道比较容易出错的题目.6.下列关于统计和概率知识的说法正确的是()A.为了搜集一个问题的数据,可以采取多种方式,如实验采集,问卷调查,查询资料等B.只要是通过真实数据推断的结论都一定是可信的C.只有通过平均数,众数,中位数难以做出推断时,才需要计算方差D.概率很小的事件一定不会发生【分析】直接利用概率的意义以及结合方差和数据的收集方式分别分析得出答案.【解答】解:A.为了搜集一个问题的数据,可以采取多种方式,如实验采集,问卷调查,查询资料等,正确;B.只要是通过真实数据推断的结论不一定是可信的,故此选项错误;C.只有通过平均数,众数,中位数难以做出推断时,才需要计算方差,每种数据代表的不同意义,故此选项错误;D.概率很小的事件一定不会发生,错误.故选:A.【点评】此题主要考查了概率的意义以及方差和数据的收集方式,正确把握相关定义是解题关键.7.下表反映了我国高速铁路基本情况,根据统计表提供的信息,下列推断不合理的是()(上表摘自《2017中国统计年鉴》)A.2008﹣2016年,我国高速铁路营业里程逐年增长B.2008﹣2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2016年C.2008﹣2016年,我国高速铁路客运量逐年增长D.到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%【分析】根据统计表中的数据逐一判断即可得结论.【解答】解:A.2008﹣2016年,我国高速铁路营业里程逐年增长,故正确;B.2008﹣2016年,我国高速铁路营业里程占铁路营业里程比重增长最多的是2014年,故错误;C.2008﹣2016年,我国高速铁路客运量逐年增长,故正确;D.到2017年,我国高速铁路客运量占铁路客运量比重有望基本达到或超过50%,故正确;故选:B.【点评】本题主要考查统计图表,统计表是表现数字资料整理结果的最常用的一种表格,统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.8.中国共产党第十八届中央委员会第五次全体会议认为,到二〇二〇年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番(即二〇二〇年国内生产总值和城乡居民人均收入是二〇一〇年二倍),产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从二〇一一年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了关于p的四个判断:①p的值大于100;②p的值是50;③p的值是20;④p的值是7.2.其中符合要求的是()A.①B.②C.③D.④【分析】根据“城乡居民人均收入每一年比上一年都增长p%,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番“列方程即可得到结论.【解答】解:∵城乡居民人均收入每一年比上一年都增长p%,到二〇二〇年国内生产总值和城乡居民人均收入比二〇一〇年翻一番,∴(1+p%)10=2,解得:p=7.2,故选:D.【点评】本题考查了命题于定理,正确的列出方程是解题的关键.二、填空题(本题共16分,每小题2分)9.分解因式:a3﹣ab2=a(a+b)(a﹣b).【分析】首先提取公因式a,进而利用平方差公式分解因式得出答案.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).故答案为:a(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.10.已知.在数轴上,表示数x的点的右侧的第一个整数是 1 .【分析】先求出x=,根据夹逼法可得0<<1,依此可求表示数x的点的右侧的第一个整数.【解答】解:∵,∴x=,∵0<<1,∴表示数x的点的右侧的第一个整数是1.故答案为:1.【点评】考查了估算无理数的大小,估算无理数大小要用逼近法.思维方法:用有理数逼近无理数,求无理数的近似值.11.在平面直角坐标系xOy中,点A在第三象限,且在一次函数y=x的图象上,写出一个符合条件的点A坐标(﹣1,﹣1).【分析】根据一次函数的性质和第三象限的特点解答即可.【解答】解:∵点A在第三象限,且在一次函数y=x的图象上,∴x=﹣1,y=﹣1,点A的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1)【点评】此题考查一次函数图象上的点的特点,关键是根据一次函数的性质和第三象限的特点解答.12.现有几个学生合买一本书,每人出9元,会多出11元;每人出6元,又差16元.问:有几个学生,买这本书需要多少元?设有x个学生,买这本书需要y元,那么可列方程组为.【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解;设有x个学生,买这本书需要y元,根据题意可得:,故答案为:,【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.13.如图,点A,B,C,D是⊙O上的四个点,点B是的中点.如果∠ABC=60°,那么∠ADB=60°.【分析】根据圆内接四边形的性质得出∠ADC的度数,进而解答即可.【解答】解:∵点A,B,C,D是⊙O上的四个点,∠ABC=60°,∴∠ADC=120°,∵点B是的中点.∴∠ADB=60°,故答案为:60°【点评】此题考查圆内接四边形,关键是根据圆内接四边形的性质得出∠ADC的度数.14.每年小明生日这一天,妈妈都会量一下他的身高并记录数据.现在小明学习了统计图,知道用扇形图、折线图、频数直方图可以直观、有效的描述数据,于是他想用统计图来描述这些年来自己的身高数据.上述三种统计图中,适合描述小明身高数据的是折线图.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【解答】解:根据统计图的特点可知:为了反映小明这些年来身高的增长变化,应将小明的身高数据制作成折线统计图比较合适.故答案为:折线图.【点评】此题主要考查了统计图的应用,解题的关键是根据条形统计图、折线统计图、扇形统计图各自的特点进行判断.15.在一个不透明的袋子里装有红、黄、蓝、黑四种颜色的小球各2个,这些球除颜色外,没有任何区别.现从这个袋子中随机摸出一个球,摸到红球的概率是.【分析】根据题意可以求得摸到红球的概率,本题得以解决.【解答】解:∵在一个不透明的袋子里装有红、黄、蓝、黑四种颜色的小球各2个,∴从这个袋子中随机摸出一个球,摸到红球的概率是:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.16.画图、测量、填空画一个半径为2cm的圆,画出角度分别为30°、45°、60°、90°、120°的圆心角,测量不同圆心角所对弦的长度,并填入下面的表格中.(数据保留一位小数)依据表格中的数据,当圆心角小于平角时,圆心角与它所对弦长之间的变化规律是当圆心角增大时,弦的长度也增大.【分析】利用测量法即可解决问题;【解答】解:通过画图测量可知:一个半径为2cm的圆,圆心角为30°、45°、60°、90°、120°所对弦的长度分别为1cm,1.5cm,2cm,2.8cm,3.5cm依据表格中的数据,当圆心角小于平角时,圆心角与它所对弦长之间的变化规律是:当圆心角增大时,弦的长度也增大.故答案为1,1.5,2,2.8,3.5,当圆心角增大时,弦的长度也增大.【点评】本题考查作图﹣复杂作图、圆心角、弧、弦之间的关系等知识,解题的关键是学会观察,学会利用测量法解决问题.三、解答题(本题共68分,第17-25题每题5分,第26题7分,第27-28题,每题8分)17.(5分)计算:2sin60°﹣﹣(3﹣π)0+|﹣2|.【分析】本题涉及特殊角的三角函数值、零指数幂、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式===.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、绝对值、二次根式等考点的运算.18.(5分)解不等式组,并求不等式组的所有整数解.【分析】分别求出每一个不等式的解集,由两不等式解集的公共部分可得不等式组的解集,从而得出所有整数解.【解答】解:原不等式组为,解不等式①,得 x>﹣2,解不等式②,得 x≤1,∴原不等式组的解集为﹣2<x≤1,所以不等式组的所有整数解为﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.19.(5分)如图,在△ABC中,∠ABC=90°,点D是AC中点,DE⊥AC于点D,交BC于E,连接BD.求证:∠ABD=∠CED.【分析】依据在△ABC中,∠ABC=90°,点D是AC中点,即可得到AD=BD,进而得出∠A =∠ABD,再根据∠A=∠CED,即可得到∠ABD=∠CED.【解答】证明:∵在△ABC中,∠ABC=90°,点D是AC中点,∴,.∴AD=BD.∴∠A=∠ABD,∵DE⊥AC,∴∠CED+∠C=90°.∵∠A+∠C=90°,∴∠A=∠CED,∴∠ABD=∠CED.【点评】本题主要考查了直角三角形斜边上中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.20.(5分)在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象在第一象限交于点M(2,1).(1)求反比例函数的表达式;(2)如果S△AMO=S△AOB,求一次函数y=ax+b的表达式.【分析】(1)依据点M在反比例函数的图象上,即可得出反比例函数的表达式为.(2)依据S△AMO=S△AOB,即可得出B(0,﹣1),把B(0,﹣1),M(2,1)代入y=ax+b,可得一次函数的表达式为y=x﹣1.【解答】解:(1)∵点M在反比例函数的图象上,∴,∴解得k=2,∴反比例函数的表达式为.(2)∵S△AMO=S△AOB,∴,∴|OB|=1,∴B(0,1)(舍)或B(0,﹣1),把B(0,﹣1),M(2,1)代入y=ax+b,可得,解得,∴一次函数的表达式为y=x﹣1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积.求出反比例函数的解析式是解题的关键.21.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.【分析】(1)由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围;(2)由k的取值范围可求得k的正整数值,代入方程求解即可.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△>0,即22﹣4(k﹣1)>0,∴k<2;(2)∵k为正整数,∴k=1,此时方程为x2+2x=0,解得x1=0,x2=﹣2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.22.(5分)如图,在矩形纸片ABCD中,点P在边AB上,沿着PC折叠纸片使B点落在边AD 上的E点处,过点E作EF∥AB交PC于F,连接BF.(1)求证:四边形BFEP为菱形;(2)若tan∠BCP=,AB=3cm,求AE的长.【分析】(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)根据折叠的性质和相似三角形的判定和性质解答即可.【解答】(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PC,∴B点与E点关于PQ对称.∴BP=PE,BF=FE,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP.∴∠EPF=∠EFP.∴EP=EF.∴BP=BF=FE=EP.∴四边形BFEP为菱形.(2)由折叠可知,∠BCP=∠ECP.∴.∴,∵∠PEC=∠A=∠D=90°.∴∠AEP+∠DEC=90°,∠AEP+∠APE=90°.∴∠APE=∠DEC.∴△APE∽△DEC.∴.∵AB=DC=3cm,∴AE=1 cm.【点评】此题考查了矩形的性质、折叠的性质、菱形的判定等知识;关键是根据折叠的性质和相似三角形的判定和性质解答.23.(5分)如图,四边形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若OD∥AB,BF=24,OE=5,求AD的长度.【分析】(1)过点O作OG⊥DC,垂足为G.只要证明OG=OA即可解决问题;(2)由△ABE∽△ODA,可得,想办法求出AE.BE即可解决问题;【解答】解:(1)过点O作OG⊥DC,垂足为G.∵AD∥BC,AE⊥BC于E,∴OA⊥AD.∴∠OAD=∠OGD=90°.∵OD平分∠ADC,∴OA=OG.∴DC是⊙O的切线.(2)如图,连接OF.∵OA⊥BC,∴BE=EF=BF=12.在Rt△OEF中,OE=5,EF=12,∴OF==13,∴AE=OA+OE=13+5=18.∵OD∥AB,∴∠BAE=∠AOD.∴△ABE∽△ODA,∴,∴,∴.。

北京市通州区2019届初三一模数学试题及答案

北京市通州区2019届初三一模数学试题及答案

通州区2019年初三第一次模拟考试数学试卷一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个. 1. 如图,∠AOB 的角平分线是( ) A .射线OBB .射线OEC .射线ODD .射线OC2. 港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道.其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为()A .47.610⨯ B .37610⨯C .50.7610⨯D .57.610⨯3. x 的取值范围为( ) A .2x >B .2x ≥C .2x =D .2x ≠4.某几何体的平面展开图如图所示,则该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱5. 如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3B .3-C .13D .13- 6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确的是( )A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩, C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩, D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,7. 2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是( )A .2014年—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B .2014年—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C .2014年—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D .2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%8. 为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图. 如图,y 轴上动点M 的纵坐标my 表示学生的期中考试成绩,直线10x =上动点N 的纵坐标n y 表示学生的期末考试成绩,线段MN 与直线6x =的交点为P ,则点P 的纵坐标P y 就是这名学生的学期总评成绩. 有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%. 结合这张算图进行判断,其中正确的说法是( )%亿元2014-2018年我国研究与试验发展(R&D )经费支出及其增长速度A. ①③B. ②③C. ②D. ③二、填空题(本题共8个小题,每小题2分,共16分)9. 实数a ,b 在数轴上对应点的位置如图所示,若实数c 满足ac bc >,那么请你写出一个符合题意的实数c 的值:c =________.10. 如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,如果AC CD =,则∠ACD 的度数是_________.A11. 中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为__________.12. 若多项式2x ax b ++可以写成()2x m +的形式,且0ab ≠,则a 的值可以是_____,b 的值可以是_____ .13. 小华同学的身高为170 cm ,测得他站立在阳光下的影长为85 cm ,紧接着他把手臂竖直举起,测得影长为105 cm ,那么小华举起的手臂超出头顶的长度为____________ cm.14. 如图所示,在一条笔直公路l 的两侧,分别有A 、B 两个小区,为了方便居民出行,现要在公路l 上建一个公共自行车存放点,使存放点到A 、B 小区的距离之和最小,你认为存放点应该建在 处(填“C ”“E ”或“D ”),理由是 ____________________________b a432-4-3-21-115. 在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后再继续摸出一球……,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,估计出n 的值最有可能的是 .16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为__________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:)116tan 3012-⎛⎫-︒-⎪⎝⎭18. 解不等式组: 32431.22x x x +<⎧⎪⎨-⎪⎩,≥19.已知:如图1,在△ABC 中,∠ACB =90°.求作:射线CG ,使得CG ∥AB .图1 图2下面是小东设计的尺规作图过程. 作法:如,2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点; ②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ; ③以点F 为圆心,DE 长为半径作弧,两弧在∠FCB 内部交于点G ; ④作射线CG .所以射线CG 就是所求作的射线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接FG 、DE .∵△ADE ≌ △_________, ∴∠DAE = ∠_________.∴CG ∥AB (__________________________)(填推理的依据).20.关于x 的一元二次方程()2210x x n +--=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B 作BD 、AD 的平行线交于点E ,且 AB 平分∠EAD . (1)求证:四边形EADB是菱形;(2)连接EC ,当∠BAC =60°,BC =ECB 的面积.22.如图,在平面直角坐标系xOy 中,直线2y x =与函数()0my x x=>的图象交于点A (1,2). (1)求m 的值;(2)过点A 作x 轴的平行线l ,直线2y x b =+与直线l 交于点B ,与函数()0my x x=>的图象交于点C ,与x 轴交于点D .①当点C 是线段BD 的中点时,求b 的值; ②当BC BD >时,直接写出b 的取值范围.23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点E ,在弦BC上取一点F ,使AF =AE ,连接AF 并延长交⊙O 于点D .(1)求证:B CAD ∠=∠;(2)若CE =2,30B ∠=︒,求AD 的长.24. 数学活动课上,老师提出问题:如图1,在Rt △ABC 中,90C ∠=︒,BC =4 cm ,AC =3 cm ,点D 是AB 的中点,点E 是BC 上一个动点,连接AE 、DE . 问CE 的长是多少时,△AED 的周长等于CE 长的3倍.设CE =x cm ,△AED 的周长为y cm (当点E 与点B 重合时,y 的值为10). 小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图2;(3)结合画出的函数图象,解决问题:①当CE 的长约为 cm 时,△AED 的周长最小; ②当CE 的长约为 cm 时,△AED 的周长等于 CE 的长的3倍.图125. 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.y/26. 已知二次函数2y x ax b =-+在0x =和4x =时的函数值相等. (1)求二次函数2y x ax b =-+的对称轴;(2)过P (0,1)作x 轴的平行线与二次函数2y x ax b =-+的图象交于不同的两点M 、N .①当2MN =时,求b 的值;②当=4PM PN +时,请结合函数图象,直接写出b 的取值范围.27. 如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F .(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点. (1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________; (2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.通州区2019年初三第一次模拟考试 数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 答案不唯一,如1- 10. 60︒11. 40︒12. 答案不唯一,如4-,4 13. 40 14. E ,两点之间线段最短 15. 10 16. 4三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 解:原式=261-+ ………………… 4分 =21-+=1 . ………………… 5分18. 解:解不等式①,342x x -<-, ………………… 1分2x -<-,2x >. ………………… 2分解不等式②,23x -≥, ………………… 3分 5x ≥ .………………… 4分 ∴不等式组的解集为5x ≥. ………………… 5分19. (1)使用直尺和圆规,补全图形;(保留作图痕迹)………………… 2分(2)完成下面的证明. 证明:连接FG 、DE .∵△ADE ≌ △CFG , ………………… 3分∴∠DAE = ∠FCG . ………………… 4分 ∴CG ∥AB (同位角相等,两直线平行)(填推理的依据). ………………… 5分20.解:(1)一元二次方程()2210x x n +--=有两个不相等的实数根,∴ △=()22410n -⨯-->⎡⎤⎣⎦, ………………… 1分 即4440n +->,∴ 0n >. ………………… 2分 (2)∵ n 为取值范围内的最小整数,∴1n =.………………… 3分∴ 220x x +=∴ ()20x x +=∴ 10x =,22x =-. ………………… 5分21.(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平行四边形. ……………… 1分 ∵AB 平分∠EAD , ∴EAB DAB ∠=∠. ∵AE ∥BD , ∴EAB DBA ∠=∠. ∴DAB DBA ∠=∠. ∴AD BD =.∴四边形EADB 是菱形. ……………… 2分(2)解:∵∠ACB =90°,∠BAC =60°,BC=∴tan 60BCAC︒==∴2AC =. ……………… 3分∴11222ACBSAC BC ==⨯⨯= ……………… 4分 ∵AE ∥BC ,∴2ECBACBSS== ……………… 5分22. 解:(1)把A (1,2)代入函数(0)my x x=>中, ∴21m =. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为1.……………… 2分 把1y =代入函数2y x=中, 得2x =.∴点C 的坐标为(2,1). ……………… 3分 把C (2,1)代入函数2y x b =+中,得3b =-. ……………… 4分 ②3b >. ……………… 5分 23. (1)证明:∵AE 是⊙O 的切线,AB 为⊙O 的直径,∴90BAE ∠=︒, 90ACB ∠=︒. ……………… 1分 ∴90BAC CAE ∠+∠=︒ . ∴90BAC B ∠+∠=︒.∴B CAE ∠=∠. ……………… 2分 ∵AF =AE ,90ACB ∠=︒,∴CAD CAE ∠=∠.∴B CAD ∠=∠. ……………… 3分 (2)解:连接CD .∵B CAD ∠=∠,∴AC CD =. ……………… 4分 ∴AC CD =.∵90ACE ∠=︒,CE =2,30CAE CAF B ∠=∠=∠=︒, ∴tan CECAE AC∠=. ∴tan 30︒=2AC. ∴AC = ……………… 5分 过点C 作CG ⊥AD 于点G . ∴cos AGCAF AC∠=. ∴cos 30︒.∴3AG =. ∵AC =CD ,90ACB ∠=︒,∴ 26AD AG ==. ……………… 6分另解一:连接BD . 先求AB 的长,再求AD . 另解二:连接CD . 先求AE 的长,再证FC =FD .24. (1)补全表格: 7.6 . ……………… 1分(2)描点,画图象. ……………… 3分 (3)结合画出的函数图象,解决问题:①1.5; ……………… 4分②画出直线3y x =, ……………… 5分2.6-2.9(在范围内即可) ……………… 6分 25. (1)……………… 2分(2)甲 ……………… 3分 (3)甲或乙 ……………… 4分甲组:甲组的合格率、优秀率均高于乙组.(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.)……………… 6分26. 解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分(2)① 不妨设点M 在点N 的左侧. ∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分10987y27. 解:(1)连接AE .∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. ……………… 1分∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒. ∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E ,∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .28. (1)解:()2,1C ,()2,0D , ……………… 2分(2)由题意可知,点B 在直线y x =上. ∵直线y x =与直线y x b =+平行.过点A 作直线y x =的垂线交x 轴于点G ,∴点G 是点A 关于直线y x =的对称点. ……………… 3分 ∴()2,0G .过点B 作直线y x =的垂线交x 轴于点H . ∴△OBH 是等腰直角三角形. ∴点G 是OH 的中点.∴直线y x b =+过点G . ……………… 4分 ∴2b =-.∴b 的取值范围是20b -≤≤. ……………… 5分(32n ≤或2n -≤≤ ……………… 7分。

北京市通州区2019-2020学年第四次中考模拟考试数学试卷含解析

北京市通州区2019-2020学年第四次中考模拟考试数学试卷含解析

北京市通州区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图是某几何体的三视图,则该几何体的全面积等于( )A .112B .136C .124D .843.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )A .30°B .60°C .120°D .180°4.在1、﹣1、3、﹣2这四个数中,最大的数是( )A .1B .﹣1C .3D .﹣25.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤ D .122a ≤≤ 6.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1 B .2 C .3 D .47.如图,将△ABC 沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A .42B .96C .84D .488.计算﹣8+3的结果是( )A .﹣11B .﹣5C .5D .119.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟10.若 |x | =-x ,则x 一定是( )A .非正数B .正数C .非负数D .负数11.把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则∠APG =( )A .141°B .144°C .147°D .150°12.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A .1000(1+x)2=1000+500B .1000(1+x)2=500C .500(1+x)2=1000D .1000(1+2x)=1000+500二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.14.如图,AB 为O e 的直径,AC 与O e 相切于点A ,弦//BD OC .若36C ∠=o ,则DOC ∠=______o .15.点A (x 1,y 1)、B (x 1,y 1)在二次函数y=x 1﹣4x ﹣1的图象上,若当1<x 1<1,3<x 1<4时,则y 1与y 1的大小关系是y 1_____y 1.(用“>”、“<”、“=”填空)16.如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF=__.17.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.18.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.20.(6分)如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,3≈1.732)21.(6分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当3DM=4时,求DH的长.22.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.23.(8分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.24.(10分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?25.(10分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G 向下平移()个单位后与直线BC 只有一个公共点,求的取值范围.26.(12分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=45,点E在弧AD上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.27.(12分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)18 12备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.2.B【解析】试题解析:该几何体是三棱柱.如图:22-=,543⨯=,326全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++=故该几何体的全面积等于1.故选B.3.C【解析】【分析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键4.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.6.A【解析】【分析】【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:21233a =++, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A. 7.D【解析】【分析】【详解】由平移的性质知,BE=6,DE=AB=10,∴OE=DE ﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=12(AB+OE)•BE=12(10+6)×6=1.故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.8.B【解析】【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.9.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键. 10.A【解析】【分析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.11.B【解析】【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).12.A【解析】【分析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x )2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=2b a = 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE=12AD=12BC , ∴12AF CF =,即CF=2AF , ∴CF=2AF ,故②正确;作DM ∥EB 交BC 于M ,交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC , ∴BM=CM ,∴CN=NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故③正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC , ∴2b a a b=,即2a , ∴tan ∠CAD=222b a =,故④错误; 故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.14.1【解析】【分析】利用切线的性质得90OAC ∠=o ,利用直角三角形两锐角互余可得54AOC ∠=o ,再根据平行线的性质得到54OBD AOC ∠=∠=o ,D DOC ∠=∠,然后根据等腰三角形的性质求出D ∠的度数即可.【详解】∵AC 与O e 相切于点A ,∴AC ⊥AB ,∴90OAC ∠=o ,o o o o,∴90903654∠=-∠=-=AOC CBD OC,∵//∠=∠,∴54∠=∠=o,D DOCOBD AOC=,∵OB OD∴54∠=∠=o,D OBD∴54DOC∠=o.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.15.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x1<1,3<x1<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y1.故答案为<.16.15°【解析】【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB ,∵四边形ABCO 是平行四边形,∴OC=AB ,又OA=OB=OC ,∴OA=OB=AB ,∴△AOB 为等边三角形.∵OF ⊥OC,OC ∥AB ,∴OF ⊥AB ,∴∠BOF=∠AOF=30°. 由圆周角定理得1152BAF BOF ∠=∠=o , 故答案为15°. 17.14【解析】【分析】先利用△ABC 为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r ,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=901180π⨯,然后解方程即可. 【详解】∵⊙O 的直径2,∴2BC=1, 设圆锥的底面圆的半径为r ,则2πr=901180π⨯,解得r=14, 即圆锥的底面圆的半径为14米故答案为14. 18.2933cm π⎛⎝⎭【解析】【分析】【详解】解:如图,作OH ⊥DK 于H ,连接OK ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD .∴根据折叠对称的性质,A'D=2CD .∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK 的面积为()2212033cm 360ππ⨯⨯=. ∵∠ODH=∠OKH=30°,OD=3cm ,∴333OH cm,DH cm 2==.∴DK 33cm =. ∴△ODK 的面积为()2139333cm 22⨯⨯=. ∴半圆还露在外面的部分(阴影部分)的面积是:2933cm π⎛⎫- ⎪ ⎪⎝⎭.故答案为:2933cm 4π⎛⎫- ⎪ ⎪⎝⎭. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B 类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C 类型人数,即可补全条形图;(2)用360°乘以C 类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵ 抽 查的总人数为:(人)∴ 类人数为:(人) 补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴ (恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.17.3米.【解析】分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度.详解:过点C 作CD PQ ⊥于D ,∵3060CAB CBD ∠=︒∠=︒,∴30,ACB ∠=︒∴20AB BC ==米,在Rt △CDB 中,∵90BDC ,∠=︒ sin ,CD CBD BC ∠= ∴sin60,CD BC︒= ∴3,20CD = ∴103CD =米,∴17.3CD ≈米.答:这条河的宽是17.3米.点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.21.(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+5.【解析】【分析】(1)只要证明AB=ED ,AB ∥ED 即可解决问题;(2)成立.如图2中,过点M 作MG ∥DE 交CE 于G .由四边形DMGE 是平行四边形,推出ED=GM ,且ED ∥GM ,由(1)可知AB=GM ,AB ∥GM ,可知AB ∥DE ,AB=DE ,即可推出四边形ABDE 是平行四边形;(3)①如图3中,取线段HC 的中点I ,连接MI ,只要证明MI=12AM ,MI ⊥AC ,即可解决问题;②设DH=x ,则AH=3 x ,AD=2x ,推出AM=4+2x ,BH=4+2x ,由四边形ABDE 是平行四边形,推出DF ∥AB ,推出HF HD HA HB = ,可得3423x x x=+,解方程即可; 【详解】(1)证明:如图1中,∵DE ∥AB ,∴∠EDC=∠ABM ,∵CE ∥AM ,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形.(2)结论:成立.理由如下:如图2中,过点M作MG∥DE交CE于G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四边形ABDE是平行四边形.(3)①如图3中,取线段HC的中点I,连接MI,∵BM=MC,∴MI是△BHC的中位线,∴MI∥BH,MI=12 BH,∵BH⊥A C,且BH=AM.∴MI=12AM,MI⊥AC,∴∠CAM=30°.②设DH=x,则x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四边形ABDE是平行四边形,∴DF∥AB,∴HF HDHA HB=,42xx=+,解得1,∴【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.22.(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.23.(1)k=b2+4b;(2).【解析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy 为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.24.(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】【分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:()2⨯-=,100001x12100解得x1=0.1,x2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.25.(1)(2).【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A 关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为.代入点B,点C的坐标,然后解方程组即可;(2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点.当图象G向下平移至点与点E重合时,点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.从而得出.试题解析:解:(1)∵抛物线与轴交于点A,∴点A的坐标为(0,2).1分∵,∴抛物线的对称轴为直线,顶点B的坐标为(1,).2分又∵点C与点A关于抛物线的对称轴对称,∴点C的坐标为(2,2),且点C在抛物线上.设直线BC的解析式为.∵直线BC经过点B(1,)和点C(2,2),∴解得∴直线BC的解析式为.2分(2)∵抛物线中,当时,,∴点D的坐标为(1,6).1分∵直线中,当时,,当时,,∴如图,点E的坐标为(0,1),点F的坐标为(1,2).设点A平移后的对应点为点,点D平移后的对应点为点.当图象G向下平移至点与点E重合时,点在直线BC上方,此时t=1;5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2.6分结合图象可知,符合题意的t的取值范围是.7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.26.(1) 圆的半径为4.5;(2) EF=32.【解析】【分析】(1)连接OD,根据垂径定理得:DH=25,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.【详解】(1)连接OD,∵直径AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【点睛】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.27.(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B类图书购进400本,利润最大.【解析】【分析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得540540101.5x x-=,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,() 1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.。

2019.3北京市通州区中考数学模拟试卷及答案解析

2019.3北京市通州区中考数学模拟试卷及答案解析
6
2019.3 北京市通州区中考数学模拟试卷及答案解析 保留痕迹.) (2)求点 P 到三边的距离和 PA 的长.
29.(8 分)如图,在矩形 ABCD 中,AB=3,BC=4,将对角线 AC 绕对角线交点 O 旋转,分别交边 AD.BC 于点 E.F,点 P 是边 DC 上的一个动点,且保持 DP=AE,连接 PE.PF,设 AE=x(0<x<3). (1)填空:PC=_______,FC=_______-;(用含 x 的代数式表示) (2)求△PEF 面积的最小值; (3)在运动过程中,PE⊥PF 是否成立?若成立,求出 x 的值;若不成立,请说明理由.
参考答案
一.选择题 1.解:第一种情况:C 点在 AB 之间上,故 AC=AB﹣BC=1cm; 第二种情况:当 C 点在 AB 的延长线上时,AC=AB+BC=9cm. 故选:C. 2.解:|﹣2|=2,|﹣1|=1=|1|,|3|=3, 故选:C. 3.解:∵530060 是 6 位数, ∴10 的指数应是 5, 故选:B. 4.解:∵主视图和左视图都是长方形, ∴此几何体为柱体, ∵俯视图是一个圆, ∴此几何体为圆柱, 因此图 A 是圆柱的展开图. 故选:A. 5.解:A.是中心对称图形,故本选项错误;
7
2019.3 北京市通州区中考数学模拟试卷及答案解析
B.不是中心对称图形,故本选项正确; C.是中心对称图形,故本选项错误; D.是中心对称图形,故本选项错误; 故选:B.
6.解:原式=
=.
故选:B.
7.解:①∵抛物线开口向下,
∴a<0,结论①正确;
②∵抛物线对称轴为直线 x=﹣1,
∴﹣ =﹣1, ∴b=2a<0,结论②错误; ③∵抛物线与 x 轴有两个交点, ∴△=b2﹣4ac>0,结论③正确; ④∵当 x=1 时,y<0, ∴a+b+c<0,结论④正确. 故选:C. 8.解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到 结论.故选 C. 9.解:∵点 A(4,﹣1)向左平移 6 个单位,再向上平移 3 个单位得到 A′(﹣2,2), ∴点 B(1,1)向左平移 6 个单位,再向上平移 3 个单位得到的对应点 B′的坐标为(﹣5,4). 故选:A. 10.解:A.由图可知甲运动员得分 8 场得分大于乙运动员得分,所以甲运动员的得分平均数大于乙运 动员的得分平均数,此选项错误; B.由图可知甲运动员 8 场得分大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中 位数,此选项错误; C.由图可知甲运动员得分最小值是 5 分以下,乙运动员得分的最小值是 5 分以上,甲运动员得分的最 小值小于乙运动员得分的最小值,此选项正错误; D.由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动 员的成绩稳定,甲运动员得分的方差大于乙运动员得分的方差,此选项正确. 故选:D. 二.填空题(共 6 小题,满分 18 分,每小题 3 分)

2019年北京市通州区中考数学模拟试题

2019年北京市通州区中考数学模拟试题

2019届北京市通州区中考数学模拟试题一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用直尺度量线段AB ,可以读出AB 的长度为 A .6cmB .7cmC .9cmD .10cm2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为A .aB .bC .cD .d3.北京城市副中心生态文明建设在2016年取得突出成果,通过大力推进能源结构调整, 热电替代供热面积为17960000平方米.将17960000用科学计数法表示应为 A .610796.1⨯B .61096.17⨯C .710796.1⨯D .7101796.0⨯4.右图是某个几何体的三视图,该几何体是A .圆锥B .四棱锥C .圆柱D .四棱柱5.下列图形中,是中心对称图形的是6.如果21=+b a ,那么ab b b a a -+-22的值是错误!未找到引用源。

A .21B .41C .2D .47.如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数bx ax y +=2的表达式,则对该二次函数的系数a 和b 判断正确的是A .00a b >>,B .00a b <<,C .00a b ><,D .00a b <>,8.如图,将一张矩形的纸对折,旋转90°后再对折,然后沿着右图中的虚线剪下,则剪下的纸片打开后的形状一定为 A .三角形 B .菱形 C .矩形D .正方形9.如图,在平面直角坐标系y xO 1中,点A 的坐标为(1,1).如果将x 轴向上平移3 个单位长度,将y 轴向左平移2个单位长度,交于点O 2,点A 的位置 不变,那么在平面直角坐标系y xO 2中,点A 的坐标是 A .(3,-2) B .(-3,2) C .(-2,-3)D .(3,4)10.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是 ①小亮测试成绩的平均数比小明的高 ②小亮测试成绩比小明的稳定 ③小亮测试成绩的中位数比小明的高 ④小亮参加第一轮比赛,小明参加第二轮 比赛,比较合理 A .①③B .①④C .②③D .②④二、填空题(本题共18分,每小题3分)11.函数1-=x y 自变量x 的取值范围是_____________.12.如图,正方形ABCD 由四个矩形构成,根据图形,写出一个含有a 和b 的正确的等式__________________.13.某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示 ( 发芽率精确到 0.001 ) :在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________. 14.如图所示,某地三条互相平行的街道a ,b ,c 与两条公路 相交,有六个路口分别为A ,B ,C ,D ,E ,F .路段EF 正在 封闭施工.若已知路段AB 约为270.1米,路段BC 约为539.8 米,路段DE 约为282.0米,则封闭施工的路段EF 的长约 为_______米.15.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为_________.16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.b a EA BCFD a bc三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.18.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x19.如图,在矩形ABCD 中,连接对角线AC ,BD ,延长BC 至点E ,使BC =CE ,连接DE .求证:DE =AC .20.在平面直角坐标系xOy 中,过原点O 的直线l 1与双曲线xy 2=的一个交点为A (1,m ). (1)求直线l 1的表达式;(2)过动点P (n ,0)(n >0)且垂直于x 轴的直线与直线l 1和双曲线xy 2=的交点分别为B ,C ,当点B 位于点C 上方时,直接写出n 的取值范围.21.关于x 的一元二次方程0)1(222=-+-m mx x 有两个相等的实数根. (1)求m 的值; (2)求此方程的根.B和表3.42 48 52 696860根据上述材料回答问题:23.如图,四边形ABCD 的对角线AC ⊥BD 于点E ,AB=BC ,F 为四边形ABCD 外一点,且∠FCA =90°,∠CBF =∠DCB .(1)求证:四边形DBFC 是平行四边形;(2)如果BC 平分∠DBF ,∠F=45°,BD=2,求AC 的长.F24.如图,点C 在以AB 为直径的⊙O 上,BD 与过点C 的切线垂直于点D ,BD 与⊙O 交于点E .(1)求证:BC 平分∠DBA ; (2)连接AE 和AC ,若co s ∠ABD =21,OA=m , 请写出求四边形AEDC 面积的思路.25.阅读下列材料:环视当今世界,科技创新已成为发达国家保持持久竞争力的“法宝”.研究与试验发展(R&D )活动的规模和强度指标反映一个地区的科技实力和核心竞争力.北京市在研究和实验发展(R&D )活动中的经费投入也在逐年增加.2012年北京市全年研究与试验发展(R&D )经费投入1031.1亿元,比上年增长10.1%.2013年全年研究与试验发展(R&D )经费投入1200.7亿元.2014年全年研究与试验发展(R&D )经费投入1286.6亿元.2015年研究与试验发展(R&D )经费投入1367.5亿元.2016年研究与试验发展(R&D )经费投入1479.8亿元,相当于地区生产总值的5.94%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线统计图或者条形统计图将2012-2016年北京市在研究和实验发展(R&D )活动中的经费投入表示出来,并在图中标明相应数据;(2)根据绘制的统计图提供的信息,预估2017年北京市在研究和实验发展(R&D )活动中的经费投入约为_________亿元,你的预估理由是___________________________.D26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.小风根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象和性质进行了探究.下面是小风的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x =7对应的函数值y 约为______________. ②该函数的一条性质:______________________________________________________.27.在平面直角坐标系xOy 中,抛物线2222+-+-=m m mx x y 的顶点为D.线段AB 的两个端点分别为A (-3,m ),B (1,m ). (1)求点D 的坐标(用含m 的代数式表示); (2)若该抛物线经过点B (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围.28.在等边三角形ABC中,E为直线AB上一点,连接EC.ED与直线BC交于点D,ED=EC. (1)如图1,AB=1,点E是AB的中点,求BD的长;(2)点E是AB边上任意一点(不与AB边的中点和端点重合),依题意,将图2补全,判断AE与BD间的数量关系并证明;(3)点E不在线段AB上,请在图3中画出符合条件的一个图形.29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点. (1)点P和Q互为正交点,P的坐标为(-2,3),①如果Q的坐标为(6,m),那么m的值为____________;②如果Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.初三数学模拟检测参考答案一、选择题(本题共30分,每小题3分)1. B,2. A,3.D,4.B,5. D ,6.A,7.D,8. B,9.A, 10. D 二、填空题(本题共18分,每小题3分)11.1≥x ; 12.答案不唯一; 13.98.0左右;14.564左右; 15.53;16.SSS.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.解:13145cos 22118-⎪⎭⎫⎝⎛+︒--+.=223+………………………………..(5分)18.解:⎪⎩⎪⎨⎧<++>-x x x x 529)2(213.5>x ………………………………..(5分)19.①BD AC =………………………………..(2分)②BD DE =………………………………..(4分) ③AC DE =………………………………..(5分)20.(1)①2=m ………………………………..(1分)②x y 2=………………………………..(3分) (2)1>n ………………………………..(5分) 21. (1)21=m ………………………………..(3分) (2)2121==x x ………………………………..(5分)22.①小李……………………..(1分)②小张抽样调查所抽取的单位职工数量过少……………………..(3分)③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.……………………..(5分)23.(1)①BF CD CF BD //,//………………………………..(2分)四边形DBFC 是平行四边形………………………………..(3分)(2)①过点C 作CH ⊥BF 于点H ,2=CH2==CE CH ………………………………..(4分)②22=AC ………………………………..(5分) 24.(1)①连接OC ,OC //BD ………………………………..(1分)②∠OCB =∠BDC ………………………………..(2分) ③∠OBC =∠DBC ………………………………..(3分) (2)思路通顺 ………………………………..(5分) 25. (1)图正确………………………………..(3分) (2)增加,理由充分 ………………………………..(5分) 26.(1)过点;符合函数概念………………………………..(3分) (2)答案需和图形统一 ………………………………..(5分)27. 解:(1)D (m ,-m +2) ……………………..(2分)(2)m =3或m =1 ……………………..(5分) (3)1≤m ≤3 ……………………..(7分)28.解:(1)21=BD ……………………..(2分) (2)AE =BD ……………………..(3分)证明思路1:利用等边三角形的性质, 证明△BDE 与EC 所在的三角形全等; 证明思路2:利用等腰三角形的轴对称性, 作出△BDE 的轴对称图形;证明思路3:将△BDE 绕BE 边的中点旋转180°,构造平行四边形; ……………………..(6分) ……(3)图形正确 ……………………..(7分)29.(1)①4………………………………..(2分) ②x y 32=………………………………..(4分) (2)∠MON =90°………………………………..(6分)(3)5224+≤<OE ………………………………..(8分)。

北京市通州区2019-2020学年中考数学模拟试题(1)含解析

北京市通州区2019-2020学年中考数学模拟试题(1)含解析

北京市通州区2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°3.下列运算正确的是()A.a3•a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a24.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233πB.233π-C.3π-D.3π5.在下列条件中,能够判定一个四边形是平行四边形的是( )A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线6.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b 7.已知a35a等于()A.1 B.2 C.3 D.48.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A9.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD10.如图,点A、B在数轴上表示的数的绝对值相等,且AB4=,那么点A表示的数是()A.3-B.2-C.1-D.311.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.4512.如果关于x的分式方程1311a xx x--=++有负数解,且关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)14.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.15.把16a3﹣ab2因式分解_____.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF 翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.17.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.18.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果方程M和方程N有一个相同的根,那么这个根必是x=1;④如果5是方程M的一个根,那么15是方程N的一个根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.20.(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.21.(6分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?22.(8分)(1)计算:(﹣2)282+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(8分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=12,求⊙O的直径.24.(10分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD 成立吗?为什么?25.(10分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?26.(12分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.27.(12分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE 的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.2.C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.3.D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解.解:A、a3•a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(a﹣b)2=a2﹣2ab+b2,故C错误;D、3a2﹣a2=2a2,故D正确.故选D.点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.4.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π- 故选B .5.C【解析】A 、错误.这个四边形有可能是等腰梯形.B 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C 、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D 、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C .6.C【解析】∵∠C=90°,∴cosA=bc ,sinA=a c ,tanA=a b ,cotA=b a, ∴c·cosA=b ,c·sinA=a ,b·tanA=a ,a·cotA=b ,∴只有选项C 正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.7.B【解析】【分析】1,进而得出答案.【详解】∵a∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.8.B【解析】【分析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.9.D【解析】【分析】根据垂径定理判断即可.【详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=12∠BOD.故选D.【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.B【解析】【分析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【详解】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是2-.故选:B.【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.11.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率. 12.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,可整理得242y ay+⎧⎨<-⎩…∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③⑤【解析】【分析】根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥【详解】由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=1 , 2∴abc>0,4ac<b2,当12x<时,y随x的增大而减小.故①②⑤正确,∵11,22bxa=-=<∴2a+b>0,故③正确,由图象可得顶点纵坐标小于﹣2,则④错误,当x=1时,y=a+b+c<0,故⑥错误故答案为:①②③⑤【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.14.1.【解析】【分析】根据立体图形画出它的主视图,再求出面积即可.【详解】主视图如图所示,∵主视图是由1个棱长均为1的正方体组成的几何体,∴主视图的面积为1×12=1.故答案为:1.【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图. 15.a (4a+b )(4a ﹣b )【解析】【分析】首先提取公因式a ,再利用平方差公式分解因式得出答案.【详解】解:16a 3-ab 2=a (16a 2-b 2)=a (4a+b )(4a-b ).故答案为:a (4a+b )(4a-b ).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.16.15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.17.1:3【解析】根据相似三角形的判定,由DE ∥AC ,可知△DOE ∽△COA ,△BDE ∽△BCA ,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDE S ∆与CDE S ∆的比是1:3.故答案为1:3.18.①②④【解析】试题解析:①在方程ax 2+bx+c=0中△=b 2-4ac ,在方程cx 2+bx+a=0中△=b 2-4ac ,∴如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根,正确; ②∵c a 和a c 符号相同,b a 和a b符号也相同, ∴如果方程M 有两根符号相同,那么方程N 的两根符号也相同,正确;③、M-N 得:(a-c )x 2+c-a=0,即(a-c )x 2=a-c ,∵a≠c ,∴x 2=1,解得:x=±1,错误;④∵5是方程M 的一个根,∴25a+5b+c=0,∴a+15b+1+25c=0,∴15是方程N的一个根,正确.故正确的是①②④.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)点C(1,);(1)①y=x1-x;②y=-x1+1x+.【解析】试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D 在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.当x=1时,y=x=,∴C(1,).(1)①∵点D与点C关于x轴对称,∴D(1,-),∴CD=3.设A(m,m)(m<1),由S△ACD=3,得×3×(1-m)=3,解得m=0,∴A(0,0).由A(0,0)、D(1,-)得解得a=,c=0.∴y=x1-x.②设A(m,m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=-m,AC==(1-m),∵CD=AC,∴CD=(1-m).由S△ACD=10得×(1-m)1=10,解得m=-1或m=6(舍去),∴m=-1.∴A(-1,-),CD=5.若a>0,则点D在点C下方,∴D(1,-),由A(-1,-)、D(1,-)得解得∴y=x1-x-3.若a<0,则点D在点C上方,∴D(1,),由A(-1,-)、D(1,)得解得∴y=-x1+1x+.考点:二次函数与一次函数的综合题.20.(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:31= 124.点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)5(2)11 x【解析】【分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.23.(1)证明见解析;(2)证明见解析;(3)1;【解析】【分析】(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=12x,求出MN=2x+12x=2.1x,OM=12MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=12AD=3,求出x即可.【详解】(1)∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.24.(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.【解析】【分析】(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.【详解】解:(1)△ACD 与△ABC相似,理由是:∵在Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.25.(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【解析】【分析】(1)根据“总利润=每件的利润×每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.【详解】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.26.见解析【解析】【分析】根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一. 【详解】如图为画出的菱形:【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.27.(1)见解析;(2)PE=4.【解析】【分析】(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【详解】解:(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点. ∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴PO PE PC PD=∵PB=BO,DE=2 ∴PB=BO=OC∴23 PO PE PC PD==∴223 PEPE=+∴PE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.。

北京市通州区2019-2020学年中考数学考前模拟卷(1)含解析

北京市通州区2019-2020学年中考数学考前模拟卷(1)含解析

北京市通州区2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A .B .C .D .2.如图,Rt△ABC中,∠C=90°,AC=4,BC=43,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为()A.2πB.4πC.6πD.8π3.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于()A.40°B.70°C.60°D.50°4.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.95.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A .90°B .30°C .45°D .60°6.一元二次方程220x x -=的根是( ) A .120,2x x ==- B .121,2x x == C .121,2x x ==-D .120,2x x ==7.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .8.某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为( )A .48°B .40°C .30°D .24°9.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+ B .()2213y x =-+ C .()2313y x =-++D .()2313y x =--+10.如果两圆只有两条公切线,那么这两圆的位置关系是( )A.内切B.外切C.相交D.外离11.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°12.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.14.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.15.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:111112151012-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x,5,3(x>5),则x的值是.16.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=kx的图象上,则k的值为_____.17.如图,已知P是线段AB的黄金分割点,且PA>PB.若S1表示以PA为一边的正方形的面积,S2表示长是AB、宽是PB的矩形的面积,则S1_______S2.(填“>”“="”“" <”)18.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB 的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出AC的长.20.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(6分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 2 3 10 …日销售量(n件)198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.22.(8分)如图,一次函数y=ax﹣1的图象与反比例函数kyx的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=10,tan∠AOC=1 3(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax﹣1≥kx的解集;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.23.(8分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC ,求k 的值.24.(10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A ;音乐类记为B ;球类记为C ;其他类记为D .根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D 类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A 类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A 类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.25.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率. 26.(12分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据: 销售单价x (元/kg )120 130 … 180 每天销量y (kg )10095…70设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?27.(12分)为给邓小平诞辰110周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡AB 长2(即BAC ∠)为45︒,BC AC ⊥,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA 的休闲平台DE 和一条新的斜坡BE (下面两个小题结果都保留根号).若修建的斜坡BE 31,求休闲平台DE 的长是多少米?一座建筑物GH 距离A 点33米远(即33AG =米),小亮在D 点测得建筑物顶部H 的仰角(即HDM ∠)为30°.点B 、C 、A 、G ,H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG CG ⊥,问建筑物GH 高为多少米?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据一次函数的性质结合题目中的条件解答即可. 【详解】解:由题可得,水深与注水量之间成正比例关系, ∴随着水的深度变高,需要的注水量也是均匀升高, ∴水瓶的形状是圆柱, 故选:D . 【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键. 2.B 【解析】 【分析】先依据勾股定理求得AB 的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的14. 【详解】在△ABC 中,依据勾股定理可知22AC BC +,∵两等圆⊙A,⊙B外切,∴两圆的半径均为4,∵∠A+∠B=90°,∴阴影部分的面积=2904360π⨯=4π.故选:B.【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.3.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.4.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.5.C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD是正方形,∴∠BCD=90°,∵△BEC绕点C旋转至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF∆为等腰直角三角形.6.D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.7.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.8.D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.D【解析】【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【详解】解:根据图象,设函数解析式为()2y a x h k =-+ 由图象可知,顶点为(1,3) ∴()213y a x =-+,将点(0,0)代入得()20013a =-+ 解得3a =- ∴()2313y x =--+ 故答案为:D . 【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式. 10.C 【解析】 【分析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线. 【详解】根据两圆相交时才有2条公切线. 故选C . 【点睛】本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数. 11.C 【解析】试题解析:∵sin ∠CAB=62BC AC ==∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°. ∴∠CAC′=60°-45°=15°, 鱼竿转过的角度是15°. 故选C .考点:解直角三角形的应用.【解析】 【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解. 【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.58.7210-⨯ 【解析】 【分析】科学记数法的表示形式为ax10n 的形式,其中1≤lal<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000872=58.7210-⨯ 故答案为:58.7210-⨯ 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14.2 【解析】 【分析】把点(2,1)代入y=﹣x 2+(m ﹣1)x+3,即可求出m 的值. 【详解】∵抛物线y=﹣x 2+(m ﹣1)x+3经过点(2,1), ∴1= -4+2(m-1)+3,解得m=2,故答案为2. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式. 15.1.依据调和数的意义,有15-1x =13-15,解得x =1. 16.1 【解析】 【分析】根据题意和旋转的性质,可以得到点C 的坐标,把点C 坐标代入反比例函数y=kx中,即可求出k 的值.【详解】∵OB 在x 轴上,∠ABO=90°,点A 的坐标为(2,4),∴OB=2,AB=4 ∵将△AOB 绕点A 逆时针旋转90°,∴AD=4,CD=2,且AD//x 轴 ∴点C 的坐标为(6,2),∵点O 的对应点C 恰好落在反比例函数y=kx的图象上, ∴k=2612⨯=, 故答案为1. 【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答. 17.=. 【解析】 【分析】黄金分割点,二次根式化简. 【详解】设AB=1,由P 是线段AB 的黄金分割点,且PA >PB ,根据黄金分割点的,,BP=1=∴2111333S S 12222⎛⎫-===⨯= ⎪ ⎪⎝⎭S1=S1. 18.34【解析】 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】·22·22∴抽到有理数的概率为34, 故答案为34. 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)证明见解析;(2)AC=45. 【解析】 【分析】(1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可;(2)设O e 的半径为r ,根据余弦的定义、勾股定理计算即可. 【详解】 (1)连接OC .∵射线DC 切O e 于点C ,90OCP ∴∠=︒.DE AP ⊥Q ,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥Q ,90CHO ∴∠=︒,设O e 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=.在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.20.(1)40人;1;(2)平均数是15;众数16;中位数15. 【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=15 2,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.21.(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:198 3194 k bk b+=⎧⎨+=⎩,解得:2200 kb=-⎧⎨=⎩,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:221604000150120120005090y x x xy x x⎧=-++≤⎨=-+≤≤⎩(<)()当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.22.(1)a=23,k=3, B(-23,-2) (2) ﹣32≤x<0或x≥3;(3) (0,94)或(0,0)【解析】【分析】1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=90o时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,OA=,tan∠AOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根据图象得:不等式x﹣1≥的解集为﹣32≤x<0或x≥3;(3)显然P与O重合时,△PDC∽△ODC;当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=94,此时P坐标为(0,94),综上,满足题意P的坐标为(0,94)或(0,0).【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.23.(1)k=b2+4b;(2).【解析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy 为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.24.48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.25.(1)14;(2)112.【解析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为112.26.(1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.【解析】试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可.试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg,∴y与x是一次函数关系,∴y与x 的函数关系式为:y=100﹣0.5(x﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg.且不高于180元/kg,∴自变量x的取值范围为:120≤x≤180;(2)设销售利润为w元,则w=(x﹣80)(﹣0.5x+160)=,∵a=<0,∴当x<200时,y随x的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).答:当销售单价为180元时,销售利润最大,最大利润是7000元.27.(1)(30103)-m (2)(30213)+米分析:(1)由三角函数的定义,即可求得AM 与AF 的长,又由坡度的定义,即可求得NF 的长,继而求得平台MN 的长;(2)在RT △BMK 中,求得BK=MK=50米,从而求得 EM=84米;在RT △HEM 中,求得283HE =,继而求得28350HG =+米.详解:(1)∵MF ∥BC ,∴∠AMF=∠ABC=45°,∵斜坡AB 长1002米,M 是AB 的中点,∴AM=502(米),∴AF=MF=AM•cos ∠AMF=2502502⨯=(米), 在RT ANF V 中,∵斜坡AN 的坡比为3∶1,∴3AF NF =, ∴5033NF ==, ∴MN=MF-NF=50-503=150503-.(2)在RT △BMK 中,BM=2BK=MK=50(米),EM=BG+BK=34+50=84(米)在RT △HEM 中,∠HME=30°,∴3tan30HE EM =︒=, ∴384283HE == ∴28350HG HE EG HE MK =+=+=(米)答:休闲平台DE 的长是1505033-米;建筑物GH 高为()28350米. 点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.。

2019年北京市通州区中考数学一模试卷(解析版)

2019年北京市通州区中考数学一模试卷(解析版)

2019年北京市通州区中考数学一模试卷一、选择题(每小题2分,共16分)1.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×1043.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.4.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.5.实数a,b在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0B.a﹣b<0C.D.a2>b26.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时8.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④B.①③C.①②③D.②③④二、填空题(每小题2分,共16分)9.请你写出一个位于平面直角坐标系中第二象限内的点的坐标.10.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:.11.已知a,b为两个连续的整数,且a<<b,则b a=.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付30钱,问买美酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.14.已知a2+1=3a,则代数式a+的值为.15.完全相同的3个小球上面分别标有数﹣2、﹣1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是.16.尺规作图:过直线外一点作已知直线的平行线.作法如下:请回答:PM平行于l的依据是.三、解答题(第17-25题每题5分,26题7分,27、28题每题8分)17.计算:﹣2cos30°.18.解不等式组,并把它的解集表示在数轴上.19.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数y=的图象于点N,若NM=NP,求n的值.21.关于x的一元二次方程x2+(m﹣1)x﹣(2m+3)=0.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.22.如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.23.体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.24.如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.25.如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.小何根据学习函数的经验,将此问题转化为函数问题解决.小华假设AE的长度为xcm,线段DE的长度为ycm.(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).(1)通过取点、画图、测量,得到了x与y的几组值,如下表:当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为cm.26.在平面直角坐标系xOy中,点C是二次函数y=mx2+4mx+4m+1的图象的顶点,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.(1)请你求出点A、B、C的坐标;(2)若二次函数y=mx2+4mx+4m+1与线段AB恰有一个公共点,求m的取值范围.27.如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.28.在平面直角坐标系xOy中有不重合的两个点Q(x1,y1)与P(x2,y2),若Q、P为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”,记作D PQ,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”,例如在图1中,点P(1,1),点Q(3,2),此时点Q与点P之间的“直距”D PQ=3.(1)①已知O为坐标原点,点A(2,﹣1),B(﹣2,0),则D AO=,D BO=.②点C在直线y=﹣x+3上,请你求出D CO的最小值.(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线y=2x+4上一动点,请你直接写出点E与点F之间“直距”D EF的最小值.2018年北京市通州区中考数学一模试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【分析】分别利用刻度尺测量三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙各点之间的距离,即可得到图上哪两个点之间距离最短.【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.【点评】本题主要考查了两点间的距离,连接两点间的线段的长度叫两点间的距离.2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104B.1.07×105C.1.7×104D.1.07×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10700=1.07×104,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.妈妈为今年参加中考的女儿小红制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“祝”的对面是“考”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:A、“祝”的对面是“成”,故本选项错误;B、“祝”的对面是“成”,故本选项错误;C、三个汉字的位置不对应,故本选项错误;D、符合,故本选项正确.故选:D.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.注意正方体的平面展开图中,相对的两个面中间一定隔着一个小正方形.5.实数a,b在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0B.a﹣b<0C.D.a2>b2【分析】根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【解答】解:由数轴,得b<﹣1,0<a<1.A、a+b<0,故A错误;B、a﹣b>0,故B不符合题意;C、<0,故C符合题意;D、a2<1<b2,故D不符合题意;故选:C.【点评】本题考查了实数与数轴,利用点在数轴上的位置得出b<﹣1,0<a<1是解题关键,又利用了有理数的运算.6.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【解答】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选:B.【点评】本题考查了随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A.2011年我国的核电发电量占总发电量的比值约为1.5%B.2006年我国的总发电量约为25000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时【分析】由折线统计图和条形统计图对各选项逐一判断即可得.【解答】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.8.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t 秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有()A.①④B.①③C.①②③D.②③④【分析】根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.【解答】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;所有点中,只有点D到A距离为2个单位,故③正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.故选:C.【点评】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.二、填空题(每小题2分,共16分)9.请你写出一个位于平面直角坐标系中第二象限内的点的坐标(﹣2,1)(答案不唯一).【分析】直接利用第二象限点的坐标特点得出答案.【解答】解:平面直角坐标系中第二象限内的点的坐标为:(﹣2,1)(答案不唯一).故答案为:(﹣2,1)(答案不唯一).【点评】此题主要考查了点的坐标,正确掌握每个象限内点的坐标性质是解题关键.10.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:这一天的最高气温约是26°.【分析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°.【点评】本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.11.已知a,b为两个连续的整数,且a<<b,则b a=9.【分析】直接利用的取值范围得出a,b的值,即可得出答案.【解答】解:∵a,b为两个连续的整数,且a<<b,∴a=2,b=3,∴b a=32=9.故答案为:9.【点评】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十,今将钱三十,得酒二斗,问醇、行酒各得几何?意思是:今有美酒一斗的价格是50钱,普通酒一斗的价格是10钱,现在买两种酒2斗共付30钱,问买美酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为.【分析】设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【解答】解:依题意得:.故答案是:.【点评】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.14.已知a2+1=3a,则代数式a+的值为3.【分析】直接将原式通分变形,进而得出答案.【解答】解:∵a2+1=3a,∴a+=+===3.故答案为:3.【点评】此题主要考查了分式的加减运算,正确掌握运算法则是解题关键.15.完全相同的3个小球上面分别标有数﹣2、﹣1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是.【分析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【解答】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.尺规作图:过直线外一点作已知直线的平行线.作法如下:请回答:PM平行于l的依据是两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【分析】利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.【解答】解:由作法得PM=AB,BM=PA,∴四边形ABMP为平行四边形,∴PM∥AB.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.三、解答题(第17-25题每题5分,26题7分,27、28题每题8分)17.计算:﹣2cos30°.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=3+1﹣3﹣=4﹣4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组,并把它的解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①,得x≥3,解不等式②,得x≥﹣1.5,∴不等式组的解是x≥3,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.19.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB =EC,根据等腰三角形的性质、三角形内角和定理计算即可;(2)根据勾股定理解答.【解答】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(2)AE2+EB2=AC2.∵∠AEC=90°,∴AE2+EC2=AC2,∵EB=EC,∴AE2+EB2=AC2.【点评】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数y=的图象于点N,若NM=NP,求n的值.【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x﹣n可得答案.【解答】解:(1)∵点A的坐标为(4,3),∴OA=5,∵OA=OB,∴OB=5,∵点B在y轴的负半轴上,∴点B的坐标为(0,﹣5),将点A(4,3)代入反比例函数解析式y=中,∴反比例函数解析式为y=,将点A(4,3)、B(0,﹣5)代入y=kx+b中,得:k=2、b=﹣5,∴一次函数解析式为y=2x﹣5;(2)由(1)知k=2,则点N的坐标为(2,6),∵NP=NM,∴点M坐标为(2,0)或(2,12),分别代入y=2x﹣n可得:n=﹣4或n=8.【点评】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.21.关于x的一元二次方程x2+(m﹣1)x﹣(2m+3)=0.(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根.【分析】(1)根据根的判别式列出关于m的不等式,求解可得;(2)取m=﹣3,代入原方程,然后解方程即可.【解答】解:(1)根据题意,△=(m﹣1)2﹣4[﹣(2m+3)]=m2+6m+13=(m+3)2+4,∵(m+3)2+4>0,∴方程总有两个不相等的实数根;(2)当m=﹣3时,由原方程得:x2﹣4x+3=0.整理,得(x﹣1)(x﹣3)=0,解得x1=1,x2=3.【点评】本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.【分析】(1)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可.【解答】证明:(1)∵BD⊥AB,EF⊥CD,∴∠ABD=90°,∠EFD=90°,根据题意,在▱ABCD中,AB∥CD,∴∠BDC=∠ABD=90°,∴BD∥GF,∴四边形BDFG为平行四边形,∵∠BDC=90°,∴四边形BDFG为矩形;(2)∵AE平分∠BAD,∴∠BAE=∠DAE,∵AD∥BC,∴∠BEA=∠DAE,∴∠BAE=∠BEA,∴BA=BE,∵在Rt△BCD中,点E为BC边的中点,∴BE=ED=EC,∵在▱ABCD中,AB=CD,∴△ECD为等边三角形,∠C=60°,∴∠BAE=∠BAD=30°,∴tan∠BAE=.【点评】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.23.体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为61;②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.【分析】(1)根据收集的数据整理即可得;(2)①总人数乘以样本中1分钟“仰卧起坐”项目可以得到满分的人数所占比例即可得;②根据平均数和中位数的意义分析,并结合其特点给出相应的建议即可.【解答】解:(1)补充表格如下:(2)①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×≈61,故答案为:61;②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.【点评】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.24.如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.。

北京通州区中考一模数学试卷及答案(图片版)

北京通州区中考一模数学试卷及答案(图片版)
北京通州区中考一模数学试卷及答案(图片版)
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以ቤተ መጻሕፍቲ ባይዱ道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。2019北京昌平区中考一模数学试卷及答案
死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。2019北京延庆区中考一模数学试卷及答案

北京市通州区2019年中考一模数学试题

北京市通州区2019年中考一模数学试题

数学试卷通州区初三年级模拟考试数学试卷2019年5 月考1.本试卷共 6 页,共五道大题,25 道小题,满分120 分.考试时间生2.在试卷和答题卡上准确填写学校名称和姓名.须3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.知4.考试结束,将本试卷、答题卡和草稿纸一并交回.120 分钟 .一、选择题(本题共32 分,每小题 4 分)在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8 题的相应位置上.1.3的倒数是A.3B.3C.1D.1332.在下列几何体中,主视图、左视图和俯视图形状都相同的是A B C D3. 2019 年,北京实现地区生产总值约17800 亿元,比2019 年增长百分之七点多. 将 17800用科学记数法表示应为A . 17. 8× 103B. 1. 78× 105C. 0. 178× 105D. 1. 78× 104O B 4.如图, A、 B、C 是⊙ O 上的三个点,∠ABC=32 °,则∠ AOC 的度数是A .32°B. 64°AC C. 16°D. 58°5.端午节吃粽子是中华民族的传统习俗.妈妈买了 2 只红豆粽和 3 只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是A .2B.1C.1D.2 52536.一个扇形的圆心角为 90°,半径为 2,则这个扇形的面积是A .6 πB. 4 πC. 2 πD.π7.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动.为了解学生每天使用零花钱的情况,小明随机调查了10 名同学,结果如下表:每天使用零花钱(单位:元)02345人数12412关于这 10 名同学每天使用的零花钱,下列说法正确的是A .平均数是 2.5B .中位数是 3C .众数是 2D .方差是 48. 如图,在直角坐标系xoy 中,已知 A 0,1 , B 3,0 ,以线段 AB 为边向上作菱形ABCD ,且点 D 在 y 轴上 . 若菱形 ABCD 以每秒 2 个单位长度的速度沿射线AB 滑行,直至顶点 D 落在 x 轴上时停止.设菱形落在 x 轴下方部分的面积为 S ,则表示 S 与滑行时间的函数关系的图象为y yDCDCAAOBxOxB第 8题图( 1)第8题图( 2)第8题图(1)第8题图(2)SSSS4 4 3 3 2 2 1 1O123 tO123 tAB 44 3 3 2 2 11O123 tO123tC D二、填空题(本题共 16 分,每小题 4 分)9.若分式x2的值为零,则 x=.x10.分解因式: x32x2xCD.11.如图, AB ∥ CD ,点 E 在 AB 上,且 DCDE ,EBAEC 70 ,则AD 的度数是 ______.第 11题图12.定义一种对正整数 n 的“ F 运算”:①当 n 为奇数时, 结果为 3n 1;②当 n 为偶数时,结果为 n (其中 k 是使得n为奇数的正整数) ,并且运算重复进行 .例如,取 n6 ,2 k2k则: 6 F ② 3F ① 10F ② 5 ⋯⋯,若 n 1 ,则第 2 次“ F 运算”的结第 次第 次第 次123果是;若 n 13,则第 2019 次“ F 运算”的结果是.三、解答题(本题共 30 分,每小题 5 分)13.计算:213tan30o 2 3012 .x 20,14.解不等式组5x 1 2( x1).15.已知:如图,AB= AC,点 D 、E 分别在 AB、 AC 上,且使AE= AD . 求证:∠ B=∠ C.CEA D B16.化简求值:1y22g x y0 ,且 y 0 .2y,其中 x 3yx x17.已知A( 4,2),B(2,4)是一次函数y kx b 的图象和反比例函数 y m图象的两x个交点.( 1)求反比例函数和一次函数的表达式;( 2)将一次函数y kx b 的图象沿y轴向上平移n 个单位长度,交y 轴于点 C,若 S V ABC 12 ,求 n 的值 .18. 列方程或列方程组解应用题:根据城市发展规划设计, 某市工程队为该城市修建一条长4800 米的公路 . 铺设 600 米后,为了缩短工期,该工程队增加了人力和设备,实际每天修建公路的长度是原计划的2倍,结果共用 9 天完成任务 . 问原计划每天修建公路多少米?四、解答题(本题共 20 分,每小题 5 分)19.某中学组织全校1000 名学生参加了有关“低碳环保”知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为 100 分),并绘制了如图的频数分布表和频数分布直方图(不完整).分组/分 频数 频率 频数50<x ≤60 10 a80 60<x ≤70b7070<x ≤800.26050 80<x ≤90 520.26 403090<x ≤ 1000.3720合计110成绩 /分50 60 70 80 90 100请根据以上提供的信息,解答下列问题:( 1)直接写出频数分布表中a ,b 的值,补全频数分布直方图;( 2)学校将对成绩在 90 分以上(不含 90 分)的学生进行奖励,请估计全校 1000 名学生中约有多少名获奖?20.如图,在矩形 ABCD 中, AB=3, BC =AD3 ,△ DCE 是等边三角形, DE 交 AB 于点 F ,F求△ BEF 的周长.EB C21.已知: 如图, AB 是⊙ O 的直径, AC 是弦.过点 A 作∠ BAC 的角平分线, 交⊙ O 于点 D ,EC过点 D 作 AC 的垂线,交 AC 的延长线于点 E .D( 1)求证:直线 ED 是⊙ O 的切线;ABO( 2)连接 EO ,交 AD 于点 F ,若 5AC=3 AB ,求EO的值.FO22. 如图所示,在 4×4 的菱形斜网格图中(每一个小菱形的边长为1,有一个角是 60°),菱形 ABCD 的边长为 2, E 是 AD 的中点, 沿 CE 将菱形 ABCD 剪成①、 ②两部分, 用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上 .A E D( 1)在下面的菱形斜网格中画出示意图;②①B C(直角三角形)(等腰梯形)(矩形)第22题图第22题图( 2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S1、S2、S3,周长分别记为l1、l2、l3,判断所拼成的三种图形的面积、周长的大小关系(用“ =”、“>”、“<”、“≤”或“≥”连接):面积关系是;周长关系是.五、解答题(本题共22 分,第23 题7 分,第24 题7 分,第25 题8 分)23.已知二次函数y x2 2 k 1 x4k 的图象与x 轴分别交于点 A x1 ,0、 B x2 ,0,且32< x1 <12.( 1)求k 的取值范围;( 2)设二次函数y x2 2 k 1 x4k 的图象与y 轴交于点M,若OM OB ,求二次函数的表达式;( 3)在 (2) 的条件下,若点N 是x 轴上的一点,以N、A、 M为顶点作平行四边形,该平行四边形的第四个顶点 F 在二次函数y x2 2 k 1 x4k 的图象上,请直接写出满足上述条件的平行四边形的面积.24.已知:AD 2 ,BD 4 ,以AB为一边作等边三角形ABC. 使 C、D 两点落在直线AB的两侧 .( 1)如图,当∠ ADB= 60°时,求AB 及 CD 的长;( 2)当∠ ADB 变化,且其它条件不变时,求CD 的最大值,及相应∠ADB 的大小 .CAD B25.我们把一个半圆与二次函数图象的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆” 只有一个交点(半圆与二次函数图象的连接点除外),那么这条直线叫做“蛋圆”的切线 . 如图,二次函数y x22x 3 的图象与x轴交于点A、B,与y轴交于点D, AB 为半圆直径,半圆圆心为点M, 半圆与 y 轴的正半轴交于点 C.(1)求经过点 C 的“蛋圆”的切线的表达式;(2)求经过点 D 的“蛋圆”的切线的表达式;( 3)已知点 E 是“蛋圆”上一点(不与点A、点 B 重合),点 E 关于 x 轴的对称点是 F ,y若点 F 也在“蛋圆”上,求点E的坐标.CMA OB xD第25题图通州区初三数学模拟考试参考答案及评分标准2019.5一、选择题:1. C2. C3. D4.B5. A6. D7.B8. A二、填空题:9.x 2 ;10.x x12 ;11. 40;12.1, 4;三、解答题:13.解:原式 =131 2 3 ,⋯⋯⋯⋯⋯⋯4 分;332=112 3 ,32数学试卷=33 .⋯⋯⋯⋯⋯⋯5 分 .2x 2 ,①14.5x 1 2 x 1 . ②解:解不等式①,得x 2 ,⋯⋯⋯⋯⋯⋯1 分;解不等式②,5x 1 2x 2 , ⋯⋯⋯⋯⋯⋯ 2 分;5x 2 x 2 1,⋯⋯⋯⋯⋯⋯3 分;3x3 ,x1,⋯⋯⋯⋯⋯⋯ 4 分;∴这个不等式组的解集是1 x2 .⋯⋯⋯⋯⋯⋯5分 .15. 证明:在△ ABE 和△ ACD 中CAB,ACE∵A ,⋯⋯⋯⋯⋯⋯3 分;AAE AD.ADB∴△ ABE ≌△ ACD ( SAS ) . ⋯⋯⋯⋯⋯⋯ 第 15题图4 分;∴BC .⋯⋯⋯⋯⋯⋯5 分 .x 2 y 2 y 2x y16. 解:原式 =2y 2x 2 y 2 x ,xx 2 y 2xy , ⋯⋯⋯⋯⋯⋯1 分;x 2x(xx 2y) x y , ⋯⋯⋯⋯⋯⋯2 分;y)( xx=x . ⋯⋯⋯⋯⋯⋯3 分;x y由 x3y 0 ,得 x 3y ,⋯⋯⋯⋯⋯⋯ 4 分;∴原式 =3 y = 3y = 3 . ⋯⋯⋯⋯⋯⋯53 y y 4y 4分 .数学试卷17. 解: (1)把 A( 4,2) , B(2, 4) 分别代入 y kx b 和 ym中,x4k b 2,∴2k b4,⋯⋯⋯⋯⋯⋯1 分;-4= m.2k,1 ⋯⋯⋯⋯⋯⋯2 分;解得:,b 2m 8.∴反比例函数的表达式为y8 x2 ; ,一次函数的表达式为 yx( 2)设一次函数 yx2 的图象与 y 轴的交点为 D, 则 D 0,- 2,3分;∵ S ABC 12,∴1CD41 CD2 12, ⋯⋯⋯⋯⋯⋯422分;∴ CD 4, ∴ n4 . ⋯⋯⋯⋯⋯⋯ 5分 .18. 解法一 :解:设原计划每天修建公路x 米, 则实际每天修建公路2x 米,⋯⋯ 1 分;根据题意得:6004800 600⋯⋯⋯⋯⋯⋯3x2x 9 ,分;∴ 27009,x∴ x300 .经检验: x=300 是原方程的解,且符合实际问题的意义.⋯⋯⋯⋯⋯⋯ 4 分; 答: 原计划每天修建公路 300 米 .⋯⋯⋯⋯⋯⋯5 分.解法二:解:设铺设 600 米用 x 天 , 则增加人力和设备后,用9 x 天完成任务 .数学试卷根据题意得: 26004800 600 ,x9 x解得: x2 .经检验: x2是原方程的解,且符合实际问题的意义∴600=300 ,2答:原计划每天修建公路300 米.四、解答题19. ( 1) a0.05, b 24 .补全频数分布直方图正确;( 2) 0.37 1000 370.估计全校 1000 名学生中约有 370 名获奖 .20.解法一:∵矩形 ABCD ,△ DCE 是等边三角形,∴ ADFECB 30o , ED EC 3,在 Rt △ ADF 中,A 90o , AD3 ,1 分;3 分;.⋯⋯⋯⋯⋯⋯ 4 分;5 分.2 分;4 分;5 分 .AF,∴ tan ADFADtan 30oAF3 ,33A DE FG BC∴ AF1, 第20题图∴ FB AB AF 3 1 2 , FD 2 ,⋯⋯⋯⋯⋯⋯ 1 分;∴ EFEDDF3 2 1,⋯⋯⋯⋯⋯⋯ 2 分;过点 E 作EG CB ,交 CB 的延长线于点 G.⋯⋯⋯⋯⋯⋯3 分;在 Rt △ ECG 中,EGC 90o , EC 3,ECG 30o ,1EC 3, cos ECGGC ,∴EG2EC2cos 30o GC 3 ,32数学试卷33 ,∴GC231∴GB GC33 ,BC322由勾股定理得,EB 2 EG 2 GB 2 ,∴ EB3 (舍去负值) ⋯⋯⋯⋯⋯⋯4 分;∴△ BEF 的周长 = EFFB EB3 3 .⋯⋯⋯⋯⋯⋯5 分 .解法二:∵矩形 ABCD ,△ DCE 是等边三角形,∴ EDC ECD 60o , EDEC 3,过点 E 作EHCD 交 CD 于点 H ,交 AB 于点 G.⋯⋯⋯⋯⋯⋯1 分;∴点 H 是 DC 的中点,点 G 是 AB 的中点,FEG30o , GH AD3 ,在 Rt △ EHD 中, EHD 90o , ED3 ,∴ sin EDHEH ,EDsin 60oEH 3 ,3 2∴ EH33 ,233313 .∴EG EH GHA D22FEH 在 Rt △ EGF 中,EGF 90o ,EFG 60o ,G∴ sin EFGEGEF ,BC1 3第 20题图3 o2,sin 60EF2∴ EF 1 ,⋯⋯⋯⋯⋯⋯2 分;∴ FG1EF1 ,22∵点 G 是 AB 的中点, AB 3 ,∴ GB1AB3 ,22数学试卷∴FB FG GB 13,⋯⋯⋯⋯⋯⋯3 分;222由勾股定理得,EB2EG 2GB2,∴ EB 3 (舍去负值)⋯⋯⋯⋯⋯⋯ 4 分;∴△ BEF 的周长 = EF FB EB 3 3 .⋯⋯⋯⋯⋯⋯ 5 分 .解法三:∵矩形ABCD ,△ DCE 是等边三角形,∴ ADFECB30o,ED EC3,在 Rt△ADF中, A 90o, AD3,∴tan ADF AF,ADtan 30o AF 3 ,33∴ AF1,∴ FB AB AF312,FD 2 ,⋯⋯⋯⋯⋯⋯ 1 分;∴ EF ED DF321,⋯⋯⋯⋯⋯⋯ 2 分;过点 B作BG CE ,交CE于点G.⋯⋯⋯⋯⋯⋯ 3 分;在 Rt△BCG中,BGC 90o,BC3,ECB30o,∴ BG 1BC3, cos BCG GC ,22BCA DFcos 30o GC3 ,32E GB C∴ GC 3第 20题图,233∴ GE EC GC,322由勾股定理得, EB 2EG 2GB 2,或BG是线段EC的垂直平分线,∴ EB 3 (舍去负值)或BE=BC ,⋯⋯⋯⋯ 4 分;∴△ BEF 的周长 = EF FB EB 3 3 .E 5 分.⋯⋯⋯⋯⋯⋯21.(1)证明:连接OD.C DA O B第21题图数学试卷∵OD OA,∴OAD ODA ,∵AD 平分BAC ,∴BAD CAD ,∴ODA CAD ,⋯⋯⋯⋯⋯⋯ 1 分;∴AE ∥OD,∵ DE AE ,∴ ED DO ,∵点 D在⊙O上,∴ED 是⊙ O 的切线;(2)解法一:连接 CB, 过点 O 作OG ∵ AB 是⊙ O 的直径,∴ ACB90o,∵ OG AC ,∴OG∥ CB ,AG AC∴,AO AB∵5AC=3AB ,∴ AG3,AO5设 AG 3x,AO 5x ,∵DE AE,ED DO,∴四边形EGOD 是矩形,∴EG OD ,AE∥OD,∴ DO5x , GE5x , AE 8x ,∴△ AEF ∽△ DFO,∴ EF AE ,FO OD∴EF 8, FO5EO 13∴.FO52 分;AC 于点G.⋯⋯⋯⋯⋯ 3 分;EC DGFA BO第21题图4 分;5分.数学试卷解法二:连接 CB, 过点 A 作 AH DO 交 DO 的延长线于点 H. ⋯⋯⋯⋯3 分;∵ DEAE , EDDO ,EC∴四边形AHDE 是矩形,DF∴ EA DH,AE HD, AH ∥ ED ,AB∥O ∴CAB AOH ,H∵ AB 是⊙ O 的直径, 第 21题图∴ ACB 90o ,∴ACBAHO ,∴△ AHO ∽△ BCA ,OH AC ∴,AOAB∵ 5AC=3AB ,∴ OH3 , ⋯⋯⋯⋯⋯⋯4 分;AO5设 OH 3x ,AO 5x ,∴ DO5x , AE DH8x ,∵ AE ∥ HD ,∴△ AEF ∽△ DFO ,∴ EFAE ,FO OD∴EF 8, FO 5∴EO 13⋯⋯⋯⋯⋯⋯ 5 分.FO .5解法三:连接 CB , 分别延长 AB 、ED 交于点 G. ⋯⋯⋯⋯3 分;∵ DEAE , ED DO ,∴ AE ∥ OD , ODG 90o ,∴CABDOG ,∵ AB 是⊙ O 的直径,EACB 90o ,C D∴F∴ACB ODG ,AOBG∴△ GDO ∽△ BCA ,第 21题图∴OD AC , OG AB ∵ 5AC=3AB ,∴ OD3 , ⋯⋯⋯⋯⋯⋯4 分;OG5设 OD 3x , OG 5x ,∴ AO5x , AG AO OG 8x ,∵ AE ∥ OD ,∴△ AEG ∽△ ODG ,△ AEF ∽△ DFO ,∴ AGAE, EFAE , OG ODFOOD∴EF 8, FO 5 EO 13⋯⋯⋯⋯⋯⋯5 分.∴.FO522.(1)①②②①① ② ②①(直角三角形)(等腰梯形) (矩形)画图正确;每图各1分,共 3分;(2) 面积关系是S 1=S 2=S 3 ;⋯⋯⋯⋯⋯⋯ 4 分;周长关系是 l 1 > l 2 > l 3 .⋯⋯⋯⋯⋯⋯5 分 .五、解答题:23.解: (1) 令 y 0 ,则 x22 k 1 x4k解方程得: x 2k 或 x2 ,⋯⋯⋯⋯⋯⋯ 1 分;由题意得: A 2k ,0 , B 2,0 ,∴ -3 12k,22∴3k1 ⋯⋯⋯⋯⋯⋯2 分;4.4(2) 令 x0 ,则 y4k ,∴M 0,4k ,∵OM OB,∴4k 2 ,⋯⋯⋯⋯⋯⋯ 3 分;∴ k 1,2∴ y x2x 2 .⋯⋯⋯⋯⋯⋯4分;或∵OM OB,B 2,0 ,∴M 0,-2,把点 M 的坐标分别代入y x2 2 k 1 x 4k 中,∴ 4k 2 ,⋯⋯⋯⋯⋯⋯ 3 分;∴ k 1,2∴ y x2x 2 .⋯⋯⋯⋯⋯⋯4分;(3) 2,517 ,5 17. (每个答案各 1 分)⋯⋯⋯⋯⋯⋯7 分.24.解:( 1)过点 A 作AG BC于点G.C∵∠ ADB= 60°, AD 2 ,∴ DG1, AG 3 ,A∴ GB3,∴ tanAG3 D G B ABG3,第 24题图BG∴ABG 30o,AB23 ,⋯⋯⋯⋯⋯⋯ 1 分;∵ △ ABC 是等边三角形,∴DBC 90o,BC23 ,⋯⋯⋯⋯⋯⋯ 2 分;由勾股定理得: CD DB 2BC 24222 7 .3 分;2 3⋯⋯( 2)作EAD60o,且使 AE AD ,连接ED、 EB.⋯⋯⋯⋯ 4 分;∴△ AED 是等边三角形,数学试卷∴ AE AD ,EAD60o,∵ △ ABC 是等边三角形,∴ AB AC ,BAC60o,C ∴EAD DAB BAC DAB ,A即EAB DAC ,∴△ EAB≌△ DAC .⋯⋯⋯⋯⋯⋯ 5 分;E D第24题图B∴ EB=DC .当点 E、D 、 B 在同一直线上时,EB 最大,∴ EB24 6 ,⋯⋯⋯⋯⋯⋯ 6 分;∴ CD的最大值为6,此时ADB 120o.C⋯⋯⋯⋯⋯⋯7分 .A B另解:作 DBF60o,且使 BF BD ,连接DF、AF.D参照上面解法给分 .第 24题图F25.解:( 1)由题意得:A10,,B3,0, D 0,-3, M10,.yC∴ AM BM CM 2 ,G Mx ∴ OC CM 2OM 2 3 ,A O B∴C 0,3D∵GC 是⊙ M 的切线,第25题图∴ GCM90o∴cos OMC OM MC⋯⋯⋯⋯⋯⋯ 1 分;MC,MG∴ 12 ,2MG∴ MG 4 ,∴ G3,0 ,∴直线 GC 的表达式为y 3 x 3 .⋯⋯⋯⋯⋯⋯ 2 分;3( 2)设过点 D 的直线表达式为y kx3,y kx 3,∴y x2 2x 3,∴x2 2 k x 0 ,或 x1 0,x2 2 k数学试卷[ (2 k )] 20 ,或 x1x2,⋯⋯⋯⋯⋯⋯3分;∴ k2 ,∴过点 D 的“蛋圆”的切线的表达式为y2x 3 .⋯⋯⋯⋯⋯⋯4分;( 3)假设点 E 在 x 轴上方的“蛋圆”上,设 E m,n ,则点F的坐标为m, n .EF 与 x 轴交于点 H,连接 EM .∴ HM 2EH22yEM ,CE∴ m12n2 4 ,⋯⋯①⋯⋯⋯⋯ 5 分; A O M H BxF ∵点 F 在二次函数y x22x 3 的图象上,D第25题图∴ m22m3n ,⋯⋯②解由①②组成的方程组得:m1 3 ; m13.( n 0舍去 )n1n1⋯⋯⋯⋯⋯⋯ 6 分;由对称性可得:m1 3 ; m 1 3 .⋯⋯⋯⋯⋯⋯7 分;n1n1∴E1 1 31,,E2 131,,E3 13,-1 ,E4 1 3,-1 .⋯⋯⋯⋯⋯⋯8分 .。

2019年北京市通州区初三一模数学试卷及答案

2019年北京市通州区初三一模数学试卷及答案

通州区2019年初三第一次模拟考试 数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 答案不唯一,如1- 10. 60︒11. 40︒12. 答案不唯一,如4-,4 13. 40 14. E ,两点之间线段最短 15. 10 16. 4三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17. 解:原式=261-+ ………………… 4分 =21-+=1 . ………………… 5分18. 解:解不等式①,342x x -<-, ………………… 1分2x -<-,2x >. ………………… 2分解不等式②,23x -≥, ………………… 3分 5x ≥ .………………… 4分 ∴不等式组的解集为5x ≥. ………………… 5分19. (1)使用直尺和圆规,补全图形;(保留作图痕迹)………………… 2分(2)完成下面的证明. 证明:连接FG 、DE .∵△ADE ≌ △CFG , ………………… 3分 ∴∠DAE = ∠FCG . ………………… 4分 ∴CG ∥AB (同位角相等,两直线平行)(填推理的依据). ………………… 5分20.解:(1)一元二次方程()2210x x n +--=有两个不相等的实数根,∴ △=()22410n -⨯-->⎡⎤⎣⎦, ………………… 1分即4440n +->,∴ 0n >. ………………… 2分 (2)∵ n 为取值范围内的最小整数,∴1n =.………………… 3分∴ 220x x += ∴ ()20x x +=∴ 10x =,22x =-. ………………… 5分 21.(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平行四边形. ……………… 1分 ∵AB 平分∠EAD , ∴EAB DAB ∠=∠. ∵AE ∥BD , ∴EAB DBA ∠=∠. ∴DAB DBA ∠=∠. ∴AD BD =.∴四边形EADB 是菱形. ……………… 2分(2)解:∵∠ACB =90°,∠BAC =60°,BC=∴tan 60BCAC︒==∴2AC =. ……………… 3分∴11222ACB S AC BC ==⨯⨯=V g ……………… 4分 ∵AE ∥BC ,∴ECB ACB S S ==V V . ……………… 5分22. 解:(1)把A (1,2)代入函数(0)my x x=>中, ∴21m =. ∴2m =. ……………… 1分(2)①过点C 作x 轴的垂线,交直线l 于点E ,交x 轴于点F .当点C 是线段BD 的中点时,1CE CF ==.∴点C 的纵坐标为1.……………… 2分把1y =代入函数2y x=中, 得2x =.∴点C 的坐标为(2,1). ……………… 3分 把C (2,1)代入函数2y x b =+中,得3b =-. ……………… 4分②3b >. ……………… 5分 23. (1)证明:∵AE 是⊙O 的切线,AB 为⊙O 的直径,∴90BAE ∠=︒, 90ACB ∠=︒. ……………… 1分 ∴90BAC CAE ∠+∠=︒ . ∴90BAC B ∠+∠=︒.∴B CAE ∠=∠. ……………… 2分 ∵AF =AE ,90ACB ∠=︒,∴CAD CAE ∠=∠.∴B CAD ∠=∠. ……………… 3分 (2)解:连接CD .∵B CAD ∠=∠,∴»»AC CD =. ……………… 4分 ∴AC CD =.∵90ACE ∠=︒,CE =2,30CAE CAF B ∠=∠=∠=︒, ∴tan CECAE AC∠=. ∴tan 30︒=2AC.∴AC = ……………… 5分 过点C 作CG ⊥AD 于点G . ∴cos AGCAF AC∠=. ∴cos 30︒.∴3AG =.∵AC =CD ,90ACB ∠=︒,∴ 26AD AG ==. ……………… 6分另解一:连接BD . 先求AB 的长,再求AD . 另解二:连接CD . 先求AE 的长,再证FC =FD .24. (1)补全表格: 7.6 . ……………… 1分(2)描点,画图象. ……………… 3分 (3)结合画出的函数图象,解决问题:①1.5; ……………… 4分②画出直线3y x =, ……………… 5分2.6-2.9(在范围内即可) ………………25. (1)10987y组别 平均分 中位数 方差 合格率 优秀率 甲 6.7 6 3.41 90% 20% 乙7.17.51.6980%10%……………… 2分(2)甲 ……………… 3分 (3)甲或乙 ……………… 4分甲组:甲组的合格率、优秀率均高于乙组.(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定.)……………… 6分26. 解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分(2)① 不妨设点M 在点N 的左侧. ∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分 ∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27. 解:(1)连接AE .∵点B 关于射线AD 的对称点为E ,∴AE =AB ,BAF EAF α∠=∠=∵ABC △是等边三角形, ∴AB AC =,60BAC ACB ∠=∠=︒. ∴602EAC α∠=︒-,AE AC =. ……………… 1分 ∴()1180602602ACE αα∠=︒-︒-=︒+⎡⎤⎣⎦. ∴6060BCF ACE ACB αα∠=∠-∠=︒+-︒=. ……………… 2分 另解:借助圆. (2)AF EF CF -=证明:如图,作60FCG ∠=︒交AD 于点G ,连接BF . ……………… 3分 ∵BAF BCF α∠=∠=,ADB CDF ∠=∠, ∴60ABC AFC ∠=∠=︒. ∴△FCG 是等边三角形.∴GF = FC . ……………… 4分 ∵ABC △是等边三角形,∴BC AC =,60ACB ∠=︒.∴ACG BCF α∠=∠=.在△ACG 和△BCF 中,CA CB ACG BCF CG CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴△ACG ≌△BCF .∴AG BF =. ……………… 5分 ∵点B 关于射线AD 的对称点为E ,∴BF EF =. ……………… 6分 ∴AF AG GF -=.∴AF EF CF -=. ……………… 7分 另一种证法:作60FAH ∠=︒交FC 的延长线于点H ,连接BF .28. (1)解:()2,1C ,()2,0D , ……………… 2分(2)由题意可知,点B 在直线y x =上. ∵直线y x =与直线y x b =+平行.过点A 作直线y x =的垂线交x 轴于点G ,∴点G 是点A 关于直线y x =的对称点. ……………… 3分∴()2,0G .过点B 作直线y x =的垂线交x 轴于点H . ∴△OBH 是等腰直角三角形. ∴点G 是OH 的中点.∴直线y x b =+过点G . ……………… 4分 ∴2b =-.∴b 的取值范围是20b -≤≤. ……………… 5分 (32n ≤或2n -≤≤ ……………… 7分。

北京通州区2019初三一模数学解析

北京通州区2019初三一模数学解析

北京通州区2019初三一模数学解析2018、5【一】选择题:〔每题4分,共32分〕 1.B2.B3.C4.C.5.C6.B.7.A.8.A 【二】填空题:〔每题4分,共16分〕 9.)12)(12(+-x x a ;10.2.;11.π4;12.43,8,n a ︒360sin22或〔nn n n a )2(90cos)2(90sin 42-︒⨯-︒⋅〕【三】解答题:〔每题5分,4道小题,共20分〕13.解:()82114.345sin 23102+-+︒-⎪⎭⎫ ⎝⎛--π原式=2129++-.................................................................(4分)=10.................................................................(5分)14.解:解不等式152>+x得:2->x ;…………………………………………………..(2分) 解不等式543≤-x得:3≤x ……………………………………………………….(4分) ∴32≤<-x ,∴满足不等式组的整数解为1-,0,1,2,3.................................................................(5分) 15.解:DAE BAC ∠=∠..........................................................................(3分)∴DAB EAC ∠=∠.....................................................................(4分)在AEC ∆和ADB ∆中⎪⎩⎪⎨⎧=∠=∠=AC AB EAC DAB AE AD∴AEC∆≌ADB ∆(SAS ).............................................................(5分)16、解:4)(2)12(22+--+a a a42214422++-++=a a a a ................................................(1分)5622++=a a .....................................................(2分) ()5322++=a a .....................................................(3分)0132=++a a∴132-=+a a .....................................................(4分)∴原式=3.....................................................(5分)【四】解答题:〔每题5分,5道小题,共25分〕17、解:设现场观看篮球比赛的观众大约有x 人,现场观看足球比赛的观众大约有y人,...........(1分)根据题意得:⎩⎨⎧=-=+6000260000x y y x ....................................................(3分)解得:⎩⎨⎧==4200018000y x ..........................................(4分)答:现场观看篮球比赛的观众大约有18000人,现场观看足球比赛的观众大约有42000人......................(5分)18.(1)是梯形..............................................(1分)(2)过点A 做BC AF ⊥于点F ,过点D 做BC DH ⊥于点HBAC AB = =123==∴FC BF∴23cos =α︒=∠30ABC ,︒=∠∴60DBC ..............................................(3分)将ABC ∆以点B 为旋转中心逆时针旋转α度角〔︒<<︒900α〕,得到BDE ∆ ABC ∆∴≌DBE ∆1==∴DE BD23sin =⋅∠=∴BD DBH DH ..............................................(4分)DBCE梯形S ∴43323)3(121+=+=..............................................(5分)19.解:〔1〕 反比例函数2k y x=(0)x >的图象过()3,1A ),3(a B 两点、3312=⨯=∴k ,133==a ..............................................(1分) ∴)1,3(B ...........................................(2分) 一次函数b x k y +=1的图象过()3,1A ,)1,3(B 两点梯形S ∴⎩⎨⎧=+=+13311b k b k解得:4,11=-=b k ..............................................(3分)〔2〕设一次函数4+-=x y 与y 轴交于C 点那么C 点坐标为)4,0(..............................................(4分)C63421=⨯⨯=∴∆BOCS , 21421=⨯⨯=∴∆AOCS 426=-=-=∴∆∆∆AOC BOC ABO S S S ..............................................(5分) 20、证明:〔1〕连接OD ..............................................(1分)AC AB =ABC C ∠=∠∴ OD OB =ABC ODB ∠=∠∴ODB C ∠=∠∴..............................................(2分) AC OD //∴ AC DF ⊥ OD DF ⊥∴于点D∴FD 是O ⊙的切线...............................................(3分)〔2〕AB 为⊙O 的直径 BC AD ⊥∴AC AB =,4==AD BC2==∴BD CD21tan =∠∴CAD ..............................................(4分)OD DF ⊥ ,BC AD ⊥︒=∠+∠=∠+∠∴90C CDF C CAD CAD CDF ∠=∠∴CAD CDF GDB ∠=∠=∠21tan =∠∴GDB ..............................................(5分)21.解:(1)全区参加随机抽取问卷调查的学生有_500__名;.........(1分) (2)补全条形统计图;...........................................(3分)(3)我区有近5000名初三学生,那么有2000名学生对中考复习电视讲座达到基本了解以上〔含基本了解〕程度...................................(4分)(4)通过两期专栏宣传后,全区初三学生对中考复习电视讲座达到基本了解以上〔含基本了解〕程度有:4500%)501(20002=+人...........................(5分) 22.解:(1)8=∆PDEC.............................................(1分).............................................(2分) 〔2〕如图,作G 关于AB 的对称点M ,在CD 上截取CH =1,然后连接HM 交AB 于E , 接着在EB 上截取EF =1,那么E 、F 两点即可满足使四边形CGEF 的周长最小、 ∴GEFC四边形C=GE +EF +FC +CG =6+310.............................................(3分).............................................(5分)23.解:〔1〕 16)2(43216422+-=+-=∆a a a无论a 为何实数16)2(42+-=∆a 0>…………………………(1分) ∴抛物线与x 轴总有两个交点……………………………………(2分) 〔2〕8422+-+-=a ax x y84)(22+-+--=a a a x y ……………………………………(3分)∴由题意得,2≤a 〔只写<或=其一,不给分〕……………(4分)〔3〕解法一:以二次函数8422+-+-=a ax x y 图象的顶点A 为一个顶点作该二次函数图象的内接正三角形AMN 〔M ,N 两点在二次函数的图象上〕, 这个正三角形的面积只与二次函数图形的开口大小有关。

北京市通州区2019年中考数学模拟试卷(精品解析) (1)

北京市通州区2019年中考数学模拟试卷(精品解析) (1)

北京市通州区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对2.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.化简的结果是()A. B. C.a﹣b D.b﹣a7.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个8.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D.9.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1)将线段AB平移后得到线段A′B′,若点A的坐标为(﹣2,2),则点B′的坐标为()A.(﹣5,4) B.(4,3)C.(﹣1,﹣2)D.(﹣2,﹣1)10.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲运动员得分的平均数小于乙运动员得分的平均数B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员得分的最小值大于乙运动员得分的最小值D.甲运动员得分的方差大于乙运动员得分的方差二.填空题(共6小题,满分18分,每小题3分)11.在函数中,自变量x的取值范围是_______.12.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为__________.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.14.如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是_________.15.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作_________.16.在△ABC中,已知∠CAB=60°,D.E分别是边AB.AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于___________.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.20.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(5分)已知关于x的一元二次方程x2+mx﹣6=0.(1)求证:不论m为何实数,方程总有两个不相等的实数根;(2)若m=1,用配方法解这个一元二次方程.22.(5分)某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1.表2和表3.表1:小张抽样调查单位3名职工的健康指数表2:小王抽样调查单位10名职工的健康指数表3:小李抽样调查单位10名职工的健康指数根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为_______(2)小张、小王和小李三人中,______的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.24.(5分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.25.(5分)阅读下列材料:阅读下列材料:在《北京城市总体规划(2004 年﹣2020 年)》中,房山区被确定为城市发展新区和生态涵养区,承担着首都经济发展、生态涵养、人口疏解和休闲度假等功能.近年来房山区地区生产总值和财政收入均稳定增长.2011 年房山区地方生产总值是 416.0 亿元;2012 年是科学助力之年,地方生产总值 449.3 亿元,比上一年增长8.0%;2013 年房山努力在区域经济发展上取得新突破,地方生产总值是 481.8 亿元,比上年增长 7.2%;2014 年房山区域经济稳中提质,完成地方生产总值是 519.3 亿元,比上年增长 7.8%;2015 年房山区统筹推进稳增长,地区生产总值是 554.7 亿元,比上年增长了 6.8%;2016 年经济平稳运行,地区生产总值是 593 亿元,比上年增长了 6.9%.根据以上材料解答下列问题:(1)选择折线图或条形图将 2011 年到 2016 年的地方生产总值表示出来,并在图中标明相应数据;(2)根据绘制的统计图中的信息,预估 2017 年房山区地方生产总值是________ 亿元,你的预估理由是_________.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是________;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=_________.(4)结合函数的图象,写出该函数的一条性质:_________.27.(7分)对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:①不论m为何值,函数图象一定过定点(﹣1,﹣3);②当m=﹣1时,函数图象与坐标轴有3个交点;③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.28.(7分)已知如图是边长为10的等边△ABC.(1)作图:在三角形ABC中找一点P,连接PA.PB.PC,使△PAB.△PBC.△PAC面积相等.(不写作法,保留痕迹.)(2)求点P到三边的距离和PA的长.29.(8分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD.BC于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x(0<x<3).(1)填空:PC=_______,FC=_______-;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.参考答案一.选择题1.解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故选:C.2.解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.3.解:∵530060是6位数,∴10的指数应是5,故选:B.4.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.5.解:A.是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项正确;C.是中心对称图形,故本选项错误;D.是中心对称图形,故本选项错误;故选:B.6.解:原式==.故选:B.7.解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.8.解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.9.解:∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选:A.10.解:A.由图可知甲运动员得分8场得分大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项错误;B.由图可知甲运动员8场得分大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误;C.由图可知甲运动员得分最小值是5分以下,乙运动员得分的最小值是5分以上,甲运动员得分的最小值小于乙运动员得分的最小值,此选项正错误;D.由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,甲运动员得分的方差大于乙运动员得分的方差,此选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:根据题意,知,解得:x≥4,故答案为:x≥4.12.解:S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②, 由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.13.解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.14.解:∵BC=AC,∴=,∵直线AD∥BE∥CF,∴=,即=解得:EF=3,故答案为:3.15.解:根据正数和负数的定义可知,“减少6%”可以记作﹣6%.故答案为:﹣6%.16.解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB 中,∴△ACD≌△FCB (SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.20.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b, 得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.21.(1)证明:△=m2﹣4×1×(﹣6)=m2+24.∵m2≥0,∴m2+24>0,即△>0,∴不论m为何实数,方程总有两个不相等的实数根;(2)解:当m=1时,原方程为x2+x﹣6=0,移项,得:x2+x=6,配方,得:x2+2×x+()2=6+()2,即(x+)2=()2,开方,得:x+=±,∴x1=2,x2=﹣3.22.解:(1)扇形统计图中老年职工所占部分的圆心角度数为360°×20%=72°,故答案为:72°;(2)小李的抽样调查的数据能够较好地反映出该单位职工健康情况,小张的抽样调查的数据只有3个,样本容量太少.小王的抽样调查的数据主要集中在中青年职工,样本不够全面.故答案为:小李.23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.24.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=25.解:(1)2011 年到 2016 年的地方生产总值如图所示;(2)设2014到2016的平均增长率为x,则519.3(1+x)2=593,解得x≈14%,用近3年的平均增长率估计2017年的增长率,则2017年房山区地方生产总值是593×(1+14%)≈656.02亿元,理由是用近3年的平均增长率估计2017年的增长率.故答案分别为:656.02,用近3年的平均增长率估计2017年的增长率.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:①是真命题,理由:∵y=mx2+(5m+3)x+4m=(x2+5x+4)m+3x,∴当x2+5x+4=0时,得x=﹣4或x=﹣1,∴x=﹣1时,y=﹣3;x=﹣4时,y=﹣12;∴二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)的图象一定过定点(﹣1,﹣3), 故①是真命题;②是假命题,理由:当m=﹣1时,则函数为y=﹣x2﹣2x﹣4,∵当y=0时,﹣x2﹣2x﹣4=0,△=(﹣2)2﹣4×(﹣1)×(﹣4)=﹣12<0;当x=0时,y=﹣4;∴抛物线与x轴无交点,与y轴一个交点,故②是假命题;③是假命题,理由:∵y=mx2+(5m+3)x+4m,∴对称轴x=﹣=﹣=﹣﹣,∵m<0,x≥﹣时,函数y随x的增大而减小,∴,得m=,∵m<0与m=矛盾,故③为假命题;28.解:(1)如图所示,点P即为所求;(2)由(1)可得,点P为△ABC的内角平分线的交点,∴∠DBP=30°,∠ADB=90°,BD=BC=5,∴PD=tan30°×BD=,∴点P到三边的距离为,∵Rt△ABD中,AD=tan60°×BD=5,∴AP=AD﹣PD=5﹣=.29.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.。

2019年北京市通州区中考数学一模试卷(解析版)

2019年北京市通州区中考数学一模试卷(解析版)

2019年北京市通州区中考数学一模试卷一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.如图,∠AOB的角平分线是()A.射线OB B.射线OE C.射线OD D.射线OC2.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道.其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨.将数76000用科学记数法表示为()A.7.6×104B.76×103C.0.76×105D.7.6×1053.使二次根式有意义的x的取值范围是()A.x>2B.x≥2C.x=2D.x≠24.某几何体的平面展开图如图所示,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.若y=﹣x+3,且x≠y,则+的值为()A.3B.﹣3C.D.﹣6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.B.C.D.7.2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年﹣2018年我国研究与试验发展(R&D)经费支出及其增长速度情况.2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.根据统计图提供的信息,下列说法中合理的是()A.2014年﹣2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B.2014年﹣2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C.2014年﹣2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D.2018年,基础研究经费约占该年研究与试验发展((R&D)经费支出的10%8.为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图.如图,y轴上动点M的纵坐标y m表示学生的期中考试成绩,直线x=10上动点N的纵坐标y n表示学生的期末考试成绩,线段MN与直线x=6的交点为P,则点P的纵坐标y p就是这名学生的学期总评成绩.有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%.结合这张算图进行判断,其中正确的说法是()A.①③B.②③C.②D.③二、填空题(本题共8个小题,每小题2分,共16分)9.实数a,b在数轴上对应点的位置如图所示,若实数c满足ac>bc,那么请你写出一个符合题意的实数c的值:c=.10.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.11.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币.如图所示,则该硬币边缘镌刻的正多边形的外角的度数为.12.若多项式x2+ax+b可以写成(x+m)2的形式,且ab≠0,则a的值可以是,b的值可以是.13.小华同学的身高为170cm,测得他站立在阳光下的影长为85cm,紧接着他把手臂竖直举起,测得影长为105cm,那么小华举起的手臂超出头顶的长度为cm.14.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.15.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n的值是.16.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…,若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:()﹣1﹣6tan30°﹣(﹣1)0+.18.解不等式组:19.已知:如图1,在△ABC中,∠ACB=90°.求作:射线CG,使得CG∥AB.下面是小东设计的尺规作图过程.作法:如图2,①以点A为圆心,适当长为半径作弧,分别交AC,AB于D,E两点;②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;③以点F为圆心,DE长为半径作弧,两弧在∠FCB内部交于点G;④作射线CG.所以射线CG就是所求作的射线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接FG、DE.∵△ADE≌△,∴∠DAE=∠.∴CG∥AB()(填推理的依据).20.关于x的一元二次方程x2+2x﹣(n﹣1)=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为取值范围内的最小整数,求此方程的根.21.如图,在△ABC中,∠ACB=90°,D是BC边上的一点,分别过点A、B作BD、AD的平行线交于点E,且AB平分∠EAD.(1)求证:四边形EADB是菱形;(2)连接EC,当∠BAC=60°,BC=2时,求△ECB的面积.22.如图,在平面直角坐标系xOy中,直线y=2x与函数y=(x>0)的图象交于点A(1,2).(1)求m的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=(x>)的图象交于点C,与x轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC>BD时,直接写出b的取值范围.23.(6分)如图,△ABC内接于⊙O,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点E,在弦BC上取一点F,使AF=AE,连接AF并延长交⊙O于点D.(1)求证:∠B=∠CAD;(2)若CE=2,∠B=30°,求AD的长.24.(6分)数学活动课上,老师提出问题:如图1,在Rt△ABC中,∠C=90°,BC=4cm,AC =3cm,点D是AB的中点,点E是BC上一个动点,连接AE、DE.问CE的长是多少时,△AED 的周长等于CE长的3倍.设CE=xcm,△AED的周长为ycm(当点E与点B重合时,y的值为10).小牧根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图2;(3)结合画出的函数图象,解决问题:①当CE的长约为cm时,△AED的周长最小;②当CE的长约为cm时,△AED的周长等于CE的长的3倍.25.(6分)某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐参加,请你从两个不同的角度说明推荐理由.26.(6分)已知二次函数y=x2﹣ax+b在x=0和x=4时的函数值相等.(1)求二次函数y=x2﹣ax+b的对称轴;(2)过P(0,1)作x轴的平行线与二次函数y=x2﹣ax+b的图象交于不同的两点M、N.①当MN=2时,求b的值;②当PM+PN=4时,请结合函数图象,直接写出b的取值范围.27.(7分)如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),点M为线段AB上一点.(1)在点C(2,1),D(2,0),E(1,2)中,可以与点M关于直线y=x对称的点是;(2)若x轴上存在点N,使得点N与点M关于直线y=x+b对称,求b的取值范围.(3)过点O作直线l,若直线y=x上存在点N,使得点N与点M关于直线l对称(点M可以与点N重合),请你直接写出点N横坐标n的取值范围.2019年北京市通州区中考数学一模试卷参考答案与试题解析一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.【分析】由∠AOB=70°、∠AOE=35°,利用角平分线的定义即可找出∠AOB的角平分线是射线OE,此题得解.【解答】解:∵∠AOB=70°,∠AOE=35°,∴∠AOB=2∠AOE,∴∠AOB的角平分线是射线OE.故选:B.【点评】本题考查了角平分线的定义,牢记角平分线的定义是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:数据76000用科学记数法表示为7.6×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣2≥0,解得x≥2,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.4.【分析】由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体【解答】解:由图可知展开侧面为三角形,则该几何体为棱锥,再由底而为四边形,则可得此几何体为四棱锥故选:C.【点评】此题主要考查的是几何体的展开图,熟记几何的侧面、底面图形特征即可求解5.【分析】原式变形后,利用同分母分式的减法法则计算,约分得到最简结果,将已知等式变形后代入计算即可求出值.【解答】解:由y=﹣x+3,得到x+y=3,则原式=﹣===x+y=3,故选:A.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.【分析】本题的等量关系是:绳长﹣木长=4.5;木长﹣×绳长=1,据此列方程组即可求解.【解答】解:设绳子长x尺,木条长y尺,依题意有.故选:B.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.7.【分析】利用折线图中的信息一一判断即可.【解答】解:观察折线图可知:2014年﹣2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年,增长速度约为12.5%.故选:B.【点评】本题考查折线统计图,解题的关键是理解题意,灵活运用所学知识解决问题.8.【分析】根据题意在坐标系中画出对应的图象即可.【解答】解:如图所示:①中,与x=6的交点大于75,故错误②中,乙与x=6的交点大于甲与x=6的交点,所以期末总评成绩乙大于甲,正确③中,由图象可知,期末总评成绩占60%,故错误故选:C.【点评】此题主要考查图象的坐标,画出相应的直线确定交点,即可解.二、填空题(本题共8个小题,每小题2分,共16分)9.【分析】由数轴可以观察发现a<b,而实数c满足ac>bc,只要c<0即可满足要求.【解答】解:由数轴可知a<b,而实数c满足ac>bc,∴c<0,于是答案不唯一故答案为﹣1.【点评】本题考查的是不等式的基本性质,把握不等式两边同时乘以一个负数时,不等号方向改变的性质是关键.10.【分析】根据垂径定理求出=,求出、、的度数,即可求出答案.【解答】解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.【点评】本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能求出的度数是进而此题的关键.11.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以多边形的边数,就得到外角的度数.【解答】解:∵正多边形的外角和是360°,∴360°÷9=40°.故答案为:40°.【点评】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数和外角的度数是常用的一种方法,需要熟记.12.【分析】此题是一道开放型的题目,答案不唯一,只要符合完全平方公式即可.【解答】解:∵多项式x2+ax+b可以写成(x+m)2的形式,且ab≠0,∴x2+ax+b=(x+m)2,∴a可以为﹣4,b可以为4,即x2﹣4x+4=(x﹣2)2,故答案为:﹣4,4.【点评】本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.13.【分析】根据在同一时物体的高度和影长成正比,设出手臂竖直举起时总高度x,即可列方程解出x的值,再减去身高即可得出小华举起的手臂超出头顶的高度.【解答】解:设手臂竖直举起时总高度xm,列方程得:,解得x=210,210﹣170=40cm,所以小华举起的手臂超出头顶的高度为40cm.故答案为:40【点评】本题考查了相似三角形的应用,解答此题的关键是明确在同一时刻物体的高度和影长成正比.14.【分析】根据两点之间线段最短可得公共自行车存放点的位置是E处.【解答】解:公共自行车存放点应该建在B处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.15.【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【解答】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴=0.5,解得:n =10.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.16.【分析】在100s 内,求两人相遇的次数,关键一是求出两人每一次相遇间隔时间,二是找出隐含等量关系:每一次相遇时间×次数=总时间构建一元一次方程.【解答】解:设两人起跑后100s 内,两人相遇的次数为x 次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示甲、乙两人的速度,则有:(V 甲+V 乙)t =2S∴t =∴, 解得:x =4.5又∵x 是正整数,且只能取整,∴x =4故答案为4.【点评】本题考查了一元一次方程解决行程中的相遇问题,突破口就是相遇时间等于每个人走的时间;结合实际问题中x 的取值只能取整数,此题与方程的解既有区别又有联系.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.【分析】原式利用零指数幂、负整式指数幂法则,特殊角的三角函数值计算即可求出值.【解答】解:原式=2﹣6×﹣1+2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x >2,解不等式②得:x≥5,∴不等式组的解集为x≥5.【点评】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.19.【分析】(1)根据作法画出对应的几何图形;(2)利用作法得到AD=AE=CF=CG,FG=CE,则△ADE≌△CFG,根据全等三角形的性质得∠DAE=∠FCG.然后根据同位角相等,两直线平行判断CG∥AB.【解答】解:(1)如图,射线CG为所作;(2)完成下面的证明.证明:连接FG、DE.∵△ADE≌△CFG,∴∠DAE=∠FCG.∴CG∥AB(同位角相等,两直线平行).故答案为CFG,FCG,同位角相等,两直线平行.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的性质.20.【分析】(1)根据判别式的意义得到△=22﹣4[﹣(n﹣1)]>0,然后解不等式即可;(2)利用n的范围确定以n=1,则方程化为x2+2x=0,然后利用因式分解法解方程.【解答】解:(1)根据题意得△=22﹣4[﹣(n﹣1)]>0,解得n>0;(2)因为n为取值范围内的最小整数,所以n=1,方程化为x 2+2x =0,x (x +2)=0,x =0或x +2=0,所以x 1=0,x 2=﹣2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.【分析】(1)根据已知条件求得四边形EADB 是平行四边形,根据角平分线定义得到∠EAB =∠DAB ,根据平行线的性质得到∠EAB =∠DBA ,于是得到结论;(2)解直角三角形和根据平行线的性质即可得到结论.【解答】(1)证明:∵AD ∥BE ,AE ∥BD ,∴四边形EADB 是平行四边形,∵AB 平分∠EAD ,∴∠EAB =∠DAB ,∵AE ∥BD ,∴∠EAB =∠DBA ,∴∠DAB =∠DBA ,∴AD =AD .∴四边形EADB 是菱形;(2)解:∵∠ACB =90°,∠BAC =60°,BC =2,∴tan60°==, ∴AC =2,∴S △ACB =AC •BC =×2×2=2, ∵AE ∥BC ,∴S △ECB =S △ACB =2. 【点评】本题考查了菱形的判定和性质,三角形的面积,含30°直角三角形的性质,正确的识别图形是解题的关键.22.【分析】(1)根据待定系数法求得即可;(2)①根据题意求得C 点的坐标,然后根据待定系数法即可求得b 的值;②根据①结合图象即可求得.【解答】解:(1)把A(1,2)代入函数y=(x>0)中,∴2=.∴m=2;(2)①过点C作x轴的垂线,交直线l于点E,交x轴于点F.当点C是线段BD的中点时,∴CE=CF=1.∴点C的纵坐标为1,把y=1代入函数y=中,得x=2.∴点C的坐标为(2,1),把C(2,1)代入函数y=2x+b中得:1=4+b,得b=﹣3,②由①可知:当BC>CD时,b<﹣3.【点评】本题考查了一次函数和反比例函数的交点问题,待定系数法求反比例的解析式,求得C 点的坐标是解题的关键.23.【分析】(1)根据切线的性质和圆周角的定理∠BAE=∠ACB=90°,进而求得∠B=∠CAE,根据等腰三角形三线合一的性质得出∠CAD=∠CAE,即可证得结论;(2)连接BD,易证得∠BAD=30°,解直角三角形求得AE,进而求得AB,然后即可求得AD.【解答】(1)证明:∵AE是⊙O的切线,∴∠BAE=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC+∠CAE=90°,∠BAC+∠B=90°,∴∠B=∠CAE,∵AF=AE,∠ACB=90°,∴∠CAD=∠CAE.∴∠B=∠CAD;(2)解:连接BD.∵∠ABC=∠CAD=∠CAE=30°,∴∠DAE=60°,∵∠BAE=90°,∴∠BAD=30°,∵AB是直径,∴∠ADB=90°,∴cos∠BAD=,∴=,∵∠ACE=90°,∠CAE=30°,CE=2,∴AE=2CE=4,∵∠BAE=90°,∠ABC=30°,∴cot∠ABC=,即=,∴AB=4,∴=,∴AD=6.【点评】本题考查了切线的性质圆周角定理,等腰三角形的性质以及解直角三角形熟练掌握性质定理是解题的关键.24.【分析】(1)x=2cm,即CE=2cm,由勾股定理求出AB=5cm,求出AD=2.5,DE是△ABC的中位线,由三角形中位线定理得出DE=AC=1.5,由勾股定理求出AE==≈3.6,即可得出结果;(2)根据(1)表对应的坐标值进行描点,画出图象即可;(3)①由(2)画出的函数图象得出:当CE的长约为1.5cm时,△AED的周长最小即可;②在(2)函数图象中,画出直线y=3x的图象,直线y=3x与原函数图象的交点即为△AED的周长等于CE的长的3倍值时对应x的值,即可得出结果.【解答】解:(1)x=2cm,即CE=2cm,∵Rt△ABC中,∠C=90°,BC=4cm,AC=3cm,∴AB=5cm,∵BC=4,点D是AB的中点,∴AD=2.5,DE是△ABC的中位线,∴DE=AC=1.5,∴AE===≈3.6,∴y=AE+DE+AD=3.6+1.5+2.5=7.6;故答案为:7.6;(2)根据(1)表对应的坐标值进行描点,画图象;如图2所示:(3)①由(2)画出的函数图象,当CE的长约为1.5cm时,△AED的周长最小;故答案为:1.5;②在(2)函数图象中,画出直线y=3x的图象,如图3所示:直线y=3x与原函数图象的交点即为△AED的周长等于CE的长的3倍值时对应x的值,x≈2.7cm,故答案为:2.7.【点评】本题是三角形综合题目,考查了勾股定理、三角形中位线定理、描点法画函数图象、图象的交点等知识;本题综合性强,熟练掌握勾股定理和三角形中位线定理,理解图象的意义是解题关键.25.【分析】(1)根据条形图得到甲组的得分情况,根据中位数的概念求出甲组的中位数,根据平均数的计算公式求出乙组的平均分;(2)根据中位数的概念解答;(3)分别从合格率、优秀率和平均分、中位数的角度进行比较.【解答】解:(1)由条形统计图可知,甲组3分的1人,6分的5人,∴中位数是6,乙组的平均分为×(5×2+6×1+7×2+8×4+9×1)=7.1,(2)∵甲组的中位数是6,乙组的中位数是7.5,小明竞赛得了7分,在小组中排名属中游略偏上,∴小明是甲组学生,故答案为:甲;(3)推荐甲或乙,甲组:甲组的合格率、优秀率均高于乙组.乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定,故答案为:甲或乙.【点评】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.【分析】(1)利用x=0和x=4时的函数值相等可得二次函数图象的对称轴x==2;(2)①不妨设点M在点N的左侧.由MN=2,根据对称性可知点M(1,1),点N(3,1);②由图象直接可得.【解答】解:(1)∵二次函数y=x2﹣ax+b在x=0和x=4时的函数值相等.∴对称轴为直线x==2;(2)①不妨设点M在点N的左侧.∵对称轴为直线x=2,MN=2,∴点M的坐标为(1,1),点N的坐标为(3,1),∴x=﹣=2,1=1﹣a+b,∴a=4,b=4;②1≤b<5.【点评】考查知识点:二次函数图象的对称性.对称轴两侧的点到对称轴的距离相等是解题的关键点.27.【分析】(1)连接AE.根据∠BCF=∠ACE﹣∠ACB,求出∠ACE,∠ACB即可.(2)结论:AF=EF=CF.如图,作∠FCG=60°交AD于点G,连接BF.证明△ACG≌△BCF 即可解决问题.【解答】解:(1)连接AE.∵点B关于射线AD的对称点为E,∴AE=AB,∠BAF=∠EAF=α,∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°﹣2α,AE=AC,∴[180°﹣(60°﹣2α)]=60°+α,∴∠BCF=∠ACE﹣∠ACB=60°+α﹣60°=α.(2)结论:AF=EF=CF.证明:如图,作∠FCG=60°交AD于点G,连接BF.∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴△FCG是等边三角形,∴GF=FC,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α,在△ACG和△BCF中,,∴△ACG≌△BCF.∴AG=BF,∵点B关于射线AD的对称点为E,∴BF=EF,∴AF﹣AG=GF,∴AF=EF+CF.【点评】本题考查作图﹣轴对称变换,全等三角形的判定和性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.【分析】(1)根据点A(0,2),B(2,2)可知与点M关于直线y=x对称的点是点C(2,1),D(2,0);(2)根据题意可知直线y=x与直线y=x+b平行,过点A作直线y=x的垂线交x轴于点G,求出点G的坐标;过点B作直线y=x的垂线交x轴于点H,根据等腰直角三角形的性质即可求出求b的取值范围;(3)由(2)即可直接写出点N横坐标n的取值范围.【解答】解:(1)在点C(2,1),D(2,0),E(1,2)中,可以与点M关于直线y=x对称的点是C(2,1),D(2,0).故答案为:C(2,1),D(2,0);(2)由题意可知,点B在直线y=x上.∵直线y=x与直线y=x+b平行.过点A作直线y=x的垂线交x轴于点G,∴点G是点A关于直线y=x的对称点,∴G(2,0),过点B作直线y=x的垂线交x轴于点H,∴△OBH是等腰直角三角形,∴点G是OH的中点,∴直线y=x+b过点G,∴b=﹣2.∴b的取值范围是﹣2≤b≤0;(3)设AG与y=x的垂足为P,易知△ABP为等腰直角三角形,∴AP=,当l经过一三象限时,点N横坐标n的取值范围为:,当l经二,四象限时,点N横坐标n的取值范围为.【点评】本题考查了一次函数综合题,等腰直角三角形的性质,通过做此题培养了学生的阅读能力和计算能力,此题是一道非常好、比较典型的题目.。

2019年北京市通州区初三数学一模试卷及答案

2019年北京市通州区初三数学一模试卷及答案

通州区初三年级模拟考试数学试卷年5月一、选择题(每题只有一个正确答案,共8个小题,每小题4分,共32分) 1.2-的绝对值是( )A .±2B .2C .12D .12-2.下列运算正确..的是( ) A .43x x x =⋅B .532)(x x =C .326x x x =÷D .532x x x =+3.代数式221x x --的最小值是( ) A .1 B .-1 C .2 D .2- 4.某种生物孢子的直径是0.00063m ,用科学记数法表示为( )A .36.310-⨯B .46.310-⨯C .30.6310-⨯D .56310-⨯5.在一个不透明的纸箱中放入m 个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中,通过大量的重复摸球实验后发现,摸到红球的频率稳定在14,因此可以推算出m 的值大约是( )A .8B .12C .16D .20 6.如图,⊙O 的半径为2,直线P A 、PB 为⊙O 的切线, A 、B 为切点,若P A ⊥PB ,则OP 的长为( ) A . B .4 C . D .27.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的侧面积为( ) A .6π B .12π C .24π D .48π8.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连结A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连结A 2,B 2,C 2,得到△A 2B 2C 2.…按此规律,要使得到的三角形的面积超过2019,最少经过( )次操作. A .3 B .4 C .5 D .6 二、填空题:(共4道小题,每题4分,共16分)9.已知甲、乙两名同学5次数学检测成绩的平均分都是90.5分,老师又算得甲同学5次数学成绩的方差是2.06,乙同学5次数学成绩的方差是16.8,根据这些数据,说一说你可以从中得出怎样的结论: . 10.将382x x -分解因式得:.11.若2a b -=,3b c --=,5c d -=,则()()a c b d --= .12.已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC 交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .三、解答题(4道小题,每题5分,共20分)13021(1cos30)()tan 4512-+--+-︒︒.14.解方程:542332x x x+=--.15.先化简再求值:2291393m m mm +÷--+,其中1=m .16.已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、BF CD ⊥,垂足为E 、F ,求证:CE BF =.四、解答题(5道小题,每题5分,共25分) 17.如图,直线2y x =-+与反比例函数k y x=的图象只有一个交点,求反比例函数的解析式.18.某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市通州区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不对2.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.5.下列图形中,不是中心对称图形的是()A.B.C.D.6.化简的结果是()A. B. C.a﹣b D.b﹣a7.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c <0;其中结论正确的个数有()A.1个B.2个C.3个D.4个8.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B.C. D.9.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,﹣1),B(1,1)将线段AB平移后得到线段A′B′,若点A的坐标为(﹣2,2),则点B′的坐标为()A.(﹣5,4)B.(4,3)C.(﹣1,﹣2) D.(﹣2,﹣1)10.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲运动员得分的平均数小于乙运动员得分的平均数B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员得分的最小值大于乙运动员得分的最小值D.甲运动员得分的方差大于乙运动员得分的方差二.填空题(共6小题,满分18分,每小题3分)11.在函数中,自变量x的取值范围是_______.12.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为__________.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.14.如图,直线AD∥BE∥CF,BC=AC,DE=6,那么EF的值是_________.15.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次引用负数.如果+20%表示“增加20%”,那“减少6%”可以记作_________.16.在△ABC中,已知∠CAB=60°,D.E分别是边AB.AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于___________.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.20.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.21.(5分)已知关于x的一元二次方程x2+mx﹣6=0.(1)求证:不论m为何实数,方程总有两个不相等的实数根;(2)若m=1,用配方法解这个一元二次方程.22.(5分)某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1.表2和表3.表1:小张抽样调查单位3名职工的健康指数表2:小王抽样调查单位10名职工的健康指数表3:小李抽样调查单位10名职工的健康指数根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为_______(2)小张、小王和小李三人中,______的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.24.(5分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.25.(5分)阅读下列材料:阅读下列材料:在《北京城市总体规划(2004 年﹣2020 年)》中,房山区被确定为城市发展新区和生态涵养区,承担着首都经济发展、生态涵养、人口疏解和休闲度假等功能.近年来房山区地区生产总值和财政收入均稳定增长.2011 年房山区地方生产总值是416.0 亿元;2012 年是科学助力之年,地方生产总值449.3 亿元,比上一年增长8.0%;2013 年房山努力在区域经济发展上取得新突破,地方生产总值是481.8 亿元,比上年增长7.2%;2014 年房山区域经济稳中提质,完成地方生产总值是519.3 亿元,比上年增长7.8%;2015 年房山区统筹推进稳增长,地区生产总值是554.7 亿元,比上年增长了6.8%;2016 年经济平稳运行,地区生产总值是593 亿元,比上年增长了6.9%.根据以上材料解答下列问题:(1)选择折线图或条形图将2011 年到2016 年的地方生产总值表示出来,并在图中标明相应数据;(2)根据绘制的统计图中的信息,预估2017 年房山区地方生产总值是________ 亿元,你的预估理由是_________.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.﹣﹣小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是________;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=_________.(4)结合函数的图象,写出该函数的一条性质:_________.27.(7分)对于二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)有以下三种说法:①不论m为何值,函数图象一定过定点(﹣1,﹣3);②当m=﹣1时,函数图象与坐标轴有3个交点;③当m<0,x≥﹣时,函数y随x的增大而减小;判断真假,并说明理由.28.(7分)已知如图是边长为10的等边△ABC.(1)作图:在三角形ABC中找一点P,连接PA.PB.PC,使△PAB.△PBC.△PAC面积相等.(不写作法,保留痕迹.)(2)求点P到三边的距离和PA的长.29.(8分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD.BC 于点E.F,点P是边DC上的一个动点,且保持DP=AE,连接PE.PF,设AE=x(0<x<3).(1)填空:PC=_______,FC=_______-;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.参考答案一.选择题1.解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故选:C.2.解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.3.解:∵530060是6位数,∴10的指数应是5,故选:B.4.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.5.解:A.是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项正确;C.是中心对称图形,故本选项错误;D.是中心对称图形,故本选项错误;故选:B.6.解:原式==.故选:B.7.解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.8.解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.9.解:∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选:A.10.解:A.由图可知甲运动员得分8场得分大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项错误;B.由图可知甲运动员8场得分大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误;C.由图可知甲运动员得分最小值是5分以下,乙运动员得分的最小值是5分以上,甲运动员得分的最小值小于乙运动员得分的最小值,此选项正错误;D.由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,甲运动员得分的方差大于乙运动员得分的方差,此选项正确.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:根据题意,知,解得:x≥4,故答案为:x≥4.12.解:S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.13.解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.14.解:∵BC=AC,∴=,∵直线AD∥BE∥CF,∴=,即=解得:EF=3,故答案为:3.15.解:根据正数和负数的定义可知,“减少6%”可以记作﹣6%.故答案为:﹣6%.16.解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB 中,∴△ACD≌△FCB (SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.20.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.21.(1)证明:△=m2﹣4×1×(﹣6)=m2+24.∵m2≥0,∴m2+24>0,即△>0,∴不论m为何实数,方程总有两个不相等的实数根;(2)解:当m=1时,原方程为x2+x﹣6=0,移项,得:x2+x=6,配方,得:x2+2×x+()2=6+()2,即(x+)2=()2,开方,得:x+=±,∴x1=2,x2=﹣3.22.解:(1)扇形统计图中老年职工所占部分的圆心角度数为360°×20%=72°,故答案为:72°;(2)小李的抽样调查的数据能够较好地反映出该单位职工健康情况,小张的抽样调查的数据只有3个,样本容量太少.小王的抽样调查的数据主要集中在中青年职工,样本不够全面.故答案为:小李.23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在Rt△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在Rt△DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在Rt△EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.24.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=25.解:(1)2011 年到2016 年的地方生产总值如图所示;(2)设2014到2016的平均增长率为x,则519.3(1+x)2=593,解得x≈14%,用近3年的平均增长率估计2017年的增长率,则2017年房山区地方生产总值是593×(1+14%)≈656.02亿元,理由是用近3年的平均增长率估计2017年的增长率.故答案分别为:656.02,用近3年的平均增长率估计2017年的增长率.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:①是真命题,理由:∵y=mx2+(5m+3)x+4m=(x2+5x+4)m+3x,∴当x2+5x+4=0时,得x=﹣4或x=﹣1,∴x=﹣1时,y=﹣3;x=﹣4时,y=﹣12;∴二次函数y=mx2+(5m+3)x+4m(m为常数且m≠0)的图象一定过定点(﹣1,﹣3),故①是真命题;②是假命题,理由:当m=﹣1时,则函数为y=﹣x2﹣2x﹣4,∵当y=0时,﹣x2﹣2x﹣4=0,△=(﹣2)2﹣4×(﹣1)×(﹣4)=﹣12<0;当x=0时,y=﹣4;∴抛物线与x轴无交点,与y轴一个交点,故②是假命题;③是假命题,理由:∵y=mx2+(5m+3)x+4m,∴对称轴x=﹣=﹣=﹣﹣,∵m<0,x≥﹣时,函数y随x的增大而减小,∴,得m=,∵m<0与m=矛盾,故③为假命题;28.解:(1)如图所示,点P即为所求;(2)由(1)可得,点P为△ABC的内角平分线的交点,∴∠DBP=30°,∠ADB=90°,BD=BC=5,∴PD=tan30°×BD=,∴点P到三边的距离为,∵Rt△ABD中,AD=tan60°×BD=5,∴AP=AD﹣PD=5﹣=.29.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=﹣﹣×x×(3﹣x)=x2﹣x+6=(x﹣)2+∴当x=时,△PEF面积的最小值为(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.。

相关文档
最新文档