2015人教版九年级数学上册课件24.1圆的有关性质

合集下载

初中数学教材解读人教九年级上册第二十四章圆圆的有关性质PPT

初中数学教材解读人教九年级上册第二十四章圆圆的有关性质PPT

)
A.弦的垂线平分弦所对的弧;
B.平分弦的直径垂直于这条弦;
C.过弦的中点的直线必过圆心;
D.弦所对的两条弧的中点连线垂直平分弦 且过圆心;
双基训练
5. 如图,将半径为2cm的圆形纸片折叠后,圆弧 恰好经过圆心,则折痕AB的长为( C )
A.2cm B. 3 cm C. 2 3cm D. 2 5 cm
12.已知直径AB被弦CD分成AE=4,
EB=8,CD和AB成300角,则弦CD
的弦心距OF=___1_;CD=_2__3_5_.
D
F
A
B
C
EO
13.已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
(C )
A.1.5cm
B.10.5cm;
C.1.5cm或10.5cm D.都不对;
随堂训练
8.已知P为⊙o内一点,且OP=2cm,如果⊙o
的半径是3 c m ,则过P点的最长的弦等于 .
最短的弦等于_________。
M
O
P
A
B
N
9.P为⊙O内一点,且OP=2cm,若⊙O的半径为3cm,
则过P点的最短弦长等于( A.1cm B.2cm C. 5 cm
点.
连M和N并反向延长交圆于P和Q两点.
求证: PM=NQ.
A
PM HN Q
B
O
C
•例1 如图,一条公路的转变处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E
为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求

人教版九年级数学上册 24.1.圆的有关性质 课件

人教版九年级数学上册  24.1.圆的有关性质 课件
归纳:圆心为O、半径为r的圆可以 看成是所有到定点O的距离等于定长r 的点的集合.
动态:在一个平面内,线段OA绕它固定 的一个端点O旋转一周,另一个端点A所 形成的图形叫做圆.
z x xk
静态:圆心为O、半径为r的圆可以看成 是所有到定点O的距离等于定长r 的点组 成的图形.
同心圆
等圆
圆心相同,半径不同
DC E
(×)
(√)
注意:定理中的两个条件
(直径,垂直于弦)缺一不可!
DC
O D
A
(√)
2.如图,在圆O中,直径MN⊥AB,垂足
是C,则下列结论中错误的D是( )
A.A⌒N=⌒BN B. AC=BC
M
C.A⌒M=⌒BM D.OC=CN
O
C
A
B
N
1.如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,(1)求⊙O的半径. 变式训练:
(2) 若弦AB长为8cm, ⊙O半径为5cm,求圆心O到AB距离 (3)若圆心O到AB距离为3cm,⊙O半径为5cm求弦AB长
解: 作 OE⊥AB,连接OA
A
E
B
OE AB
AE 1 AB 1 8 4

22
在Rt△ABC中 AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
“我国圆古人”很早指对
“圆周” 圆就有这样的认 识了,战国时的 《墨经》就有 “圆,一中同长 也”的记载.它 的意思是圆上各 点到圆心的距离 都等于半径.
提问:根据圆的定义,”圆“指的是”圆周 “还是”圆面“?
从画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离都等于定长 (半径r); (2)到定点的距离等于定长的点都在同一个圆上.

数学人教版九年级上册24.1 圆的有关性质(第5课时) PPT课件

数学人教版九年级上册24.1 圆的有关性质(第5课时) PPT课件

2.性质探究
在⊙O 中, A、B、C、D 都在同一个圆上. (1)请指出图中圆内接四边形的外角. (2)∠ADC 的内对角是哪一个角, ∠DCB 呢? (3)与∠DCB 互补的角是哪个角?
A DE
O
F
B
C
3.利用性质解决问题
已知: △ABC 中, AB=AC, D 是△ABC 外接圆 AC 上的点(不与 A, C 重合), 延长 BD 到 E.
九年级 上册
24.1 圆的有关性质(第5课时)
课件说明
• 圆内接四边形的性质是圆周角定理的应用.利用圆周 角定理, 可以把圆内接四边形的四个内角(圆周角)和 相应的圆心角联系起来, 得到圆内接四边形的性 质.圆内接四边形的性质在圆中探究角相等或互补关 系时经常用到, 也是研究四点共圆的基础.
课件说明
(1)如下图左, 四边形 ABCD 内接于⊙O, AB 是直 径, ∠ABD =30°, 则∠BCD 的度数为多少?
(2)如下图右, 在⊙O 中, AB 为直径, 直线 l 与⊙O 交于点 C、D, BE⊥l 于点 E, 连接 BD、BC.
求证: ∠CBE =∠ABD.
D C
A
O
B
A
O
B
D
CE l
求证: AD 的延长线平分∠CDE.
A DE
O
F
B
C
3.利用性质解决问题
拓展: 如图, AD、BE 是△ABC 的两条高. 求证: ∠CED=∠ABC.
C D
E
A
B
4.课堂小结
(1)本节课主要学习了哪些内容? (2)本节课学到了哪些思想方法?
① 构造圆内接四边形; ② 一题多解, 一题多变.

人教版初中数学课标版九年级上册第二十四章24.1 圆的有关性质(共22张PPT)

人教版初中数学课标版九年级上册第二十四章24.1 圆的有关性质(共22张PPT)

判别下列各图中的角是不是圆心角,并说明理由。
圆心角 ∠AOB与∠ A'OB'
A' B
O
A
B'

9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。20 21/8/10 2021/8/10Tues day , August 10, 2021

12、要记住,你不仅是教课的教师,10202 1/8/102 021/8/1 0Tuesd ay , August 10, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/10202 1/8/102 021/8/1 02021/8 /108/10 /2021
B
A
·
等对等定理
同样在,同还圆可以或得等到圆:中,两个圆心角、两条 弧、两条弦中有一组量相等,它们所对应 的在其同余圆各或组等圆量中也,相如等果.两条弧相等,那么它
们所对的圆心角_____, 所对的弦________;
在同圆或等圆中,如果两条弦相等,那么他 们所对的圆心角______,所对的弧 _________.
A.AB>CD B.AB = CD C. AB < CD D. AB =2
CD
2、下列结论正确的是( ) • 长度相等的两条弧是等弧 B. 同一条弦所对的两条弧一定是等弧 C. 相等的圆心角所对的弧相等 D. 等弧所对的圆心角相等
3、在半径为3的圆中,弦长为3的弦所对的 圆心角为( ) A. 30° B. 45° C. 60° D. 90°

14、谁要是自己还没有发展培养和教 育好, 他就不 能发展 培养和 教育别 人。202 1年8月 10日星 期二20 21/8/10 2021/8/102021 /8/10

九年级人教版数学上册课件:24.1 圆的有关性质公开课一等奖优秀课件

九年级人教版数学上册课件:24.1  圆的有关性质公开课一等奖优秀课件

从上面的证明我们知道:
⑴垂径定理:垂直于弦的直径平分弦,并且平分弦所对的 两条弧. ⑵定理中的弦为直径时,结论仍然成立.
注意:⑴垂径定理中的垂径可以是直径、半径或过圆心的直 线或线段,其本质是“过圆心”. ⑵垂径定理也可理解为,如果一条直线,它具有两个性质: ①经过圆心; ②垂直于弦.那么这条直线就平分这条弦, 弦平分所对劣弧和优弧.
现哪些等量关系?为什么?
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时, 显然∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆 的半径相等,OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合. 因此,弧AB与弧A1B1 重合,AB与A′B′重合.
这样,我们就得到下面的定理:
1.垂径定理的条件和结论分别是什么?
条件: ①过圆心,②垂直于弦.
结论: ③平分弦,④平分弦所对的劣弧,⑤平分弦所对的 优弧.
质疑2.条件改为: ①过圆心,③平分弦.
结论改为:②垂直于弦,④平分弦所对的劣弧,⑤平分弦 所对的优弧. 这个命题正确吗?
垂径定理的推论
① 直径过圆心 ③ 平分弦 (不是直径)
③ 平分弦 ④ 平分弦所对优弧
① 直径过圆心 ② 垂直于弦 ⑤ 平分弦所对的劣弧
③ 平分弦 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ④ 平分弦所对优弧
(5)平分弦并且平分弦所对的一条弧的直径过 圆心,垂直于弦,并且平分弦所对的另一条弧 .
④ 平分弦所对优弧 ⑤ 平分弦所对的劣弧
① 直径过圆心 ② 垂直于弦 ③ 平分弦
O E A
D
已知:CD是直径,AB是弦,并且A⌒C=B⌒C 求证:CD平分AB,CD ⊥AB,A⌒D=B⌒D

课件人教版九年级数学上册课件24.1圆的有关性质精品课件ppt.ppt

课件人教版九年级数学上册课件24.1圆的有关性质精品课件ppt.ppt

A
课件
O B
活动一:复习导入
垂径定理
▪ 定理 垂直于弦的直径平分弦,并且平分弦所对的两条
弧.
C
如图∵ CD是直径,
A M└
B
●O
D
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C, A⌒D=B⌒D.
推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
课件
活动二:名题引路
▪ 如图,已知AB是⊙O
▪ 的中点,弦CD经过点M,∠CMA=30°,

则CD4=15
cm
C
8
E
A
O2
M
B
4 D
课件
活动四:顺利闯二关
▪ 1、(1)⊙O的半径为5 cm,弦AB∥CD, AB=6 cm, CD=8 cm,
▪ ①请画出图形
▪ ②根据图形,求出AB与CD之间的距离 是 。 7cm或1cm

(2)你能直接写出此题的答案么:
O
B
A
课件
D
思考:
1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD? C
3、将弦AB进行
平移时,以上结A O
B
论是否仍成立?
课件
D
思 1.图中有哪些相等的量?
?
考 2.AB作怎样的变换时,
AC=BC, AD=BD ?
3.将弦AB进行平移时, C 以上结论是否仍成立?
4.当弦AB与直径 CD不垂直时,以 A
课件
思考: 1、图中有哪些相等的量?
2.AB作怎样的变换时,
AC=BC, AD=BD?
C B
O

人教版九年级数学上册第24章:圆

人教版九年级数学上册第24章:圆

A
D
∴AO=OC= AC,
O
OB=OD= BD,AC=BD.
B
C
∴OA=OC=OB=OD.
∴A、B、C、D四个点在以点O为圆心,OA为半径的圆上.
新课讲解
2 圆的有关概念
A
★弦 连结圆上任意两点的线段(如图中的AC)叫 做弦. 经过圆心的弦(如图中的AB)叫做直径.
·O
C
B
1.弦和直径都是线段. 2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不 一定是直径.
RJ九(上) 教学课件
第二十四章 圆
24.1 圆的有关性质
24.1.1 圆
学习目标
1.认识圆,理解圆的本质属性.(重点) 2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等
弧等与圆有关的概念,并了解它们之间的区别和联系. (难点) 3.初步了解点与圆的位置关系.
新课引入
观察与思考
问题 观察下列生活中的图片,找一找你所熟悉的图形.
新课讲解
1 探究圆的概念
问题 观察画圆的过程,你能说出圆是如何画出来的吗? A
★圆的旋转定义
在一个平面内,线段OA绕它固定的 r
一个端点O旋转一周,另一个端点A所
形成的图形叫做圆.点O为圆心的圆,
·
O
记作“⊙O”,读作“圆O”.
★圆的有关概念
固定的端点O叫做圆心,线段OA叫做半
径,一般用r表示.
新课讲解
★圆的集合定义
圆心为O、半径为r的圆可以看成是所有 到定点O的距离等于定长r的点的集合.
D
r
A
C
r O· r
r r
E
★圆的基本性质
同圆半径相等.

24-1 圆的有关性质 课件(共60张PPT)

24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。

能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。

概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论

分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5

圆课件(共18张PPT)人教版数学九年级上册

圆课件(共18张PPT)人教版数学九年级上册
【实践性作业】找 一 根绳子,以其中 一 头为圆心,自选
长度为半径画圆,感受圆的定义 .

∴点B、C、D、E在以点M为圆心的同一个圆上.
【题型二】圆的基本概念解析
例3 下列说法中,正确的个数是( A )
①长度相等的两条弧一定是等弧;②半圆是最长的弧;③弦
是直径;④半圆是弧.
A.1个
B.2个
C.3个
D.4个
变式 如图,_______是直径,______________是弦,以E为端
AB,CD,EF
点C,四边形CDEF是正方形,连接BD.若 = ,
= ,则BD的长为 (
) B
.
.
C.13
.
例5:如图,OA、OB是⊙O的半径,C是⊙O上一点, ∠ =
°, ∠ = °,则 ∠的度数为_____.
30°
课堂小结



义Hale Waihona Puke 圆心AB点的劣弧有___________________________,以A为端点的优
弧EC,弧EB,弧EF,弧ED,弧EA
弧有____________________________
弧AEF,弧AED,弧ADC,弧ADE .
【题型三】与圆有关的计算
例4:如图,在⊙O中,AB为直径,D为⊙O上一点, ⊥ 于
为什么要把轮子做成圆形,而不是做成三角形、四边形或者
椭圆形呢?
知识讲解
自主探究
1.请同学们阅读课本79-80页.
2.请同学们完成上面任务后思考以下问题:
①圆和圆面有什么不同?如何证明几个点在同一个圆上?
(圆是一种几何图形,指的是平面中到一个定点距离为定值的

初中数学人教九年级上册第二十四章 圆 圆周角定理PPT

初中数学人教九年级上册第二十四章 圆 圆周角定理PPT

(2)∵BA=BC,∴∠A=∠C. 由圆周角定理得∠A=∠E, ∴∠C=∠E,∴DC=DE.
27
28
知识点三:圆周角定理的推论
合作探究
先独立完成导学案互动探究1、3, 再同桌相互交流,最后小组交流;
1.如图,在⊙O中,弦AB=3cm,点C在 ⊙O上,∠ACB=30°.求⊙O直径. 2.如图,AB是⊙O的直径,BD是⊙O的弦 ,延长BD到点C,使AC=AB,BD与CD的 大小有什么关系?为什么?
B A
O A
O B
知识点三:圆周角定理的推论
学以致用
1、如图,AB是半圆的直径,点D是AC的中
点,∠ABC=50°,则∠DAB等于( ) C
A.55°B.60°C.65°D.70°
B
A
O
2.如图,⊙O的半径为1,AB是⊙O的一条
弦,且AB= 3,则弦AB所对的圆周角的度 A
数为( )D A.30º B.60º C.30º或150 º D.60º或120º
如果AB=CD,那么∠E和∠F是什么关系? O1 D
反过来呢?
C
A
F
结合⑴、⑵你能得到什么结论?
O2
B
21
知识点三:圆周角定理的推论
归纳总结
圆周角定理推理1
同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
∵ AB=CD ∴∠E=∠F
在⊙O中∵∠E=∠F ∴AB=CD
E
A
F
O D
对的弧也相等;②两条弦相等,弦所对的弧也相等;③弦
心距弦心距所对的弦相等;④两个圆周角相等,圆周角所
对的弧相等;⑤弧相等弧所对的弦相等;
C
⑥弧相等弧所对的圆周角也相等。

人教版九年级数学上册第24章第1节《弧、弦、圆心角》课件

人教版九年级数学上册第24章第1节《弧、弦、圆心角》课件

求证:∠AOB=∠BOC=∠AOC.
A
证明: ∵A⌒B=C⌒D,
·
O
∴ AB=AC.△ABC是等腰三角形. B
C
又∵ ∠ACB=60°,
∴ △ABC是等边三角形 , AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
巩固练习
24.1 圆的有关性质/
( ( ( (
( (
2. 填一填.
A
E
B
如图,AB、CD是⊙O的两条弦. (1)如果AB=CD,那么___A__B_=_C__D__,
C⌒D,弦AB与弦CD有怎样的数量关系? C B D
归纳 由圆的旋转不变性,可得: 在⊙O中,如果∠AOB= ∠COD,
·
O
A
那么, A⌒B与C⌒D ,弦AB=弦CD
探究新知
24.1 圆的有关性质/
在等圆中探究
如图,在等圆中,如果∠AOB=∠CO ′ D, 你发现的等量关系是否依然成立?为什么?
A
B

C
D
O ·′
归纳
通过平移和旋转将 两个等圆变成同一个圆, 可得:
如果∠AOB=∠COD, 那么,AB=CD,
弦A⌒B=弦C⌒D.
探究新知
24.1 圆的有关性质/
弧、弦与圆心角的关系定理
在同一个圆或等圆中,如果圆心角相等,那么 它们所对的弧相等,所对的弦相等.
CB
D O
①∠AOB=∠COD
A
②⌒AB=C⌒D ③AB=CD
B M
3. 圆心角 ∠AOB所对的弦为AB.
OA
任意给圆心角,对应出现三个量: 弧
圆心角 弦
探究新知
24.1 圆的有关性质/

2015人教版数学九上24.1《圆的有关性质》(第3课时)PPT课件

2015人教版数学九上24.1《圆的有关性质》(第3课时)PPT课件

6.例题
例1 如图,在⊙O 中, AB = AC ,∠ACB =60°. 求证:∠AOB=∠BOC=∠AOC.
证明:

AB =
AC
∴ 又 ∴
AB=AC,△ABC 等腰三角形. ∠ACB=60°, △ABC 是等边三角形, AB=BC=CA.
∠AOB=∠BOC=∠AOC.
A O

B
C
6.例题
例2 数. 如图,AB 是⊙O 的直径, = = ,
7.课堂小结
(1)本节课学习了哪些内容?
(2)圆心角、弧、弦之间有哪些关系?
8.布置作业
教科书习题 24.1
第 3,4 题.
O
性质:把圆绕圆心旋转任意一个角度后,仍与原来 的圆重合.
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N N′

O
我们把顶点在圆心的角叫做圆心角.如∠NON′是 圆 O 的一个圆心角.
2.性质
把圆心角等分成 360 份,则每一份的圆心角是 1°, 同时整个圆也被分成了 360 份. 则每一份这样的弧叫做 1°的弧.这样, 1°的弧 1°的圆心角对着 1°的弧, 1°的弧对着 1°的圆心角. n°的圆心角对着 n°的弧, n°的弧对着 n°的圆心角. 1° 性质: n° 弧的度数和它所对圆 心角的度数相等.
60° N 30° N′
O
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
n° N 60° N′
O
2.性质
把圆 O 的半径 ON 绕圆心 O 旋转任意一个角度.
N N′

O
由此可以看出,点 N′仍落在圆上.

2015人教版九年级数学上册课件24.1圆的有关性质

2015人教版九年级数学上册课件24.1圆的有关性质

等弧:在同圆或等圆中,能够完全重合的弧。
注意: ①线段OA所形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小. ③以点O为圆心的圆,记作“⊙O”,读作“圆O”. 那么以点A为圆心的圆,记作⊙O,读作圆O.
思考:
合作探究 达成目标
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推

(1)垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
因此,弧AB与弧A1B1 重合,AB与A′B′重合.
⌒ AB
⌒ 1B1 AB A ' B '. = A
达标检测 反思目标
60°或300°
90°
12 2
A
B
C
40°
B
课后作业
• 上交作业:教科书第89页第2,3题 . • 课后作业:“学生用书”的“课后作业” 部分.
第4课时 圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论. • 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理. • 3. 会用圆周角定理及推论进行证明和计算.

人教版数学九年级上册圆ppt课堂课件

人教版数学九年级上册圆ppt课堂课件
2.到定点的距离都等于定长的
D
点 都在同一个圆上.
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
议一议
为什么车轮是圆 的呢?椭圆或正 方形可以吗
把车轮做成圆形,车轮上各点到车轮中心(圆 心)的距离都等于车轮的半径,当车轮在平面上滚 动时,车轮中心与平面的距离保持不变,因此,当 车辆在平坦的路上行驶时,坐车的人会感觉到非常 平稳,这也是车轮都做成圆形的数学道理.
人教版数学九年级上册:24.1.1圆-课 件
归纳小结
今天的学习,你有那些收获?我 们来自我检测一下。
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
达标检测
A
等边三角形
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件

3.在品读文字中,继续巩固总分的构 段方法 ,初步 学习围 绕中心 句概述 自然段 主要内 容。

4.第五节讲只要细心观察就能获得更 多的知 识。从 植物妈 妈的办 法中, 学生能 感受到 大自然 的有趣 ,生发 了解更 多植物 知识的 愿望, 培养留 心观察 身边事 物的习 惯。

5.根据诗歌内容,课文中配有相应的 插图, 形象地 描绘了 三种植 物传播 种子的 方法, 同时告 诉小读 者植物 传播种 子的方 法有很 多,仔 细观察 就能得 到更多 的知识 。
A
B
C
人教版数学九年级上册:24.1.1圆-课 件
人教版数学九年级上册:24.1.1圆-课 件
13..
人教版数学九年级上册:24.1.1圆-课 件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合作探究 达成目标
探究点一 圆的轴对称性
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)这个图形是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
【针对训练】
A
探究点二 垂径定理及其推论的推

(1)垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
等弧:在同圆或等圆中,能够完全重合的弧。
注意: ①线段OA所形成的图形叫做圆面,而圆是一个封 闭的曲线图形,指的是圆周. ②在平面内画出圆,必须明确圆心和半径两个要 素,圆心确定位置,半径确定大小. ③以点O为圆心的圆,记作“⊙O”,读作“圆O”. 那么以点A为圆心的圆,记作⊙O,读作圆O.
思考:
达标检测 反思目标
60°或300°
90°
12 2
A
B
C
40°
B
课后作业
• 上交作业:教科书第89页第2,3题 . • 课后作业:“学生用书”的“课后作业” 部分.
第4课时 圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论. • 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理. • 3. 会用圆周角定理及推论进行证明和计算.
O
·
A
O
·
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与A′重合,B与B′重合.
因此,弧AB与弧A1B1 重合,AB与A′B′重合.
⌒ AB
⌒ 1B1 AB A ' B '. = A
(2)垂径定理的推论: 平分弦(不是直径)并且平分弦所对 的两条孤.
【针对训练】
×
AB⊥CD
探究点三 垂径定理的应

【针对训练】
250
总结梳理 内化目标
达标检测 反思目标
10




课后作业
• 上交作业: • 教科书第89页习题24.1第1,8题 .
• 课后作业:“学生用书”的“课后作 业”部分.
D
圆心为O,半径为r的圆可以看成是所有到定点的距 离等于定长r的点的集合。
我国古人很早对圆就有这样的认识了,战国时的《墨 经》就有“圆,一中同长也”的记载.它的意思是圆 上各点到圆心的距离都等于半径.
弦 A O
连结圆上任意两点的线段叫做弦。
如图,弦有 AB、 AC BC、 B
直径是圆中 最长的弦

24.1 弧、弦、圆心角
• 第3课时
创设情景 明确目标
●学习目标
• 1. 能识别圆心角. • 2. 探索并掌握弧、弦、圆心角的关系,了 解圆的中心对称性和旋转不变性. • 3. 能用弧,弦、圆心角的关系解决圆中的 计算题、证明题.
合作探究 达成目标
探究点一 弧、弦、圆心角之间的关系的推导
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现 哪些等量关系?为什么? A′ A′ B B B′ B′
①“直径是弦,弦是直径”这种说法正确吗 ?直径是圆中最长的弦吗? ②“半圆是弧,弧是半圆”这种说法正确吗 ? ③面积相等的两个圆是等圆吗?周长相等的 两个圆呢?
【针对训练】
D
D

0<d≤4
探究点二 运用“圆的半径相等”解决问题
C
【针对训练】
A
总结梳理 内化目标
达标检测 反思目标
A
等边三角形
第二十四章
24.1 圆 第1课时 圆

圆的世界的形象。
合作探究 达成目标 探究点一 圆的定义及相关概念
1.圆的定义 (1)从旋转的角度理解:如图1,在一个平面 内,线段OA绕它固定的一个端点O旋转一周,另一 个端点A所形成的图形叫做圆,固定的端点O叫做圆 心,线段OA叫做半径.
同样,还可以得到:
【针对训练】
C
(2)
A O A A′ B B′ D O
C B A
C D O B
探究点二
弧、弦、圆心角的关系的应用
【针对训练】
BOC 105°
DOE 75°
解;OE=OF,证明△OEA≌△OFC或△OEB≌△OFD
总结梳理 内化目标
正确理解和使用弧、弦、圆心角三者关系; 在同圆或等圆中, 圆心角相等,所对的 弧相等,所对的弦相等,三项“知一推二 ”,即一项相等,其余二项相等. 解和使用弧、弦、圆心角三者关系:在同圆 或等圆中,①圆心角相等,②所对的弧相等 ,③所对的弦相等,三项“知一推二”,即 一项相等,二项相等.
圆的确定
O●
要确定一个圆,必须确定圆的____ 和____ 圆心 半径
圆心确定圆的位置,半径确定圆的大小.
这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”.
B r r A
r
C
O r
·r
E
1.圆上各点到定点(圆心O)的距 离都等于定长(半径r) 2.到定点(圆心O)的距离都等于定 长(半径r)的点都在同一个圆上。
C
弦心距:圆心到弦的距离叫做弦心距。
弧 A
A
O
曲线BC、BAC都是⊙O的弧分别记 ⌒ ⌒ BC 、 BAC 作: ⌒、BAC ⌒ 有什么区别? BC
B

一个比半圆大一个比半圆小! 大于半圆的弧叫做 优弧 ,小于 半 圆 的 弧 叫 做 劣 弧
C
⌒ ⌒ 劣弧有: A B C B ⌒ 半圆有 : AB C ⌒ ⌒ BA C 优弧有: ACB
5
A
C
课后作业
• 上交作业:教科书第81页练习1,2题 .
• 课后作业: “学生用书”的“课后作业” 部分.
第二十四章 圆
第2课时
垂直于弦的直径
第2课时 垂直于弦的直径
创设情景 明确目标
学习目标 • 1.探索并了解圆的对称性和垂径定理. • 2. 能运用垂径定理解决几何证明、计 算问题,并会解决一些实际问题.
这样,我们就得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
同圆或等圆中, 两个圆心角、两 条弧、两条弦中 在同圆或等圆中,如果两条弧相等,那么它们所对的 有一组量相等, 相等, 所对的弦________ 圆心角_____ 相等 ; 它们所对应的其 余各组量也相 在同圆或等圆中,如果两条弦相等,那么他们所对的 等. 相等 ,所对的弧_________ 相等 . 圆心角______
相关文档
最新文档