2015人教版九年级数学上册课件24.1圆的有关性质
合集下载
初中数学教材解读人教九年级上册第二十四章圆圆的有关性质PPT
)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3 cm C. 2 3cm D. 2 5 cm
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
(C )
A.1.5cm
B.10.5cm;
C.1.5cm或10.5cm D.都不对;
随堂训练
8.已知P为⊙o内一点,且OP=2cm,如果⊙o
的半径是3 c m ,则过P点的最长的弦等于 .
最短的弦等于_________。
M
O
P
A
B
N
9.P为⊙O内一点,且OP=2cm,若⊙O的半径为3cm,
则过P点的最短弦长等于( A.1cm B.2cm C. 5 cm
点.
连M和N并反向延长交圆于P和Q两点.
求证: PM=NQ.
A
PM HN Q
B
O
C
•例1 如图,一条公路的转变处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E
为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求
人教版九年级数学上册 24.1.圆的有关性质 课件
归纳:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定 的一个端点O旋转一周,另一个端点A所 形成的图形叫做圆.
z x xk
静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
同心圆
等圆
圆心相同,半径不同
DC E
(×)
(√)
注意:定理中的两个条件
(直径,垂直于弦)缺一不可!
DC
O D
A
(√)
2.如图,在圆O中,直径MN⊥AB,垂足
是C,则下列结论中错误的D是( )
A.A⌒N=⌒BN B. AC=BC
M
C.A⌒M=⌒BM D.OC=CN
O
C
A
B
N
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,(1)求⊙O的半径. 变式训练:
(2) 若弦AB长为8cm, ⊙O半径为5cm,求圆心O到AB距离 (3)若圆心O到AB距离为3cm,⊙O半径为5cm求弦AB长
解: 作 OE⊥AB,连接OA
A
E
B
OE AB
AE 1 AB 1 8 4
O·
22
在Rt△ABC中 AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
“我国圆古人”很早指对
“圆周” 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
提问:根据圆的定义,”圆“指的是”圆周 “还是”圆面“?
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
动态:在一个平面内,线段OA绕它固定 的一个端点O旋转一周,另一个端点A所 形成的图形叫做圆.
z x xk
静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
同心圆
等圆
圆心相同,半径不同
DC E
(×)
(√)
注意:定理中的两个条件
(直径,垂直于弦)缺一不可!
DC
O D
A
(√)
2.如图,在圆O中,直径MN⊥AB,垂足
是C,则下列结论中错误的D是( )
A.A⌒N=⌒BN B. AC=BC
M
C.A⌒M=⌒BM D.OC=CN
O
C
A
B
N
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,(1)求⊙O的半径. 变式训练:
(2) 若弦AB长为8cm, ⊙O半径为5cm,求圆心O到AB距离 (3)若圆心O到AB距离为3cm,⊙O半径为5cm求弦AB长
解: 作 OE⊥AB,连接OA
A
E
B
OE AB
AE 1 AB 1 8 4
O·
22
在Rt△ABC中 AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
“我国圆古人”很早指对
“圆周” 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
提问:根据圆的定义,”圆“指的是”圆周 “还是”圆面“?
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.
数学人教版九年级上册24.1 圆的有关性质(第5课时) PPT课件
2.性质探究
在⊙O 中, A、B、C、D 都在同一个圆上. (1)请指出图中圆内接四边形的外角. (2)∠ADC 的内对角是哪一个角, ∠DCB 呢? (3)与∠DCB 互补的角是哪个角?
A DE
O
F
B
C
3.利用性质解决问题
已知: △ABC 中, AB=AC, D 是△ABC 外接圆 AC 上的点(不与 A, C 重合), 延长 BD 到 E.
九年级 上册
24.1 圆的有关性质(第5课时)
课件说明
• 圆内接四边形的性质是圆周角定理的应用.利用圆周 角定理, 可以把圆内接四边形的四个内角(圆周角)和 相应的圆心角联系起来, 得到圆内接四边形的性 质.圆内接四边形的性质在圆中探究角相等或互补关 系时经常用到, 也是研究四点共圆的基础.
课件说明
(1)如下图左, 四边形 ABCD 内接于⊙O, AB 是直 径, ∠ABD =30°, 则∠BCD 的度数为多少?
(2)如下图右, 在⊙O 中, AB 为直径, 直线 l 与⊙O 交于点 C、D, BE⊥l 于点 E, 连接 BD、BC.
求证: ∠CBE =∠ABD.
D C
A
O
B
A
O
B
D
CE l
求证: AD 的延长线平分∠CDE.
A DE
O
F
B
C
3.利用性质解决问题
拓展: 如图, AD、BE 是△ABC 的两条高. 求证: ∠CED=∠ABC.
C D
E
A
B
4.课堂小结
(1)本节课主要学习了哪些内容? (2)本节课学到了哪些思想方法?
① 构造圆内接四边形; ② 一题多解, 一题多变.
人教版初中数学课标版九年级上册第二十四章24.1 圆的有关性质(共22张PPT)
判别下列各图中的角是不是圆心角,并说明理由。
圆心角 ∠AOB与∠ A'OB'
A' B
O
A
B'
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。20 21/8/10 2021/8/10Tues day , August 10, 2021
•
12、要记住,你不仅是教课的教师,10202 1/8/102 021/8/1 0Tuesd ay , August 10, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/10202 1/8/102 021/8/1 02021/8 /108/10 /2021
B
A
·
等对等定理
同样在,同还圆可以或得等到圆:中,两个圆心角、两条 弧、两条弦中有一组量相等,它们所对应 的在其同余圆各或组等圆量中也,相如等果.两条弧相等,那么它
们所对的圆心角_____, 所对的弦________;
在同圆或等圆中,如果两条弦相等,那么他 们所对的圆心角______,所对的弧 _________.
A.AB>CD B.AB = CD C. AB < CD D. AB =2
CD
2、下列结论正确的是( ) • 长度相等的两条弧是等弧 B. 同一条弦所对的两条弧一定是等弧 C. 相等的圆心角所对的弧相等 D. 等弧所对的圆心角相等
3、在半径为3的圆中,弦长为3的弦所对的 圆心角为( ) A. 30° B. 45° C. 60° D. 90°
•
14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年8月 10日星 期二20 21/8/10 2021/8/102021 /8/10
九年级人教版数学上册课件:24.1 圆的有关性质公开课一等奖优秀课件
从上面的证明我们知道:
⑴垂径定理:垂直于弦的直径平分弦,并且平分弦所对的 两条弧. ⑵定理中的弦为直径时,结论仍然成立.
注意:⑴垂径定理中的垂径可以是直径、半径或过圆心的直 线或线段,其本质是“过圆心”. ⑵垂径定理也可理解为,如果一条直线,它具有两个性质: ①经过圆心; ②垂直于弦.那么这条直线就平分这条弦, 弦平分所对劣弧和优弧.
现哪些等量关系?为什么?
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时, 显然∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆 的半径相等,OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合. 因此,弧AB与弧A1B1 重合,AB与A′B′重合.
这样,我们就得到下面的定理:
1.垂径定理的条件和结论分别是什么?
条件: ①过圆心,②垂直于弦.
结论: ③平分弦,④平分弦所对的劣弧,⑤平分弦所对的 优弧.
质疑2.条件改为: ①过圆心,③平分弦.
结论改为:②垂直于弦,④平分弦所对的劣弧,⑤平分弦 所对的优弧. 这个命题正确吗?
垂径定理的推论
① 直径过圆心 ③ 平分弦 (不是直径)
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ④ 平分弦所对优弧
(5)平分弦并且平分弦所对的一条弧的直径过 圆心,垂直于弦,并且平分弦所对的另一条弧 .
④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ③ 平分弦
O E A
D
已知:CD是直径,AB是弦,并且A⌒C=B⌒C 求证:CD平分AB,CD ⊥AB,A⌒D=B⌒D
课件人教版九年级数学上册课件24.1圆的有关性质精品课件ppt.ppt
A
课件
O B
活动一:复习导入
垂径定理
▪ 定理 垂直于弦的直径平分弦,并且平分弦所对的两条
弧.
C
如图∵ CD是直径,
A M└
B
●O
D
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
课件
活动二:名题引路
▪ 如图,已知AB是⊙O
▪ 的中点,弦CD经过点M,∠CMA=30°,
▪
则CD4=15
cm
C
8
E
A
O2
M
B
4 D
课件
活动四:顺利闯二关
▪ 1、(1)⊙O的半径为5 cm,弦AB∥CD, AB=6 cm, CD=8 cm,
▪ ①请画出图形
▪ ②根据图形,求出AB与CD之间的距离 是 。 7cm或1cm
▪
(2)你能直接写出此题的答案么:
O
B
A
课件
D
思考:
1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD? C
3、将弦AB进行
平移时,以上结A O
B
论是否仍成立?
课件
D
思 1.图中有哪些相等的量?
?
考 2.AB作怎样的变换时,
AC=BC, AD=BD ?
3.将弦AB进行平移时, C 以上结论是否仍成立?
4.当弦AB与直径 CD不垂直时,以 A
课件
思考: 1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD?
C B
O
人教版九年级数学上册第24章:圆
A
D
∴AO=OC= AC,
O
OB=OD= BD,AC=BD.
B
C
∴OA=OC=OB=OD.
∴A、B、C、D四个点在以点O为圆心,OA为半径的圆上.
新课讲解
2 圆的有关概念
A
★弦 连结圆上任意两点的线段(如图中的AC)叫 做弦. 经过圆心的弦(如图中的AB)叫做直径.
·O
C
B
1.弦和直径都是线段. 2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不 一定是直径.
RJ九(上) 教学课件
第二十四章 圆
24.1 圆的有关性质
24.1.1 圆
学习目标
1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等
弧等与圆有关的概念,并了解它们之间的区别和联系. (难点) 3.初步了解点与圆的位置关系.
新课引入
观察与思考
问题 观察下列生活中的图片,找一找你所熟悉的图形.
新课讲解
1 探究圆的概念
问题 观察画圆的过程,你能说出圆是如何画出来的吗? A
★圆的旋转定义
在一个平面内,线段OA绕它固定的 r
一个端点O旋转一周,另一个端点A所
形成的图形叫做圆.点O为圆心的圆,
·
O
记作“⊙O”,读作“圆O”.
★圆的有关概念
固定的端点O叫做圆心,线段OA叫做半
径,一般用r表示.
新课讲解
★圆的集合定义
圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r的点的集合.
D
r
A
C
r O· r
r r
E
★圆的基本性质
同圆半径相等.
24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。
圆
能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。
圆
概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论
分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5
圆课件(共18张PPT)人教版数学九年级上册
【实践性作业】找 一 根绳子,以其中 一 头为圆心,自选
长度为半径画圆,感受圆的定义 .
∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结
圆
的
定
义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的
长度为半径画圆,感受圆的定义 .
∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结
圆
的
定
义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的
初中数学人教九年级上册第二十四章 圆 圆周角定理PPT
(2)∵BA=BC,∴∠A=∠C. 由圆周角定理得∠A=∠E, ∴∠C=∠E,∴DC=DE.
27
28
知识点三:圆周角定理的推论
合作探究
先独立完成导学案互动探究1、3, 再同桌相互交流,最后小组交流;
1.如图,在⊙O中,弦AB=3cm,点C在 ⊙O上,∠ACB=30°.求⊙O直径. 2.如图,AB是⊙O的直径,BD是⊙O的弦 ,延长BD到点C,使AC=AB,BD与CD的 大小有什么关系?为什么?
B A
O A
O B
知识点三:圆周角定理的推论
学以致用
1、如图,AB是半圆的直径,点D是AC的中
点,∠ABC=50°,则∠DAB等于( ) C
A.55°B.60°C.65°D.70°
B
A
O
2.如图,⊙O的半径为1,AB是⊙O的一条
弦,且AB= 3,则弦AB所对的圆周角的度 A
数为( )D A.30º B.60º C.30º或150 º D.60º或120º
如果AB=CD,那么∠E和∠F是什么关系? O1 D
反过来呢?
C
A
F
结合⑴、⑵你能得到什么结论?
O2
B
21
知识点三:圆周角定理的推论
归纳总结
圆周角定理推理1
同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
∵ AB=CD ∴∠E=∠F
在⊙O中∵∠E=∠F ∴AB=CD
E
A
F
O D
对的弧也相等;②两条弦相等,弦所对的弧也相等;③弦
心距弦心距所对的弦相等;④两个圆周角相等,圆周角所
对的弧相等;⑤弧相等弧所对的弦相等;
C
⑥弧相等弧所对的圆周角也相等。
人教版九年级数学上册第24章第1节《弧、弦、圆心角》课件
求证:∠AOB=∠BOC=∠AOC.
A
证明: ∵A⌒B=C⌒D,
·
O
∴ AB=AC.△ABC是等腰三角形. B
C
又∵ ∠ACB=60°,
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
巩固练习
24.1 圆的有关性质/
( ( ( (
( (
2. 填一填.
A
E
B
如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么___A__B_=_C__D__,
C⌒D,弦AB与弦CD有怎样的数量关系? C B D
归纳 由圆的旋转不变性,可得: 在⊙O中,如果∠AOB= ∠COD,
·
O
A
那么, A⌒B与C⌒D ,弦AB=弦CD
探究新知
24.1 圆的有关性质/
在等圆中探究
如图,在等圆中,如果∠AOB=∠CO ′ D, 你发现的等量关系是否依然成立?为什么?
A
B
O·
C
D
O ·′
归纳
通过平移和旋转将 两个等圆变成同一个圆, 可得:
如果∠AOB=∠COD, 那么,AB=CD,
弦A⌒B=弦C⌒D.
探究新知
24.1 圆的有关性质/
弧、弦与圆心角的关系定理
在同一个圆或等圆中,如果圆心角相等,那么 它们所对的弧相等,所对的弦相等.
CB
D O
①∠AOB=∠COD
A
②⌒AB=C⌒D ③AB=CD
B M
3. 圆心角 ∠AOB所对的弦为AB.
OA
任意给圆心角,对应出现三个量: 弧
圆心角 弦
探究新知
24.1 圆的有关性质/
2015人教版数学九上24.1《圆的有关性质》(第3课时)PPT课件
6.例题
例1 如图,在⊙O 中, AB = AC ,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
证明:
∵
AB =
AC
∴ 又 ∴
AB=AC,△ABC 等腰三角形. ∠ACB=60°, △ABC 是等边三角形, AB=BC=CA.
∠AOB=∠BOC=∠AOC.
A O
∴
B
C
6.例题
例2 数. 如图,AB 是⊙O 的直径, = = ,
7.课堂小结
(1)本节课学习了哪些内容?
(2)圆心角、弧、弦之间有哪些关系?
8.布置作业
教科书习题 24.1
第 3,4 题.
O
性质:把圆绕圆心旋转任意一个角度后,仍与原来 的圆重合.
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N N′
n°
O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
2.性质
把圆心角等分成 360 份,则每一份的圆心角是 1°, 同时整个圆也被分成了 360 份. 则每一份这样的弧叫做 1°的弧.这样, 1°的弧 1°的圆心角对着 1°的弧, 1°的弧对着 1°的圆心角. n°的圆心角对着 n°的弧, n°的弧对着 n°的圆心角. 1° 性质: n° 弧的度数和它所对圆 心角的度数相等.
60° N 30° N′
O
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
n° N 60° N′
O
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N N′
n°
O
由此可以看出,点 N′仍落在圆上.
2015人教版九年级数学上册课件24.1圆的有关性质
等弧:在同圆或等圆中,能够完全重合的弧。
注意: ①线段OA所形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小. ③以点O为圆心的圆,记作“⊙O”,读作“圆O”. 那么以点A为圆心的圆,记作⊙O,读作圆O.
思考:
合作探究 达成目标
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推
导
(1)垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
因此,弧AB与弧A1B1 重合,AB与A′B′重合.
⌒ AB
⌒ 1B1 AB A ' B '. = A
达标检测 反思目标
60°或300°
90°
12 2
A
B
C
40°
B
课后作业
• 上交作业:教科书第89页第2,3题 . • 课后作业:“学生用书”的“课后作业” 部分.
第4课时 圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论. • 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理. • 3. 会用圆周角定理及推论进行证明和计算.
人教版数学九年级上册圆ppt课堂课件
2.到定点的距离都等于定长的
D
点 都在同一个圆上.
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
议一议
为什么车轮是圆 的呢?椭圆或正 方形可以吗
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当 车辆在平坦的路上行驶时,坐车的人会感觉到非常 平稳,这也是车轮都做成圆形的数学道理.
人教版数学九年级上册:24.1.1圆-课 件
归纳小结
今天的学习,你有那些收获?我 们来自我检测一下。
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
达标检测
A
等边三角形
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
•
3.在品读文字中,继续巩固总分的构 段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
•
4.第五节讲只要细心观察就能获得更 多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。
•
5.根据诗歌内容,课文中配有相应的 插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
A
B
C
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
13..
人教版数学九年级上册:24.1.1圆-课 件
D
点 都在同一个圆上.
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
议一议
为什么车轮是圆 的呢?椭圆或正 方形可以吗
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当 车辆在平坦的路上行驶时,坐车的人会感觉到非常 平稳,这也是车轮都做成圆形的数学道理.
人教版数学九年级上册:24.1.1圆-课 件
归纳小结
今天的学习,你有那些收获?我 们来自我检测一下。
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
达标检测
A
等边三角形
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
•
3.在品读文字中,继续巩固总分的构 段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。
•
4.第五节讲只要细心观察就能获得更 多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。
•
5.根据诗歌内容,课文中配有相应的 插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
A
B
C
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
13..
人教版数学九年级上册:24.1.1圆-课 件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合作探究 达成目标
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推
导
(1)垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
等弧:在同圆或等圆中,能够完全重合的弧。
注意: ①线段OA所形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小. ③以点O为圆心的圆,记作“⊙O”,读作“圆O”. 那么以点A为圆心的圆,记作⊙O,读作圆O.
思考:
达标检测 反思目标
60°或300°
90°
12 2
A
B
C
40°
B
课后作业
• 上交作业:教科书第89页第2,3题 . • 课后作业:“学生用书”的“课后作业” 部分.
第4课时 圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论. • 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理. • 3. 会用圆周角定理及推论进行证明和计算.
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
因此,弧AB与弧A1B1 重合,AB与A′B′重合.
⌒ AB
⌒ 1B1 AB A ' B '. = A
(2)垂径定理的推论: 平分弦(不是直径)并且平分弦所对 的两条孤.
【针对训练】
×
AB⊥CD
探究点三 垂径定理的应
用
【针对训练】
250
总结梳理 内化目标
达标检测 反思目标
10
1
6
A
D
课后作业
• 上交作业: • 教科书第89页习题24.1第1,8题 .
• 课后作业:“学生用书”的“课后作 业”部分.
D
圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
弦 A O
连结圆上任意两点的线段叫做弦。
如图,弦有 AB、 AC BC、 B
直径是圆中 最长的弦
●
24.1 弧、弦、圆心角
• 第3课时
创设情景 明确目标
●学习目标
• 1. 能识别圆心角. • 2. 探索并掌握弧、弦、圆心角的关系,了 解圆的中心对称性和旋转不变性. • 3. 能用弧,弦、圆心角的关系解决圆中的 计算题、证明题.
合作探究 达成目标
探究点一 弧、弦、圆心角之间的关系的推导
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现 哪些等量关系?为什么? A′ A′ B B B′ B′
①“直径是弦,弦是直径”这种说法正确吗 ?直径是圆中最长的弦吗? ②“半圆是弧,弧是半圆”这种说法正确吗 ? ③面积相等的两个圆是等圆吗?周长相等的 两个圆呢?
【针对训练】
D
D
0<d≤4
探究点二 运用“圆的半径相等”解决问题
C
【针对训练】
A
总结梳理 内化目标
达标检测 反思目标
A
等边三角形
第二十四章
24.1 圆 第1课时 圆
圆
圆的世界的形象。
合作探究 达成目标 探究点一 圆的定义及相关概念
1.圆的定义 (1)从旋转的角度理解:如图1,在一个平面 内,线段OA绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆,固定的端点O叫做圆 心,线段OA叫做半径.
同样,还可以得到:
【针对训练】
C
(2)
A O A A′ B B′ D O
C B A
C D O B
探究点二
弧、弦、圆心角的关系的应用
【针对训练】
BOC 105°
DOE 75°
解;OE=OF,证明△OEA≌△OFC或△OEB≌△OFD
总结梳理 内化目标
正确理解和使用弧、弦、圆心角三者关系; 在同圆或等圆中, 圆心角相等,所对的 弧相等,所对的弦相等,三项“知一推二 ”,即一项相等,其余二项相等. 解和使用弧、弦、圆心角三者关系:在同圆 或等圆中,①圆心角相等,②所对的弧相等 ,③所对的弦相等,三项“知一推二”,即 一项相等,二项相等.
圆的确定
O●
要确定一个圆,必须确定圆的____ 和____ 圆心 半径
圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
B r r A
r
C
O r
·r
E
1.圆上各点到定点(圆心O)的距 离都等于定长(半径r) 2.到定点(圆心O)的距离都等于定 长(半径r)的点都在同一个圆上。
C
弦心距:圆心到弦的距离叫做弦心距。
弧 A
A
O
曲线BC、BAC都是⊙O的弧分别记 ⌒ ⌒ BC 、 BAC 作: ⌒、BAC ⌒ 有什么区别? BC
B
●
一个比半圆大一个比半圆小! 大于半圆的弧叫做 优弧 ,小于 半 圆 的 弧 叫 做 劣 弧
C
⌒ ⌒ 劣弧有: A B C B ⌒ 半圆有 : AB C ⌒ ⌒ BA C 优弧有: ACB
5
A
C
课后作业
• 上交作业:教科书第81页练习1,2题 .
• 课后作业: “学生用书”的“课后作业” 部分.
第二十四章 圆
第2课时
垂直于弦的直径
第2课时 垂直于弦的直径
创设情景 明确目标
学习目标 • 1.探索并了解圆的对称性和垂径定理. • 2. 能运用垂径定理解决几何证明、计 算问题,并会解决一些实际问题.
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
同圆或等圆中, 两个圆心角、两 条弧、两条弦中 在同圆或等圆中,如果两条弧相等,那么它们所对的 有一组量相等, 相等, 所对的弦________ 圆心角_____ 相等 ; 它们所对应的其 余各组量也相 在同圆或等圆中,如果两条弦相等,那么他们所对的 等. 相等 ,所对的弧_________ 相等 . 圆心角______