2014-2015年辽宁省本溪市初三上学期期末数学试卷含答案解析
九年级上册本溪数学期末试卷测试卷 (word版,含解析)
九年级上册本溪数学期末试卷测试卷 (word 版,含解析)一、选择题1.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1 C .94-≤b ≤12D .94-≤b ≤1 2.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-23.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .124.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部5.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 6.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1807.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.48.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是49.cos60︒的值等于( ) A .12B .22C .32D .3310.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°11.2的相反数是( ) A .12-B .12C .2D .2-12.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( ) A .a <2B .a >2C .a <﹣2D .a >﹣2二、填空题13.若a 是方程223x x =+的一个根,则代数式263a a -的值是______. 14.抛物线286y x x =++的顶点坐标为______.15.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .16.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.17.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.18.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .19.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.20.一组数据:2,5,3,1,6,则这组数据的中位数是________.21.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.22.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
2014-2015年第一学期九年级数学试题答案
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
辽宁省本溪市九年级上学期数学期末考试试卷
辽宁省本溪市九年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 12 题;共 24 分)1. (2 分) 小于 5 的正整数有( )个.A.1B.2C.3D.42. (2 分) (2020 八下·江苏月考) 下列标志既是轴对称图形又是中心对称图形的是( )A.B.C.D. 3. (2 分) (2016 八上·路北期中) 下列各式运算正确的是( ) A . a2+a3=a5 B . a2•a3=a5 C . (ab2)3=ab6 D . a10÷a2=a5 4. (2 分) (2017 七上·北海期末) 下列调查中,适合用全面调查方式的是( ) A . 调查北海市市民的吸烟情况 B . 调查北海市电视台某节目的收视率 C . 调查北海市某校某班学生对“创建卫生城市”的知晓率 D . 调查北海市市民家庭日常生活支出情况 5. (2 分) (2020 八上·醴陵期末) 下列各数中比 3 大比 4 小的无理数是( ) A. B.第 1 页 共 10 页C . 3.1D. 6. (2 分) 若关于 x 的一元二次方程为 A . 2018 B . 2008 C . 2014 D . 2012的解是,则的值是( )7. (2 分) (2017·武汉模拟) 若分式有意义,则 x 的取值范围是( )A . x≠1B . x=2C . x≠2D . x>28. (2 分) (2017 九上·柘城期末) 如图,△ABC 中,点 D 在线段 BC 上,且△ABC∽△DBA,则下列结论一定正确的是( )A . AB2=BC•BD B . AB2=AC•BD C . AB•AD=BD•BC D . AB•AC=BC•BD 9. (2 分) (2019 九上·长兴月考) 如图,在正方形 ABCD 中,以 A 为圆心,AB 为半径作 ,交对角线 AC 于点 E,连结 BE 并延长交 CD 于点 F,记图中分割部分的面积为 S1 , S2 . 则下列对 S1 与 S2 的大小关系判断正 确的是( )A . S1>S2第 2 页 共 10 页B . S1<S2C . S1=S2D . 与正方形 ABCD 的边长有关10. (2 分) (2020·天台模拟) 如图,的半径为 2,圆心 在坐标原点,正方形的边长为 2,点 、 在第二象限,点 、 在上,且点 的坐标为(0,2).现将正方形绕点 按逆时针方向旋转 150°,点 运动到了上点 处,点 、 分别运动到了点 、 处,即得到正方形(点 与 重合);再将正方形绕点 按逆时针方向旋转 150°,点 运动到了上点 处,点 、 分别运动到了点 、 处,即得到正方形(点 与 重合),……,按上述方法旋转 2020 次后,点的坐标为( )A . (0,2)B.C.D.11. (2 分) (2019·长春模拟) 如图,小明为了测量校园里旗杆 的高度,将测角仪 竖直放在距旗杆底部 点 的位置,在 处测得旗杆顶端 的仰角为,若测角仪的高度是,则旗杆 的高度约为(精确到,参考数据:,,)( )A . 8.5 米 B . 9米 C . 9.5 米 D . 10 米12. (2 分) 分式方程的解为第 3 页 共 10 页A . x=2 B . x=1 C . x=-1 D . x=-2二、 填空题 (共 6 题;共 6 分)13. (1 分) “天鸽”为今年以来登陆我国较强的台风,据民政部 8 月 25 日通报,台风“天鸽”已造成直接 经济损失达 121.8 亿元.数据“121.8 亿”用科学记数法可表示为________.14. (1 分) (2018 七上·鄂州期末) |﹣0.7|的相反数是________. 15. (1 分) (2020·杭州模拟) 如图,顺次连接圆内接矩形各边的中点,得到菱形 ABCD,若 BD=10,DF=4, 则菱形 ABCD 的边长为________.16. (1 分) 在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图, 其中捐 10 元的人数占年级总人数的 25%,则本次捐款 20 元的人数为________ 人.17. (1 分) (2020 八上·岑溪期末) 如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段 时间后,提高了工作效率.该公司完成的绿化面积 S (单位: m2 与工作时间 (单位: h )之间的函数关系如图 所示,则该公司提高工作效率前每小时完成的绿化面积是________ m2 .18. (1 分) (2019 九上·驻马店期末) 如图,将等腰直角三角形 ABC(∠B=90°)沿 EF 折叠,使点 A 落在第 4 页 共 10 页BC 边的中点 A1 处,BC=8,那么线段 AE 的长度为________.三、 解答题 (共 8 题;共 76 分)19. (10 分) (2020·石城模拟) 先化简,再求值:2b²+(a+b)(a-b)-(a-b)2 , 其中 a=-3,b= 。
打印2014年辽宁省本溪市中考数学试卷
2014年本溪市初中毕业生学业考试数学试卷一、选择题1.41-的倒数是( )A.4- B.4 C.41 D.41-2.下列计算正确的是( )A.52332a a a =+ B.()2263a a = C.()222b a b a +=+ D.·22a 532a a =3.如图所示的几何体的俯视图是( )第3题图 A. B. C. D.4.如图,AB ∥CD ,AD 与BC 相交于点O , ︒=∠30B ,︒=∠40D ,则AOC ∠的度数为( )A.︒60 B.︒70 C.︒80 D.︒90D第4题图 第5题图ABCD 中,4=AB ,6=BC ,︒=∠30B ,则此平行四边形的面积是( ) A.6 B.12 C.18 D.246则这个队队员年龄的众数是( )A .12岁 B.13岁 C.14岁 D.15岁7.底面半径为4,高为3的圆锥的侧面积是( ) A .π12 B.π15 C.π20D.π368.若实数a 、b 满足ab <0,a <b ,则函数b ax y +=的图像可能是( )A B CD9.如图,已知ABC ∆和ADE ∆均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,9=AB ,3=BD ,则CF 等于( )A .1 B.2 C.3 D.4E第9题图 第10题图10.如图,边长为2的正方形ABCD 的顶点A 在y轴上,顶点D 在反比例函数xky =(x >0)的图像上,已知点B 的坐标是(56,511),则k 的值为( ) A .4 B.6 C.8 D.10二、填空题(本大题共8小题,每小题3分,共24分)11.目前发现一种病毒直径约是0.000 025 2米,将0.000 025 2用科学记数法表示为 . 12.因式分解:=-a a 43.13.一个数的算术平方根是2,则这个数是 .14.在一个不透明的盒子中放入标号分别为1,2,…,9的形状、大小、质地完全相同的9个小球,充分混合后,从中取出一个球,标号能被3整除的概率是 .15.在ABC ∆中,︒=∠45B ,21cos =A ,则C ∠的度数是 . 16.关于x 、y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==31y x ,则n m +的值是 .17.关于x 的一元二次方程02=++c bx x ,从1-,2,3三个数中任取一个数,作为方程中b 的值,再从剩下的两个数中任取一个数作为方程中c 的值,能使该一元二次方程有实数根的概率是 .18.如图,已知︒=∠90AOB ,点A 绕点O 顺时针旋转后的对应点1A 落在射线OB 上,点A 绕点1A 顺时针旋转后的对应点2A 落在射线OB 上,点A 绕点2A 顺时针旋转后的对应点3A 落在射线OB 上,…,连接1AA 、2AA 、3AA …,以此作法,则1+∠n n A AA 等于 度.(用含n 的代数式表示,n 为正整数)321BA第18题图三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值:1112222+÷⎪⎪⎭⎫ ⎝⎛---+x x x x x x x ,其中()212101+--⎪⎭⎫ ⎝⎛=-πx20.某中学对全校1200名学生进行“校园安全知识”的教育活动,从1200名学生中随机抽取部分学生进行测试,成绩评定按从高分到低分排列分为A ,B ,C ,D 四个等级,绘制了图①、图②两幅不完整的统计图.请结合图中所给信息解答下列问题:图① 第20题图 图②(1)求本次被抽查的学生共有多少人? (2)将条形统计图和扇形统计图补充完整;(3)求扇形统计图中“A ”所在的扇形圆心角的度数; (4)估计全校“D ”等级的学生有多少人.四、解答题(第21题12分,第22题12分,共24分)21.晨光文具店用进货款1620元购进A 品牌的文具盒40个,B 品牌的文具盒60个.其中A 品牌文具盒的进货价比B 品牌文具盒的进货价多3元. (1)求A 、B 两种文具盒的进货单价;(2)已知A 品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B 品牌文具盒的销售单价最少是多少?.22.如图,已知在ABC Rt ∆中,︒=∠30B ,︒=∠90ACB ,延长CA 到O ,使AC AO =,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连接CD . (1)求证:CD 是⊙O 的切线;(2)若4=AB ,求图中阴影部分的面积.第22题图五、解答题(满分12分)23.某海域有A 、B 、C 三艘船正在捕鱼作业,C 船突然出现故障,向A 、B 两船发出紧急求救信号,此时B 船位于A 船的北偏西72°方向,距A 船24海里的海域.C 船位于A 船的北偏东33°方向,同时又位于B 船的北偏东78°方向. (1)求ABC ∠的度数;(2)A 船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时) (参考数据:414.12≈,732.13≈)第23题图C六、解答题(满分12分)24.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A 、B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.销售中发现A 型汽车的每周销量A y (台)与售价x (万元/台)满足函数关系20+-=x y A ,B 型汽车的每周销量B y (台)与售价x (万元/台)满足函数关系14+-=x y B(1)求A 、B 两种型号的汽车的进货单价;(2)已知A 型汽车的售价比B 型汽车的售价高2万元/台.设B 型汽车售价为t 万元/台,每周销售这两种车的总利润为W 万元,求W 与t 的函数关系式, A 、B 两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?七、解答题(满分12分)25.如图,在ABC ∆和ADE ∆中,AC AB =,AE AD =,︒=∠+∠180EAD BAC ,ABC ∆不动,ADE ∆绕点A 旋转,连接BE 、CD ,F 为BE 的中点,连接AF . (1)如图①,当︒=∠90BAE 时,求证:AF CD 2=; (2)当︒≠∠90BAE 时,(1)的结论是否成立?请结合图②说明理由.图① 第25题图 图②八、解答题(满分14分)26.如图,直线4-=x y 与x 轴、y 轴分别交于A 、B 两点,抛物线c bx x y ++=231经过A 、B 两点,与x 轴的另一个交点为C ,连接BC . (1)求抛物线的解析式及点C 的坐标;(2)点M 在抛物线上,连接MB ,当︒=∠+∠45CBO MBA 时,求点M 的坐标;(3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动.试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.第26题图 备用图 备用图。
2014-2015学年九年级上数学期末试卷及答案解析
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。
2014~2015学年度第一学期期末考试九年级数学试卷答案
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2014-2015学年第一学期期末质量检测九年级数学试卷附答案
2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
2015年本溪市中考数学试题及参考答案
18. 如图, 已知矩形 ABCD 的边长分别为 a, b, 连接其对边中点, 得到四个矩形, 顺次连接矩形 AEFG 各边中点,得到菱形 I1;连接矩形 FMCH 对边中点,又得到四个矩形,顺次连接矩形 FNPQ 各边中点,得到 菱形 I2;„„如此操作下去,得到菱形 In,则 In 的面积是 三、解答题(第 19 题 10 分,第 20 题 12 分,共 22 分) 19.先化简,再求值: ������ − 2 + 3 ������²+ 2x + 1 1 ÷ ,其中 x = (������ − 2015)0 − 4 + ������ + 2 ������ + 2 3
1 2
、1 这三个数中任取两个不同的数作为点 A 的坐标,则点 A 在第二象限的概率是.
数学试卷(供本溪市考生使用)第 2 页
A
G I1 Q F N I2 P I3
D
A
1
a
D O
E
A
b
2
C E
H
B
第13题图
C
B
第16题图
B
M 第18题图
C
15.关于 x 的一元二次方程 (k-1) x²-2x+1=0 有两个不相等的实数根,则实数 k 的取值范围是. 16.如图,在菱形 ABCD 中,对角线 AC 与 BD 相交于点 O,AC=8,BD=6,OE⊥BC,垂足为点 E, 则 OE=. 17.在△ABC 中,AB=6cm,AC=5cm,点 D、E 分别在 AB、AC 上,若△ADE 与△ABC 相似,且 ������△ADE : ������四边形 BCED = 1: 8,则 AD=cm.
−1
20.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的 课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
2015年辽宁省本溪市九年级上学期数学期末试卷【答案版】
2014-2015学年辽宁省本溪市九年级(上)期末数学试卷一、选择题(每题3分,共10题,满分30分)1.(3分)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°2.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=2,x2=1B.x1=﹣2,x2=1C.x1=2,x2=﹣1D.x1=﹣2,x2=﹣13.(3分)在反比例函数y=图象在二、四象限,则k的取值范围是()A.k>3B.k>0C.k<3D.k<04.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π5.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣3x+3=0D.x2+3x+2=0 6.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.57.(3分)两个相似多边形的面积之比为1:3,则它们周长之比为()A.1:3B.1:9C.1:D.2:38.(3分)在如图图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()A.B.C.D.9.(3分)如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5B.C.D.1310.(3分)已知:矩形ABCD中,AB=5,BC=12,点E在对角线AC上,且CE=6,动点P在矩形ABCD的四边上运动一周,则以P、E、C为顶点的等腰三角形有()个.A.5B.6C.7D.8二、填空题(每题3分,共8题,满分24分)11.(3分)一个几何体的三视图如图所示,则这个几何体的表面积是cm2.12.(3分)钓鱼岛列岛是我国最早发现、命名,并行使主权的.在一幅比例尺是1:100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长大约为米.13.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=,k=.14.(3分)随着人们生活水平的提高,小汽车的需求量在不断增长.某厂生产小汽车两年内产量从200000辆增加到288000辆,则年平均增长率为.15.(3分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.16.(3分)有三张背面完全相同的卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是.17.(3分)已知x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,并且x1和x2满足不等式<4,则实数k的取值范围是.18.(3分)如图,每个底边长为2的等腰三角形顶角的反比例函数y=(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形顶角的顶点横坐标为3…以此类推,则第n个等腰三角形底边上的高为(用含n的式子表示).三、解答题(19题10分,20题12分,共2题,满分22分)19.(10分)先化简,再求值:()÷,其中a=2sin60°﹣2tan45°.20.(12分)如图,菱形ABCD中,AB=2,∠DAB=60°,点E是AD边中点,点M 是AB边上一动点(不与A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)当AM=1时,判断四边形AMDN是什么特殊四边形?说明理由.四、解答题(每题12分,共2题,满分24分)21.(12分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图);(1)将这4张纸牌背面朝上洗匀后摸出一张,摸到正面是中心对称图形的纸牌的概率是.(2)将这4张纸牌背面朝上洗匀后摸出两张,用树状图(或列表法)求摸到正面都是中心对称图形的纸牌的概率(纸牌可用A,B,C,D表示);(3)放入n张和以上背面相同的空白纸牌后,从中摸出两张,摸到正面都是中心对称图形的纸牌的概率为,则n=.22.(12分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?五、解答题(满分12分)23.(12分)如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米.(1)求加宽部分横断面AFEB的面积;(2)完成这一工程需要多少方土?六、解答题(满分12分)24.(12分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图)(1)分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?七、解答题(满分12分)25.(12分)(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将正方形ABCD改为矩形ABCD,且AD=mAB其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)根据前面的探究,你能否将本题推广到一般平行四边形情况?若能,写出推广命题,画出图形,直接写出结论;若不能,简要说明理由.八、解答题(满分14分)26.(14分)在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形,若存在,试求出这时tan∠ABC的值;若不存在,试说明理由.2014-2015学年辽宁省本溪市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,满分30分)1.(3分)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°【解答】解:∵tan(α+10°)=1,∴tan(α+10°)=.∴α+10°=30°.∴α=20°.故选:A.2.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=2,x2=1B.x1=﹣2,x2=1C.x1=2,x2=﹣1D.x1=﹣2,x2=﹣1【解答】解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:C.3.(3分)在反比例函数y=图象在二、四象限,则k的取值范围是()A.k>3B.k>0C.k<3D.k<0【解答】解:∵反比例函数y=图象在二、四象限,∴k﹣3<0,解得k<3.故选:C.4.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选:B.5.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣3x+3=0D.x2+3x+2=0【解答】解:∵x1=1,x2=2,∴x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程x2﹣3x+2=0.故选:B.6.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.7.(3分)两个相似多边形的面积之比为1:3,则它们周长之比为()A.1:3B.1:9C.1:D.2:3【解答】解:根据题意得:周长之比为=1:.故选:C.8.(3分)在如图图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()A.B.C.D.【解答】解:A、S=4××1×1+12=2+1=3,阴影B、S阴影=1×1+1×2=1+2=3,C、S阴影=2××1×1+2×1=1+2=3,D、S阴影=1×1+×(1+2)×1+×2×1=1++1=3.5,所以,阴影部分面积最大的是D选项.故选:D.9.(3分)如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5B.C.D.13【解答】解:如图,连结DE交AC于点P,连结BP,作EM⊥BD于点M,∵四边形ABCD是菱形,∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,∴PD=PB∴PE+PB=PE+PD=DE且值最小∵E是AB的中点,EM⊥BD,AC=16,BD=12,∴EM=AO=AC=4,BM=BO=BD=3∴DM=DO+OM=6+3=9∴DE==故选:B.10.(3分)已知:矩形ABCD中,AB=5,BC=12,点E在对角线AC上,且CE=6,动点P在矩形ABCD的四边上运动一周,则以P、E、C为顶点的等腰三角形有()个.A.5B.6C.7D.8【解答】解:(1)P在BC上:①CP=CE=6<12,此时有一点P;②CE=PE=6时,过E作EN⊥BC于N,cos∠ACB==,CN=,CP=2CN=<12,此时有1点P;③CP=EP时,P在CE的垂直平分线MN(M为垂足)上,CM=EM=3,cos∠ACB==,CP=<12,存在一点P;(2)P在CD上:①PE=PC,此时P在CE的垂直平分线MN(M为垂足)上,CM=EM=3,cos∠ACD==,CP=>5,即P在CD的延长线上,此时不存在P点;②CE=CP=6>CD,此时不存在P点;③EP=CE=6,过E作EN⊥CD于N,cos∠ACD==,CN=,CP=2CN=<CD,即此时存在一点P;(3)P在AD上:①PE=CP,过P作PM⊥AC于M,CM=EM=3,AM=13﹣3=10,cos∠DAC==,AP=<12,即此时存在一点P;②CE=PC,PD==<12,此时存在一点P;③PE=CE=6,sin∠DAC==,EM=,AM==,PM==,AP=﹣,AP′=+,即存在2点P;(4)P在AB上:①CP=PE,即P在CE的垂直平分线MN(M为垂足)上,cos∠ACB==,CP=<12,即CP小于C到AB的最短距离,即此时不存在P点;②CE=CP=6<12,∵C到AB的最短距离是12,∴此时不存在P点;③CE=PE=6,AE=13﹣6=7,过E作EM⊥AB于M,sin∠BAC==,EM=>PE,即E到AB的最短距离大于PE,即此时不存在P点;综合上述:共有(1+1+1)+1+(1+1+2)+0=8.故选:D.二、填空题(每题3分,共8题,满分24分)11.(3分)一个几何体的三视图如图所示,则这个几何体的表面积是1300 cm2.【解答】解:由题意推知几何体长方体,长、宽、高分别为20cm,10cm,15cm,所以其面积为:2×(10×15+10×20+20×15)=2×(150+200+300)=2×650=1300(cm2).故这个几何体的表面积是1300cm2.故答案为:1300.12.(3分)钓鱼岛列岛是我国最早发现、命名,并行使主权的.在一幅比例尺是1:100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长大约为3500米.【解答】解:根据题意,3.5÷(1:100000)=350000厘米=3500米.即它的东西走向实际长大约为3500米.故答案为:3500.13.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=3,k=6.【解答】解:移项,得x2+6x=﹣3,配方,得x2+6x+9=﹣3+9,所以,(x+3)2=6.故答案是:3;6.14.(3分)随着人们生活水平的提高,小汽车的需求量在不断增长.某厂生产小汽车两年内产量从200000辆增加到288000辆,则年平均增长率为20%.【解答】解:设年平均增长率为x.200000(1+x)(1+x)=288000解方程得,x=0.2或﹣2.2(不合题意,舍去)即年增长率为20%.15.(3分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为4m.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.16.(3分)有三张背面完全相同的卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是.【解答】解:画树形图得:抽到三张卡片的可能性相同,其中抽到a和a﹣2的时候组成的是分式,所以组成分式的概率是,故答案为:17.(3分)已知x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,并且x1和x2满足不等式<4,则实数k的取值范围是k≥﹣.【解答】解:∵x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,△=25+4k≥0,解得k≥﹣,①∴x1•x2=﹣k,②x1+x2=5,③将②③代入不等式<4,得<4,即<4,解得,k>﹣8,④由①④,得k≥﹣;故答案为:k≥﹣.18.(3分)如图,每个底边长为2的等腰三角形顶角的反比例函数y=(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形顶角的顶点横坐标为3…以此类推,则第n个等腰三角形底边上的高为(用含n的式子表示).【解答】解:∵每个等腰三角形的底边长为2,顶点在反比例函数y=的图象上,∴第1个三角形底边上的高==;第2个三角形底边上的高==;第3个三角形底边上的高==;第4个三角形底边上的高==;…;∴第n个三角形底边上的高=.故答案为:.三、解答题(19题10分,20题12分,共2题,满分22分)19.(10分)先化简,再求值:()÷,其中a=2sin60°﹣2tan45°.【解答】解:∵a=2sin60°﹣2tan45°,∴a=2×﹣2×1=﹣2,原式=(﹣)÷=×=×=,当a=﹣2时,原式===.20.(12分)如图,菱形ABCD中,AB=2,∠DAB=60°,点E是AD边中点,点M 是AB边上一动点(不与A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)当AM=1时,判断四边形AMDN是什么特殊四边形?说明理由.【解答】证明:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)当AM=1时,四边形AMDN是矩形.∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.四、解答题(每题12分,共2题,满分24分)21.(12分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图);(1)将这4张纸牌背面朝上洗匀后摸出一张,摸到正面是中心对称图形的纸牌的概率是.(2)将这4张纸牌背面朝上洗匀后摸出两张,用树状图(或列表法)求摸到正面都是中心对称图形的纸牌的概率(纸牌可用A,B,C,D表示);(3)放入n张和以上背面相同的空白纸牌后,从中摸出两张,摸到正面都是中心对称图形的纸牌的概率为,则n=5.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)将这4张纸牌背面朝上洗匀后摸出两张,出现的情况如下共有12种等可能的结果,摸到正面都是中心对称图形的纸牌的可能有2种,概率为;(3)摸到正面都是中心对称图形的纸牌的概率为,则共有72种等可能的结果,所以共有9张牌.9﹣4=5,要放入5张牌.22.(12分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出300+100×只粽子,利润为(1﹣m)(300+100×)元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?【解答】解:(1)300+100×,(1﹣m)(300+100×).(2)令(1﹣m)(300+100×)=420.化简得,100m2﹣70m+12=0.即,m2﹣0.7m+0.12=0.解得m=0.4或m=0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.五、解答题(满分12分)23.(12分)如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米.(1)求加宽部分横断面AFEB的面积;(2)完成这一工程需要多少方土?【解答】解:(1)过点A作AG⊥BC,过点F作FH⊥BC,垂足分别是G、H.根据题意得:FH=AG=6米.HG=AF=2米,(1分)在Rt△AGB和Rt△FHE中,∵tan∠ABG==,tan∠E==,(2分)∴BG=2AG,EH=2.5FH,则BG=12(米),EH=15(米).(3分)∴EB=EH﹣BH=15﹣(12﹣2)=5(米),(4分)∴S梯形AFEB=(AF+EB)•FH=×(2+5)×6=21(米2).(5分)(2)完成这一项工程需要的土方:V=21×50=1050(米3).(7分)答:加宽部分横断面AFEB的面积为21平方米,完成这一工程需要1050立方米的土.(8分)六、解答题(满分12分)24.(12分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图)(1)分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【解答】解:(1)根据图象,反比例函数图象经过(1,200),设反比例函数为y=,解得k=200,∴反比例函数为y=(x≤5),当x=5时,y=40,设改造工程完工后函数解析式为y=20x+b,则20×5+b=40,解得b=﹣60,∴改造工程完工后函数解析式为y=20x﹣60;(2)当y=200时,20x﹣60=200,解得x=13.13﹣5=8∴经过8个月,该厂利润才能达到200万元;(3)当y=100时,=100,解得x=2,20x﹣60=100,解得x=8,所以资金紧张的时间为:3,4,5,6,7月份,共5个月.故该厂资金紧张期共有5个月.七、解答题(满分12分)25.(12分)(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将正方形ABCD改为矩形ABCD,且AD=mAB其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)根据前面的探究,你能否将本题推广到一般平行四边形情况?若能,写出推广命题,画出图形,直接写出结论;若不能,简要说明理由.【解答】(1)证明:如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R ∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.在△GNH和△FME中∵∴△GNH≌△FME(ASA).∴EF=GH.(2)解:==m,理由:如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,∵∠GOF=∠A=90°,∴∠OGR=90﹣∠GRO=90﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,∴△GNH∽△FME.∴==m;(3)已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.证明:如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF 交于Q,在四边形MQND中,∠QMD=∠QND=90°,∴∠MDN+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠FME=∠GNH=90°,∴△GNH∽△FME.∴==m.即GH=mEF.八、解答题(满分14分)26.(14分)在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形,若存在,试求出这时tan∠ABC的值;若不存在,试说明理由.【解答】解:(1)根据题意,可得:A(4,0)、B(0,3),AB=5.ⅰ)当∠BAQ=90°时,△AOB∽△BAQ,∴.解得;ⅱ)当∠BQA=90°时,BQ=OA=4,∴Q或Q(4,3).(4分)(2)令点P翻折后落在线段AB上的点E处,则∠EAQ=∠PAQ,∠EQA=∠PQA,AE=AP,QE=QP;又BQ∥OP,∴∠PAQ=∠BQA,∴∠EAQ=∠BQA,即AB=QB=5.∴,∴,即点E是AB的中点.过点E作EF⊥BQ,垂足为点F,过点Q作QH⊥OP,垂足为点H,则,,∴EF=PH.又EQ=PQ,∠EFQ=∠PHQ=90°,∴△EQF≌△PQH∴∠EQF=∠PQH,从而∠PQE=90°.∴∠AQP=∠AQE=45°.(8分)(3)当点C在线段PQ上时,延长BQ与AC的延长线交于点F,∵AC⊥AB,∴△AOB∽△FHA.∴即,∴.∵DQ∥AC,DQ=AC,且D为BC中点,∴FC=2DQ=2AC.∴.在Rt△BAC中,tan∠ABC=;当点C在PQ的延长线上时,记BQ与AC的交点为F,记AD与BQ的交点为G,∵CQ∥AD,CQ=AD且D为BC中点,∴AD=CQ=2DG.∴CQ=2AG=2PQ.即:CQ:QP=2:1又∵BQ∥OP∴CF:AF=CQ:QP=2:1∴FC=2AF,又∵FA=,∴FC=,∴.在Rt△BAC中,tan∠ABC=.(12分)。
九年级上册本溪数学期末试卷测试卷 (word版,含解析)
九年级上册本溪数学期末试卷测试卷 (word 版,含解析)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3 B .2:3C .4:9D .16:812.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .194.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .125.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .226.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( ) A .226+B .226-+ C .242+ D .2427.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交B .相切C .相离D .无法确定9.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A.2020 B.﹣2020 C.2021 D.﹣2021 10.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=11.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.3412.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)二、填空题13.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.14.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.15.某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为______.16.如图,直线l1∥l2∥l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=3,且12mn=,则m+n的最大值为___________.17.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.18.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒19.数据1、2、3、2、4的众数是______.20.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.21.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.22.如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD =2OA =6,AD :AB =3:1.则点B 的坐标是_____.23.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),24.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M 处,观测指挥塔P 位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N 处,再观测指挥塔P 位于南偏西45︒方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)26.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若3AB =8AD =,求DG 的长.27.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.28.(问题发现)如图1,半圆O 的直径AB =10,点P 是半圆O 上的一个动点,则△PAB 的面积最大值是 ;(问题探究)如图2所示,AB 、AC 、BC 是某新区的三条规划路,其中AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F ,即分别在BC 、线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .显然,为了快捷环保和节约成本,就要使线段PE 、EF 、FP 之和最短(各物资站点与所在道路之间的距离、路宽均忽略不计).可求得△PEF 周长的最小值为 km ;(拓展应用)如图3是某街心花园的一角,在扇形OAB 中,∠AOB =90°,OA =12米,在围墙OA 和OB 上分别有两个入口C 和D ,且AC =4米,D 是OB 的中点,出口E 在AB 上.现准备沿CE 、DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口E 设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元.请问:在AB 上是否存在点E ,使铺设小路CE 和DE 的总造价最低?若存在,求出最低总造价和出口E 距直线OB 的距离;若不存在,请说明理由.29.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.30.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 31.华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元. (1)求y 与x 的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少? 32.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为2.3故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..3.B解析:B【解析】试题分析:∵DE∥BC,∴AD DEAB BC=,∵13ADAB=,∴31DEBC=.故选B.考点:平行线分线段成比例.4.B解析:B【解析】试题解析:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法.5.C解析:C【解析】【分析】如图,连接BD,根据圆周角定理可得BD为⊙O的直径,利用勾股定理求出BD的长,进而可得⊙O的半径的长.【详解】如图,连接BD,∵四边形ABCD是正方形,边长为2,∴BC=CD=2,∠BCD=90°,∴BD=2222+=22,∵正方形ABCD是⊙O的内接四边形,∴BD是⊙O的直径,∴⊙O的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.6.B解析:B 【解析】 【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可. 【详解】解:∵AB=42,A(0,2)、B(a ,a +2) ∴22(22)42a a ++-=, 解得a =4或a =-4(因为a >0,舍去) ∴B(4,6),设直线AB 的解析式为y=kx+2, 将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+, 将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B. 【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.7.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .8.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.9.A解析:A 【解析】 【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可. 【详解】 解:根据题意,得 a 2+3a ﹣1=0, 解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020. 故选:A. 【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键10.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题13.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.14.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.15.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160:80x=:10,解得x20=.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.16.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==, 3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x=-=⨯-时,28128mn m==最大,94m∴=最大,m n∴+的最大值为927344⨯=.故答案为:274.【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.17.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.18.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 19.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.20.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.21.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.22.(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.解析:(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.23.∠ACP=∠B(或).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B(或AP ACAC AB=).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当AP ACAC AB=时,△ACP∽△ABC.故答案为:∠ACP=∠B(或AP ACAC AB=).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.24.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.30330+【解析】 【分析】过P 作PH ⊥MN 于H ,构建直角三角形,设PH=x 海里,分别在两个直角三角形△PHN 和△PHM 中利用正切函数表示出NH 长和MH 长,列方程求解. 【详解】过P 作PH ⊥MN ,垂足为H ,设PH=x 海里, 在Rt △PHN ,tan ∠PNH=PHNH, ∴tan45°=PHNH, ∴NH=tan 45x x ,在Rt △PHM 中,tan ∠PMH=PHMH, ∴tan30°=PHMH, ∴MH=3tan 30x x ,∵MN=30×2=60海里, ∴360x x -= , ∴30330x.答:“山东舰”与指挥塔之间的最近距离为30330海里.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,找准线段之间的关系,利用锐角三角函数进行解答.26.(1)见解析;(2【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴124CG=,∴ ,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.27.(1)49;(2)13【解析】【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可.【详解】解:列表得:相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=31 93 =.【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.28.[问题发现] 25;[问题探究] 9-;[拓展应用]①出口E设在距直线OB的7.2米处可以使四边形CODE的面积最大为60平方米,②出口E距直线OB米.【解析】【分析】[问题发现]△PAB的底边AB一定,面积最大也就是P点到AB的距离最大,故当OP⊥AB时,12OP AB=时最大,值是5,再计算此时△PAB面积即可;[问题探究]先由对称将折线长转化线段长,即分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,易求得:MN=,而PE EF PF ME EF FN MN++=++≥=,即当AP最小时,PE EF PF++可取得最小值.[拓展应用]①四边形CODE面积=S△CDO+S△CDE′,求出S△CDE′面积最大时即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE,求CE+QE的最小值问题.然后利用相似三角形性质和勾股定理求解即可。
九年级期末数学答案.doc
本溪市2014-2015学年度(上)初中期末考试九年级(上)数学期末考试 答案-、选择题:二、填空题:11. 1300; 13.3、6; 15.4; 17. k>-—;4三、解答题:19.解:(丫 + 2tr -2a4 — d~ a_(s+2 __________ 8 a (at- 2)(SL +2)(a _ 2)(厲+2 ) 2 -亦 *&a (a+2)(a - 2) a - 2一 n-2%3a (a+2) a - 2 ■_1a+2Va=2sin60° - 2tan45°・・.a 二2X^/1 ・2X1=V5 ・2 ...............2_ _原式=4^爭 .......................a+2 v3 3_20. 证明:(1)・・•四边形ABCD 是菱形,・・・ND 〃AM,・・・ZM )E 二ZMAE, ZDNE=ZAME, 又•・•点E 是AD 边的中点, ・・・DE 二AE,ANDE^AMAE, .................................................................................................................................................. 6 分・・・ND 二MA,・・・四边形AMDN 是平行四边形; .................................... 7分(2)当AM 二1时,四边形AMDN 是矩形. ............................. 8分••• ZADM=30°12. 3500; 14. 20%; 16.-;3丄2n ・8分 10分ZDAM=60° ,A ZAMD=90° ,・・・平行四边形AMDN 是矩形. ........................................ 12分 四、解答题:21. ............................................................................................................................. 解:(1) -; 2 分2(2) ...................................................................................................................................................................... 列表或树状图 5分 得:共冇12种等可能的结果,其中摸到正面都是屮心对称图形的纸牌的可能有2种, ・・・概率为g; .............................................................................................................................................. 9分6(3) ...................................................................................................................................................................... 5. 12 分 22. 解:(1) (300+100X 旦)、(l ・m ) (300+100X-^L ); ....................................... 4 分0. 1 0. 10.1化简得,100i 『・70m+12=0・ ............................................................................................................. 7分 即,m 2- 0. 7m+0. 12=0.解得 m 二0. 4 或 m 二0. 3. ........................................................................................................................ 9 分 可得,当m 二0.4时卖出的粽子更多.答:当m 定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽了更多 ........................................... 12分 五、解答题:23•解:(1)过点A 作AG 丄BC,过点F 作FH 丄BC,垂足分别是G 、H. ......................... 1分.......................................................................................... 3分 在 RtAAGB 和 RtAFHE 中,VtanZABG^=丄,tanZE=—,BG 2 EH 2.5・・・BG=2AG, EH=2. 5FH,则 BG=12 (米),EH=15 (米) ............ 6 分・・・S 梯形 AFEB )(AF+EB ) •FH=-X (2+5) X6=21 (米 ................... 8 分2 2(2)完成这一项工程需要的土方:V=21 X50=1050 (米J. 答:加宽部分横断而AFEB 的面积为21平方米,完成这一工程需要1050立方米的土. ........................................ 12分 六、解答题:24. 解:(1)根据图彖,反比例函数图彖经过(1, 200), 设反比例函数为y 上,X解得k 二200,・・・反比例函数为y 型, ................................................ 2分x(2)依题意得:(1 -m ) (300+100X 旦)二420.根据题意得:FH 二AG 二6米.HG 二AF 二米, ・・・EB 二EH ・BH=15・(12・2) =5当x=5 时,y二40,设改造工程完工后函数解析式为y二20x+b,则20X 5+b二40,解得b二-60,・・・改造工程完工后函数解析式为y=20x - 60;........................................................................... 5分(2)当y二200 时,20x・ 60二200,解得x=13・13 - 5=8・・・经过8个月,该厂利润才能达到200万元;............................ 8分(3)当y二100 时,2也100,解得x=2, 20x・ 60二100,解得x=8,所以资金紧张的时间为:3, 4, 5, 6, 7刀份,共5个刀.故该厂资金紧张期共有5个月. ........................................ 12分七、解答题:25.证明:(1)过点I;作I训丄AD于M,过点G作GN丄CD于N,则FM=GN=AD=BC,且GN丄FM,设它们的垂足为Q,设EF、GN交于RTZGOF二ZA二90° ,・・・ZOGR二90° - ZGRO二90° - ZQRF=ZOFM.VZGNH=ZFME=90° , FM=GN,AAGNH^AFME.・・・EF二GH・ ................................................................................................................................................... 5分(2)过点F作FM丄AD于M,过点G作GN丄CD于N,设EF、GN交于R、GN、MF交于Q,TZGOF二ZA二90° ,ZOGR二90 ・ ZGRO二90 ・ ZQRF=ZOFM・•・・ZGNH二ZFME二90° ,.-.AGNH^AFME,・・・型二空w .................................................................................................................................................. 9分EF FM(3)己知平行四边形ABCD, E是AD上一点,F是BC上一点,G是AB上一点,Il是CD上一点,线段EF、GH 交于点0, ZEOH二ZC, AD=mAB求证:GH=mEF............................................................................................................... 12分八、解答题:26.解:(1)根据题意,可得:A (4, 0)、B (0, 3), AB=5・i)当ZBAQ=90°时,△AOBsABAQ,・・・祭老解得BQ卑AB A0 4ii)当ZBQA=90°时,BQ二0A二4,・・・Q (―, 3)或Q (4, 3)................................................4(2)令点P翻折后落在线段AB上的点E处,则ZEAQ二ZPAQ, ZEQA二ZPQA, AE二AP,又BQ〃OP,・・・ Z PAQ二Z BQA,・・・ Z EAQ二ZBQA,即AB=QB=5.1 5・・・AP^BQ苇,・・・AE二壮二舟令AB,即点E是AB的中点.过点E作EF丄BQ,垂足为点F,过点Q作QH丄0P,垂足为点H, 则EF# 又EQ二PQ, ZEFQ二ZPHQ 二90° ,AAEQF^APQH・・・ZEQF二ZPQH,从而ZPQE二90° .A ZAQP=ZAQE=45° . ........................................................................................................................................ 10 分(3) tanZABC^或tanZABO^. (14 分)4 4 14分,AEF=PH.。
辽宁省本溪市九年级上学期数学期末考试试卷
辽宁省本溪市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列各数中,最小的是()A . 0B . 1C .D . -2. (1分)(2019·玉林) 南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是()A . 278×108B . 27.8×109C . 2.78×1010D . 2.78×1083. (1分) (2016九上·宜城期中) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (1分)下列计算中,结果错误的是()A . a·a2=a3B . x6÷x2=x4C . (ab)2=ab2D . (-a)3= -a35. (1分) (2018九上·南召期中) 如图,△ABC中,若DE∥BC,EF∥AB,则下列等式① ②③ ④ 其中正确的是()A . ①③④B . ②③④C . ①②④D . ①②③④6. (1分)(2018·武汉模拟) 为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,,下列说法:①该班B等及B等以上占全班60%②D等有4人,没有得满分的(按120分制)③成绩分数(按120分制)的中位数在第三组④成绩分数(按120分制)的众数在第三组,其中正确的是()A . ①②B . ③④C . ①③D . ①③④7. (1分) (2016九上·重庆期中) 下列关于x的方程有实数根的是()A . x2﹣x+1=0B . x2+x+1=0C . (x﹣1)(x+2)=0D . (x﹣1)2+1=08. (1分)如图,在我校第二届校运会上,九(2)班胡超同学在跳远比赛中跳出了满意一跳,函数h=3.5t-4.9t2(t的单位:s;h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A . 0.71sB . 0.70sC . 0.63sD . 0.36s9. (1分)(2016·巴彦) 如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A . 30B . 27C . 14D . 3210. (1分)某城市出租车的起步价为10元(即行驶距离在4千米以内付10元车费),刚好4千米或超过4千米后,每行驶1千米加3元(不足1千米按1千米计).小张在该市乘出租车是从甲地到乙地,支付车费28元,问从甲地到乙地的路程最少有()千米?A . 11B . 10C . 9D . 8二、填空题 (共5题;共5分)11. (1分)有意义的x的取值范围是________ .12. (1分)(2017·淳安模拟) 如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.13. (1分) (2019九上·浙江期中) 在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是红球的概率为________.14. (1分) (2016九上·市中区期末) 如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,EF与BD交于G,且∠DEF=60°,若AD=3,AE=2,则sin∠BEF=________.15. (1分)如图,在直角坐标系中,长方形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(2,6),将长方形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,则点D的坐标为________.三、解答题 (共8题;共21分)16. (1分)用代数式表示“a的平方的6倍与–3的和”为________。
本溪市九年级上学期期末数学试卷
本溪市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)绝对值不大于4的所有整数的和是()A . 16B . 0C . 576D . -12. (2分) (2017八下·简阳期中) 若是反比例函数,则a的取值为()A . 1B . ﹣1C . ±1D . 任意实数3. (2分)若二次函数的图像经过点(-1, ),( , ),则与的大小关系为()A . >B . =C . <D . 不能确定4. (2分)如图,已知扇形的圆心角为60,半径为1,将它沿着箭头方向无滑动滚动到O'A'B'位置,则有:①点O到O'的路径是OO1→O1O2→O2O';②点O到O'的路径是OO1→O1O2→O2O';③点O在O1→O2段上的运动路径是线段O1O2;④点O到O′所经过的路径长为π;以上命题正确的序号是()A . ②③B . ③④C . ①④D . ②④5. (2分)下列图形中,不是轴对称图形的是()A . 一条线段B . 两条相交直线C . 有公共端点的两条相等的线段D . 有公共端点的两条不相等的线段6. (2分)(2017·长沙模拟) 如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A .B .C .D .7. (2分)图中∠BOD的度数是()A . 55°B . 110°C . 125°D . 1508. (2分)已知函数y=-x2+x+2,则当y<0时,自变量x的取值范围是()A . x<-1或x>2B . -1<x<2C . x<-2或x>1D . -2<x<19. (2分) PA、PB切⊙O于A、B,C为上一点,过C作⊙O的切线交PA、PB于M、N,若△PMN的周长为10cm,则切线长PA等于()A . 5cmB . 6cmC . 8cmD . 10cm10. (2分)如图,函数y=-x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=-1,在下列结论中,错误的是()A . 顶点坐标为(-1,4)B . 函数的解析式为y=-x2-2x+3C . 当x<0时,y随x的增大而增大D . 抛物线与x轴的另一个交点是(-3,0)二、填空题 (共10题;共10分)11. (1分)(2019·南通) 5G信号的传播速度为300000000m/s,将300000000用科学记数法表示为________.12. (1分)(2017·临泽模拟) 函数y= 中自变量x的取值范围是________.13. (1分)化简:﹣=________ .14. (1分) (2018八上·甘肃期末) 分解因式:am2-10am+25a(________);15. (1分)(2017·蜀山模拟) 扇形的圆心角为120°,弧长为6πcm,那么这个扇形的面积为________ cm2 .16. (1分)(2017·阿坝) 在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是________.17. (1分)如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是________ .18. (1分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD= ________ .19. (1分)抛物线y=x2+2x﹣3与x轴的交点有________个.20. (1分)如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,则∠AB′D=________°.三、解答题 (共7题;共90分)21. (5分)先化简,再求值:÷ ,其中x=﹣2.22. (10分) (2017九上·桂林期中) 如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).(2)作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.23. (15分)(2017·襄州模拟) 某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).24. (15分)(2018·利州模拟) 如图,二次函数y= +bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD、DE,求△BDE的面积.25. (10分)(2017·昆山模拟) 随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?26. (15分)如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP 于点N,求证:AM=MN.27. (20分)(2012·深圳) 如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共90分)21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-4、。
辽宁省本溪市九年级上册数学期末学业检测试卷
辽宁省本溪市九年级上册数学期末学业检测试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式正确的是()A . = (a≠0)B .C .D .2. (2分) (2019九上·嘉定期末) 已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1 ,过点B、C的圆记作为圆O2 ,过点C、A的圆记作为圆O3 ,则下列说法中正确的是()A . 圆O1可以经过点CB . 点C可以在圆O1的内部C . 点A可以在圆O2的内部D . 点B可以在圆O3的内部3. (2分) (2017九上·十堰期末) 二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b-)x+c=0(a≠0)的两根之和()A . 小于0B . 等于0C . 大于0D . 不能确定4. (2分) (2019九上·普陀期中) 下列命题中,正确的是()A . 所有的矩形都相似;B . 所有的等腰梯形都相似;C . 所有的等边三角形都相似;D . 含有角的所有等腰三角形都相似5. (2分) (2018九上·衢州期中) 某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A . 抛一枚硬币,出现正面朝上B . 掷一个正六面体的骰子,出现3点朝上C . 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D . 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球6. (2分)(2018·阿城模拟) 关于二次函数y=-2(x-3) +5的最大值,下列说法正确的是()A . 最大值是3B . 最大值是-3C . 最大值是5D . 最大值是-57. (2分)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A . 35°B . 70°C . 110°D . 140°8. (2分)(2017·东湖模拟) 各顶点都在格点上的三角形叫格点三角形,如图,在4×8的方格中,以M、N 为顶点且与△ABC相似的格点三角形的个数共有()个.A . 3B . 4C . 5D . 69. (2分) (2018九上·大庆期末) 一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)间的关系为s=10t+2t2 ,若滑到坡底的时间为4s,则此人下降的高度为()A . 72mB . 36 mC . 36mD . 18 m10. (2分)已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是()A . r>15B . 15<r<20C . 15<r<25D . 20<r<25二、填空题 (共6题;共6分)11. (1分)小明抛掷一枚质地均匀的硬币9次,有6次正面向上,则第10次抛掷这个硬币,背面向上的概率为________.12. (1分)已知一面积为6πcm2的扇形的弧长为πcm,则该扇形的半径=________.13. (1分)(2018·惠山模拟) 如图,在△ABC中,高AD与中线CE相交于点F,AD=CE=6,FD=1,则AB =________.14. (1分)(2014·扬州) 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________.15. (1分)(2016·兴化模拟) 如图,点C在⊙O的直径AB上,AB=6,AC=1.点P为⊙O上的任意一点,当∠OPC取最大值时,则△OCP的面积为________.16. (1分) (2016九上·伊宁期中) 如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2= (x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则 =________.三、解答题 (共8题;共82分)17. (5分)已知:如图所示,AD=BC。
辽宁省本溪市九年级上学期期末数学试卷
辽宁省本溪市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)对于抛物线y=-2(x+5)2+4,下列说法正确的是()A . 开口向下,顶点坐标(5,4).B . 开口向上,顶点坐标(5,4).C . 开口向下,顶点坐标(-5,4).D . 开口向上,顶点坐标(-5,4).2. (2分)一个袋子中装有10个球,其中有6个黑球和4个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到黑球的概率为A .B .C .D .3. (2分)九(2)班“环保小组”的7位同学在一次活动中捡废弃塑料袋的个数分别为:9 ,10 ,9 ,8 ,10 ,9,8.这组数据的中位数、方差分别为A . 9,1.6B . 9,C . 8,1.6D . 8,4. (2分)在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A .B .C .D .5. (2分)下列命题中正确的有()①有一个角等于80°的两个等腰三角形相似;②两边对应成比例的两个等腰三角形相似;③有一个角对应相等的两个等腰三角形相似;④底边对应相等的两个等腰三角形相似.A . 0个B . 1个C . 2个D . 3个6. (2分)如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则拍球的高度h应为()A . 2.7mB . 1.8mC . 0.9mD . 6m7. (2分)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A . 没有交点B . 只有一个交点,且它位于y轴右侧C . 有两个交点,且它们均位于y轴左侧D . 有两个交点,且它们均位于y轴右侧8. (2分)小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园。
辽宁省本溪市九年级上学期期末数学试卷
辽宁省本溪市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)对于反比例函数y=,下列说法不正确的是()A . 点(-2,-1)在它的图象上B . 它的图象在第一、三象限C . 当x>0时,y随x的增大而增大D . 当x<0时,y随x的增大而减小2. (2分)(2017·南岸模拟) △ADE∽△ABC,且相似比为1:3,若△ADE的面积为5,则△ABC的面积为()A . 10B . 15C . 30D . 453. (2分)(2018·毕节模拟) 如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是()A . 75(1+ )cm2B . 75(1+ )cm2C . 75(2+ )cm2D . 75(2+ )cm24. (2分)求一元二次方程x2+3x﹣1=0的解,除了课本的方法外,我们也可以采用图象的方法:在平面直角坐标系中,画出直线y=x+3和双曲线y=的图象,则两图象交点的横坐标即该方程的解.类似地,我们可以判断方程x3﹣x﹣1=0的解的个数有()A . 0个B . 1个C . 2个D . 3个5. (2分)(2018·北区模拟) 若关于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分)如图,△ABC与△DEF位似,且E是OB的中点,则的值为()A .B .C .D .7. (2分) (2019九下·常德期中) 反比例函数 (k为不等于0的常数)的图象如图所示,以下结论错误的是()A . k>0B . 若点M (1,3)在图象上,则k=3C . 在每个象限内,y的值随x值的增大而增大D . 若点A(-1,a),B(2,b)在图象上,则a<b8. (2分) (2018九上·长宁期末) 如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC =∠DBC,那么下列结论不一定正确的是()A . ∽B . ∽C . CD=BCD .9. (2分)奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A . 4元B . 6元C . 4元或6元D . 5元10. (2分)若将抛物线y=2x2先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是()A . (-2,-2)B . (-2,-1)C . (-1,-1)D . (2,1)二、填空题 (共9题;共10分)11. (1分)如果 = = =k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=________.12. (1分)在Rt△ABC中,∠C=90°,cosA=, AC=2,那么BC=________.13. (1分) (2017八下·常熟期中) 如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是________.14. (1分)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC ,,那么的值等于________.15. (2分) (2018九上·深圳期中) 关于x的方程2x2+kx−4=10的一个根是-2,则方程的另一根是________;k=________16. (1分)(2016·自贡) 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.17. (1分)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An ﹣1为OA的n等分点,B1、B2、B3、…Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An﹣1Bn﹣1 ,分别交(x≥0)于点C1、C2、C3、…、Cn﹣1 ,当B25C25=8C25A25时,则n= ________.18. (1分)(2015·宁波) 如图,已知点A,C在反比例函数y= (a>0)的图象上,点B,D在反比例函数y= (b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是________.19. (1分)(2018·平房模拟) 如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠FAC=90°-3∠BAF,BF:AC=2:5,EF=2,则AB长为________.三、解答题 (共9题;共102分)20. (20分) (2016七上·湖州期中) 计算:(1)36×(﹣ + )(2) +(﹣1)2007+ ﹣|﹣5|(3)﹣14+3×(﹣2)4﹣32(4)﹣×[﹣32×(﹣)2﹣ ].21. (5分)如图,已知:∠BAC=∠EAD,AB=20.4,AC=48,AE=17,AD=40.求证:△ABC∽△AED.22. (5分)(2018·正阳模拟) 位于河南省郑州市的炎黄二帝巨型塑像,是为代表中华民族之创始、之和谐、之统一.塑像由山体CD和头像AD两部分组成.某数学兴趣小组在塑像前50米处的B处测得山体D处的仰角为45°,头像A处的仰角为70.5°,求头像AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23. (15分)(2016·潍坊) 今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)评定等级频数90≤n≤100A280≤n<90B70≤n<80C15n<70D6根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.24. (15分)如图,直线OC、BC的函数关系式分别为y=x和y=﹣2x+b,且交点C的横坐标为2,动点P(x,0)在线段OB上移动(0<x<3).(1)求点C的坐标和b;(2)若点A(0,1),当x为何值时,AP+CP的值最小;(3)过点P作直线EF⊥x轴,分别交直线OC、BC于点E、F.①若EF=3,求点P的坐标.②设△OBC中位于直线EF左侧部分的面积为s,请写出s与x之间的函数关系式,并写出自变量的取值范围.25. (10分) (2018九上·长宁期末) 如图,在 ABC中,点D在边AB上,DE//BC,DF//AC,DE、DF分别交边AC、BC于点E、F,且.(1)求的值;(2)联结EF,设,,用含、的式子表示.26. (7分) (2020九上·川汇期末) 某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价)(1)销售单价x=________元时,日销售利润w最大,最大值是________元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?27. (10分)(2017·河北模拟) 准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.28. (15分) (2019九上·洛阳期中) 如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,﹣2),点A 的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE= OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共102分)20-1、20-2、20-3、20-4、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。
本溪市九年级上学期数学期末考试试卷
本溪市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·常州模拟) 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A . 与x轴相离,与y轴相切B . 与x轴,y轴都相离C . 与x轴相切,与y轴相离D . 与x轴,y轴都相切2. (2分)若两个相似三角形的面积之比为1:2,则它们的周长之比为()A . 1:2B . 1:4C . 1:3D . 1:3. (2分)(2017·宁津模拟) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上D . 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查4. (2分) x是的平方根,y是64的立方根,则x+y=()A . 3B . 7C . 3或7D . 1或 75. (2分)下列函数中,二次函数是()A . y=8x2B . y=8x+1C . y=﹣8xD . y=-6. (2分)已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1 , x2时函数值相等,则当自变量x 取x1+x2时函数值与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=时的函数值相等D . x=时的函数值相等7. (2分)如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为()A . 116°B . 64°C . 58°D . 32°8. (2分)如图,中,,顶点,分别在反比例函数()与()的图象上.则下列等式成立的是()A .B .C .D .9. (2分) (2015九上·宜春期末) 二次函数y1=x2﹣2x﹣1与反比例函数y2=﹣(x>0)的图象在如图所示的同一坐标系中,若y1>y2时,则x的取值范围()A . ﹣1<x<1 或 x>2B . 1<x<2C . x<1D . 0<x<1或x>210. (2分)(2016·遵义) 如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A . 3 ﹣4B . 4 ﹣5C . 4﹣2D . 5﹣2二、填空题 (共7题;共13分)11. (5分) (2019八下·江城期中) 如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD的长.12. (1分) (2018九上·青岛期中) 计算: sin260°+cos260°﹣tan45°=________.13. (2分) (2017九下·杭州期中) 如图,反比例函数y= (x>0)的图象与矩形OABC对角线的交点为M,分别与AB,BC交于点D,E,连接OD,OE,则 =________,当k=4时,四边形ODBE的面积为________平方单位.14. (1分)(2019·玉州模拟) 正方形的边长为10,点在上,,过M作,分别交、于、两点,若、分别为、的中点,则的长为________15. (1分)(2016·连云港) 如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为________.16. (2分)某型号汽车在行驶时油箱里的剩下油量V(L)与汽车行驶的路程s(km)之间的关系如表:行驶里程s(km)剩余油量V(L)120﹣0.03220﹣0.06320﹣0.09420﹣0.12……则用s表示V的关系式为________;当汽车行驶180km时,油箱里的剩余油量为________.17. (1分)已知,如图⊙O的半径OA=5cm,弦CD=5cm,则弦CD所对圆心角为________ .三、计算题 (共1题;共5分)18. (5分)(2017·桂林) 计算:(﹣2017)0﹣sin30°+ +2﹣1 .四、解答题 (共11题;共114分)19. (15分)(2019·光明模拟) 如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC 可用二次函数s= t2+bt+c(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2) 11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+ (t﹣30),v0是加速前的速度).20. (5分)(2017·广东模拟) 如图,在Rt△ABC中,∠ACB=90°.(Ⅰ)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(Ⅱ)连结AP,若AC=4,BC=8时,试求BP的长.21. (5分)田忌赛马的故事为我们熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块10、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取出一张牌进行比较,数字大的为本“局”获胜,每次取得牌不能放回.(1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率;(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,求小齐本次比赛获胜的概率.22. (11分) (2019九上·光明期中) 如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=________°;(2)证明:△AFC∽△AGD;(3)若 = ,请求出的值.23. (10分)(2019·绍兴) 有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°. ∠E>90°.要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年辽宁省本溪市初三上学期期末数学试卷一、选择题(每题3分,共10题,满分30分)1.(3分)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°2.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=2,x2=1B.x1=﹣2,x2=1C.x1=2,x2=﹣1D.x1=﹣2,x2=﹣13.(3分)在反比例函数y=图象在二、四象限,则k的取值范围是()A.k>3B.k>0C.k<3D.k<04.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π5.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣3x+3=0D.x2+3x+2=0 6.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.57.(3分)两个相似多边形的面积之比为1:3,则它们周长之比为()A.1:3B.1:9C.1:D.2:38.(3分)在如图图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()A.B.C.D.9.(3分)如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5B.C.D.1310.(3分)已知:矩形ABCD中,AB=5,BC=12,点E在对角线AC上,且CE=6,动点P在矩形ABCD的四边上运动一周,则以P、E、C为顶点的等腰三角形有()个.A.5B.6C.7D.8二、填空题(每题3分,共8题,满分24分)11.(3分)一个几何体的三视图如图所示,则这个几何体的表面积是cm2.12.(3分)钓鱼岛列岛是我国最早发现、命名,并行使主权的.在一幅比例尺是1:100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长大约为米.13.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=,k=.14.(3分)随着人们生活水平的提高,小汽车的需求量在不断增长.某厂生产小汽车两年内产量从200000辆增加到288000辆,则年平均增长率为.15.(3分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为m.16.(3分)有三张背面完全相同的卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是.17.(3分)已知x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,并且x1和x2满足不等式<4,则实数k的取值范围是.18.(3分)如图,每个底边长为2的等腰三角形顶角的反比例函数y=(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形顶角的顶点横坐标为3…以此类推,则第n个等腰三角形底边上的高为(用含n的式子表示).三、解答题(19题10分,20题12分,共2题,满分22分)19.(10分)先化简,再求值:()÷,其中a=2sin60°﹣2tan45°.20.(12分)如图,菱形ABCD中,AB=2,∠DAB=60°,点E是AD边中点,点M 是AB边上一动点(不与A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)当AM=1时,判断四边形AMDN是什么特殊四边形?说明理由.四、解答题(每题12分,共2题,满分24分)21.(12分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图);(1)将这4张纸牌背面朝上洗匀后摸出一张,摸到正面是中心对称图形的纸牌的概率是.(2)将这4张纸牌背面朝上洗匀后摸出两张,用树状图(或列表法)求摸到正面都是中心对称图形的纸牌的概率(纸牌可用A,B,C,D表示);(3)放入n张和以上背面相同的空白纸牌后,从中摸出两张,摸到正面都是中心对称图形的纸牌的概率为,则n=.22.(12分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出只粽子,利润为元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?五、解答题(满分12分)23.(12分)如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米.(1)求加宽部分横断面AFEB的面积;(2)完成这一工程需要多少方土?六、解答题(满分12分)24.(12分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图)(1)分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?七、解答题(满分12分)25.(12分)(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将正方形ABCD改为矩形ABCD,且AD=mAB其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)根据前面的探究,你能否将本题推广到一般平行四边形情况?若能,写出推广命题,画出图形,直接写出结论;若不能,简要说明理由.八、解答题(满分14分)26.(14分)在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形,若存在,试求出这时tan∠ABC的值;若不存在,试说明理由.2014-2015学年辽宁省本溪市初三上学期期末数学试卷参考答案与试题解析一、选择题(每题3分,共10题,满分30分)1.(3分)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°【解答】解:∵tan(α+10°)=1,∴tan(α+10°)=.∴α+10°=30°.∴α=20°.故选:A.2.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=2,x2=1B.x1=﹣2,x2=1C.x1=2,x2=﹣1D.x1=﹣2,x2=﹣1【解答】解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:C.3.(3分)在反比例函数y=图象在二、四象限,则k的取值范围是()A.k>3B.k>0C.k<3D.k<0【解答】解:∵反比例函数y=图象在二、四象限,∴k﹣3<0,解得k<3.故选:C.4.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选:B.5.(3分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A.x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣3x+3=0D.x2+3x+2=0【解答】解:∵x1=1,x2=2,∴x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程x2﹣3x+2=0.故选:B.6.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.7.(3分)两个相似多边形的面积之比为1:3,则它们周长之比为()A.1:3B.1:9C.1:D.2:3【解答】解:根据题意得:周长之比为=1:.故选:C.8.(3分)在如图图形中,每个大正方形网格都是由边长为1的小正方形组成,则图中阴影部分面积最大的是()A.B.C.D.=4××1×1+12=2+1=3,【解答】解:A、S阴影B、S阴影=1×1+1×2=1+2=3,C、S阴影=2××1×1+2×1=1+2=3,D、S阴影=1×1+×(1+2)×1+×2×1=1++1=3.5,所以,阴影部分面积最大的是D选项.故选:D.9.(3分)如图,菱形ABCD中,对角线AC、BD交于点O,AC=16,BD=12,点E是AB的中点,点P在AC上,则PE+PB的最小值为()A.5B.C.D.13【解答】解:如图,连结DE交AC于点P,连结BP,作EM⊥BD于点M,∵四边形ABCD是菱形,∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,∴PD=PB∴PE+PB=PE+PD=DE且值最小∵E是AB的中点,EM⊥BD,AC=16,BD=12,∴EM=AO=AC=4,BM=BO=BD=3∴DM=DO+OM=6+3=9∴DE==故选:B.10.(3分)已知:矩形ABCD中,AB=5,BC=12,点E在对角线AC上,且CE=6,动点P在矩形ABCD的四边上运动一周,则以P、E、C为顶点的等腰三角形有()个.A.5B.6C.7D.8【解答】解:(1)P在BC上:①CP=CE=6<12,此时有一点P;②CE=PE=6时,过E作EN⊥BC于N,cos∠ACB==,CN=,CP=2CN=<12,此时有1点P;③CP=EP时,P在CE的垂直平分线MN(M为垂足)上,CM=EM=3,cos∠ACB==,CP=<12,存在一点P;(2)P在CD上:①PE=PC,此时P在CE的垂直平分线MN(M为垂足)上,CM=EM=3,cos∠ACD==,CP=>5,即P在CD的延长线上,此时不存在P点;②CE=CP=6>CD,此时不存在P点;③EP=CE=6,过E作EN⊥CD于N,cos∠ACD==,CN=,CP=2CN=<CD,即此时存在一点P;(3)P在AD上:①PE=CP,过P作PM⊥AC于M,CM=EM=3,AM=13﹣3=10,cos∠DAC==,AP=<12,即此时存在一点P;②CE=PC,PD==<12,此时存在一点P;③PE=CE=6,sin∠DAC==,EM=,AM==,PM==,AP=﹣,AP′=+,即存在2点P;(4)P在AB上:①CP=PE,即P在CE的垂直平分线MN(M为垂足)上,cos∠ACB==,CP=<12,即CP小于C到AB的最短距离,即此时不存在P点;②CE=CP=6<12,∵C到AB的最短距离是12,∴此时不存在P点;③CE=PE=6,AE=13﹣6=7,过E作EM⊥AB于M,sin∠BAC==,EM=>PE,即E到AB的最短距离大于PE,即此时不存在P点;综合上述:共有(1+1+1)+1+(1+1+2)+0=8.故选:D.二、填空题(每题3分,共8题,满分24分)11.(3分)一个几何体的三视图如图所示,则这个几何体的表面积是1300 cm2.【解答】解:由题意推知几何体长方体,长、宽、高分别为20cm,10cm,15cm,所以其面积为:2×(10×15+10×20+20×15)=2×(150+200+300)=2×650=1300(cm2).故这个几何体的表面积是1300cm2.故答案为:1300.12.(3分)钓鱼岛列岛是我国最早发现、命名,并行使主权的.在一幅比例尺是1:100000的地图上,测得钓鱼岛的东西走向长为3.5厘米,那么它的东西走向实际长大约为3500米.【解答】解:根据题意,3.5÷(1:100000)=350000厘米=3500米.即它的东西走向实际长大约为3500米.故答案为:3500.13.(3分)把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=3,k=6.【解答】解:移项,得x2+6x=﹣3,配方,得x2+6x+9=﹣3+9,所以,(x+3)2=6.故答案是:3;6.14.(3分)随着人们生活水平的提高,小汽车的需求量在不断增长.某厂生产小汽车两年内产量从200000辆增加到288000辆,则年平均增长率为20%.【解答】解:设年平均增长率为x.200000(1+x)(1+x)=288000解方程得,x=0.2或﹣2.2(不合题意,舍去)即年增长率为20%.15.(3分)如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为4m.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.16.(3分)有三张背面完全相同的卡片上分别写有一个整式,把它们背面朝上洗匀,小明从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,则能组成分式的概率是.【解答】解:画树形图得:抽到三张卡片的可能性相同,其中抽到a和a﹣2的时候组成的是分式,所以组成分式的概率是,故答案为:17.(3分)已知x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,并且x1和x2满足不等式<4,则实数k的取值范围是k≥﹣.【解答】解:∵x1和x2是一元二次方程x2﹣5x﹣k=0的两个实数根,△=25+4k≥0,解得k≥﹣,①∴x1•x2=﹣k,②x1+x2=5,③将②③代入不等式<4,得<4,即<4,解得,k>﹣8,④由①④,得k≥﹣;故答案为:k≥﹣.18.(3分)如图,每个底边长为2的等腰三角形顶角的反比例函数y=(x>0)的图象上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形顶角的顶点横坐标为3…以此类推,则第n个等腰三角形底边上的高为(用含n的式子表示).【解答】解:∵每个等腰三角形的底边长为2,顶点在反比例函数y=的图象上,∴第1个三角形底边上的高==;第2个三角形底边上的高==;第3个三角形底边上的高==;第4个三角形底边上的高==;…;∴第n个三角形底边上的高=.故答案为:.三、解答题(19题10分,20题12分,共2题,满分22分)19.(10分)先化简,再求值:()÷,其中a=2sin60°﹣2tan45°.【解答】解:∵a=2sin60°﹣2tan45°,∴a=2×﹣2×1=﹣2,原式=(﹣)÷=×=×=,当a=﹣2时,原式===.20.(12分)如图,菱形ABCD中,AB=2,∠DAB=60°,点E是AD边中点,点M 是AB边上一动点(不与A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)当AM=1时,判断四边形AMDN是什么特殊四边形?说明理由.【解答】证明:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)当AM=1时,四边形AMDN是矩形.∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.四、解答题(每题12分,共2题,满分24分)21.(12分)有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图);(1)将这4张纸牌背面朝上洗匀后摸出一张,摸到正面是中心对称图形的纸牌的概率是.(2)将这4张纸牌背面朝上洗匀后摸出两张,用树状图(或列表法)求摸到正面都是中心对称图形的纸牌的概率(纸牌可用A,B,C,D表示);(3)放入n张和以上背面相同的空白纸牌后,从中摸出两张,摸到正面都是中心对称图形的纸牌的概率为,则n=5.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)将这4张纸牌背面朝上洗匀后摸出两张,出现的情况如下共有12种等可能的结果,摸到正面都是中心对称图形的纸牌的可能有2种,概率为;(3)摸到正面都是中心对称图形的纸牌的概率为,则共有72种等可能的结果,所以共有9张牌.9﹣4=5,要放入5张牌.22.(12分)端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.(1)零售单价下降m元后,该店平均每天可卖出300+100×只粽子,利润为(1﹣m)(300+100×)元.(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?【解答】解:(1)300+100×,(1﹣m)(300+100×).(2)令(1﹣m)(300+100×)=420.化简得,100m2﹣70m+12=0.即,m2﹣0.7m+0.12=0.解得m=0.4或m=0.3.可得,当m=0.4时卖出的粽子更多.答:当m定为0.4时,才能使商店每天销售该粽子获取的利润是420元并且卖出的粽子更多.五、解答题(满分12分)23.(12分)如图,沿水库拦水坝的背水坡将坝顶加宽2米,坡度由原来的1:2改成1:2.5.已知坝高6米,坝长50米.(1)求加宽部分横断面AFEB的面积;(2)完成这一工程需要多少方土?【解答】解:(1)过点A作AG⊥BC,过点F作FH⊥BC,垂足分别是G、H.根据题意得:FH=AG=6米.HG=AF=2米,(1分)在Rt△AGB和Rt△FHE中,∵tan∠ABG==,tan∠E==,(2分)∴BG=2AG,EH=2.5FH,则BG=12(米),EH=15(米).(3分)∴EB=EH﹣BH=15﹣(12﹣2)=5(米),(4分)∴S梯形AFEB=(AF+EB)•FH=×(2+5)×6=21(米2).(5分)(2)完成这一项工程需要的土方:V=21×50=1050(米3).(7分)答:加宽部分横断面AFEB的面积为21平方米,完成这一工程需要1050立方米的土.(8分)六、解答题(满分12分)24.(12分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图)(1)分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.(2)治污改造工程完工后经过几个月,该厂利润才能达到2009年1月的水平?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?【解答】解:(1)根据图象,反比例函数图象经过(1,200),设反比例函数为y=,解得k=200,∴反比例函数为y=(x≤5),当x=5时,y=40,设改造工程完工后函数解析式为y=20x+b,则20×5+b=40,解得b=﹣60,∴改造工程完工后函数解析式为y=20x﹣60;(2)当y=200时,20x﹣60=200,解得x=13.13﹣5=8∴经过8个月,该厂利润才能达到200万元;(3)当y=100时,=100,解得x=2,20x﹣60=100,解得x=8,所以资金紧张的时间为:3,4,5,6,7月份,共5个月.故该厂资金紧张期共有5个月.七、解答题(满分12分)25.(12分)(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;(2)如图2,若将正方形ABCD改为矩形ABCD,且AD=mAB其他条件不变,探索线段EF与线段GH的关系并加以证明;(3)根据前面的探究,你能否将本题推广到一般平行四边形情况?若能,写出推广命题,画出图形,直接写出结论;若不能,简要说明理由.【解答】(1)证明:如图1,过点F作FM⊥AD于M,过点G作GN⊥CD于N,则FM=GN=AD=BC,且GN⊥FM,设它们的垂足为Q,设EF、GN交于R ∵∠GOF=∠A=90°,∴∠OGR=90°﹣∠GRO=90°﹣∠QRF=∠OFM.在△GNH和△FME中∵∴△GNH≌△FME(ASA).∴EF=GH.(2)解:==m,理由:如图2,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF交于Q,∵∠GOF=∠A=90°,∴∠OGR=90﹣∠GRO=90﹣∠QRF=∠OFM.∵∠GNH=∠FME=90°,∴△GNH∽△FME.∴==m;(3)已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.证明:如图3,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF、GN交于R、GN、MF 交于Q,在四边形MQND中,∠QMD=∠QND=90°,∴∠MDN+∠MQN=180°.∴∠MQN=∠A=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠FME=∠GNH=90°,∴△GNH∽△FME.∴==m.即GH=mEF.八、解答题(满分14分)26.(14分)在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,求点Q的坐标;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)过点A作AC⊥AB,AC交射线PQ于点C,连接BC,D是BC的中点.在点P、Q的运动过程中,是否存在某时刻,使得以A、C、Q、D为顶点的四边形是平行四边形,若存在,试求出这时tan∠ABC的值;若不存在,试说明理由.【解答】解:(1)根据题意,可得:A(4,0)、B(0,3),AB=5.ⅰ)当∠BAQ=90°时,△AOB∽△BAQ,∴.解得;ⅱ)当∠BQA=90°时,BQ=OA=4,∴Q或Q(4,3).(4分)(2)令点P翻折后落在线段AB上的点E处,则∠EAQ=∠PAQ,∠EQA=∠PQA,AE=AP,QE=QP;又BQ∥OP,∴∠PAQ=∠BQA,∴∠EAQ=∠BQA,即AB=QB=5.∴,∴,即点E是AB的中点.过点E作EF⊥BQ,垂足为点F,过点Q作QH⊥OP,垂足为点H,则,,∴EF=PH.又EQ=PQ,∠EFQ=∠PHQ=90°,∴△EQF≌△PQH∴∠EQF=∠PQH,从而∠PQE=90°.∴∠AQP=∠AQE=45°.(8分)(3)当点C在线段PQ上时,延长BQ与AC的延长线交于点F,∵AC⊥AB,∴△AOB∽△FHA.∴即,∴.∵DQ∥AC,DQ=AC,且D为BC中点,∴FC=2DQ=2AC.∴.在Rt△BAC中,tan∠ABC=;当点C在PQ的延长线上时,记BQ与AC的交点为F,记AD与BQ的交点为G,∵CQ∥AD,CQ=AD且D为BC中点,∴AD=CQ=2DG.∴CQ=2AG=2PQ.即:CQ:QP=2:1又∵BQ∥OP∴CF:AF=CQ:QP=2:1∴FC=2AF,又∵FA=,∴FC=,∴.在Rt△BAC中,tan∠ABC=.(12分)附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。