信息论与编码傅祖云_讲义第三章 ppt课件

合集下载

精品课课件信息论与编码(全套讲义)

精品课课件信息论与编码(全套讲义)
拓展应用领域 信息论的应用领域将进一步拓展,如生物信息学、 量子信息论等新兴领域,以及与人工智能、大数 据等技术的结合。
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)

CONTENCT

• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04

信息论-第三章PPT课件

信息论-第三章PPT课件
条件概率被称为信道的传递概率或转移概率。
一般简单的单符号离散信道的数学模型可以用概率空
间[X,p(y|x),Y]来描述。
a1
b1
X
P (b j | ai )
Y
ar
2021/6/7
bs
6
第一节 信道的数学模型及分类
表示成矩阵形式:

y1
y2
… x1 p(y1/x1) p(y2/x1)
[P]=

x2 p(y1/x2) p(y2/x2)
2021/6/7
27
第四节 信道容量及其一般计算方法
(3)无噪有损信道
x1
x2
y1
x3
x4
y2
x5
此时信道疑义度为0,而信道噪声熵不为0,从而
C=max{I(X;Y)}=max{H(Y)-H(Y/X)}=max{H(Y)}=logs
2021/6/7
28
第四节 信道容量及其一般计算方法
2、对称离散信道的信道容量
y1
y2

x1
p(y1/x1)
p(y2/x1)

[P]= x2
p(y1/x2)
p(y2/x2)





xn
p(y1/xn)
p(y2/xn)

ym p(ym/x1) p(ym/x2)
… p(ym/xn)
2021/6/7
10
第一节 信道的数学模型及分类
为了表述简便,可以写成 P(bj /ai)pij
因为H(X),表示传输前信源的不确定性,而H(X/Y)表示
收到一个符号后,对信源尚存的不确定性,所以二者之
差信道传递的信息量。

信息论与编码课件第三章

信息论与编码课件第三章

离散无记忆信道的信道容量
I( x
0;Y )
2 j 1
p(b j
0) log
p(b j 0) p(b j )
log 2
I( x 2;Y ) log 2
而I( x
1;Y )
2 j 1
p(b j 1) log
p(b j 1) p(b j )
0
1
I( x 0;Y ) I( x 2;Y ) log 2, p(0) p(2) 0
C

I ( x ai ;Y )
m j 1
p(b j ai ) log
p(b j ai ) p(b j )
特殊DMC的信道容量
例:准对称信道
准对称信道
0.8 0.1 0.1 P3 0.1 0.1 0.8
1 p(a1 ) p(a2 ) 2
n
p(b j ) p(ai ) p(b j ai ) i 1
H (Y
|
a2 )

H(Y | an )
P 1 M
C
log
n
ห้องสมุดไป่ตู้
2
j

j1
P P 1 C p(bj ) p(ai )
达到信道容量时输入、输出概率分布的唯一性
例:
1 / 2 1 / 2 0 0
P
0
1/2 1/2
0

0 0 1/ 2 1/ 2
1 / 2 0 0 1 / 2

p(a1 )

p(a3 )

1, 2
p(a2 ) p(a4 ) 0
4
C

《信息论与编码全部》课件

《信息论与编码全部》课件
添加副标题
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领

发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点

信息论与编码课件第三章

信息论与编码课件第三章
入侵检测技术
利用信息论中的信号分析原理,检 测网络中的异常流量和行为,及时 发现和防范网络攻击。
THANKS FOR WATCHING
感谢您的观看
解码卷积码的方法包括最大似然解码、维特比解 码等,其中维特比解码算法具有较低的复杂度。
03 第三章 加密编码
加密编码的基本概念
加密编码是信息隐藏的一种形式, 通过将信息转化为难以理解的形 式,保护信息的机密性和完整性。
加密编码的基本要素包括明文、 密文、加密算法和解密算法。
加密编码的目标是确保只有授权 用户能够解密和读取密文,而未 经授权的用户无法获取明文信息。
离散无记忆信源的熵计算公式为$H(X) = - sum p(x) log_2 p(x)$,其中 $p(x)$表示输出符号$x$的概率。
离散无记忆信源的熵
离散无记忆信源的熵是用来度量其信 息量的一个重要参数,它表示在给定 概率分布下,输出符号所包含的平均 信息量。
离散有记忆信源的熵
离散有记忆信源的定义
信息论与编码课件第三章
contents
目录
• 第三章 信源编码 • 第三章 信道编码 • 第三章 加密编码 • 第三章 信息论与编码的应用
01 第三章 信源编码
信源编码的基本概念
01
信源编码的定义
信源编码是对信源输出的符号序列进行变换,使其满足某种特定规则的
过程。
02
信源编码的目的
信源编码的主要目的是在保证通信质量的前提下,尽可能地压缩信源输
对称密钥密码体制
对称密钥密码体制是指加密和 解密使用相同密钥的密码体制。
对称密钥密码体制的优点是加 密和解密速度快,适合于大量 数据的加密。
常见的对称密钥密码体制包括 AES(高级加密标准)和DES (数据加密标准)。

信息论与编码教学课件(全)

信息论与编码教学课件(全)
信息论与编码教学课件(全)
目录
• 课程介绍与背景 • 信息论基础 • 编码理论基础 • 信道编码技术 • 数据压缩技术 • 多媒体信息编码技术 • 课程总结与展望
01
课程介绍与背景
Chapter
信息论与编码概述
信息论的基本概念
01
信息、信息量、信息熵等
编码的基本概念
02
信源编码、信道编码、加密编码等
02
极化码(Polar Codes)
一种新型信道编码方式,通过信道极化现象实现高效可靠的信息传输。
03
深度学习在信道编码中的应用
利用深度学习技术优化传统信道编码算法,提高编码性能和效率。
05
数据压缩技术
Chapter
数据压缩概述与分类
数据压缩定义
通过去除冗余信息或使用更高效的编码方式,减小数据表示所需存储空间的过 程。
线性分组码原理:线性分组码是一 种将信息序列划分为等长的组,然 后对每组信息进行线性变换得到相 应监督位的编码方式。
具有严谨的代数结构,易于分析和 设计;
具有一定的检错和纠错能力,适用 于各种通信和存储系统。
循环码原理及特点
循环码原理:循环码是一种特殊的线 性分组码,其任意两个码字循环移位
后仍为该码的码字。
03
编码理论基础
Chapter
编码的基本概念与分类
编码的基本概念
编码是将信息从一种形式或格式转换为另一种形式的过程,以 满足传输、存储或处理的需要。
编码的分类
根据编码的目的和原理,可分为信源编码、信道编码、加密编 码等。
线性分组码原理及特点
线性分组码特点
监督位与信息位之间呈线性关系, 编码和解码电路简单;

《信息论与编码》课件

《信息论与编码》课件

发展趋势与未来挑战
探讨信息论和编码学领域面临的未 来挑战。
介绍多媒体数字信号压缩和编码技术的发展和应用。
可靠的存储与传输控制技术
解释可靠存储和传输控制技术在信息论中的重要性。
生物信息学中的应用
探讨信息论在生物信息学领域的应用和突破。
总结与展望
信息论与编码的发展历程
回顾信息论和编码学的发展历程和 里程碑。
信息技术的应用前景
展望信息技术在未来的应用前景和 可能性。
介绍误码率和信噪比的定义和关系。
2
码率与修正码率的概念
解释码率和修正码率在信道编码中的重要性。
3
线性码的原理与性质
探讨线性码的原理、特点和应用。
4
编码与译码算法的实现
详细介绍信道编码和译码算法的实现方法。
第四章 信息论应用
无线通信中的信道编码应用
探索无线通信领域中信道编码的应用和进展。
多媒体数字信号的压缩与编码技术
《信息论与编码》T课 件
# 信息论与编码 PPT课件
第一章 信息的度量与表示
信息的概念与来源
介绍信息的定义,以及信息在各个领域中的来源和 应用。
香农信息熵的定义与性质
介绍香农信息熵的概念和其在信息论中的重要性。
信息量的度量方法
详细解释如何度量信息的数量和质量。
信息压缩的基本思路
探讨信息压缩的原理和常用方法。
第二章 信源编码
等长编码与不等长编码
讨论等长编码和不等长编码的特点 和应用领域。
霍夫曼编码的构造方法与 性质
详细介绍霍夫曼编码的构造和优越 性。
香农第一定理与香农第二 定理
解释香农第一定理和香农第二定理 在信源编码中的应用。

信息论与编码课件(全部课程内容)

信息论与编码课件(全部课程内容)

P(b1 | a1 ) P(b2 | a1 ) P(b | a ) P(b | a ) 2 2 [ PY | X ] 1 2 P(b1 | ar ) P(b2 | ar )
一.1.”输入符号 a,输出符号 b”的联合概率 i j
P{X a i ,Y=b j } p a i ,b j p a i p b j /a i
1。当p (ai / b j ) 1时, 1 I (ai ; b j ) log I (ai )(i 1, 2, , r; b 1, 2, , s) p (ai )
信号 a i .
收信者收到输出符号 bj 后,推测信源以概率1发
2。当p (ai〈p (ai / b j〈1时, ) ) I (ai ; b j ) log p (ai / b j ) p (ai ) 〉 i 1, 2, , r ; b 1, 2, , s ) 0(
此式称为符号 a i 和 bj 之间的互信函数. 我们把信宿收到 bj 后,从 bj 中获取关于 a i 的信 息量 I (ai ; bj ) 称为输入符号 a i 和输出符号 bj 之间 的交互信息量,简称互信息.它表示信道在把 输入符号 a i 传递为输出符号 bj 的过程中,信道 所传递的信息量.
收信者收到 b j后,推测信源发信号 a i的后验概率,反而小于 收到 b j 前推测信源发信号 a i的先验概率.
例2.3 表2.1中列出某信源发出的八种不同消息ai(i=1,2,…,8),相应的
先验概率p(ai)(i=1,2,…,8),与消息ai(i=1,2,…,8)一一对应的码字wi
(i=1,2,…,8).同时给出输出第一个码符号“0”后,再输出消息a1,a2,a3,

信息论与编码PPT教学课件

信息论与编码PPT教学课件
4. 干扰源 • 是整个通信系统中各个干扰的集中反映,用以 表示消息在信道中传输时遭受干扰的情况。 • 对于任何通信系统而言,干扰的性质、大小是 影响系统性能的重要因素。
第二节 通信系统的模型
5. 密钥源 • 是产生密钥k的源 • 信源编码器输出信号x经过k的加密运算后,就 把明文x变换为密文y
三、通信系统的性能指标及相应的编码问题
第二节 通信系统的模型
问题:能否将三种码(信源编码、信道编码和密码) 合成一种码进行编译?
• 提高有效性必须去掉信源符号中的冗余部分, 此时信道误码会使接收端不能恢复原来的信息 ,也就是必须相应提高传送的可靠性,不然会 使通信质量下降;
• 反之,为了可靠而采用信道编码,往往需扩大 码率,也就降低了有效性。安全性也有类似情 况
▪ 到70年代,有关信息论的研究,从点与点间的单用 户通信推广到多用户系统的研究。1972年盖弗(Caer )发表了有关广播信道的研究,以后陆续有关于多接 入信道和广播信道模型的研究,但由于这些问题比较 难,到目前为止,多用户信息论研究得不多,还有许 多尚待解决的课题。
第一节 信息论的形成和发展
➢ 几个概念
3.三处最有可能发展成为城 市的是哪一处?为什么?除此 而外,你知道哪些地方还分布 有较大的城市? 4. 综上所述,影响聚落形成 和发展的因素有哪些?
• 通信系统的性能指标主要是有效性、可靠性、安全 性和经济性。通信系统优化就是使这些指标达到最 佳。
• 根据信息论的各种编码定理和上述通信系统的指标 ,编码问题可分解为三类:信源编码、信道编码和 密码。
第二节 通信系统的模型
1. 信源编译码器 信源编码器的作用 • 是把信源发出的消息变换成由二进制码元(或 多进制码元)组成的代码组,这种代码组就是 基带信号; • 同时通过信源编码可以压缩信源的冗余度(即 多余度),以提高通信系统传输消息的效率。

信息论与编码(第三章PPT)

信息论与编码(第三章PPT)
信息论与编码
Information and Coding Theory
第3章 信道容量
1
第3章 信道容量
3.1 信道基本概念 3.2 离散无记忆信道容量 3.3 组合信道的容量 3.4 连续无记忆信道的容量 3.5 波型信道的容量
2
3.1 信道基本概念
信道物理模型 输入消息X 输出消息Y 干扰
求X的概率分布 :由方程组
0.5z1 0.25z4 0.1
0z3.250z1.25zz24

0.4 0.4
0.25z1 0.5z4 0.1
求出解为: p1 p4 4 / 30, p2 p3 11/ 30.
pi (i 1,2,3,4)是一个概率分布,必是最佳分布, C是信道容量.
3.2 离散无记忆信道容量
log p(b1) C
(1 log
)log p(b2) log p(b2) (1 )log
p(b3) p(b3)

[C [C

log log
(1 )log(1 (1 )log(1
X
信道
Y
干扰
3
3.1 信道基本概念
信道分类 根据信道用户的多少 单用户信道 多用户信道 根据信道输入端与输出端的关系 无反馈信道 有反馈信道 根据信道的参数与时间的关系 固定参数信道 时变参数信道
4
3.1 信道基本概念
根据输入与输出 随机变量的取值分类 离散信道(数字信道: 时间、取值离散) 连续信道(模拟信道: 取值连续) 半连续信道( 时间、取值一个离散,另一个连续) 波形信道(时间、取值连续)
18
3.2 离散无记忆信道容量
例3-2-2 设DMC的转移概率矩阵为

信息论与编码原理第三章讲课文档

信息论与编码原理第三章讲课文档

3.2.1 数学模型
信道模型:
1-P
0
0
P
P
1
1
1-P
这种信道的输出符号仅与对应时刻输入符号 有关,与以前输入无关,故称此信道是无记忆信道 的.
第23页,共149页。
3.2.1 数学模型
2.离散无记忆信道 若输入值的集合 X={X0,X1…Xr-1}
输出 Y={y0,y1…ys-1} 且信道和调制过程是无记忆的
信息论与编码原理第三章
第1页,共149页。
本次课内容
3.1 信道的基本概念 3.2 离散单符号信道及容量
3.2.1 数学模型
3.2.2 信道容量
第2页,共149页。
相 关
信道(information channels):
知 识
是信号的传输媒质。

信道的作用:

把携有信息的信号从它的输入端传递到输出
信道输入、输出符号之间的联合分布为
p(ai,bj)p(ai)p(bj ai)
p(bj ai )
前向概率,表示在输入为x=ai 时,通 过信道后接收为bj 的概率,描述了信 道噪声的特性。P(ai) 为先验概率。
联合分布还可以表示为
p(ai bj )
第19页,共149页。
后验概率,表示当接收符号为bj时,信 道输入为ai的概率。
第13页,共149页。
3.2
3.2离散单符号信道及容量
离 散
3.2.1 数学模型
单 符
若信道的输入符号之间、输出符号之间都不存
号 在关联性,信道的分析可简化为对单个符号的信道

道 分析,此时输入、输出可以看做是单符号的,称这
及 容

信息论与编码-第三章ppt课件

信息论与编码-第三章ppt课件

R
R
pX (x)dx pn (n) log pn (n)dn
R
R
pn (n) log pn (n)dn Hc (n)
R
信息论与编码-信道与信道容量
• 上式说明条件熵是由噪声引起的,它等于噪声信 源的熵。故条件熵也称噪声熵。
• 在加性多维连续信道中,输入矢量X、输出矢量Y 和噪声矢量n之间的关系是
信息论与编码-信道与信道容量
➢ 信道分类和表示参数 ➢ 通信系统中,信道是非常重要的部分。信道的任务是
以信号方式传输信息。在信道中会引入噪声,这些都 会使信号通过信道后产生错误和失真,故信道的输入 和输出之间一般不是确定的函数关系,而是统计依赖 关系。
➢ 只要知到了信道的输入信号和输出信号以及它们之间 的统计依赖关系,则信道的全部特性就确定了。所以 可以用信道的转移概率矩阵P(Y/X)来描述信道、信道 的数学模型及分类
信息论与编码-信道与信道容量
➢ 对称DMC信道的容量 ➢ 对称DMC信道的定义: ➢ 如果一个DMC信道的转移概率矩阵P中的每一行
都是第一行的置换〔包含同样的元素,但位置可 以不同),则称该矩阵是输入对称的, ➢ 如果转移概率矩阵P的每一列都是第一列的置换, 则称该矩阵是输出对称的, ➢ 如果一个DMC信道的输入、输出都对称,则称 该DMC信道为对称DMC信道。
信息论与编码-信道与信道容量
➢ 信道参数 ➢ 设信道的输入矢量和输出矢量分别是
X(X 1 ,X 2 , ,X i, ) X i A {a 1,a2, ,an}
Y(Y 1 ,Y 2, ,Y j, ) Y i B{b1,b2, ,bm }
➢ 通常采用条件概率 p(Y/X) 来描述信道输入输出 信号之间统计的依赖关系。

信息论-基础理论与应用第三版(傅祖芸)-第三章PPT课件

信息论-基础理论与应用第三版(傅祖芸)-第三章PPT课件

单符号离散信道的相关概率关系
(1)联合概率
Hale Waihona Puke P ( a ib j) P ( a i) P ( b j/a i) P ( b j) P ( a i/b j)
其中
P (b j / ai ) 前向概率,描述信道的噪声特性 P ( a i ) 输入符号的先验概率 P (ai / b j ) 后向概率(后验概率)
X ,Y
p ( x ) X ,Y
p(x | y)
p ( xy ) log p ( x | y ) p ( xy ) log p ( y | x )
X ,Y
p ( x ) X ,Y
p(y)
p ( xy )
p ( xy ) log
X ,Y
p(x) p(y)
I(X;Y)是I (x ; y)的统计平均,可以证明I(X;Y)≥0 。 若I(X;Y)
r
P(ai)P(bj |ai)
i1
(其中P(bj)0,i 1,2,...r,; j 1,2,...s,)

含义:
r
P(ai / bj ) 1
i 1
输出端收到的某符号,必是输入端某一符号输入所致。
3.2 信道疑义度与平均互信息
研究离散单符号信道的信息传输问题。
一、信道疑义度
先验熵:即信道输入信源X的熵
X,Y
p(x)p(y)
I(X;Y) = H(X) + H(Y) - H(XY)
其中:
H ( X |Y ) = p ( x ) ly o1 g ;H ( Y |X ) = p ( x ) ly o1 g
X ,Y
p ( x |y )
X ,Y
p ( y |x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码傅祖云_讲义第三章
离散信道的数学模型如下图所示
X
信道
Y
X ( X 1 ,.X 2 . ,. .X N , .).P ,( y x ) Y ( Y 1 ,. Y i,.. Y .N ) .,.,
X:a1,.a .r.,
Y:b1,..b.s,
P(yx) 1
y
图3.1 离散信道数学模型
根据信道的统计特性即条件概率 P ( y x)的不同,离
率 P (yx ) P (y b jx a i) P (b ja i)
这一组条件概率称为信道的传递概率或转移概率
一般简单的单符号离散信道的数学模型可以用概率
空间[X,p(y|x),Y]来描述。
a1
a
2
X
. .
. a r
P(b j ai )
b1
b
2
. .
Y
. b s
信息论与编码傅祖云_讲义第三章
信息论与编码傅祖云_讲义第三 章
本章主要内容:
3.1 信道的数学模型及分类 3.2 平均互信息及平均条件互信息 3.3 平均互信息的特征 3.4 信道容量及其一般计算方法 3.9 信源与信道的匹配 小结
信息论与编码傅祖云_讲义第三章
本章的重、难点内容: 了解信道的分类及基本数学模型 掌握平均互信息和平均条件互信息的概念 和意义 知道平均互信息的特征 掌握信道容量及其一般计算方法*
上式说明P,(ai /在bj)信 PP道((abibj输)j ) 出端接收ir1到P(任ai / b一j ) 符1 号b j
一定是输入符号a 1 ,…a r 中的一个输入信道。
信息论与编码傅祖云_讲义第三章
3.2.1信道疑义度 信源输入信道的熵—先验熵H(X)
H (X )i r1p (a i)lop (1 g a i)Xp (x)lop (g x) 信道中有干扰(噪声)存在,接收到符号b j 后输入的 是什么符号仍存在有不确定性— 后验熵。
0 1 p
P(b1a2)P(01)p P(b2a1)P(10)p
1
p
1
p 1 p
信息论与编码傅祖云_讲义第三章
例3.2 二元删除信道BEC(Binary Erasure Channel)
这也是很重要的一种特殊信道。输入符号X取值
于{0,1};输出符号取值于{0,2,1}。
0
p 0
1-p
2 1-q
散信道又可分成三种情况。
信息论与编码傅祖云_讲义第三章
无干扰(无噪)信道
y f (x)
P(y x) 01
y f (x) y f (x)
有干扰无记忆信道:离散无记忆信道的充要条件
N
P (yx ) P (y 1 y 2 .y .N .x 1 x 2 .x .N .) P (y ix i)
对任意N值和任意x、y的取值,i 1 上式都成立。
p(b2 a1) p(bs a1) p(b2 a2) p(bs a2)P
ar p(b1ar) p(b2 ar) p(bs ar)
关于信道矩阵的几点说明:
1、输入和输出符号的联合概率为
p (a ib j) p (a i)p (b ja i) p (b j)p (a ib j)
信息论与编码傅祖云_讲义第三章
其中p(bj ai )是信道传递概率,通常称为前向概率, 它是由于噪声引起的,描述了信道噪声的特性。 而 p(ai称bj )为后向概率。也把 p(称ai )为先验概率, 而把 p(ai b称j ) 为后验概率。
2、根据联合概率可得输出符号的概率 r P(bj) p(ai)p(bj /ai) i1
3、根据贝叶斯公式得后验概率
例3.1 二元对称信道BSC(Binary Symmetric Channel) 这是很重要的一种特殊信道。输入符号X取值于 {0,1};输出符号也取值于{0,1}。
X a1=0
1-p p
Y b1=0
pቤተ መጻሕፍቲ ባይዱ
a2=1
1-p
b2=1
传递概率:
传递矩阵:
P (b1a1)P (00)1pp
0
P(b2a2)P(11)1pp
有干扰有记忆信道:即有干扰(噪声)又有记忆 ,实际信道往往是这种类型。信道输出不但与输 入有关,还与其它时刻的输入和输出有关,这样 的信道称为有记忆信道。
信息论与编码傅祖云_讲义第三章
单符号离散信道的输入变量为X,取值于a1,a2,.a .r. ;输出变量为Y,取值于b1,b2,..b.s, 。并有条件概
如果信道干扰不是很严重的话,10和 01的可能 性要比02和12的可能性小得多,所以,假设
p (y 1 x 0 )p (y 0x 1 ) 0是较合理的。
信息论与编码傅祖云_讲义第三章
由此可见,一般单符号离散信道的转移概率可用
信道转移矩阵P来表示:
b1
b2
bs
a1 a2
p(b1 a1) p(b1 a2)
本章只限于研究一个输入端和一个输出端即单用 户信道,以无记忆、无反馈、恒参离散信道为重 点。
信息论与编码傅祖云_讲义第三章
两端(单用户)信道
根据信道的用户多少 多端(多用户)信道
无反馈信道
根据信道输入输出的关联 反馈信道
固定参数信道
根据信道参数与时间的关系 时变参数信道
离散信道
根据输入输出信号的特点 连续信道 半离散或半连续信道 波形信道
信息论与编码傅祖云_讲义第三章
在广义的通信系统中,信道是很重要的一部分。
信道的任务是以信号方式传输信息和存储信息。
研究信道的目的就是研究信道中能够传送或存储 的最大信息量,即信道容量问题。
本章首先讨论离散信道的统计特性和数学模型, 然后定量地研究信道传输的平均互信息及其性质 ,并导出信道容量及其计算方法。
H (X b j) i r 1p (a ib j)lo p (a g 1 ib j)Xp (x b j)lo p (x 1 g b j)
意义:后验熵是当信道接收端接收到输出 符号b j 后,关于输入符号的信息测度。
信息论与编码傅祖云_讲义第三章
后验熵在输出符号集Y范围内是个随机量,对后 验熵在符号集Y中求数学期望,得条件熵为—信 道疑义度(含糊度):
1
q
1
信道传递矩阵:
02 1
0 p 1 p 0
1
0
1 q q
信息论与编码傅祖云_讲义第三章
这种信道实际是存在的,当信号波形传输中失真 较大时,我们在接收端不是对接收信号硬性判为 0和1,而是根据最佳接收机额外给出的信道失真 信息增加一个中间状态2(称为删除符号),采 用特定的纠删编码,可有效的恢复出这个中间状 态的正确取值。
相关文档
最新文档