华侨大学大一高数(上)期末14级试卷(A)

合集下载

海大大一上学期(第一学期)高数期末考试题

海大大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、 填空题(本大题有4小题,每小题4分,共16分)5.=+→xx x sin 2)31(lim e 的 六次方 .6.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则cos 方x/2x 方 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ -π/2 .8.=-+⎰21212211arcsin -dx xx x π/3 .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()lim x f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导 (1)cos()()0x yey xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:10330()xf x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

华侨大学高数下期末级试卷A

华侨大学高数下期末级试卷A
华侨大学本科考试卷
学院 姓名
2015 —2016 学年第 二 学期(A)
课程名称 高等数学 A(二) 考试日期 2016 年 7 月 08 日
班级
学号
大题 一

三四五六
小题
12345


总分
一、填空题(本题共 5 小题,每小题 4 分,满分 20 分,把答案直接填在题中横线上,答在 其它地方不给分!)
1、微分方程 y 2 y y 0 的通解 y

2、设 L 为 x2 y2 1,则 L[(x2 y2 )2 y2 sin x]ds

3、设 a (2,1, 2), b (4, 1,10), c b a ,且 a c ,则

2 , 0 x 2
4、设 f (x) 0 , x 2
沿曲线 y 2x x2 到 O(0, 0) 的弧。
解:
四、(本题满分 10 分)利用高斯公式计算曲面积分 I (x y)dxdy x( y z)dydz ,其中 是
由圆柱面 x2 y2 1及平面 z 0 , z 3 所围成的空间闭区域 的整个边界曲面的内侧.
解:
第3页
2015 级 A 卷
n
五、(本题满分
10
分)求常数项级数
n 1
2n
的和.
解:
六、(本题满分 5 分)设 an
4 0
tan n
xdx ,证明:对任意常数
0
,级数
n1
an n
收敛.
证:
.
-------------------------------------
备注:①考试时间为 2 小时;
②考试结束时,请每位考生按卷面 草稿纸由表及里依序对折上交;

经济与管理学院《高等数学(一)》第一学期期末考试试题测试卷及参考答案

经济与管理学院《高等数学(一)》第一学期期末考试试题测试卷及参考答案

x ⎩⎰《高等数学(一)》第一学期期末考试试卷本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。

答题要求:1.请将所有答案统一写在答题纸上,不按要求答题的,责任考生自负。

2.答题纸与试卷一同交回,否则酌情扣分。

试题符号说明:y (n )表示y 的n 阶导数,α~β表示α与β是等价无穷小量。

一.填空题:(满分14分,共7小题,2分/题)1.若f (t )=lim t ⎛1+1⎫2tx⎪,则f '(t )=;x →∞⎝x ⎭2.d ⎰d ⎰f (x )dx =;3.limx →0⎰sin tdt x 2= ;4.设函数y =12x +3,则y (n )(0)=;⎧⎪x =5.设f (t )-π其中f 可导,且f '(0)≠0,则dy=;⎨⎪y =f (x )f (e 3t -1)sin x dx πxf '(x )dx t =06.设有一个原函数,则⎰π=;27.+∞x 4e -x dx =;二.单项选择题:(满分16分,共8小题,2分/题)1.极限lim x →011的结果是()2+3x(A)不存在(B)1/2(C)1/5(D)01=⎛1⎫2.当x →∞时,若ax 2+bx +c o ⎪,则a,b,c 之值一定为()x +1⎝⎭x1-x 2⎨0ππcos xdx <2cos xdx =2(A)(C)a =0,b =1,c =1;(B)a ≠0,b,c 为任意常数;(D)⎧f (x )a =0,b =1,c 为任意常数;a,b,c 均为任意常数;3.设函数F (x )=⎪⎪⎩xf (0)x ≠0其中f (x )在x =0处可导,x =0f '(x )≠0,f (0)=0,则x=0是F (x )的()(A)连续点(B)第一类间断点(C)第二类间断点(D)连续点或间断点不能由此确定4.曲线y =1xex2()(A)仅有水平渐近线;(B)仅有铅直渐近线;(C)既有铅直又有水平渐近线;(D)既有铅直又有斜渐近线;5.设函数f (x )在(-∞,+∞)内连续,其导函数的图形如图所示:则f (x )有()(A)一个极小值点和两个极大值点;(B)两个极小值点和一个极大值点;(C)两个极小值点和两个极大值点;(D)三个极小值点和一个极大值点;6.根据定积分的几何意义,下列各式中正确的是()π⎰-⎰π3⎰-π⎰π222(C)⎰sin xdx =0(D)⎰sin xdx =07.设⎰f (x )dx =sin x +C ,则⎰f (arcsin x )dx =()(A)arcsin x +C (C)1(arcsin x )2+C2(B)sin +C(D)x +C1-x2π2π(A)2cos xdx(B)cos xdx⎰⎰2⎨8.当()时,广义积分e -kx dx 收敛-∞(A)k >0(B)k ≥0(C)k <0(D)k ≤0三.计算题(满分24分,共4小题,6分/题)1.设y =arctane x-ln,求x =1⎛1cos 2x ⎫2.求lim 2-2⎪3.求x →0⎝sin x x ⎭2x +5dxx +2x -34.设f (x )=1+1+x 2⎰1f (x )dx ,求⎰1f (x )dx四.(满分11分)⎧x n sin 1x ≠0n 在什么条件下函数f (x )=⎪⎪⎩x,x =0(1)在x =0处连续;(2)在x =0处可微;(3)在x =0处导函数连续;五.(满分10分)设曲线为y =e -x(x ≥0)(1)把曲线y =e -x 、x 轴、y 轴和直线x =ξ(ξ>0)所围成平面图形绕x 轴旋转一周得一旋转体,求此旋转体的体积V (ξ),并求a 满足V (a )=1lim V (ξ)2ξ→+∞(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积e 2x e 2x +1dydx1-x 2六.证明题(满分5分)设函数f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,证明,在(a,b)内存在ξ,η使得f'(ξ)=2ηf'(η) +b a22007-2008学年第一学期《高等数学(一)》(309010034)期末考试试题(A 卷)参考答案及评分标准考试对象:2007级经济学工商管理类专业及其他专业本期末试卷满分为80分,占课程总成绩的80,平时成绩占课程总成绩的20。

2014级高数一期末A解答(多学时)1.6

2014级高数一期末A解答(多学时)1.6

(1)试求 D1 绕 y 轴旋转一周而成的旋转体体积V1 ;D2 绕 x 轴旋转一周而成的旋转体的体
积V2 ;
(2)问 t 为何值时,V1 V2 取得最大值?
解:(1)V1
t 2 xydx t4
0
(或V1 t2 2t2
2t2 y dy t 4 ) 02
2014 级本科高等数学(一)期末试题解答与评分标准 A
(理工类多学时)
一、单项选择题(本大题共 6 小题,每小题 3 分,共 18 分)
题号
1
2
3
4
5
6
答案
C
B
A
B
D
C
1.已知函数
y

x2
x2 1 3x
2
,则
x
1 是该函数的(
C
).
A. 无穷间断点;
B. 跳跃间断点;
C. 可去间断点;
D. 振荡间断点.
2.当 x 0 时,函数 ln(1 x3 ) 是 tan2 x 的( B ).
A. 同阶无穷小,但不是等价无穷小; C. 低阶无穷小;
B. 高阶无穷小; D. 等价无穷小.
3.已知 F(x) 是 sin x2 的一个原函数,则 dF (x2 ) ( A ).
A. 2x sin x4dx ; B. sin x4dx ; C. 2x sin x2dx ; D. sin x2dx2 .
(3 分)
V2
2 y2dx 128 4 t5
t
55
(3 分)
(2)
d dt
(V1
V2 )

4 t 3

4 t 4

高等数学期末考试试题及答案(大一考试)

高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。

要求卷面整洁、字迹工整、无错别字。

2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。

4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。

5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。

高等数学期末考试试题与答案(大一考试)

高等数学期末考试试题与答案(大一考试)

( 2010 至 2011 学年第一学期)课程名称: 高等数学 ( 上 )(A 卷)考试 (考查 ): 考试2008年 1 月 10 日共 6页题 二三四五六七 八九十十一评阅 (统分 )一总分师号 教得线分注意事项:1、 满分 100 分。

要求卷面整洁、字迹工整、无错别字。

名2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否姓则视为废卷。

3、 考生必须在签到单上签到,若出现遗漏,后果自负。

题4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

答号试题学要得分评阅教师封不班一、单选题(请将正确的答案填在对应括号内,每题3 分,共 15 分)内级 线1.lim sin( x 21)()x 1x 1封1; (B)0; (C)2;1(A)(D)2业 密F ( x) ,则 exf (e x)dx 为 ()专2.若 f ( x) 的一个原函数为(A) F (e x) c ;(B)F (e x) c ;密F (e x)(C)F (e x) c ;(D ) cx3.下列广义积分中 () 是收敛的 .(A)sin xdx ;(B)1 1(C)xdx ;0 x dx。

系dx ;(D) e1x1 x 24. f (x) 为定义在 a, b 上的函数,则下列结论错误的是 ()(A) f (x) 可导,则 f ( x) 一定连续;(B)f (x) 可微,则 f ( x) 不一定可导;(C) f ( x) 可积(常义),则 f (x) 一定有界;(D) 函数f ( x)连续,则xf (t )dt 在 a, b 上一定可导。

a5. 设函数f ( x)1x() lim2n ,则下列结论正确的为n1x(A) 不存在间断点;(B)存在间断点 x1;(C) 存在间断点x0 ;(D)存在间断点 x1得分评阅教师二、填空题(请将正确的结果填在横线上.每题 3 分,共 18 分)1.极限 lim x 2 1 1_____.xx 02.x1t22 处的切线方程为______.曲线t3在 ty3.已知方程 y 5 y 6y xe2 x的一个特解为 1 ( x22x)e2x,则该方程的通解2为.4. 设f ( x)在x 2 处连续,且 lim f ( x) 2 ,则 f (2)_____x 2x2F (牛顿)与伸长量s 成正比,即F ks ( k 5.由实验知道,弹簧在拉伸过程中需要的力为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________ 焦耳。

高等数学(上学期)期末考试试卷及答案

高等数学(上学期)期末考试试卷及答案

考试试卷答案课程名称: 高等数学 (A ) 课程所在学院: 理学院 一、填空题(每空2分,共20分)1. 设221)1(x x x x f +=+,则)(x f = 2()2f x x =- .2. 1lim sin x x x→∞= 0 . 3. 已知函数1(1),0(),0x x x f x a x ⎧⎪-≠=⎨⎪=⎩在0=x 处连续,则=a 1/e .4. 当0x →时,232x x +-与x 是 同阶 (填同阶或等价)无穷小.5. 函数()x f x xe =的带皮亚诺余项的n 阶麦克劳林公式为342()2!3!(1)!n n x x x x x x n ο++++++-. 6. d 212x e C +2.x e dx =7. 曲线42y ax x =-拐点的横坐标为1x =,则常数a =16. 8. 35425cos 32x xdx x x -=++⎰ 0 . 9. 若22()x f x dx x e C =+⎰,则()f x =222()x e x x +. 10. 方程2dyxy dx= 的通解是 2x yCe =.二、解答题(每题5分,共60分)1.求极限 0x → 00sin cos 1cos sin lim lim 21212x x x x x x x →→-++===解:原式2. 已知21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦,求常数,a b .解: 221(1)()1()11x a x a b x bax b x x +--++--+=++ 由21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦可得 10,0a a b -=+=,故1,1a b ==- 3. 设1ln 2arctan 1xy x x +=+-,求xy d d 及22d y dx . 解:241124[ln(1)ln(1)2arctan ]1111dy x x x dx x x x x'=+--+=++=+-+- 22d y dx =()()334224444(4)16111x x x x x'⋅-⎛⎫=-= ⎪-⎝⎭-- 4. 设063sin 33=+-+y x y x ,求.0=x dxdy解:把方程两边分别对x 求导,得,063cos 33322=+-+dxdy x dx dy y x (*) 故 .23cos 22+-=y x x dx dy 由原方程可得,0=x 时,0=y ,将0,0==y x 代入上式,即得 .210==x dxdy 5. 求极限1ln 0lim(cot )xx x +→解 1ln 011limln(cot )ln(cot )ln ln 0lim(cot )lim xx x x x xx x x e e+→++→→==201(csc )cot lim 11x x xxee +→--==.6. 设220()()x F x tf x t dt =-⎰,其中()f x 在0x =的某邻域内可导,且(0)0,(0)1f f '==,求4()limx F x x →. 解:2220222044300011()(()2)()22lim lim lim 4xu x t x x x x f u du f x x tf x t dt x x x=-→→→---⋅-===⎰⎰原式 2201()11lim (0)444x f x f x →'===7. 求不定积分dx ⎰ 解:332221==2x x C +原式8. 求不定积分解:655332666==6ln(1)1)()1x t dx t t dt dt t C C t t t t ====++=+++⎰⎰原式 9. 求定积分1arctan x xdx ⎰解:22211110000arctan arctan arctan arctan 222x x x x xdx xd x d x ==-⎰⎰⎰ 2110201111(arctan )24218242x dx x x x πππ=-=--=-+⎰ 10. 求反常积分2032dx x x +∞++⎰解:20001132(1)(2)12dx dx dx x x x x x x +∞+∞+∞==-++++++⎰⎰⎰ 01ln(1)ln(2)lnln 22x x x x +∞+∞+=+-+==+11. 求曲线()y f x =,使其切线在纵轴上的截距等于切点的横坐标.解:切线方程为()()Y y f x X x '-=-;当0X =,()()Y xf x f x '=-+由题意可得:()()x xf x f x '=-+;即11y y x'-=- 通解是 (ln )(ln )y x x C or y x x C =-+=+.12. 求初值问题()(0)1,(0)1x f e f x f f ''⎧=-⎨'==⎩.解:由题意,特征方程为210r +=,特征根为12,r i r i ==-,故对应齐次方程通解为12cos sin y C x C x =+;1λ=不是特征方程的根,故可设原方程有特解()x f x Ae *=,解得()12x f x e *=,故原方程的通解为()121cos sin 2x f x C x C x e =++;由(0)1,(0)1f f '==得本题解为()111cos sin 222x f x x x e =++.三、设)(x f 在区间[,]a b 上连续,且()0f x >,()(),[,]()x xabdtF x f t dt x a b f t =+∈⎰⎰. 证明:(1)()2F x '≥; (2)方程()0F x =在区间(,)a b 内有且仅有一个根.(5分). 证明:(1)1()()2()F x f x f x '=+≥;(2)()()()()a ab aba dtdt F a f t dt f t f t =+=-⎰⎰⎰;()()()()b b b a b a dt F b f t dt f t dt f t =+=⎰⎰⎰ 又()0f x >,所以()()0F a F b <,从而方程()0F x =在区间(,)a b 内有一个根. 又()20F x '≥>,是单调递增的,从而方程()0F x =在区间(,)a b 内仅有一个根. 四、设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明在(0,1)内存在一点ξ,使 ()()f f ξξξ'=-.(5分) 证明:令()()F x xf x =,则()F x 在[0,1]上连续,在(0,1)内可导,且因(1)0f =,则(0)0(1)F F == 即()F x 在[0,1]上满足罗尔定理的条件,则至少存在(0,1)ξ∈使()0F ξ'= 又()()()F x f x xf x ''=+,即()()0f f ξξξ'+=,即 ()()f f ξξξ'=-.五、设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定,,a b c 的值,使得该抛物线与直线1,0x y ==所围图形的面积为4/9,且使该图形绕x 轴旋转而成的旋转体的体积最小. (10分)解:由于设抛物线2y ax bx c =++通过点(0,0),故0c =.且11222004;()9ax bxdx V ax bx dx π+==+⎰⎰;即有2241;()329523a b a b V ab π+==++;于是221444[2()()]5293393a a a V a π=+-+-且令1()053a V π'=+=.得唯一驻点53a =-,进而2b =. 所以,5,2,03a b c =-==.。

大学第一学期高等数学期末考试A(含答案)打印

大学第一学期高等数学期末考试A(含答案)打印

第一学期期末考试机电一体化专业《 高等数学 》 试卷( A )1.函数()314ln 2-+-=x x y 的定义域是(),2[]2,(∞+--∞Y )。

2.若函数52)1(2-+=+x x x f ,则=)1(f ( -5 )。

3.=→xx x 20lim ( 0 ) 4.函数xxx f -=)(的间断点是x =( 0 )。

5. 设735223-+-=x x x y 则y '=( 31062+-x x )。

1、设()00=f , 且()00='f 存在, 则()=→xx f x 0lim ( C );A. ()x f ' B. ()0f ' C. ()0f D. ()021f 2、17下列变量中是无穷小量的有 ( C ); A. )1ln(1lim0+→x x B. )1)((2()1)(1(lim 1-++-→x x x x x C. x x x 1cos 1lim ∞→ D. xx x 1sin cos lim 0→3、下列各组函数为同一函数的原函数的是 ( C );A. 31)(x x F =与324)(x x F -= B. 31)(x x F =与32214)(x x F -=C. C x x F +=21sin 21)(与x C x F 2cos 41)(2-=D.x x F ln )(1=与22ln )(x x F =4、在函数()x f 连续的条件下, 下列各式中正确的是 ( C );A. ()()x f dx x f dx d b a =⎰ B. ()()x f dx x f dx d ab =⎰C. ()()x f dt t f dx d x a =⎰ D. ()()x f dt t f dxd ax =⎰ 5、下列说法正确的是 ( D ); A. 导数不存在的点一定不是极值点 B. 驻点肯定是极值点 C. 导数不存在的点处切线一定不存在D. ()00='x f 是可微函数()x f 在0x 点处取得极值的必要条件1、函数的三要素为: 定义域, 对应法则与值域. (√ )2、函数)(x f 在区间[]b a ,上连续是)(x f 在区间[]b a ,上可积的充分条件。

大一(第一学期)高数期末考试题及答案(完整版).doc

大一(第一学期)高数期末考试题及答案(完整版).doc

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

13~14(一)高数(工)1期末考试(A)试卷解答

13~14(一)高数(工)1期末考试(A)试卷解答

上海应用技术学院2013—2014学年第一学期《高等数学(工)1》期(末)试卷A一、单项选择题(本大题共10小题,每小题2分,共20分) 1.B ; 2.A ; 3.B ; 4.C ; 5.C ; 6.C ; 7.D ; 8.B ; 9.D ; 10.A .二.填空题(本大题共6小题,每小题3分,共18分),请在每小题的空格中填上正确答案,错填、不填均无分. 11.a be; 12.2; 13.1111(1)e e y x y x e e e++-=-=-或;14.4e-; 15.43; 16.122(1)y x -=+.三.计算题(本大题共8小题,每小题6分,共48分). 17.求极限111lim 1ln x x x →⎛⎫-⎪-⎝⎭. 解:1111ln 1lim lim 1ln (1)ln x x x x x x x x →→-+⎛⎫-=⎪--⎝⎭................(1分) 111lim 1ln x xx x x →-=-+................................(2分) 2121lim 11x xx x →-=+................................(2分) 12=- ................................(1分)18.设arctan ln(y x x =+,求221x d ydx=.解:2211111y x x ⎛⎫'=+=++................(2分) 332222222221122121(3)(3)x xx y x x x x x --''=-=-++++()()................(3分)158x y =''=-................................................(1分)19.设函数)2arcsin(2)1(x x y +=,求dxdy. 解:2ln arcsin(2)ln(1)y x x =+.......................................(2分)2212)arcsin(2)1xy x x y x '=+++..............................(3分)2arcsin(2)222(1))arcsin(2)1x x y x x x x ⎛⎫'=+++⎪+⎭........(1分) 另解:2arcsin(2)ln(1)x x y e+=.......................................(2分)()2arcsin(2)ln(1)2arcsin(2)ln(1)x xy e x x +''=+............................(1分)2arcsin(2)222=(1))arcsin(2)1x x x x x x ⎛⎫+++⎪+⎭..............(3分)20.判定曲线2()(714)xf x e x x =-+的凹凸性与拐点.解:22()(714)(27)(57)x x x f x e x x e x e x x '=-++-=-+...................(1分)22()(57)(25)(32)(2)(1)x x x x f x e x x e x e x x e x x ''=-++-=-+=--.......(1分)令()0f x ''=,得到1,2x x ==..............................................(1分).....................................................................(2分)在(,1)-∞内,曲线2()(714)x f x e x x =-+是凹的;在(1,2)内,曲线2()(714)x f x e x x =-+是凸的;在(2,)+∞内,曲线2()(714)x f x e x x =-+是凹的;拐点2(1,8),(2,4)e e ..............................................(1分)21.计算不定积分()cos ln 2x x dx x+⎰.解:()()2cos ln 2cos ln ln (1)x x dx x d x x x+=++⎰⎰........(4分) (注:加号前后各2分)3222sin(ln )(1)3x x C =+++..............................................(2分)(注:前两个一个一分,但是两个都写对了C 漏写还是要扣一分)22.计算定积分2. 解: sec x t =令,sec tan dx t tdt =,23x t π=→=,4x t π=→=........(2分)22334344tan tan sec sec t t tdt dt t t ππππ==⎰⎰....................(1分) 234sin cos t tdt ππ=⎰.....................................(1分) 234sin sin td t ππ=⎰.....................................(1分) ()334sin 324t ππ==..........................(1分)23.计算定积分1320arctan()x x dx ⎰.解:1320arctan()x x dx ⎰1241arctan()4x dx =⎰..................................(1分)()142142001arctan()arctan()4x x x d x =-⎰.................(1分) 144012441x x dx x π⎛⎫=- ⎪+⎝⎭⎰...............................(1分) 14012441x x dx x π⎛⎫⎛⎫=-- ⎪ ⎪+⎝⎭⎝⎭⎰...........................(1分) 112400112441xdx dx x π⎛⎫=-+ ⎪+⎝⎭⎰⎰.........................(1分) 1122001arctan()44x x π⎛⎫=-+ ⎪⎝⎭1214448πππ-⎛⎫=-+=⎪⎝⎭ (注:或者11arctan124-).......(1分)24.求微分方程2223,xdy xy x e dx-=满足初始条件01==x y 的特解.解:(解法一)dyxy dx=.............................................................(1分) dy xdx y = dy xdx y⇒=⎰⎰ 2l n l n 2x y C ⇒=+ 22xy C e ⇒=..........(1分) 令原方程的通解为22()x y C x e =...........................................(1分)则2222()()x x y C x e C x e x ''=+,代入原方程得222222222()()()3x x x x C x e C x e x xC x e x e '+-=2()3C x x '⇒=.........................................................(1分) 23()3C x x dx x C ==+⎰通解为232()x y x C e =+...................................................(1分)由01==x y ,则1C =-232(1)x y x e =-....................................(1分) (解法二)令()P x x =-,222()3x Q x x e =............................(1分)通解()()(())P x dx P x dx y e Q x e dx C -⎰⎰=+⎰...................................(1分) 222(3)x xdxxdxe x e e dx C -⎰⎰=+⎰.....................................(1分)2222222(3)x x x e x e edx C -=+⎰...........................................(1分)222(3)x e x dx C =+⎰232()x e x C =+....................................(1分)由于01==x y ,则1C =-,所以特解为232(1)x y e x =-.................(1分)四.应用与证明题(本大题共2小题,每小题7分,共14分). 25.求由曲线xy 1=,直线x y +=1,1=x 及2=x 所围图形的面积,并求该图形绕x 轴旋转一周所得的旋转体的体积. 解:(1)22111(1)S x dx dx x=+-⎰⎰..........................................(2分) 22211(1)5ln ln 222x x +=-=-....................................(1分) (2) 2222111(1)x V x dx dx x ππ=+-⎰⎰..................................(2分) 22311(1)13x x ππ+=+...........................................(1分) 278135(1)326πππ-=+-=.....................................(1分) (注:如果公式全写错但图形画对了但可以给1分)26.设)(x f 在[0,1]上可导,且11(1)022f f ⎛⎫=≠ ⎪⎝⎭.又设 212()()x x F x f t dt +=⎰. (1)求()F x ';(2)证明:至少存在一点(0,1)ξ∈,使得()0F ξ'=;(3)证明:至少存在一点(0,1)η∈,使得()()0F F ηηη'''+=.证:(1)211()()2()22x F x f x x f +'=-;..................................(2分) (2)13(1)2(1)(1)(1)22F f f f '=-=且11(0)()22F f '=-,....................(1分)则()23(1)(0)(1)02F F f ''=-<,由于()F x '在[0,1]上连续,由零点存在定理,存在一点(0,1)ξ∈,使得()0F ξ'=。

2020年福建省泉州市华侨大学附属中学高一数学理上学期期末试题含解析

2020年福建省泉州市华侨大学附属中学高一数学理上学期期末试题含解析

2020年福建省泉州市华侨大学附属中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若,且(1)求的值;(2)求的值。

参考答案:解:(1);(2)∵,∴,又,∴∴,即.略2. 已知点,则线段的垂直平分线的方程为:A. B. C. D.参考答案:B略3. 为了得到函数,x∈R的图象,只需把余弦曲线y=cosx上的所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度参考答案:D【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:把余弦曲线y=cosx上的所有的点向左平移个单位长度,可得函数y=cos(x+)的图象,故选:D.4. 在△ABC中,a,b,c分别是内角A,B,C的对边,若bsinA=3csinB,a=3,,则b=()A.14 B.6 C.D.参考答案:D【考点】HP:正弦定理;HR:余弦定理.【分析】bsinA=3csinB,利用正弦定理可得ab=3cb,化简解得c,再利用余弦定理即可得出.【解答】解:在△ABC中,∵bsinA=3csinB,∴ab=3cb,可得a=3c,∵a=3,∴c=1.∴==,解得b=.故选:D.5. 若为圆的弦的中点,则直线的方程是A. B.C. D.参考答案:D6. 已知函数f(x)=sin (x∈R,ω>0)的最小正周期为π,将y=f(x)的图象向左平移|φ|个单位长度,所得图象关于y轴对称,则φ的一个值是()参考答案:D略7.参考答案:B略8. 观察新生婴儿的体重表,其频率分布直方图如图2-1所示,则新生婴儿体重在[2 700,3 000)的频率为( )A.0.001B.0.1C.0.2D.0.3参考答案:D略9. 下列条件中,能判断两个平面平行的是()A.一个平面内有无数条直线平行于另一个平面B.一个平面内有两条直线平行于另一个平面C.一个平面内有两条相交直线平行于另一个平面D.两个平面同时垂直于另一个平面参考答案:C【考点】平面与平面平行的判定.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】在A中,当这无数条平行线无交点时,这两个平面有可能相交;在B中,当这两条直线是平行线时,这两个平面有可能相交;在C中,由面面平行的性质定理得这两个平面平行;在D中,这两个平面相交或平行.【解答】解:在A中:一个平面内有无数条直线平行于另一个平面,当这无数条平行线无交点时,这两个平面有可能相交,故A错误;在B中:一个平面内有两条直线平行于另一个平面,当这两条直线是平行线时,这两个平面有可能相交,故B错误;在C中:一个平面内有两条相交直线平行于另一个平面,由面面平行的性质定理得这两个平面平行,故C正确;在D中,两个平面同时垂直于另一个平面,这两个平面相交或平行,故D错误.故选:C.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.10. 若非零实数,,满足,则一定成立的不等式是().A.B.C.D.参考答案:C.,不一定为正,错;.同,不一定为正,错;.正确;.反例:,,,错误,选.二、 填空题:本大题共7小题,每小题4分,共28分11. 关于x 的函数y = sin x ( sin x + k cos x )(k ∈R )的值域是____ 。

2022年福建省厦门市华侨大学附属中学高三数学理上学期期末试题含解析

2022年福建省厦门市华侨大学附属中学高三数学理上学期期末试题含解析

2022年福建省厦门市华侨大学附属中学高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集,集合A={-1,1,2},B={-1,1},则A.{1}B.{2}C.{1,2}D.{-1,1}参考答案:B略2. 将函数的图象向右平移个单位长度得到函数的图象,则函数图象的一条对称轴是A. B. C. D.参考答案:A略3. (5分)圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离参考答案:B考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.解答:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.点评:本题考查圆与圆的位置关系及其判定的方法,关键是求圆心距和两圆的半径.4. 在空间中,下列命题正确的是()A. 经过三个点有且只有一个平面B. 经过一个点和一条直线有且只有一个平面C. 经过一个点且与一条直线平行的平面有且只有一个D. 经过一个点且与一条直线垂直的平面有且只有一个参考答案:DA选项,经过不在同一条直线上的三个点确定一个平面,故A错;B选项,当这个点在这条直线上时,可以确定无数个平面,故B错;C选项,经过一个点,且与另外一条直线平行的平面有无数个,故C错;D选项,与一条直线垂直的平面有无数个,但是经过另外一个点后,这个平面就被确定下来了,故D选项正确。

5. 已知且,,则()A.是正数B.是负数C.是零D.不能确定参考答案:A6. 气象站预报甲地明天晴天的概率为0.3, 乙地明天晴天的概率为0.4, 则甲地或乙地明天晴天的概率为()A. 0.7 B.0.12 C. 0.68 D. 0.58参考答案:D7. 在△ABC中,E,F分别在边AB,AC上,D为BC的中点,满足,,则cos A = ( )A.0 B.C.D.参考答案:D略8. 已知等差数列{a n}中,a1=11,前7项的和S7=35,则前n项和S n中()A.前6项和最小B.前7项和最小C.前6项和最大D.前7项和最大参考答案:C【考点】等差数列的性质.【专题】计算题.【分析】先根据等差数列的求和公式和S7的值,求得公差d,进而求得数列的通项公式,要使前n项和最大,只需a n≥0,进而求得n的范围.【解答】解:由等差数列求和公式S7=7×11+,d=35可得d=﹣2,则a n=11+(n﹣1)×(﹣2)=13﹣2n,要使前n项和最大,只需a n≥0即可,故13﹣2n≥0,解之得n≤6.5,故前6项的和最大.故选C.【点评】本题主要考查了等差数列的性质和数列与不等式的综合运用.考查了学生对等差数列基础知识如通项公式,求和公式等的理解和运用.9. 等差数列中,已知前15项的和,则等于(). A. B. 6 C. D.12参考答案:B10. 设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈时,f(x)=()x﹣1,若关于x的方程f(x)﹣log a(x+2)=0(a>0且a≠1)在区间(﹣2,6)内恰有4个不等的实数根,则实数a的取值范围是( )A.(,1)B.(1,4)C.(1,8)D.(8,+∞)参考答案:D【考点】根的存在性及根的个数判断;抽象函数及其应用.【专题】转化思想;数形结合法;函数的性质及应用.【分析】由题意,讨论0<a<1时,当0<a<1时,﹣2<x<0时,y=f(x)和y=log a(x+2)只有一个交点;故a>1.关于x的方程f(x)﹣log a(x+2)=0(a>1),在区间(﹣2,6)内恰有四个不同实根可化为函数f(x)与函数y=log a(x+2)有四个不同的交点,作出函数f(x)与函数y=log a (x+2)的图象,由图象解出答案.【解答】解:由f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),即为f(x+4)=f(﹣x)=f(x),则f(x)为周期为4的函数.当x∈时,f(x)=()x﹣1,可得x∈时,f(x)=f(﹣x)=()﹣x﹣1,又∵f(x)=log a(x+2)(a>0且a≠1),当0<a<1时,﹣2<x<0时,y=f(x)和y=log a(x+2)只有一个交点;在0<x<6时,f(x)>0,log a(x+2)<0,则没有交点,故a>1,作出它们在区间(﹣2,6)内图象如右图:当x=6时,f(6)=f(2)=1,log a(6+2)=1,解得a=8,由于﹣2<x<6,即有a>8,y=f(x)和y=log a(x+2)有四个交点.故选:D .【点评】本题考查了方程的根与函数的零点之间的关系,同时考查了数形结合的数学思想应用,属于中档题.二、 填空题:本大题共7小题,每小题4分,共28分11. 设变量x ,y 满足约束条件,则z=x ﹣3y的最小值.参考答案:﹣8【考点】简单线性规划.【分析】作出变量x ,y满足约束条件所对应的平面区域,采用直线平移的方法,将直线l :平移使它经过区域上顶点A (﹣2,2)时,目标函数达到最小值﹣8【解答】解:变量x ,y 满足约束条件所对应的平面区域为△ABC 如图,化目标函数z=x ﹣3y 为将直线l :平移,因为直线l 在y 轴上的截距为﹣,所以直线l 越向上移,直线l 在y 轴上的截距越大,目标函数z 的值就越小,故当直线经过区域上顶点A 时, 将x=﹣2代入,直线x+2y=2,得y=2,得A (﹣2,2)将A (﹣2,2)代入目标函数,得达到最小值z min =﹣2﹣3×2=﹣8故答案为:﹣812. 函数(>1)的值域是 .参考答案:答案:13. 若函数f (x )=为奇函数,则a =________. 参考答案:14. 已知圆:,则圆心的坐标为 ;若直线与圆相切,且切点在第四象限,则.参考答案:圆的标准方程为,所以圆心坐标为,半径为1.要使直线与圆相切,且切点在第四象限,所以有。

华侨大学2021年高等数学竞赛试题(A卷)

华侨大学2021年高等数学竞赛试题(A卷)

华侨大学2021年高等数学竞赛试题(A卷)
※以下各题在答题纸上解答,答题时必须写出详细的解答过程,并在
每张答题纸写上:姓名、准考证号.
......
二、(本题满分10分)设函数fx()在区间(0,+∞)内有定义、具有连续的导数,f()π=1,并且已知曲线
y
积分sinx?+fx()dxfx()dy在右半平面x>0内与路径无关,求fx()的表达式.
[]

L
x
2222
三、(本题满分10分)求旋转抛物面Σ:zx=+y和圆锥面Σ=:2z?xy+所围成立体?的体积V
2
1
和表面积A.
3(1+x)
n
四、(本题满分10分)设,(),证明:数列的极限存在,并求
x>0x=n=1,2,3,?{}x
1n+1n
3+x
n
这极限值.
ff
22
五、(本题满分10分)设函数在区域内具有连续的偏导数,且(为
f(,xy)D()+≤()MM
xy
正常数),Ax(,y)与Bx(,y)是D内两点,直线段AB包含在D内,L是直线段AB的长度,证明:
1122
|(fx,y)?≤fx(,y)|ML.
1122
六、(本题满分8分)设函数fx()在闭区间上连续,且当01≤≤x 时,满足:
[0,1]
02
11
1()Mm+
证明:fx()dx?≤dx.
∫∫
00
f()x4Mm
华侨大学2021年高等数学竞赛试题(A卷)第2页共2页。

华侨大学本科考试卷

华侨大学本科考试卷
则 ,所以向量组 线性无关...................................【2分】
六、解:(1) .....................【4分】
所以 是最大无关组,.............................................................【2分】
6、设A为3阶可逆矩阵,若 .
7、设方阵 满足 ,则 =____________________.
8、已知 ,则
9、 当 ____________时,方程组 有唯一解
10、向量组 , , 的线性关系是____________________________________.(填“线性相关”或“线性无关”)
三、解:设 ,则 .............【6分】
................................【4分】四、解: ..来自.............【5分】
所以 ;..............................................................................【2分】
(1)求向量组 的一个最大无关组,并将其余向量用最大无关组线性表示.
(2)记 , ,求解线性方程组 .
(A)答案及评分标准
一、填空题:(本题共10小题,每小题4分,满分40分)
1、 和 2、 3、 4、 .
5、 6、 7、 8、0
9、 10、线性相关
二、解:(1) ...................【4分】
二、【10分】设 , 的 元的余子式记作 ,代数余子式记作 ,求: (1) ,(2) .
三、【10分】设矩阵 满足方程: ,求 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、定积分
.

0
xe 2 x dx

t d2y x 3e 4、设函数 y f ( x) 由参数方程 ,则 2 t dx y 2 e t 1
. .
5、设 f (u ) 可导, y f (e x ) f (cos 2 x) ,则 dy
※以下各题在答题纸上作答, 答题时必须写出详细的解答过程, 并在每张答题纸写上: 班级、姓名、学号. (本题共 6 小题,每小题 7 分,满分 42 分) 二、解下列各题:
1、求极限 lim x 1 x
x

2

1 ln x
.
2、求极限 lim
x 0
ln(1 x sin x) . sin x3
3、求不定积分
1
3
dx . 1 x
1
2014 级 A 卷
4、求微分方程 ( x 2 y 2 ) dx 2 xydy 0 在初始条件 y |x 1 0 下的特解. 5、设函数 y f ( x) 为方程 y 1 xe y 所确定的隐函数,求曲线 y f ( x) 在点 (0,1) 处的切 线方程与法线方程.
2 2 sin x cos x cos x sin x, 1 x 1 2 6、设函数 f ( x) ,计算 f ( x)dx . 1 x , 1 x 2 4 x2
三、 (本题满分 8 分) 设函数 y x 3 x 2 x 1 ,求其单调区间以及曲线的凹、凸区间. 四、 (本题满分 8 分) 设 D 是由曲线 y x3 及直线 x 2 , y 0 所围成的平面图形, (1) 求平面图形 D 的面积 S ; (2) 求平面图形 D 分别绕 x 轴与 y 轴旋转一周而成的旋转体体积 Vx 和 Vy . 五、 (本题满分 8 分) 设函数 f ( x ) 在闭区间 a, b 上具有连续的二阶导数, f ( a ) f (b) 0 ,且 求积分
华侨大学本科考试卷
2014 — 2014 学年第 一 学期(A) 学院 姓名 课程名称 高等数学 A(一) 考试日期 2015 年 1 月 21 班 级 学 号
大题 小题
一 1 2 3
二 4 5 6





总分直接填在题中横线上,答 一、填空题:

b a
f ( x)dx 3 ,

b a
( x a )( x b) f ( x)dx 的值.
六、 (本题满分 8 分) 证明:当 x 0 时, ln(1 x) 七、 (本题满分 6 分) 设 b a 0 ,证明至少存在一点 a, b ,使得 aeb be a (1 )e ( a b) .
在其它地方不给分! )
1、函数 f ( x) x 4 8 x 2 2 在闭区间 [ 1, 3 ] 上 x 处取得最小值.
1 x t (e 1)dt , x 0 x2 0 2、已知 f ( x) 当 x 0 时的极限存在,则常数 a ln(1 x) ax , x 0 x
arctan x . 1 x
------------------------------------备注:①考试时间为 2 小时; ②考试结束时,请每位考生按卷面 答题纸 草稿纸由表及里依序对折上交; 不得带走试卷。
2
2014 级 A 卷
相关文档
最新文档