苏教版七年级数学(上)期中综合复习
苏科版数学七年级上册期中复习要点(附答案)
第一学期七年级期中考试复习要点考试范围:苏科版七年级数学教材上册第一章《数学与我们同行》、第二章《有理数》、第三章《代数式》、第四章《一元一次方程》中从问题到方程,解一元一次方程;考试时间:120分钟;考试分值:130分;考试题型:选择题、填空题、解答题。
第一章《数学与我们同行》第二章《有理数》考点:生活与数学;活动与思考。
考点:正数与负数;有理数与无理数;数轴;绝对值与相反数;有理数的运算及运算律;科学记数法。
练习:1.-4的相反数是( )A .4B .-4C .-14D .142.在-3π,3.1415,0,-0.333…,-227,-••15.0 ,2.010010001…中,有理数有( ) A .2个 B .3个 C .4个 D .5个3. 若m =3,n =5且m -n >0,则m +n 的值是 ( )A .-2B .-8或 -2 C. -8或 8 D .8或-24.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____ ____.5.近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“十一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为_____人.6.比较大小: 32- 43-(填“>”、“<”、或“=”符号). 7.绝对值不大于3.14的所有整数的积等于 . 8. 已知2(2)x -+1y +=0,则2013()x y += 9.计算:(1) )212(-+(+65)+(-0.5)+(+161); (2)94(81)(16)49-÷⨯÷-(3)|)3(2|)3(2)2(1232008--+-⨯---- (4)2)6()61121197(26-⨯+--10.把下列各数按要求填入相应的大括号里:4.5,— 720, 0,—(—3),2.10010001…,42,—10,-3π,3.1415,-0.333…, 整数集合:{ … },分数集合:{ … },非正整数集合:{ … },无理数集合:{ … }.11. 读图并化简:(本题5分) 222a b c b a c +---+- .12. A 、B 两仓库分别有水泥20吨和30吨,C 、D 两工地分别需要水泥15吨和35吨.已知从A 、B 仓库到C 、D 工地的运价如下表:(1)若从A 仓库运到C 工地的水泥为x 吨,则用含x 的代数式表示从A 仓库运到D 工地的水泥为 吨,从B 仓库将水泥运到D 工地的运输费用为 元;(2)求把全部水泥从A 、B 两仓库运到C 、D 两工地的总运输费(用含x 的代数式表示并化简);(3)如果从A 仓库运到C 工地的水泥为10吨时,那么总运输费为多少元?13.如图,半径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径. (注:结果保留π )(1)把圆片沿数轴向右滚动半周,点B 到达数轴上点C 的位置,点C 表示的数是,这个数是 数(填“无理”或“有理”)(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,-1,+3,-4,-3①第几次滚动后,A 点距离原点最远②当圆片结束运动时,此时点A 所表示的数是多少?14..阅读理解:如图,A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为-1,点B 表示的数为2.表示数1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A , B 】的好点;又如,表示数0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点.知识运用:如图2,M 、N 为数轴上两点,点M 所表示的数为-2,点N 所表示的数为4.(1)数 所表示的点是【M ,N 】的好点;(2)现有一只电子蚂蚁P 从点N 出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t .当t 为何值时, P 、M 、N 中恰有一个点为其余两点的好点?。
苏科版七年级上册数学期中试卷带答案
苏科版七年级上册数学期中试题一、单选题1.下列各组数中,互为相反数的是()A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|2.下列说法不正确的是()A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数3.下列运用等式性质进行的变形,正确的是()A .如果a =b ,那么a +c =b ﹣cB .如果a 2=3a ,那么a =3C .如果a =b ,那么a b c c =D .如果a bc c=,那么a =b 4.有理数a 、b 在数轴上的对应的位置如图所示,则正确的是()A .a ﹣b >0B .a ﹣b <0C .a ﹣b=0D .a+b <05.代数式y 2-2y+7的值是-3,则3y 2-6y-5的值是()A .35B .-25C .-35D .76.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A .3B .12-C .23D .-3二、填空题7.-2.5的倒数是______,(2)--的相反数是_______;53-的倒数的绝对值是_____.8.单项式23x y-的系数是______,次数______,多项式2xy 2-3x 2y 3-8是____次____项式.9.点A 在数轴上距离原点3个单位长度,将A 向左移动2个单位长度,再向右移动4个单位长度,此时A 点所表示的数是_____________.10.绝对值大于2而小于6的所有整数的和是__________.11.﹣38040000000用科学记数表示为_____.12.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.三、解答题13.计算:(1)—7.5×(—42)—(—3)3÷(—1)2017;(2)()271112669126⎛⎫--+⨯- ⎪⎝⎭14.化简下列各式:(1)()()2232157a a a a --++-+(2)()()()()4567a b a b a b a b +----++15.解方程:4 1.50.59x x x -=--16.如果关于m 的方程21m b m +=-的解是4-,求b 的值?17.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.18.已知2(x 3)+与y 2-互为相反数,z 是绝对值最小的有理数,求y (x y)xyz ++的值.19.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,则()a ba b cd m m m++++-的值?20.化简计算:求当输入x =0.5,y =7时输出结果.21.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?22.如果两个关于x 、y 的单项式2mx a y 3与﹣4nx 3a ﹣6y 3是同类项(其中xy ≠0).(1)求a 的值;(2)如果他们的和为零,求(m ﹣2n ﹣1)2016的值.23.观察下列等式:111111111111,,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭请解答下列问题:(1)按以上规律列出第5个算式:(2)由此计算:11111 (1335572013201520152017)+++++⨯⨯⨯⨯⨯()()(3)用含n 的代式表示第n 个等式:a n =(n 为正整数);参考答案1.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.2.A【解析】A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.3.D【解析】【分析】根据等式的基本性质逐一判断即可.【详解】A.当a=b时,a+c=b+c,故A错误;B.当a=0时,此时a≠3,故B错误;C.当c=0时,此时ac与bc无意义,故C错误;D.当a bc c 时,等式两边同时乘c,那么a=b,故D正确.故选:D.【点睛】此题考查的是等式的基本性质,利用等式的基本性质将等式变形是解决此题的关键. 4.A【解析】【分析】根据题意和图形可知a,b取值范围,a>1,﹣1<b<0,由此即可得到结论.【详解】∵﹣1<b<0.又∵a>1,∴a﹣b>0,a+b>0.故选A.【点睛】注意原点左边的为负数,右边的为正数.且绝对值越大到原点的距离就越大.5.C【解析】【分析】先求出y2﹣2y=﹣10,变形后代入,即可求出答案.【详解】根据题意得:y2﹣2y+7=﹣3,y2﹣2y=﹣10,所以3y2﹣6y﹣5=3(y2﹣2y)﹣5=3×(﹣10)﹣5=﹣35.故选C.【点睛】本题考查了求代数式的值,能够整体代入是解答此题的关键.6.C【解析】【分析】直接利用已知得出第一次与第二次输出的结果即可.【详解】由题意可得:1﹣3=﹣2,则输出﹣12,故第二次输入﹣12,得到:1﹣(﹣12)=32,输出23.故选C.【点睛】本题主要考查了倒数以及有理数的减法运算,正确理解题意是解题的关键.7.25--235【解析】【分析】根据倒数的意义,相反数的意义,绝对值的性质,可得答案.【详解】﹣2.5的倒数是﹣25,﹣(﹣2)的相反数是﹣2;﹣53的倒数的绝对值是35.故答案为﹣25,﹣2,35.【点睛】本题考查了倒数、相反数、绝对值,理解倒数的意义、相反数的意义是解题的关键.8.13-,3,五,三.【解析】【分析】根据单项式系数、次数的定义,多项式次数、项数的定义,进行解答即可.【详解】单项式﹣23x y的系数是﹣13,次数是3次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为﹣13、3、五、三.【点睛】本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题的关键.9.-1或5.【解析】【分析】由于点A与原点0的距离为3,那么A应有两个点,分别位于原点两侧,且到原点的距离为3,这两个点对应的数分别是﹣3和3.A向左移动2个单位长度,再向右移动4个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】∵点A在数轴上距原点3个单位长度,∴点A表示的数为3或﹣3;当点A表示的数是﹣3时,移动后的点A所表示的数为:﹣3﹣2+4=﹣1;当点A表示的数是3时,移动后的点A所表示的数为:3﹣2+4=5;综上所述:移动后点A所表示的数是:﹣1或5.故答案为:﹣1或5.【点睛】本题考查了数轴.根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.10.0.【解析】【分析】根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.【详解】根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为0.【点睛】本题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.11.-3.804×1010【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】-38040000000用科学记数表示为-3.804×1010.故答案为-3.804×1010.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.2n+1.【解析】试题分析:搭第一个图形需要3根火柴棒,结合图形,发现:后边每多一个三角形,则多用2根火柴.解:结合图形,发现:搭第n个三角形,需要3+2(n﹣1)=2n+1(根).故答案为2n+1.考点:规律型:图形的变化类.13.(1)93(2)25【解析】【分析】(1)根据有理数混合运算法则计算可得出结果;(2)利用乘法分配律给括号中每一项都乘以36,然后根据有理数加减法混合运算法则计算即可.【详解】(1)原式=7.5×16-27÷1=120-27=93;(2)原式=7111 26369126⎛⎫--+⨯⎪⎝⎭=26-(28-33+6)=26-1=25.【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解答本题的关键.14.(1)-2a2-3a+6(2)22b【解析】【分析】(1)首先利用去括号法则化简,进而合并同类项得出答案;(2)首先将(a+b),(a﹣b)看作整体合并同类项,进而利用去括号法则求出即可.【详解】(1)原式=﹣3a2+2a﹣1+a2﹣5a+7=﹣2a2﹣3a+6;(2)原式=11(a+b)﹣11(a﹣b)=11a+11b-11a+11b=22b.【点睛】本题主要考查了去括号法则以及合并同类项,正确掌握去括号法则是解题的关键.15.x=-3【解析】【分析】先移项得到4x﹣1.5x+0.5x=﹣9,然后合并同类项,再把x的系数化为1即可.【详解】移项得:4x﹣1.5x+0.5x=﹣9合并得:3x=﹣9系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.16.b=3【解析】【分析】将m =﹣4代入可得关于b 的方程,解出即可.【详解】把m =﹣4代入方程2m +b =m ﹣1中,得:2×(﹣4)+b =(﹣4)﹣1,解得:b =3.【点睛】本题含有一个未知的系数.根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.17.正确【解析】【分析】设此整数是a ,再根据题意列出式子进行计算即可.【详解】正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a=a+20-2=18,所以说小张说的对.【点睛】本题考查了整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.1.【解析】试题分析:由题意可得2(3)200x y z ++-==,,由此可求出x y 、的值,再代值计算即可.试题解析:由题意可得2(3)200x y z ++-==,,∴3020x y +=-=,,解得32x y =-=,.∴()y x y xyz ++=2(32)(3)201-++-⨯⨯=.点睛:(1)互为相反数的两个式子的和为0;(2)两个非负数的和为0,则这两个数都为0;(3)绝对值最小的数是0.19.0或-2.【解析】【分析】利用相反数,倒数,以及绝对值的定义求出a +b ,cd ,及m 的值,代入计算即可求出值.【详解】根据题意得:a +b =0,cd =1,m =±1.①当m =1时,原式=1﹣1=0;②当m =﹣1时,原式=﹣1﹣1=﹣2.【点睛】本题考查了有理数的混合运算,相反数,绝对值,以及倒数,熟练掌握各自的定义是解答本题的关键.20.618.【解析】【分析】根据流程图可得输出结果为2(21)2x y ++÷,代入求值即可.【详解】根据流程图可得输出结果为2(21)2x y ++÷.当输入x =0.5,y =7时,原式=2(0.5271)2+⨯+÷=618.【点睛】本题考查了有理数的混合运算.读懂流程图是解答本题的关键.21.(1)170米;(2)128升.【解析】【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.【详解】(1)+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.04)=640×0.2=128(升).答:他们共耗氧气128升.【点睛】本题考查了正数和负数,利用有理数的加法是解题的关键,注意路程乘以5个人的单位耗氧量是总耗氧量.22.(1)a=3;(2)1.【解析】【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得答案;(2)根据单项式的和为零,可得单项式的系数互为相反数,根据互为相反数的和为零,可得m,n的关系,根据负数的偶数次幂是正数,可得答案.【详解】解:(1)依题意,得a=3a﹣6,解得a=3;(2)∵2mx3y3+(﹣4nx3y3)=0,故m﹣2n=0,∴(m﹣2n﹣1)2016=(﹣1)2016=1.【点睛】本题考查了同类项的定义及合并同类项,利用同类项是字母相同且相同字母的指数也相同得出关于a的方程是解题关键.23.(1)1111;9112911⎛⎫=⨯-⎪⨯⎝⎭(2)10082017;(3)()()1111212122121n n n n⎛⎫=-⎪-+-+⎝⎭.【解析】【分析】(1)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可;(2)利用发现的规律代入计算即可;(3)由题意可知:分子为1,分母是两个连续奇数的乘积,可以拆成分子是1,分母是以这两个奇数为分母差的12,由此得出答案即可.【详解】(1)第5个等式:a 5=1911⨯=12×(19﹣111);(2)原式=12×(1﹣13)+12×(13﹣15)+12×(15﹣17)+…+12×(12015﹣12017)=12×(1﹣13+13﹣15+15﹣17+…+12015﹣12017)=12×(1﹣12017)=12×20162017=10082017;(3)()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用运算规律解决问题.。
苏教版七年级数学上册第一学期期中考试试卷及答案
(第6题)cB A C苏教版七年级数学上册第一学期期中考试试卷(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共12分)1.如果向东走3 km 记作+3 km ,那么向西走5 km 记作( )A .-5 kmB .-2 kmC .+5 kmD .+8 km2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为( )A .110.510⨯千克B .95010⨯千克C .9510⨯千克D . 10510⨯千克.3.下列各式中结果为负数的是( )A .(3)--B .2(3)-C .3--D .3- 4.设边长为a 的正方形的面积为2.下列关于a 的三种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③0<a <1.其中,所有正确的序号是 ( ) A .①② B .①③ C .②③ D .①②③5.下列关于单项式-352xy 的说法中,正确的是( ) A .系数是25-,次数是3 B .系数是25-,次数是4 C .系数是5-,次数是4 D .系数是5-,次数是36.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,点A 与点C 到点B 的距离相等,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( ) A .点A 的左边 B .点A 与点B 之间 C .点B 与点C 之间 D .点C 的右边二、填空题(每小题2分,共20分)7. 13的相反数是 ,倒数是 .8.比较大小:109- 1110-.9.用代数式表示“m 与n 积的平方”: .10.数轴上点A 表示-1,到点A 距离3个单位长度的点B 所表示的数是_________. 11.如果x -y =3,m +n =2,则 (y +m )-(x -n )的值是 .12.若单项式n y ax 275与457y ax m -的差仍是单项式,则n m 2-=_________. 13.某超市的苹果价格如图所示,试说明代数式100-9.8x 的实际意义 .14.如图所示2014年11月份的日历,在日历上任意圈出一个竖列上相邻的3个数.如果被圈出的三个数的和为51,则这三个数中最后一天为2014年11月 号.15.用黑白两种颜色正方形的纸片按黑色纸片数逐渐加l 的规律拼成一列图案:……第一个 第二个 第三个 …… 第n 个图案中有白色纸片 张.16.如图所示的运算程序中,若开始输入的x 值为32,我们发现第一次输出的结果为16,第二次输出的结果为8,…,则第2014次输出的结果为 .三、解答题(本大题共9小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.计算(每题5分,共15分)(1))16()7(1723-+---; (2)123(24)(1)238-⨯--; (3)4211(10.4)(2)63⎡⎤---÷⨯--⎣⎦.苹果:9.8元/斤(第13题)x 21 输出输入xx +3x 为偶数x 为奇数(第16题)(第14题)19.(5分) 化简:2(2x 2-9x ) -3(3x 2+4x -1) .20.(5分) 先化简,再求值:)4(3)32(2722222ab b a ab b a b a ---+,其中2-=a ,21=b .21.(6分)已知10箱苹果,以每箱15千克为标准,超过15千克的千克数记为正数,不足15千克的千克数记为负数,称重记录如下:+0.2,-0.2,+0.7,-0.3,-0.4,+0.6,0,-0.1,+0.3,-0.2 (1)求10箱苹果的总重量;(2)若每箱苹果的重量标准为(15±0.5)千克,则这10箱有几箱不符合标准的?22.(6分)如图,长方形内有两个四分之一圆.(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,阴影部分的面积是多少(π取值为3.14)?23.(7分)(南京青奥会期间,某数学兴趣小组调查了奥运村某个体水果店经销香蕉情况,每千克进价4.5元,售价6.5元,8月16日至8月20日经销情况如下表:日期 16日 17日 18日 19日 20日 购进(kg ) 55 50 50 55 50 售出(kg ) 44.5 51 38 50.5 51 损耗(kg )52126(1)若8月15日晚库存为0,则8月16日晚库存 kg ;(2)从8月18日这一天的香蕉经销情况看,规定赚钱为正,当天是赚钱还是赔钱?说明理由;(3)青奥会期间8月16日至8月20日,该个体户卖香蕉共赚了多少钱?24.(7分)如图①是1个直角三角形和2个小正方形,直角三角形的三条边长分别是a 、b 、c ,其中a 、b是直角边.正方形的边长分别是a 、b .(1)将4个完全一样的直角三角形和2个小正方形构成一个大正方形(如图②).用两种不同的方法列代数式表示图②中的大正方形面积: 方法一: ; 方法二: ;(2)观察图②,试写出222(),,2,a b a ab b +这四个代数式之间的等量关系; (3)利用你发现的结论,求:299769979+⨯+的值.25.(7分)国庆黄金周,某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额. 注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同.根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000⨯(1-80%)+60=260(元). (1)购买一件标价为1600元的商品,顾客获得的优惠额是多少?(2)若顾客在该商场购买一件标价x 元(x >1250)的商品,那么该顾客获得的优惠额为多少?(用含有x 的代数式表示)(3)若顾客在该商场第一次购买一件标价x 元(x >1250)的商品后,第二次又购买了一件标价为500元的商品,两件商品的优惠额共为650元,则这名顾客第一次购买商品的标价为 元.①苏教版七年级数学上册第一学期期中考试试卷参考答案一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.31-;3 8. < 9.(mn )2 10. –4或2 11. -1 12. –6 13. 用100元买每斤9.8元的苹果x 斤余下的钱 14. 24 15. 3n +1 16. 2 三、解答题(本大题共9小题,共68分)17.(1)解:原式23-177-16 =+……………………………………3分-3 = ……………………………………5分(2)解:原式153242424238=-⨯+⨯+⨯ ……………………………………3分12409=-++ ……………………………………4分37= ……………………………………5分(3)解:原式3135=--⨯⨯(46-) ……………………………………2分3135=--⨯⨯(2-) ……………………………………3分1=--(185-) ……………………………………4分135= ……………………………………5分 18.(1)解: 463x x -=- ……………………………………2分22x = ……………………………………4分 1x = ……………………………………5分(2)解:6-3(1x +)2=(2x -) ……………………………………1分6-3342x x -=- ……………………………………2分1x -= ……………………………………4分1x =- ……………………………………5分19.解:原式=4x 2-18x -9x 2-12x +3 ……………………………………3分=-5x 2-30x +3 ……………………………………5分20.解:原式22222746123a b a b ab a b ab =+--+ ……………………………………2分223a b ab =-- ……………………………………3分 当2-=a ,21=b 时, 原式=-(2-)212⨯3-⨯(2-)⨯(12)2 ……………………………………4分1432=-⨯-⨯(2-)14⨯322=-+12=- ……………………………………5分21.解:(1) (+0.2)+(—0.2)+(+0.7)+(—0.3)+(—0.4)+( +0.6)+0+(—0.1)+(+0.3)+(—0.2) = 0.6(千克) ……………………………………………………………………………………………2分因此,这10箱苹果的总质量为15×10+0.6 =150.6(千克) ……………………………4分 (2)这10箱有2箱不符合标准. ………………………………………………………6分 22.解:(1)22b ab π-……………………………………………………………….3分(2)14.88 ………………………………………………………….6分 23.(1)5.5 kg ……………………………………………2分 (2)当天赚钱因为38 6.5247⨯=元 4.550225⨯=元则247>225,所以当天赚钱. ……………………………………………4分(3)(5055505550++++)-(44.5513850.551++++)-(521260++++)0=所以该个体户最后一天香蕉全部售完. ……………………………………………5分 (44.5513850.551++++) 6.5⨯-(5055505550++++) 4.5⨯357.5=元 答:该个体户卖香蕉共赚了357.5元钱. ……………………………………………7分24.(1)(a b +)2;222a ab b ++ ……………………………………………2分(2)(a b +)2=222a ab b ++ ……………………………………………4分(3)解:299769979+⨯+22997299720133=+⨯⨯+=(9973+)2210001000000== ……………………………………………7分(特别说明:本题第(1)问的添法不唯一,只要两种不同的方法填写正确均得2分) 25.解:(1)标价为1600元的商品按80%的价格出售,消费金额为1440元,消费金额1440元在1000﹣1500之间,返还金额为100元, 则顾客获得的优惠额是:1600×(1﹣80%)+100=420(元)………………………………2分 (2)当1000<0.81500x ≤时,(0.2100x +)元;……………………………………………3分当0.8x >1500时,(0.2150x +)元; ……………………………………………4分(3)2000 (当1250<x ≤1875时,0.2x+100+500×0.2=650,得x=2250不合题意;当x>1875时,0.2x+150+500×0.2=650,得x=2000符合)……………………………………………7分。
苏教版七年级上数学期中复习知识点
苏教版七年级上数学期中复习知识点2.1 有理数有理数是指可以表示为分数形式的数,包括正整数、负整数、正分数、负分数和零。
其中正数表示比零大的数,负数表示比零小的数,零表示没有数。
2.2 数轴数轴是一条直线,规定了原点、正方向和单位长度。
数轴上的点与有理数可以一一对应,正有理数表示原点右侧的点,负有理数表示原点左侧的点,零表示原点。
利用数轴可以比较两个数的大小,右侧的数总比左侧的数大,正数大于负数,两个负数比较时距离原点远的数比距离原点近的数小。
数轴上有一些特殊的数,如最小的自然数是1,最小的正整数是1,最大的负整数是-1,没有最大的自然数和最小的负整数。
移动数轴上的点可以得到所需的位置,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几。
2.3 绝对值和相反数绝对值是一个数在数轴上的距离,记作|a|。
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是0.相反数是指与一个数绝对值相等但符号相反的数,如3和-3是一对相反数。
1.相反数的定义和求法相反数是指两个数互为相反数,它们的和为0.求一个数的相反数,只需要在它前面加上负号“-”即可,例如5的相反数是-5.如果需要求多个数的和或差的相反数,需要用括号将它们括起来,再在前面加上负号“-”,例如5a+b的相反数是-(5a+b),化简后为-5a-b。
如果需要求一个带负号的数的相反数,同样需要先用括号括起来,再在前面加上负号“-”,例如-5的相反数是-(-5),化简后为5.2.相反数的表示方法对于任意有理数a,它的相反数是-a。
当a>0时,-a0;当a=0时,-a=0.3.多重符号的化简多重符号的化简规律是,“+”号的个数不影响化简结果,可以直接省略;而“-”号的个数决定最后化简结果。
如果“-”的个数是奇数,结果为负;如果“-”的个数是偶数,结果为正。
4.有理数的加法和减法有理数的加法法则包括同号两数相加、绝对值不相等的异号两数相加、互为相反数的两数相加和一个数与零相加。
苏科版七年级上期中考试数学试题及答案(苏教版七年级数学上册期中考试复习检测试卷)
苏教版七年级数学上册期中考试复习检测试卷(满分:130分 时间:120分钟)一、选择题:(本大题共10小题,每小题3分,共30分.) 1.-3的相反数是(▲) A .-3 B .-13C .13D .32. 如果60 m 表示“向北走60 m ”,那么“向南走40 m ”可以表示为(▲)A .-20 mB .-40 mC .20 mD .40 m3. 太阳的半径为696000千米,把696000这个数据用科学记数法表示为(▲)A .696×103B .69.6×104C .6.96×105D .6.96×1064. 若4x =,则5x -的值是(▲)A .1B .-1C .9D .-9 5.用代数式表示“m 的3倍与n 的差的平方”,正确的是 ( ▲ ) A .(3m -n)2B .3(m -n)2C .3m -n 2D .(m -3n)26.在式子x +y ,0,-a ,-3x 2y ,13x +,1x 中,单项式的个数为(▲) A .3B .4C .5D .67.下列各式中是一元一次方程的是 ( ▲ ). A .1-2x =2y -3 B . 5x 2-4x=2x -1 C .12y -=3y -1 D .1x-2=2x+48. 下面的计算正确的是(▲)A .6a -5a =1B .a +2a 2=3a 3C .-(a -b )=-a +bD .2(a +b )=2a +b 9.现有几种说法:①3的平方等于9 ②平方后等于9的数是3③倒数等于本身的数有0,1,-l ;④平方后等于本身的数是0,1,-1; ⑤-2πa 2x 3的系数是-2π,次数是6; ⑥如果A 和B 都是四次多项式,则A +B 一定是四次多项式.其中正确的说法有( ▲ ).A .1个B .2个C .3个D .4个10.对于x ,符号[]x 表示不大于x 的最大整数.如:[]3.143=,[]7.598-=-,则满足关系式3747x +⎡⎤=⎢⎥⎣⎦的x 的整数值有( ▲ ). A .1个 B .2个 C .3个 D .4个 二、填空题:本大题共10小题,每小题3分,共30分.11. 某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚的气温是 ▲___℃. 12.若-7xyn +1与3x m y 4是同类项,则m +n= ▲ .13.某服装原价为a 元,降价10%后的价格为 ▲ 元. 14.比较大小:43-__ ▲ _65-. 15.小亮按如图所示的程序输入一个数x 等于10,最后输出的结果为__ ▲ _.16.某校女生占全体学生人数的52%,比男生多80人.若设这个学校的学生数为x 人,那么可列出一元一次方程为 ▲ .17.已知m 、n 互为相反数,p 、q 互为倒数,且a 为最大的负整数时,则a pq nm +++20122011的值为 ▲ .18.若多项式x 2+(k -l)x +3中不含有x 的一次项,则k =____▲ ___. 19. 已知代数式2x +4y +l 的值是5,则代数式x +2y -1的值是 _▲ . 20.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共有小三角形的个数是 ▲ .三、解答题:本大题共8大题,共70分.解答时应写出必要的计算过程、推演步骤或文字说明.21.计算(每题3分,共12分)(1)83129+-+-; (2)()()94811649-÷⨯÷-;(3)()157362912⎛⎫-+⨯- ⎪⎝⎭ (4) 431)5.01(14÷⨯+--22.解方程:(每题4分,共8分)(1) 825-=+x (2) ()34254x x x -+=+23.化简(每题3分,共6分)(1)y x y x 7523--+-; (2)()1223522---+x x x x24.(本题5分)先化简,再求值:⎥⎦⎤⎢⎣⎡-+--+-)213(2)5(42222y xy x y xy x xy 其中:1-=x , 2=y25.(本题6分)已知277A B a ab -=-,且2467B a ab =-++.(1)求A 等于多少. (2)若21(2)0a b ++-=,求A 的值.26.(本题5分)已知关于x 的方程4x +2m +1=2x +5.若该方程的解与方程2y -1=5y +7的解相同,求m 的值;27.(本题5分)定义一种新运算:观察下列式:1⊙3=1×4+3=7;3⊙(-1)=3×4-1=11;5⊙4=5×4+4=24;4⊙(-3)=4×4-3=13;……(1)根据上面的规律,请你想一想:a⊙b=;(2)若a⊙(-2b)=4,请计算 (a-b)⊙(2a+b)的值.28. (本题6分) 为了改善住房条件,小亮的父母考察了某小区的A、B两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍,求两户型楼房的面积。
苏教版七年级数学上册期中考试题(完美版)
苏教版七年级数学上册期中考试题(完美版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若162482m m ⋅⋅=,则m =________.5.若264a =3a =________.6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:20346x y x y +=⎧⎨+=⎩2.若关于,x y的二元一次方程组213x y ax y+=+⎧⎨-=-⎩的解都为正数.(1)求a的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a的值.3.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、C5、C6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、2000,3、-74、35、±26、5三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、(1)a>1;(2)a 的值为2.3、(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.4、证明略5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)2400个, 10天;(2)480人.。
24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析
2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
初一上册数学期中试卷及答案苏教版
【篇一】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将准确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.1【考点】绝对值.【专题】计算题.【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:|-2|=-(-2)=2.故选C.【点评】本题考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1X103元B.1.1X104元C.1.1X105元D.1.1X106元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为aX10n的形式,其中lW|a|〈10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数;当原数的绝对值〈1时,n是负数.【解答】解:将110000用科学记数法表示为:1.1X105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为aX10n的形式,其中1W|a|〈10,n为整数,表示时关键要准确确定a的值以及n的值.3.下列各对数中,互为相反数的是()A、—(—2)和2B.+(—3)和一(+3)C.D.—(—5)和一一5【考点】相反数.【专题】计算题.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、一(一2)+2=4,故本选项错误;B、+(-3)-(+3)=-6,故本选项错误;C、一2二一,故本选项错误;D>-(-5)-|-5|=0,故本选项准确.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.4.若(2a—l)2+2|b—3|=0,则ab=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【专题】计算题.【分析】因为平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b 的值,再将它们代入ab中求解即可.【解答】解:由题意,得,解得.・:ab=()3二.故选D.【点评】本题主要考查非负数的性质和代数式的求值.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论能够求解这类题目.5.下列式子中:,,,n(x2—y2),,7x—l,y2+8x,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个【考点】单项式;多项式.【分析】根据单项式与多项式的定义,结合所给各式实行判断即可.【解答】解:所给式子中单项式有,一共2个;多项式有:,,n(x2—y2),7x—1,y2+8x,一共4个.故选B.。
苏教版七年级上数学期中复习
1、下列说法中,错误的有 ( )①742-是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数。
A 、1个B 、2个C 、3个D 、4个2、下列说法正确的是 ( )A 、符号不同的两个数互为相反数B 、一个有理数的相反数一定是负有理数C 、432与2.75都是411-的相反数D 、0没有相反数5、下列说法正确的是 ( )A 、两个有理数相加,和一定大于每一个加数B 、异号两数相加,取较大数的符号C 、同号两数相加,取相同的符号,并把绝对值相加D 、异号两数相加,用绝对值较大的数减去绝对值较小的数 6、两个互为相反数的数之积 ( )A 、符号必为负B 、一定为非正数C 、一定为非负数D 、符号必为正8、下列写法正确的是 ( )A 、x5B 、n m ⨯4C 、43)1(+x x D 、ab 21-14、绝对值小于2的非负整数有__________________。
27、 (8分)振子从一点A 开始左右来回振动8次,如果规定向右为正,向左为 负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7. (1)求振子停止时所在位置距A 点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?4.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年11月9日上午9时应是A .伦敦时间2006年11月9日凌晨1时B .纽约时间2006年11月9日晚上22时C .多伦多时间2006年11月8日晚上20时;D .汉城时间2006年11月9日上午8时 8.如图,圆的周长为4个单位.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表北京 汉城-4多伦多国际标准时间(时)-5示数字0的点与数轴上表示-1的点重合,再将数轴案逆时针方向环绕在该圆上.则数轴上表示-2009的点与圆周上表示数字_________的点重合A .0B .1C .2D . 3 9.当x y x y -+=2时,代数式x y x y -+-22x yx y+-的值是 A .1 B .2 C .3 D .410.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上。
2024-2025学年苏科版七年级数学上册期中复习试卷
2024-2025学年苏科版七年级数学上册期中复习试卷一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A .48.810⨯B .48.0810⨯C .58.810⨯D .58.0810⨯3.一个点在数轴上从表示 - 3的点A 开始,先向左移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( ) A .2B .9C .2或8D .2或94.下列各说法中,错误的是( )A .x ,y 的平方和,用代数式表示为22x y +B .x 与y 和的5倍,用代数式表示为5()x y +C .x 的5倍与y 的和的一半,用代数式表示为52yx + D .比x 的2倍多3的数,用代数式表示为23x + 5.下列各对数中,相等的一对是( )A .223与223⎛⎫ ⎪⎝⎭B .3(2)-与32-C .22-与2(2)-D .()23--与2||3--6.若()2230a b -++=,则()2024a b +的值是( )A .1-B .2024-C .1D .20247.如图,a b c d e f ,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .3-C .7D .88.有理数a 、b 在数轴上对应的点的位置如右图所示,则下面结论:①a <0; ②|a ∣>|b |; ③a +b >0;④b -a >0;其中正确的个数有( )个.A .1B .2C .3D .49.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折n 次,可以得到折痕的条数是( )A .nB .1n -C .21n -D .121n --10.如图所示,在这个运算程序当中,若开始输入的x 是48,则经过2023次输出的结果是( )A .3B .6C .12D .24二、填空题 11.比较大小:23-34-. 12.若代数式513m a b +与22n a b -是同类项,那么m+n= .13.若22(3)0a b ++-=,则b a =.14.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为.15.已知22210,216a ab b ab -=-=-,则()()22224a ab b a b -+--=.16.已知210x y --=,则52x y -+的值是17.定义一种新运算,规定:3a b a b ⊕=-,若1(6)24a b ⊕-=-请计算(2)(25)a b a b +⊕-值为.18.列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为三、解答题 19.计算:(1)()()6487--+-+; (2)()25118362⎛⎫--⨯- ⎪⎝⎭; (3)()211623--÷-⨯-.20.(1)把下面的直线补充成一条数轴,在数轴上表示下列各数;(2)--,4,112-,0,2.5, 3.5-.(2)用“>”将(1)中的每个数连接起来. 21.化简: (1)3245m m --+;(2)()()222332x y x y ++-;22.用火柴棒按图中的方式搭图形.按上述信息填空: (1)a =______,b =______;(2)按照这种方式搭下去,则搭第n 个图形需要火柴棒的根数为______;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2023个图形需要的火柴棒根数. 23.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数) (3)国庆黄金周水果超市出售此种接子的收益如何? 24.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)1111 1232343458910 +++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.25.某超市在双十一期间对顾客实行优惠政策,规定如下表:(1)若小惠一次购物原价300元,她实际付款___________元;若一次购物原价600元,她实际付款___________元.(2)若小惠在该超市一次购物x元.当x大于或等于500元时,她实际付款___________元(用含x的代数式表示并化简).(3)如果小惠两次购物合计850元(原价),第一次购物的原价为a元(200300a<<),用含a的代数式表示两次购物实际付款一共多少元?当250a=元时,小惠两次购物一共节省了多少元?26.如图,数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当2t=时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.。
最新苏教版七年级数学(上)-期中综合复习优秀名师资料
苏教版七年级数学(上)期中综合复习一、选择题1.下列各组数中,数值相等的是( )A .3443和B .()2244--和C .3322)(和-- D .()2223232⨯-⨯-和 2.下列说法,不正确的是( )A .绝对值最小的数是0B .负数的相反数一定大于这个数C .数轴上表示-5的点一定在原点的左边D .异号两数相加和一定比加数大3.某商店2006年的销售利润为a ,以后每年比上一年增长b %,则2008年该商店销售利润是( ) A .()21a b + B .()2001a b + C .()200a a b + D .2a ab +4.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )A .m +3B .2m +6C .2m +3D .m +65.如图,圆的周长为4个单位.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示-2012的点与圆周上表示数字( )的点重合A .0B .1C .2D . 3 二、填空题6.23的相反数为__________; 3.5-的倒数是_________;绝对值是3的数是___________. 7.平方得412的数是 ;立方得–64的数是 . 8. 在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 9.单项式32ba π-的系数是 ,次数是 .10.若34x y -=,则44____x y -=,7____4x y -++=; 若代数式x -2y 的值是3,则代数式-2x +1+4y 值是_______11.计算: ()2012201380.125-⨯-=_________.12.已知单项式15423-+-n m b a b a与是同类项,则m +=n.第4题第5题13.若2x -与()24y +互为相反数,则________=x y .14. 若多项式63-12-222++y nx my x 与多项式的差中不含有x ,y ,则mn = . 三、解答题15.① 请你在数轴上表示下列有理数: .213, 2.5,0,1,22 ⎛⎫--+- ⎪⎝⎭② 将上列各数用“<”号连接起来:___________________________________ . 16.计算题:(1)()312-+-+ (2)1110.5364⎛⎫⎛⎫-+---- ⎪ ⎪⎝⎭⎝⎭(3)255316422⎛⎫⎛⎫⎛⎫-÷-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)()())4(322012-⎥⎦⎤⎢⎣⎡--+-÷(5)()18.0355124-+⎪⎭⎫ ⎝⎛-⨯-÷- (6)()⎪⎭⎫ ⎝⎛-⨯-+---3132622(7)20103)1(|52|)3(2)2(---+-⨯-- (8)48×(-61+43-121)(9)17171619-⨯⎪⎭⎫⎝⎛ (10)75.04.34353.075.053.1⨯-⨯+⨯-17. 化简:(1) ()222253222ab a b a b ab ⎡⎤---⎣⎦(2))1(21)428(412---+-x x x18.先化简,再求值:2211312()()2323-+---+x x y x y ,其中x =2,y =23-.19.若2224a ab b -+与一个多项式的差是22325a ab b -+-,试求这个多项式.20. 请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识发表了自己的一些感受:小明说:“绝对值不大于4的整数有7个。
苏教版期中七年级数学试卷
一、选择题(每题4分,共20分)1. 下列各数中,正数是()A. -3/4B. -2/3C. 0D. 3/42. 下列各式中,正确的是()A. 2^3 = 8B. 3^2 = 9C. 4^3 = 64D. 5^2 = 253. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 24. 下列各式中,绝对值最大的是()A. |3|B. |-2|C. |5|D. |-5|5. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)二、填空题(每题4分,共20分)6. 5的平方根是________,-5的平方根是________。
7. 2的立方根是________,8的立方根是________。
8. 若x - 3 = 5,则x = ________。
9. 若a = 4,则a^2 = ________,a^3 = ________。
10. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = ________。
三、解答题(共40分)11. (10分)计算下列各式的值:(1)(3 - 2)^2 + 4 × 2(2)-3 × (-2) × (-2) ÷ 412. (10分)解下列方程:(1)2x - 5 = 11(2)5 - 3x = 2x + 113. (10分)已知△ABC中,AB = 5cm,BC = 6cm,AC = 7cm,求△ABC的面积。
14. (10分)在平面直角坐标系中,点A(2,3),点B(-4,1),求线段AB的中点坐标。
四、应用题(共20分)15. (10分)小明家到学校的距离是1200米,他骑自行车以每小时15千米的速度前往学校,请问小明需要多长时间才能到达学校?16. (10分)一个长方形的长是12厘米,宽是5厘米,求这个长方形的面积和周长。
苏教版七年级数学期中上册知识点五篇
苏教版七年级数学期中上册知识点五篇1.七年级数学期中上册知识点第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形柱:棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱……正有理数整数有理数零有理数负有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
互为相反数的两个数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。
只要有一个数为零,积就为零。
有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
互为相反数的两个数相加和为0。
有理数减法法则:减去一个数,等于加上这个数的相反数!有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
苏科版初一上期中复习综合复习.doc
期中复习一.有理数运算例1.在数轴上把下列各数表示出来,并用“〈”连接起来.丨一31, - 2, 0, —— , (-1)", 4.5, - 22练习:在数轴上把下列各数表示出来,并用“〈”连接起来.I-2I2, 1-21, —0.5, -I3, (-1)4, 3*, -(-2)2例2.已知|x+ 5+ 3x1=17,求x的值。
练习:已知I x 1= 3」y 1= 7,x + y〉0,xy < 0,求°一勿厂的值。
x+ y例3. 11000亿用科学计数法表不为:______________练习:135平方千米用科学计数法表不为: 平方米(1)[ (24-42)x(-3)-|-212]-[62 *3-(-10)] (2) I-2I 3 +[(-4)2-(I-7I+32)x(-)3]例5.计算下列各题:二. 化简求值:例1. 直接带入:已知/=(-2)2, A-1,求:(D^x/003的值.⑵ 飞丽的值.练习:已知 a =-2 f b = —3 , c = l,求代数式3a 2b — 2(a 2b — a 2c) — (2abc — a 2b) — abc 的值. 二. 整体代入例2.已知当x=7时,代数式ax 5+bx-8=8,求x=7时,—x 5+— x+8的值。
练习:若代数式3X 2-2X +6的值为8,则代数式2 x 2-x+l 的值为例4 .计算:—3 + 5 = 3-5 = -3-5 =(-2)523 (-4)%48例3.当x=-l时,代数式2ax3-3bx+8的值为18,这时,代数式9b~6a+2的值。
练习:当x = 2时,代数式ax3 -bx + 1的值是T7,那么当x = -1时,12ax-3bx3 -5的值。
例 4.若m+n-p=O,贝ljm( — - —)+n(—)-p(—+—)n p m p m n练习:已知关于x的二次多项式a(X3-X2+3X) +b (2X2+X)+X3-5,当x二2时,此多项式的值为T7,求当x-~2时, 该多项式的值。
初一上册 苏教版 期中复习
学生: 教师: 班主任: 日期:时段: 课题 期中复习教学目标 重难点透视 教学内容一、绝对值1、化简:4-π-4π-= .2、有理数a ,b ,c 在数轴上的位置如图所示,化简下列各式:a b --(b -c )+a c ---(c -a ) a c +-a b c ++-b a -+b c +二、整式计算1、(x -2 y + z )( x + 2y -z )=[ x -( )][ x + ( )].a + b -c + d =a + b -( )2、 若多项式2(x 2-3xy -y 2)-(x 2 + 2mxy + y 2)中不含xy 项,则m 等于 .3、已知代数式ax 5 + bx 3 + cx -5,当x =-2 时的值为7,那么当x =2 时,该代数式的值是多少?4、 (a -c )2+a (2c -a ,其中a =-12,c =3.海泽教育个性化辅导教案5、已知a+b =-2,ab =-3,求代数式2(4a -3b -2ab )-3(2a -83b + ab )的值.若多项式(2m x 2-x 2+3x + 1)-(5x 2-4y 2 + 3x )的值与x 无关,求2m 3-[3m 2 + (4m -5) + m ]的值。
6、已知a 2 + ab =3,ab + b 2=6,求① a 2-b 2的值;② a 2 + 4ab + 3b 2的值.7、小亮在计算某多项式减去2a 2+3a -5的差时,误认为是加上2a 2 +3a -5,求得答案是a 2 + a -4.(1) 求这个多项式;(2)正确答案是多少?三、代数式的值1、某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是 ( )A .a (1 + b )2B .a (1 + b %)2C .a + a ·(b %)2D .a + ab 22、在下列代数式中:a -a ,a +a (a ≤0),a b -+b a -,(a -b )+( b -c )+(c -a )其中值永远等于0的有 ( )A .4个B .3个C .2个D .1个3、已知2237x y ++的值是8,则2469x y ++的值?4、已知代数式2326x x -+的值为8,求代数式2312x x -+的值。
苏教版初一数学上册期中考点
苏教版初一数学上册期中考点集合论提出了实无穷的思想,为以后的数学发展作出了不可估计的奉献。
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论、测度论、拓扑学及数理科学中必不可少的工具。
今天作者在这给大家整理了一些苏教版初一数学上册期中考点,我们一起来看看吧!苏教版初一数学上册期中考点一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5. 与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:内角的一半: (右图)(解Rt△OAM可求出相干元素, 、等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦初一数学上册考点一、平面直角坐标系1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数1.表示方法:⑴解析法;⑵列表法;⑶图象法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版七年级数学(上)期中综合复习
一、选择题
1.下列各组数中,数值相等的是( )
A .3443和
B .()2
244--和 C .3
322)(和-- D .()222
3232⨯-⨯-和
2.下列说法,不正确的是( )
A .绝对值最小的数是0
B .负数的相反数一定大于这个数
C .数轴上表示-5的点一定在原点的左边
D .异号两数相加和一定比加数大
3.某商店2006年的销售利润为a ,以后每年比上一年增长b %,则2008年该商店销售利润是( ) A .()2
1a b + B .
()2001a b + C .()2
00a a b + D .2a ab +
4.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是( )
A .m +3
B .2m +6
C .2m +3
D .m +6
5.如图,圆的周长为4个单位.在该圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示-2012的点与圆周上表示数字( )的点重合
A .0
B .1
C .2
D . 3 二、填空题
6.2
3的相反数为__________; 3.5-的倒数是_________;绝对值是3的数是___________. 7.平方得4
1
2
的数是 ;立方得–64的数是 . 8. 在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 9.单项式3
2b
a π-
的系数是 ,次数是 .
10.若34x y -=
,则44____x y -=,7
____4
x y -++=; 若代数式x -2y 的值是3,则代数式-2x +1+4y 值是_______ 11.计算: ()
2012
2013
8
0.125-⨯-=_________.
12.已知单项式1542
3-+-n m b a b a
与是同类项,则m +=n .
第4题
3
10
-1
-2-3
-4
第5题
13.若2x -与()2
4y +互为相反数,则________=x
y .
14. 若多项式63-12-222++y nx my x 与多项式的差中不含有x ,y ,则mn = . 三、解答题
15.① 请你在数轴上表示下列有理数: .
213, 2.5,0,1,22 ⎛⎫--+- ⎪⎝⎭
② 将上列各数用“<”号连接起来:___________________________________ . 16.计算题:
(1)()312-+-+ (2)1110.5364⎛⎫⎛⎫
-+---- ⎪ ⎪⎝⎭⎝⎭
(3)2
55316422⎛⎫⎛⎫⎛⎫-÷-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(4)()())4(322012
-⎥⎦⎤⎢⎣⎡--+-÷
(5)()18.035512
4
-+⎪⎭⎫ ⎝⎛-
⨯-÷- (6)()⎪⎭
⎫ ⎝⎛-⨯-+---3132622
(7)2010
3
)1(|52|)3(2)2(---+-⨯-- (8)48×(-
61+43-12
1
)
(9)17171619-⨯⎪⎭⎫ ⎝⎛ (10)75.04.34
3
53.075.053.1⨯-⨯+⨯-
17. 化简:
(1) (
)2222
53222ab a b a b ab ⎡⎤---⎣
⎦
(2)
)1(2
1
)428(412---+-x x x
18.先化简,再求值:221131
2()()2323-+---+x x y x y ,其中x =2,y =23-.
19.若2224a ab b -+与一个多项式的差是22
325a ab b -+-,试求这个多项式.
20. 请你做评委:在一堂数学活动课上,同在一合作学习小组的小明、小亮、小丁、小彭对刚学过的知识
发表了自己的一些感受:
小明说:“绝对值不大于4的整数有7个。
”
小亮说:“当3=m 时,代数式23+--mx y x 中不含x 项” 小丁说:“若|a |=3,|b |=2,则a+b 的值为5或1。
” 小彭说:“多项式3
2
2y y x x ++-是三次三项式。
”
你觉得他们的说法正确吗?如不正确,请帮他们修正,写出正确的说法。
21. 若(2a +1)2与|b +3|互为相反数,c 是最大的负整数,求a bc a a 2
1
-2
3
+的值.
22. 如果|a |=4,|b |=2,且|a+b |=a+b ,求a-b 的值.
23.a 、b 所表示的有理数如图所示,化简|a+b |-|a-b |-2(b-a).
1
024. 已知在纸面上有一数轴(如图),折叠纸面.
(1)若1表示的点与-1表示的点重合,则-7表示的点与数 表示的点重合; (2)若-1表示的点与5表示的点重合,回答以下问题:
①13表示的点与数 表示的点重合;
②若数轴上A 、B 两点之间的距离为2009(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?
25.某人去水果批发市场采购苹果,他看中了A 、B 两家苹果.这两家苹果品质一样,零售价都为6元/千
克,批发价各不相同.
A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量超过1000千克但不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B 家的规定如下表:
总费用=6×95%×500+6×85%×1000+6×75%×(2100-1500)】
(1)如果他批发600千克苹果,则他在A 家批发需要 元,在B 家批发需要 元; (2) 如果他批发x 千克苹果(1500<x <2000),则他在A 家批发需要 元,在B 家批发
需要 元(用含x 的代数式表示);
(3) 现在他要批发1800千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.。