2020-2021学年福建省福州三中高一(上)期中数学试卷及答案

合集下载

2020-2021学年福建省福州三中高一(上)期中数学试卷及答案

2020-2021学年福建省福州三中高一(上)期中数学试卷及答案

2020-2021学年福建省福州三中高一(上)期中数学试卷一、选择题,本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0D.∀x∈R,x2+x+1≥02.(5分)集合A={x|﹣1<x<3,x∈N}的真子集的个数是()A.3B.4C.7D.83.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(5分)若f(2x+1)=x2﹣2x,则f(2)的值为()A.﹣B.C.0D.15.(5分)以下关于函数f(x)=2x的说法正确的是()A.f(m+n)=f(m)f(n)B.f(mn)=f(m)+f(n)C.f(mn)=f(m)f(n)D.f(m)+f(n)=f(m+n)6.(5分)设a=,b=,c=,则a,b,c的大小关系正确的是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a7.(5分)设a>0,b>0,不等式恒成立,则实数k的最大值等于()A.0B.8C.9D.108.(5分)已知函数,则使得f(2x﹣1)<f(x)成立的实数x的取值范围是()A.(﹣∞,1)B.C.D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.(5分)下列各组函数中,两个函数是同一函数的有()A.f(x)=|x|与B.f(x)=x+1与C.f(x)=与g(x)=D.与10.(5分)如图,某湖泊蓝藻的面积y(单位:m2)与时间t(单位:月)的关系满足y=a t,则下列说法正确的是()A.蓝藻面积每个月的增长率为200%B.蓝藻每个月增加的面积都相等C.第4个月时,蓝藻面积就会超过80m2D.若蓝藻面积蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则一定有2t2=t1+t3 11.(5分)已知ab>0且,则下列不等式一定成立的有()A.a<b B.C.D.2a+a<2b+b 12.(5分)狄利克雷函数是高等数学中的一个典型函数,对于狄利克雷函数f(x),下列命题中真命题的有()A.对任意x∈R,都有f[f(x)]=1B.对任意x∈R,都有f(﹣x)+f(x)=0C.若a<0,b>1,则有{x|f(x)>a}={x|f(x)<b}D.存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等腰三角形三、填空题,本题共4小题,每小题5分,共20分,在答题卡上的相应题目的答题区域内作答.13.(5分)已知函数f(x)的对应关系如表所示,则f(f(4))=.x12345 f(x)54312 14.(5分)=.15.(5分)已知函数满足对任意x1≠x2,都有成立,则实数a的取值范围是.16.(5分)方程x2+2x﹣1=0的解可视为函数y=x+2的图象与函数的图象交点的横坐标,若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i =1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.在答题卡上的相应题目的答题区域内作答.17.(10分)设全集U=R,集合A={x|x2﹣8x<0},.(1)求A∪B,(∁U A)∩B.(2)若集合C={x|a﹣3<x<2a,a∈R},B∩C=B,求实数a的取值范围.18.(12分)已知函数f(x)=且f(f(1))=0.(1)求a的值,并在直角坐标系中作出函数f(x)的大致图象.(2)若方程f(x)﹣b=0有三个实数解,求实数b的取值范围.19.(12分)已知函数是奇函数.(1)求b的值;(2)判断函数f(x)在定义域上的单调性并用定义证明;(3)若对任意t∈R,不等式f(kt2)+f(2kt﹣1)<0恒成立,求实数k的取值范围.20.(12分)已知f(x)=2x2﹣(a+2)x+a,a∈R.(1)解关于x的不等式f(x)>0;(2)若方程f(x)=x+1有两个正实数根x1,x2,求+的最小值.21.(12分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x万箱,需另投入成本p(x)万元,当产量不足90万箱时,p(x)=+40x;当产量不小于90万箱时,p(x)=101x﹣2180,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?22.(12分)已知幂函数f(x)=(p2﹣3p+3)满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=f2(x)+mf(x),x∈[1,9],是否存在实数m使得g(x)的最小值为0?若存在,求出m的值;若不存在,说明理由.(3)若函数h(x)=n﹣f(x+3),是否存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.2020-2021学年福建省福州三中高一(上)期中数学试卷参考答案与试题解析一、选择题,本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0D.∀x∈R,x2+x+1≥0【分析】特称命题“∃x0∈R,x02+x0+1≤0”的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即“∀x∈R,x2+x+1>0”.【解答】解:特称命题“∃x0∈R,x02+x0+1≤0”的否定是全称命题:“∀x∈R,x2+x+1>0”.故选:B.【点评】写含量词的命题的否定时,只要将“任意”与“存在”互换,同时将结论否定即可,属基础题.2.(5分)集合A={x|﹣1<x<3,x∈N}的真子集的个数是()A.3B.4C.7D.8【分析】根据真子集的定义,写出所有的真子集即可.【解答】解:根据题意,A={0,1,2},集合A的真子集有{0},{1},{2},{0,1},{0,2},{1,2},∅共7个.故选:C.【点评】本题考查集合的真子集.3.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(5分)若f(2x+1)=x2﹣2x,则f(2)的值为()A.﹣B.C.0D.1【分析】直接利用函数的解析式,求解即可.【解答】解:f(2)=f(2×)==.故选:A.【点评】本题考查函数的基本知识的应用,函数值的求法,考查计算能力.5.(5分)以下关于函数f(x)=2x的说法正确的是()A.f(m+n)=f(m)f(n)B.f(mn)=f(m)+f(n)C.f(mn)=f(m)f(n)D.f(m)+f(n)=f(m+n)【分析】由有理指数幂的运算性质逐一分析四个选项得答案.【解答】解:∵f(x)=2x,∴f(mn)=2mn,f(m)f(n)=2m•2n=2m+n,f(m+n)=2m+n,f(m)+f(n)=2m+2n,则f(m+n)=f(m)f(n).故选:A.【点评】本题考查有理指数幂的运算性质,是基础题.6.(5分)设a=,b=,c=,则a,b,c的大小关系正确的是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a【分析】利用幂函数的性质比较a,c的大小,利用指数函数的性质比较a,b的大小即可.【解答】解:设a=,b=,c==3,由于y=x在(0,+∞)上为增函数,则a<c,由于y=2x为增函数,则b<a,则b<a<c,故选:B.【点评】本题是基础题,考查指数函数与对数函数的单调性的应用,考查基本知识的掌握情况.7.(5分)设a>0,b>0,不等式恒成立,则实数k的最大值等于()A.0B.8C.9D.10【分析】由恒成立,得,然后利用基本不等式求出的最小值,再得到k的最大值.【解答】解:∵a>0,b>0,∴由恒成立,得,∴只需,∵,当且仅当,即a=2,b=1时取等号,∴k≤9,∴k的最大值为9.故选:C.【点评】本题考查了不等式恒成立问题和利用基本不等式求最值,考查了转化思想,属中档题.8.(5分)已知函数,则使得f(2x﹣1)<f(x)成立的实数x的取值范围是()A.(﹣∞,1)B.C.D.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:由可得f(﹣x)=|﹣x|﹣=|x|﹣=f(x),所以f(x)为偶函数,当x≥0时,f(x)=x﹣单调递增,由f(2x﹣1)<f(x)可得|2x﹣1|<|x|,解得,.故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.(5分)下列各组函数中,两个函数是同一函数的有()A.f(x)=|x|与B.f(x)=x+1与C.f(x)=与g(x)=D.与【分析】判断函数的定义域与对应法则是否相同,即可判断两个函数是否相同函数.【解答】解:对于选项A:函数g(x)==|x|,两函数的定义域都、值域和解析式都相同,所以它们是同一个函数,对于选项B:函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠1},它们的定义域不同,所以它们不是同一个函数,对于选项C:函数f(x)=,两函数的定义域都、值域和解析式都相同,所以它们是同一个函数,对于选项D:函数f(x)的定义域为{x|x≤﹣1或x≥1},函数g(x)的定义域为{x|﹣1≤x≤1},它们的定义域不同,所以它们不是同一个函数,故选:AC.【点评】本题考查函数的基本性质,判断两个函数是否相同,需要判断定义域与对应法则是否相同.10.(5分)如图,某湖泊蓝藻的面积y(单位:m2)与时间t(单位:月)的关系满足y=a t,则下列说法正确的是()A.蓝藻面积每个月的增长率为200%B.蓝藻每个月增加的面积都相等C.第4个月时,蓝藻面积就会超过80m2D.若蓝藻面积蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则一定有2t2=t1+t3【分析】由函数y=a t图象经过(1,3)可得函数解析式,再根据解析式逐一判断各选项即可.【解答】解:由图可知,函数y=a t图象经过(1,3),即a1=3,则a=3,∴y=3t;∴3t+1﹣3t=3t不是常数,则蓝藻每个月的面积是上个月的3倍,则每个月的增长率为200%,A对、B错;当t=4时,y=34=81>80,C对;若蓝藻面积蔓延到2m2,3m2,6m2所经过的时间分别是t1,t2,t3,则3=2,3=4,3=8,∴(3)2=3•3,则t1+t3=2t2,D对;故选:ACD.【点评】本题主要考查指数函数的性质及指数的运算法则,属于基础题.11.(5分)已知ab>0且,则下列不等式一定成立的有()A.a<b B.C.D.2a+a<2b+b【分析】根据不等式的基本性质对各个选项进行判断即可.【解答】解:对于A:∵ab>0,,∴﹣=>0,∴b>a,即a<b,故A正确;对于B:∵ab>0,∴a<b<0时,a2>b2,0<a<b时,a2<b2∴﹣=,无法比较大小,故B错误;对于C:∵ab>0,a<b,∴>0,>0+>2=2,故C正确;对于D:∵a<b,∴a﹣b<0,2a﹣2b<0,∴2a+a﹣2b﹣b=(2a﹣2b)+(a﹣b)<0,故D正确:故选:ACD.【点评】本题考查了不等式的基本性质,考查转化思想,是一道基础题.12.(5分)狄利克雷函数是高等数学中的一个典型函数,对于狄利克雷函数f(x),下列命题中真命题的有()A.对任意x∈R,都有f[f(x)]=1B.对任意x∈R,都有f(﹣x)+f(x)=0C.若a<0,b>1,则有{x|f(x)>a}={x|f(x)<b}D.存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等腰三角形【分析】根据狄利克雷函数,分别讨论当x∈Q和x∈∁R Q时,对应命题是否成立即可.【解答】解:当x∈Q,则f(x)=1,f(1)=1,则[f(x)]=1,当x∈∁R Q,则f(x)=0,f(0)=1,则[f(x)]=1,即对任意x∈R,都有f[f(x)]=1,故A正确,当x∈Q,则﹣x∈Q,则f(﹣x)=1,f(x)=1,此时f(﹣x)=f(x),当x∈∁R Q,则﹣x∈∁R Q,则f(﹣x)=0,f(x)=0,此时f(﹣x)=f(x),即恒有f(﹣x)=f(x),即函数f(x)是偶函数,故B错误,∵f(x)≥0恒成立,∴对任意a,b∈(﹣∞,0),都有{x|f(x)>a}={x|f(x)>b}=R,故C正确,当x1∈Q,x2∈Q,x3∈Q,此时f(x1)+f(x2)=f(x3)=1;ABC够不成三角形,故D 不正确,故选:AC.【点评】本题主要考查命题的真假判断,涉及新定义,正确理解狄利克雷函数的分段函数意义是解决本题的关键.三、填空题,本题共4小题,每小题5分,共20分,在答题卡上的相应题目的答题区域内作答.13.(5分)已知函数f(x)的对应关系如表所示,则f(f(4))=5.x12345 f(x)54312【分析】推导出f(4)=1,从而f(f(4))=f(1),由此能求出结果.【解答】解:由题意得:f(4)=1,f(f(4))=f(1)=5.故答案为:5.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.(5分)=.【分析】根据指数幂的运算性质计算即可.【解答】解:原式=﹣﹣(3﹣)=﹣3=,故答案为:.【点评】本题考查了指数幂的运算性质,是一道基础题.15.(5分)已知函数满足对任意x1≠x2,都有成立,则实数a的取值范围是[,).【分析】根据题意,由函数单调性的定义可得函数f(x)在R上为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.【解答】解:根据题意,函数f(x)满足对任意x1≠x2,都有成立,则函数f(x)在R上为减函数,而函数,则,解可得≤a<,即a的取值范围为[,),故答案为:[,).【点评】本题考查分段函数的单调性,注意分析函数f(x)的单调性,属于基础题.16.(5分)方程x2+2x﹣1=0的解可视为函数y=x+2的图象与函数的图象交点的横坐标,若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i =1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(﹣∞,﹣6)∪(6,+∞).【分析】原方程等价于x3+a=,分别作出y=x3+a与y=的图象:分a>0与a<0讨论,利用数形结合即可得到结论.【解答】解:方程的根显然x≠0,原方程x4+ax﹣4=0,等价为方程x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标;曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的.若交点(x i,)(i=1,2,k)均在直线y=x的同侧,因直线y=x与y=交点为:(﹣2,﹣2),(2,2);所以结合图象可得:或,解得a>6或a<﹣6,即实数a的取值范围是(﹣∞,﹣6)∪(6,+∞),故答案为:(﹣∞,﹣6)∪(6,+∞).【点评】本题考查函数与方程的综合运用,利用数形结合是解决本题的关键.注意合理地进行等价转化.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.在答题卡上的相应题目的答题区域内作答.17.(10分)设全集U=R,集合A={x|x2﹣8x<0},.(1)求A∪B,(∁U A)∩B.(2)若集合C={x|a﹣3<x<2a,a∈R},B∩C=B,求实数a的取值范围.【分析】(1)求出集合A,B,求出A∪B,∁U A∩B.(2)由B∩C=B,得B⊆C,由此能求出a的取值范围.【解答】解:(1)集合A={x|x2﹣8x<0}={x|0<x<8},={x|﹣1<x<2},则A∪B={x|﹣1<x<8},∁U A={x|x≤0或x≥8},∴∁U A∩B={x|﹣1<x≤0}.(2)∵集合C={x|a﹣3<x<2a,a∈R},B={x|﹣1<x<2},B∩C=B,∴B⊆C,∴,解得1≤a≤2,故a的取值范围是[1,2].【点评】本题考查并集、交集、补集的求法,考查实数的取值范围的求法,考查并集、交集、补集的定义等基础知识,考查运算求解能力,是基础题.18.(12分)已知函数f(x)=且f(f(1))=0.(1)求a的值,并在直角坐标系中作出函数f(x)的大致图象.(2)若方程f(x)﹣b=0有三个实数解,求实数b的取值范围.【分析】(1)通过函数的解析式,求出函数值,然后推出a,即可得到函数的解析式.(2)【解答】解:(1)f[f(1)]=f(0)=1﹣a=0,则a=1;所以.(2)的图象如图,方程f(x)﹣b=0有三个实数解,根据图象可知b的取值范围是(﹣1,0].【点评】本题考查函数与方程的应用,考查数形结合以及计算能力,是中档题.19.(12分)已知函数是奇函数.(1)求b的值;(2)判断函数f(x)在定义域上的单调性并用定义证明;(3)若对任意t∈R,不等式f(kt2)+f(2kt﹣1)<0恒成立,求实数k的取值范围.【分析】(1)由f(x)是R上的奇函数,则f(0)=0,解得b,检验可得所求值;(2)f(x)在(﹣∞,+∞)上单调递增.运用函数的单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(3)由函数的奇偶性和单调性,可得kt2<1﹣2kt对一切t∈R恒成立,讨论k=0,k<0且判别式小于0,解不等式可得所求范围.【解答】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即,解得b=1,经检验b=1时,是R上奇函数;(2),则f(x)在(﹣∞,+∞)上单调递增.证明如下:任取x1,x2∈R且x1<x2,则=,因为x1<x2,所以,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以函数f(x)在(﹣∞,+∞)上单调递增;(3)因为f(x)是R上奇函数,所以f(kt2)+f(2kt﹣1)<0等价于f(kt2)<﹣f(2kt﹣1),即f(kt2)<f(1﹣2kt),因为f(x)为R上增函数,则kt2<1﹣2kt对一切t∈R恒成立,即kt2+2kt﹣1<0恒成立,①k=0显然成立,②,解得﹣1<k<0.综上所述,k的取值范围是(﹣1,0].【点评】本题考查函数的奇偶性和单调性的判断和运用,以及不等式恒成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.20.(12分)已知f(x)=2x2﹣(a+2)x+a,a∈R.(1)解关于x的不等式f(x)>0;(2)若方程f(x)=x+1有两个正实数根x1,x2,求+的最小值.【分析】(1)根据函数f(x)=2x2﹣(a+2)x+a的解析式,可将f(x)>0化为(2x﹣a)(x﹣1)>0,分类讨论可得不等式的解集.(2)由方程f(x)=x+1有两个正实数根x1,x2⇒a>1,利用韦达定理可得+===,再结合均值不等式即可.【解答】解:(1)由f(x)>0得(2x﹣a)(x﹣1)>0,当a>2时,原不等式的解集为(﹣∞,1)∪(,+∞),当a=2时,原不等式的解集为{x|x≠1},当a<2时,原不等式的解集为(﹣∞,)∪(1,+∞);(2)方程f(x)=x+1有两个正实数根x1,x2,等价于2x2﹣(a+3)x+a﹣1=0有两个正实数根x1,x2,∴⇒a>1,则+===[(a﹣1)+]+2=2+≥6当且仅当a=5时取等号,故+的最小值为6.【点评】本题考查了二次函数的λ性质、解含参数一元二次不等式、韦达定理、均值不等式,属于中档题.21.(12分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x万箱,需另投入成本p(x)万元,当产量不足90万箱时,p(x)=+40x;当产量不小于90万箱时,p(x)=101x﹣2180,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?【分析】(1)根据题意结合“利润=销售收入﹣成本”,即可列出函数关系式;(2)利用二次函数性质及基本不等式,求出分段函数各段函数上的最大值即可求解.【解答】解:(1)当0<x<90时,;当x≥90时,,∴.(2)①当0<x<90时,≤1600,②当x≥90时,>1600,当且仅当,即x=90时,y取得最大值,最大值为1800万元.综上,当产量为90万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1800万元.【点评】本题是一道关于分段函数的实际应用题,关键是熟练掌握二次函数的性质及基本不等式的应用,属于中档题.22.(12分)已知幂函数f(x)=(p2﹣3p+3)满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=f2(x)+mf(x),x∈[1,9],是否存在实数m使得g(x)的最小值为0?若存在,求出m的值;若不存在,说明理由.(3)若函数h(x)=n﹣f(x+3),是否存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.【分析】(1)根据幂函数f(x)是幂函数,可得p2﹣3p+3=1,求解p,可得解析式;(2)由函数g(x)=f2(x)+mf(x),x∈[1,9],利用换元法转化为二次函数问题求解最小值,可得m的值;(3)由函数h(x)=n﹣f(x+3),求解h(x)的解析式,判断其单调性,根据在[a,b]上的值域为[a,b],转化为方程有解问题求解n的取值范围.【解答】解:(1)∵f(x)是幂函数,∴得p2﹣3p+3=1,解得:p=1或p=2当p=1时,f(x)=,不满足f(2)<f(4).当p=2时,f(x)=,满足f(2)<f(4).∴故得p=2,函数f(x)的解析式为f(x)=;(2)由函数g(x)=f2(x)+mf(x),即g(x)=,令t=,∵x∈[1,9],∴t∈[1,3],记k(x)=t2+mt,其对称在t=,①当≤1,即m≥﹣2时,则k(x)min═k(1)=1+m=0,解得:m=﹣1;②当13时,即﹣6<m<﹣2,则k(x)min═k()==0,解得:m=0,不满足,舍去;③当时,即m≤﹣6时,则k(x)min═k(3)=3m+9=0,解得:m=﹣3,不满足,舍去;综上所述,存在m=﹣1使得g(x)的最小值为0;(3)由函数h(x)=n﹣f(x+3)=n﹣在定义域内为单调递减函数,若存在实数存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]则h(x)=两式相减:可得:=(a+3)﹣(b+3).∴③将③代入②得,n=a+=a+1令,∵a<b,∴0≤t,得:n=t2﹣t﹣2=(t﹣)2﹣故得实数n的取值范围(,﹣2].【点评】本题主要考查幂函数解析式,函数最值的求解,方程与不等式的性质,讨论思想以及一元二次函数的性质是解决本题的关键.属于难题.。

福建省福州一中2020-2021学年高一上学期期中数学考试试题

福建省福州一中2020-2021学年高一上学期期中数学考试试题

福建省福州一中2020-2021学年高一上学期期中数学考试试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 命题“存在,”的否定是()A.对任意的,B.对任意的,C.不存在,D.存在,2. 幂函数的图象过点,则它的单调增区间是()A.B.C.D.3. 若集合,,且,则集合C=()A.B.C.D.4. 若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5. 设则的大小关系是()A.B.C.D.6. 设函数,则下列结论中正确的是()A.B.C.D.7. 若()A.B.C.D.8. 已知,则“”是“恒成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件二、多选题9. 设,,若,则实数a的值可以为()A.B.0 C.3D.10. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油11. 函数的图像可能是()A.B.C.D.12. 已知a,b,,若,且,则下列结论正确的是()A.B.C.c的最大值为1 D.a的最小值为-1三、填空题13. =________.14. 函数的定义域为,则函数的定义域是________.15. 已知满足对于任意实数,都有成立,则实数a的取值范围是________.16. 若函数(,且)的值域为,则实数a的取值范围是________.四、解答题17. 已知集合,.(1)若,求a的取值范围;(2)若,求a的取值范围.x-2 -1 0 1 2(1)填写表格后描点,并画出的图象;(2)写出的最小值,以及不等式的解集.19. 已知为奇函数.(1)求证:为增函数;(2)求的值域.20. 已知定义在R上的函数对任意x,都有等式成立,且当时,有.(1)求证:函数在R上单调递增;(2)若,且当时,恒成立,求实数m 的取值范围.21. 某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.22. 已知函数满足,对于任意,,且.(1)求函数解析式;(2)讨论方程在区间上的根个数.。

2020-2021学年第一学期高一数学期中考试联考试卷福建省

2020-2021学年第一学期高一数学期中考试联考试卷福建省

2020-2021学年高一第一学期期中数学(时间: 120分钟, 满分: 150 分)一.选择题(本大题共8个小题,每小题5分,共40分)1.已如集合M={-1,1,3, 5}, N=(-2,1,2,3,5} 则M ∩N=( )A. {-1,1,3}B.{1,2,5)C.{1,3, 5}D. ∅2.已知幂函数y= f(x)的图像过(36, 6),则此幂函数的解析式是( ) A.31x y = B. 3x y = C.21x y = D. 2x y = 3.函数112)(2--=x x x f 的定义城为( ) A.),21[+∞ B. (1+∞) C. )∞(1,+)21(-1, ⋃ D. )∞,1)U(1,+21[4.下列命题中是全称量词命题并且是真命题的是( )A.0>1+2x +x R,∈x 2∀B.所有菱形的4条边都相等C.若2x 为偶数,则x ∈ND.π是无理数5.设x ∈R ,则“|x-3|<1"是“x>2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知x ,Y 都是正数,xy=1,则yx 41+的最小值为( ) A.3 B. 4 C. 5 D.67. 定义在R 上的偶函数f(x)满足:对任意的2121),,0[,x x x x ≠+∞∈,有0)]()()[(1212<--x f x f x x ,则( )A. f(3)<f(-2)<f(1)B. f(1)<f(-2)<f(3)C. f(3)<f(1)<f(-2)D. f(-2)<f(1)<f(3)8.已知函数f(x)的定义域为R,满足f(x)=2f(x+2),且当x ∈[-2,0) 时,491)(++=x x x f ,若对任意的m ∈[m ,+∞),都有31≤f(x),则m 的取值范围为( ) ),511.[+∞-A ),310.[+∞-B ),25.[+∞-C ),411.[+∞-D 二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中, 有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分,)9.若集合A={x|x 2-3x=0,则有( )A. 0⊆AB.{3}∈AC. {0,3}⊆AD.A ⊆{y|y<4}10.下列各组的数表示不同函数的是( ) A.f (x )=2x ,g (x )=|x|11)(,1)(.)()(,)(.)(,1)(.2220--=+=====x x x g x x f D x x g x x f C x x g x f B11.若非零实数a ,b 满足a<b ,则下列不等式不一定成立的是( ) A.1<b a B.2≥+b a a b C.2211baab < D.b b a a +<+22 12.对x ∈R, [x] 表示不超过x 的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列结论中正确的是( )A. 任意x ∈R, x<[x]+1B. y=[x],x ∈R 的图像关于原点对称C.函数y=x-[x],(x ∈R),y 的取值范围为[0,1)D. 任意x,y ∈R, [x]+[y]≤[x+y]恒成立三填空愿(每小题5分,共20分)13. 命题“21)21(,100≥>∃x x ”的否定是: ; 14.已知函数⎩⎨⎧>-<+0,40x 4,x =f(x)x x 则f[f(-3)]的值: ;15.若函数f (x )=a ax x ++2的定义域为R ,则实数a 的取值范围是: ;16.某地每年销售木材约20万立方米,每立方米价格为2 400元.为了减少木材消耗,决定按销售收人的t%征收木材税,这样每年的木材销售量减少2.5t 万立方米.为了既减少木材消耗又保证税金收人每年不少于900万元,求实数t 的取值范围 ;四.解答题:本大题共6小题,共70分。

2020-2021学年福州一中高三上学期期中数学试卷(含解析)

2020-2021学年福州一中高三上学期期中数学试卷(含解析)

2020-2021学年福州一中高三上学期期中数学试卷一、单选题(本大题共8小题,共40.0分)1.与命题“若m∈M,则n∉M”等价的命题()A. 若m∉M,则n∉MB. 若n∉M,则m∈MC. 若m∉M,则n∈MD. 若n∈M,则m∉M2.设复数z满足z(2−3i)=6+4i(i为虚数单位),则|z|=()A. 4B. 2C. √2D. 13.设集合A={y|y=lnx,x>1},集合B={x|y=√4−x2},则A∩∁R B=()A. ⌀B. (0,2]C. (2,+∞)D. (−∞,−2)∪(2,+∞)4.实数a、b满足a<b<0,按顺序a、a+b、b、√ab可以构成的数列()2A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列5.给出四个函数,分别满足①f(x+y)=f(x)+f(y),②g(x+y)=g(x)·g(y),③ℎ(x·y)=ℎ(x)+ℎ(y),④m(x·y)=m(x)·m(y).又给出四个函数的图像,那么正确的匹配方案可以是()甲乙丙丁A. ①甲,②乙,③丙,④丁B. ①乙,②丙,③甲,④丁C. ①丙,②甲,③乙,④丁D. ①丁,②甲,③乙,④丙6.如图是一个简单几何体的三视图,其正视图和左视图是边长为2的正三角形,其俯视图是边长为2的正方形,则该几何体的体积为()A.B. C. D. 7. 下列函数中,满足f(xy)=f(x)+f(y)的单调递增函数是( )A. f(x)=log 2xB. f(x)=x 2C. f(x)=2xD. f(x)=log 12x 8. 若函数y =2 x 图象上存在点(x ,y )满足约束条件则实数m 的最大值为( )A. B. 1 C. D. 2二、多选题(本大题共4小题,共20.0分)9. 函数f(x)=sin(ωx +φ)(ω>0,|φ|<π2),f(5π12)=0,f(2π3)=−1,且f(x)在(−π3,π12)上单调,则下列结论正确的是( ) A. (−7π12,0)是f(x)的一个对称中心B. 函数f(x)的图象关于直线x =π6对称C. 函数f(x)在区间[π24,π4]的值域是[√22,√32]D. 将y =sinx 的图象的横坐标缩短为原来是12,然后向左平移π12个单位得到f(x)的图象10. 对任意向量a ⃗ ,b ⃗ ,c ⃗ ,下列关系式中恒成立的是( ) A. |a ⃗ ⋅b ⃗ |≤|a ⃗ ||b ⃗ |B. (a ⃗ ⋅b ⃗ )c ⃗ =a ⃗ (b ⃗ ⋅c ⃗ )C. (a ⃗ +b ⃗ )2=|a ⃗ +b ⃗ |2D. (a ⃗ +b ⃗ )⋅(a ⃗ −b ⃗ )=|a ⃗ |2−|b ⃗ |211. 下列有关向量命题,不正确的是( )A. 若{a ⃗ ,b ⃗ }是平面向量的一组基底,则{a ⃗ −2b ⃗ ,−a ⃗ +2b ⃗ }也是平面向量的一组基底B. 已知点A(6,2),B(1,14),则AB ⃗⃗⃗⃗⃗ 方向上的单位向量为(−513,1213)C. 若a ⃗ //b ⃗ ,则存在唯一的实数λ,使得a ⃗ =λb ⃗D. 若|a ⃗ |=1,|b ⃗ |=6,则|a ⃗ +b ⃗ |的取值范围[5,7]12. 分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可循的.下面我们用分形的方法来得到一系列图形,如图1,段AB 的长度为a ,在线段AB 上取两个点C ,D ,使得AC =DB =14AB ,以CD 为边在线段AB 的上方作一个正六边形,然后去掉线段CD ,得到图2中的图形;对图2中的最上方的线段EF 做相同的操作,到图3中的图形;……依此类推,得到第n 个图形.记第n 个图形(图1为第1个图形)中的所有线段长的和为S n ,现给出有关数列{S n }的四个结论,其中正确的有( )A. 数列{S n }是等比数列B. 数列{S n }是递增数列C. 存在最小的正数a ,使得对任意的正整数n ,都有S n >2020D. 存在最大的正数a ,使得对任意的正整数n ,都有S n <2020三、单空题(本大题共1小题,共5.0分)13. 在三棱锥中,已知,则三棱锥外接球的表面积为 . 四、解答题(本大题共9小题,共85.0分)14. 已知平面向量OP 1⃗⃗⃗⃗⃗⃗⃗ 、OP 2⃗⃗⃗⃗⃗⃗⃗ 、OP 3⃗⃗⃗⃗⃗⃗⃗ 满足条件OP 1⃗⃗⃗⃗⃗⃗⃗ +OP 2⃗⃗⃗⃗⃗⃗⃗ +OP 3⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,|OP 1⃗⃗⃗⃗⃗⃗⃗ |=|OP 2⃗⃗⃗⃗⃗⃗⃗ |=|OP 3⃗⃗⃗⃗⃗⃗⃗ |=1.(1)求证:△P 1P 2P 3是正三角形;(2)试判断直线OP 1与直线P 2P 3的位置关系,并证明你的判断.15.某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费p=100+3(5−x)+2(8−y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?16.设函数f(x)=m⃗⃗⃗ ⋅n⃗,其中向量m⃗⃗⃗ =(2cosx,1),n⃗=(cosx,√3sin2x),x∈R.(1)求f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1,△ABC的面积为√3,求2 c的值.17.在△ABC中,角A,B,C的对边分别为a,b,c,且csinA=√3acosC(1)求角C的值;(2)若a=8,c=7,求△ABC的面积.18.如图,P为菱形ABCD所在平面外一点,且△PAD为正三角形,∠BAD=60°,E为PC的中点.(1)求证:AP//平面BDE;(2)求证:AD⊥PB.19.已知数列{a n}满足:a1=1,a n+1−a n=2,n∈N∗,数列{a n}的前n项和为S n(1)求数列{a n}的通项公式及前n项和S n公式;}的前n项和T n.(2)求数列{1a n⋅a n+120.如图,正方形ADEF与梯形ABCD所在的平面相互垂直,AB//CD,AB⊥AB=1,点M在线段EC上.BC,DC=BC=12(1)证明:平面BDM⊥平面ADEF;(2)若AE//平面MDB,求三棱锥E−MDB的体积.21.已知函数f(x)=xe x+1.(1)求函数f(x)的极值;(2)若直线y=m与函数f(x)的图象有两个不同交点A(x1,y1),B(x2,y2),求证:x1+x2<−2.22.已知f(x)=2ax+blnx−1,设曲线y=f(x)在点(1,f(1))处的切线为y=0.(Ⅰ)求实数a,b的值;(Ⅱ)设函数g(x)=mf(x)+x2−mx.2(i)若m∈R,求函数g(x)的单调区间;(ii)若1<m<3,求证:当x∈[1,e]时,g(x)<e2−2.2。

福建省福州市2021-2022学年高一上学期期中考试数学试题含解析

福建省福州市2021-2022学年高一上学期期中考试数学试题含解析

福州2021-2022学年第一学期期中考数学试卷(答案在最后)一、选择题(共8小题)1.已知全集{}1,2,3,4,5,6U =,集合{}2,3,5A =,集合{}1,3,4,6B =,则集合U A B ⋂=()ðA.{}3 B.{}2,5 C.{}1,4,6 D.{}2,3,5【答案】B 【解析】【详解】{}2,3,5A =,{}2,5U B =ð,则{}2,5U A B ⋂=()ð,故选B.考点:本题主要考查集合的交集与补集运算.2.命题“2,10x Q x x ∀∈++>”的否定为()A.2,10x Q x x ∃∈++>B.2,10x Q x x ∀∈++≤C.2,10x Q x x ∃∈++≤D.2,10x Q x x ∃∉++≤【答案】C 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】解:因为全称命题的否定为特称命题,所以命题“2,10x Q x x ∀∈++>”的否定为“2,10x Q x x ∃∈++≤”,故选:C.3.下列函数中既是奇函数,又是增函数的是()A.1()f x x=-B.()3xf x = C.3()log f x x= D.()f x =【答案】AD 【解析】【分析】由幂函数、指数函数、对数函数的奇偶性与单调性即可求解.【详解】解:对A :1()f x x=-是奇函数,且是增函数,符合题意;对B :()3x f x =不具有奇偶性,是增函数,不符合题意;对C :3()log f x x =不具有奇偶性,是增函数,不符合题意;对D :13()f x x==是奇函数,且是增函数,符合题意;故选:AD.4.设()f x 为奇函数,且当0x ≥时,()1x f x e -=-,则当0x <时,()f x =()A.e 1x -- B.e 1x -+ C.e 1x --- D.1x e -+【答案】D 【解析】【分析】首先设0x <,得到0x ->,再代入()1x f x e -=-,利用函数的奇偶性求解即可.【详解】设0x <,则0x ->,因为函数()f x 为奇函数,且当0x ≥时,()1x f x e -=-,()()1x f x e f x -=-=-,即:()1x f x e =-+.故选:D5.某高校为加强学科建设,制定了第“十四五”(2021-2025)规划,计划逐年加大科研经费投入,已知该校计划2021年全年投入科研资金20万元,2025年全年投入科研资金28万元,则第“十四五”期间,投入科研资金的年均增长率约为()A.141.41- B.151.41- C. 1.4log 51- D.1.4log 41-【答案】A 【解析】【分析】设年增长率为x ,由题意可得()420128x +=,从而即可求解.【详解】解:设年增长率为x ,由题意可得()420128x +=,即()4281 1.420x +==,所以141 1.4x +=,解得141.41x =-,所以投入科研资金的年均增长率约为141.41-,故选:A.6.函数2()21x xf x x =-+的图象大致为()A. B.C. D.【答案】A 【解析】【分析】根据奇偶函数的定义证明()f x 是偶函数,可排除B 、C ;再由()20f >可排除D.【详解】由题意知,函数()f x 的定义域为R ,()221x x f x x =-+2=21xxx x⋅-+,则()f x -22=2121x x xxx x x x---⋅+⋅-=++,所以()()f x f x =-,即函数()f x 为偶函数,故可排除B 和C ;当2x =时,()605f x =>,故可排除D.故选:A7.冈珀茨模型()tb y k a=⋅是由冈珀茨(Gompertz )提出,可作为动物种群数量变化的模型,并用于描述种群的消亡规律.已知某珍稀物种t 年后的种群数量y 近视满足冈珀茨模型:0.1251.40tey k e -=⋅(当0=t 时,表示2020年初的种群数量),若()m m N*∈年后,该物种的种群数量将不足2020年初种群数量的一半,则m 的最小值为()(ln 20.7)≈A.9 B.7 C.8D.6【答案】D 【解析】【分析】由已知模型列出不等式后,取对数变形求解.【详解】由已知0.12501.4 1.40012me e k ek e -⋅≤⋅,显然00k >,0.1251.4 1.412me ee -≤,两边取自然对数有:0.1251.4 1.4ln 20.7m e -≤-≈,0.12512m e -≤,所以0.125ln 20.7m -≤-≈-, 5.6m ≥.m 的最小值为6.故选:D .8.设34c =,4log 3b =,5log 4a =,则a ,b ,c 的大小关系为()A.b c a >>B.b a c >>C.a b c>> D.c b a>>【答案】C 【解析】【分析】对于a ,b 的比较,构造函数,通过研究函数的单调性来进行比较,对于a ,c 或b ,c 的比较通过作差法来进行比较【详解】444444log 33l 8164og og 0l b c ---=>=,故b c>;555444log 43lo 2561250g log a c --=->=,故a c >;4ln 3log 3ln 4b ==,5ln 4log 4ln 5a ==令()()ln ln 1xf x x =+,(0x >),则()()()()()()()()()()2221ln 1ln ln 1ln 11ln 1ln 1ln 11ln 11ln 1x xx x x x x x x x x f x x x x x x x x ⎛⎫++++- ⎪++-⎝⎭+'===+++++因为0x >,所以111x +>,1ln 10x ⎛⎫+> ⎪⎝⎭,()ln 10x +>,故()0f x '>恒成立,()()ln ln 1xf x x =+在0x >上单调递增,所以()()43f f >,故a b>综上:a b c >>故选:C二、多选题(共4小题)9.下列结论正确的是()A.lg(25)lg 2lg 5+=⋅B.1= C.1383272-⎛⎫=⎪⎝⎭D.24log 3log 6=【答案】BC 【解析】【分析】AD 选项应用对数运算法则进行计算,B 选项利用根式化简法则进行求解;C 选项,利用指数运算法则进行计算【详解】lg(25)lg 2lg 5+=⋅错误,正确的应该是lg(25)lg 2lg 5⨯=+,故A错误;,B 选项正确;1131338223==27332---⎡⎤⎛⎫⎛⎫⎛⎫=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,C 选项正确;4221log 6=log 6=log 2D 选项错误.故选:BC10.下列四个命题中,真命题是()A.22a b ac bc >⇒> B.22||a b a b >⇒> C.11a b a b>⇒< D.22||a b a b>⇒>【答案】BD 【解析】【分析】利用不等式的性质分别对选项进行验证,即可得到答案.【详解】对于A 选项,当0c =时,22=ac bc ,故A 错误;已知||0b ≥,即||0a b >≥,左右两边同时平方即可得到22a b >,故B 正确.;当,a b 同号时,11a b a b>⇒<,当,a b 异号时,11a b a b>⇒>,故C 错误;22||||||a b a b a b >⇒>⇒>,故D 正确.故选:BD.11.下列命题中真命题的是()A.“1x >”是“21x >”的充分不必要条件B.若(1)f x +是偶函数,则()f x 的图像关于直线1x =-轴对称C.若(2)()f x f x +=--,则()f x 的图像关于点(1,0)-中心对称D.[1,1]x ∃∈-,使得方程21ax =有解的充要条件是1a ≥【答案】AD 【解析】【分析】解不等式21x >,再根据充分条件和必要条件的定义即可判断A ;根据偶函数的图像的特征及函数()f x 与函数(1)f x +图像的关系即可判断B ;由(2)()f x f x +=--,可得()()()111f x f x f x +=---=--+⎡⎤⎣⎦,再根据函数()f x 与函数(1)f x +图像的关系即可判断C ;根据方程21ax =有解,求得a 的范围,再根据充分条件和必要条件的定义即可判断D.【详解】解:对于A ,由21x >,得1x >或1x <-,所以“1x >”是“21x >”的充分不必要条件,故A 正确;对于B ,若(1)f x +是偶函数,则(1)f x +的图像关于y 轴对称,()f x 的图像是由函数(1)f x +向右平移1个单位得到的,所以函数()f x 的图像关于直线1x =轴对称,故B 错误;对于C ,若(2)()f x f x +=--,所以()()()111f x f x f x +=---=--+⎡⎤⎣⎦,令1m x =+,则()()f m f m =--,所以函数()f m 关于原点对称,又()f x 是由函数()f m 向右平移1个单位得到的,所以函数()f x 的图像关于点(1,0)中心对称,故C 错误;对于D ,[1,1]x ∃∈-,使得方程21ax =有解,当0x =时,01=不成立,舍去,当0x ≠时,即[)(]1,00,1x ∈- ,则211a x=≥,所以1a ≥,综上所述1a ≥,所以[1,1]x ∃∈-,使得方程21ax =有解的充要条件是1a ≥,故D 正确.故选:AD.12.已知函数()2xf x e x =+-的零点为1x ,函数()ln 2g x x x =+-的零点为2x ,则()A.122x x +=B.122x x > C.122x x e e e+> D.122x x <【答案】ACD 【解析】【分析】依题意可得112x e x =-,22ln 2x x =-,根据反函数的性质可得122x x +=,再利用基本不等式判断C ,利用零点存在性定理得到1102x <<、21x <<函数的单调性判断B 、D ;【详解】解:函数()2x f x e x =+-的零点为1x ,函数()ln 2g x x x =+-的零点为2x ,可得112x e x =-,22ln 2x x =-,即有1221ln 4()x e x x x +=-+,由x y e =的反函数ln y x =关于直线y x =对称,x y e =与直线2y x =-的交点为11(,2)x x -,ln y x =与直线2y x =-的交点为22(,2)x x -,可得122x x =-,即122x x +=,故A 正确;由基本不等式得,122x x e e e += ,而12x x ≠,∴等号不成立,故122x x e e e +>,故C 正确;因为()010f =-<,11221112 2.2520222f e ⎛⎫=+->+-= ⎪⎝⎭,所以1102x <<所以()12111220232x x x x x =----<=,所以122x x <,故B 错误;又()1ln1121g =+-=-,11221122 2.252022g e ==+->+-=,所以21x <<则()1222222ln x x x x x x -==,因为ln y x x =在(上单调递增,所以1222ln 2x x x x =<=,故D 正确;故选:ACD三、填空题(共4小题)13.函数()f x =___________,值域为___________.【答案】①.(,3]-∞②.[0,)+∞【解析】【分析】由真数大于0和被开方数大于等于0,可得不等式组,解不等式组,即可得定义域,根据对数函数的值域可知()f x 的值域.【详解】由题意得:()40,4,3lg 40,3,x x x x x -><⎧⎧⇒⇒≤⎨⎨-≥≤⎩⎩,∴函数的定义域为(],3-∞,(,3]x ∈-∞ ,lg(4)0x ∴-≥,0≥∴,即()f x =的值域为[0,)+∞.故答案为:(],3-∞;[0,)+∞14.已知函数()22x x f x a -=⋅-是偶函数,则=a ___________.【答案】-1【解析】【分析】根据奇偶函数的性质可得()()f x f x =-,列出方程,进而解出a 的值.【详解】因为函数()22x x f x a -=⋅-是偶函数,所以()()f x f x =-,又()22x x f x a --=⋅-,所以22x x a -⋅-=22x x a -⋅-,即(1)(22)0x x a -+-=,所以1a =-.故答案为:-115.已知a R ∈,函数2()log f x a x =.若2t ∀≥,使得(2)()1f t f t +-≤,则实数a 的最大值是___________.【答案】1【解析】【分析】化简(2)()1f t f t +-≤,得到212log a t t≤+在2t ∀≥上恒成立,故求出212log t t+在2t ≥的最小值1,让1a ≤即可【详解】(2)()1f t f t +-≤,即2222log (2)log log 1t a t a t a t++-=≤,因为2t ≥,所以22222log log 1log 10t t t +⎛⎫=+>= ⎪⎝⎭,所以212log a t t≤+恒成立,其中2222log log 1t y t t +⎛⎫==+ ⎪⎝⎭在2t ≥时单调递减,故22222log log 12t t ++≤≤,所以2112log t t≥+,所以1a ≤,故实数a 的最大值是1故答案为:116.已知函数()f x 满足21,0()lg ,0x x f x x x ⎧-≤⎪=⎨>⎪⎩,若方程22[()]4()20f x mf x m -++=有四个不相等的实数根,则实数m 的取值范围为___________.【答案】3m >或13m <<【解析】【分析】令()t f x =,则方程22[()]4()20f x mf x m -++=转化为22420t mt m -++=,作出函数()f x 的图象,由题意,原问题等价于22420t mt m -++=有两个大于1的不等实数根,根据一元二次方程根的分布列出不等式组求解即可得答案.【详解】解:令()t f x =,则方程22[()]4()20f x mf x m -++=转化为22420t mt m -++=,作出函数()f x的图象如下图所示,由题意,方程22[()]4()20f x mf x m -++=有四个不相等的实数根,即22420t mt m -++=有两个大于1的不等实数根,令22()42h t t mt m =-++,则()()22224420412(1)1420m m m h m m ⎧∆=--+>⎪⎪-->⎨⎪=-++>⎪⎩解得3m >或13m <<,则实数m 的取值范围为3m >或13m <<,故答案为:3m >或13m <<.四、解答题(共6小题)17.已知全集U =R ,集合{}{}2log 21,3327xA x x aB x =-≥=<<.(1)当3a =时,求A B ;(2)在①B A ⊆;②A B ⋂≠∅;③()U A B A ⋃=ð中任选一个条件,求实数a 的取值范围.【答案】(1)5|32x x ⎧⎫≤<⎨⎬⎩⎭(2)答案见解析【解析】【分析】(1)首先解指数不等式、对数不等式及绝对值不等式求出集合A 、B ,再根据交集的定义计算可得;(2)根据所选条件,得到不等式组,即可求出参数的取值范围;【小问1详解】解:由3327x <<,即13333x <<,解得13x <<,即{}{}|3327|13xB x x x =<<=<<,由21l g 2o x a -≥,即22log log 22x a -≥,所以22x a -≥,即22x a -≥或22x a -≤-,解得12a x ≥+或12a x ≤-,即{}2log 21A x x a =-≥{|12a x x =≥+或1}2a x ≤-当3a =时5{|2A x x =≥或1}2x ≤所以5|32⎧⎫=≤<⎨⎬⎩⎭A B x x 【小问2详解】解:由(1)可知{|12a A x x =≥+或1}2ax ≤-,{}|13B x x =<<;若选①,B A ⊆,则112a +≤或132-≥a,解得0a ≤或8a ≥,即(][),08,a ∈-∞⋃+∞;若选②,若A B =∅ ,则132112a a ⎧+≥⎪⎪⎨⎪-≤⎪⎩,解得4a =,所以4a ≠时A B ⋂≠∅;若选③,因为{}|13B x x =<<,所以{|1U B x x =≤ð或3}x ≥,因为()U A B A ⋃=ð,所以()U B A ⊆ð,所以132112aa ⎧+≤⎪⎪⎨⎪-≥⎪⎩,解得4a =;18.设函数2()2(2)1f x mx m x =+++.(1)若()f x 在[1,)+∞单调递增,求实数m 的取值范围;(2)解关于x 的不等式()0f x ≤.【答案】(1)0m ≥(2)当2m ≤-时,11,,2m ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ ;当20m -<<时,11,,2m ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭;当0m =时,1,2⎛⎤-∞- ⎥⎝⎦;当02m <<时,11,2m ⎡⎤--⎢⎥⎣⎦;当2m ≥时,11,2m ⎡⎤--⎢⎥⎣⎦.【解析】【分析】(1)根据m 是否为0分类讨论,不等于0时根据二次函数的性质列式求解即可;(2)根据m 与0的大小分类讨论求解即可.【小问1详解】当实数0m =,()21f x x =+,()f x 在[1,)+∞单调递增,符合题意.当实数0m ≠,根据二次函数的性质,函数()f x 的对称轴为24m m+-,要使得()f x 在[1,)+∞单调递增,则2140m m m +⎧-≤⎪⎨⎪>⎩,解得0m >综上述,0m ≥.【小问2详解】当实数0m =,()21f x x =+,()0f x ≤时,12x ≤-.当实数0m >,()()2()2(2)11210f x mx m x mx x =+++=++≤如果112m -<-,即02m <<时,()0f x ≤得112x m -≤≤-,如果112m -≥-,2m >时,()0f x ≤得112x m-≤≤-.当实数0m <,此时1102m ->>-,()()()1210f x mx x =++≤,()()()1210f x mx x =--+≥解得12x ≤-或1x m ≥-综上述,()0f x ≤的解集为:当0m <时,11,,2m ⎛⎤⎡⎫-∞--+∞ ⎪⎥⎢⎝⎦⎣⎭;当0m =时,1,2⎛⎤-∞- ⎥⎝⎦;当02m <<时,11,2m ⎡⎤--⎢⎥⎣⎦;当2m ≥时,11,2m ⎡⎤--⎢⎣⎦.19.已知函数2()4mx n f x x +=+是定义在[2,2]-上的奇函数,且1(1)5f =.(1)求m ,n 的值,判断函数()f x 的单调性并用定义加以证明;(2)求使()2(1)10f a f a -+-<成立的实数a 的取值范围.【答案】(1)1,0==m n ,增函数,证明见解析(2)11a -≤<【解析】【分析】(1)因为函数()f x 为定义在[2,2]-上的奇函数,所以(0)0f =,又1(1)5f =,由此可得m ,n 的值,再由单调性定义判断函数的单调性;(2)()2(1)10f a f a -+-<,即()2(1)1f a f a -<-,根据定义域及单调性列出不等式组,从而可得出答案.【小问1详解】解:因为函数2()4mx nf x x +=+是定义在[2,2]-上的奇函数,所以()00f =,即04n=,解得0n =,又因1(1)55m f ==,所以1m =,所以1,0==m n ,2()4xf x x =+,经检验符合题意,在[2,2]-上任取1x ,2x ,且12x x <,则1212121222221212()(4)()()44(4)(4)x x x x x x f x f x x x x x ---=-=++++,因为1222x x -< ,所以120x x -<,1240x x ->,所以12())0(f x f x -<,即12()()f x f x <,所以函数()f x 在[2,2]-单调递增;【小问2详解】解:因为()2(1)10f a f a -+-<,所以()2(1)1f a f a -<--,即()2(1)1f a f a -<-,因为函数()f x 在[2,2]-单调递增,所以2211212212a a a a ⎧-<-⎪-≤-≤⎨⎪-≤-≤⎩,解得11a -≤<.20.已知函数44()32log ,()log f x x h x x =-=.(1)当[1,16]x ∈时,求函数()[()1]()g x f x h x =+⋅的值域;(2)如果对任意的[1,16]x ∈,不等式()2()f x f m h x ⋅>⋅恒成立,求实数m 的取值范围.【答案】(1)[0,2](2)3m <-【解析】【分析】(1)设4log t x =,把函数转化为二次函数,利用二次函数性质可得值域;(2)设4log t x =换元,分类0=t 时不等式成立,在(0,2]t ∈时,分离参数后应用函数单调性求得最小值得结论.【小问1详解】设4log t x =,由[1,16]x ∈得[0,2]t ∈,22()(321)242(1)2g x t t t t t =-+=-+=--+,所以1t =时,max ()2g x =,2t =或0时,min ()0g x =,所以所求值域为[0,2];【小问2详解】设4log t x =,又[1,16]x ∈,所以[0,2]t ∈,不等式()2()f xf m h x ⋅>⋅为2444(32log )(32log log x m x -->,即(34)(3)t t mt -->,0=t ,不等式显然成立,(]0,2t ∈时,不等式化为(34)(3)9415t t m t t t--<=+-,9415153t t +-≥-=-,当且仅当32t =时,等号成立,所以3m <-.综上,3m <-.21.已知福州地铁2号线路通车后,地铁的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,地铁的载客量与发车的时间间隔t 相关,当1020t ≤≤时,地铁为满载状态,载客量为400人;当210t ≤<时,载量会减少,减少的人数与()210t -成正比,且发车时间间隔为2分钟时的载客量为272人,记地铁的载客量为()p t .(1)求()p t 的表达式,并求发车时间间隔为6分钟时地铁的载客量;(2)若该线路每分钟的净收益为()123000150p t Q t-=-(元).问:当地铁发车时间间隔多少时,该线路每分钟的净收益最大?【答案】(1)()()2400210,210400,1020t t p t t ⎧--≤<⎪=⎨≤≤⎪⎩,发车时间间隔为6分钟时地铁的载客量为368人.(2)当地铁发车时间间隔为5分钟时,该线路每分钟的净收益最大.【解析】【分析】(1)当210t ≤<时,设()()240010p t k t =--,由()2272p =可求出k 的值,结合已知条件可得出函数()p t 的函数解析式,进而可求得()6p 的值;(2)分210t ≤<、1020t ≤≤两种情况讨论,求出Q 关于t 的函数解析式,利用基本不等式以及函数的单调性可求得Q 的最大值及其对应的t 值,即可得出结论.【小问1详解】解:当210t ≤<时,设()()240010p t k t =--,则()240064272p k =-=,解得2k =.由题意可得()()2400210,210400,1020t t p t t ⎧--≤<⎪=⎨≤≤⎪⎩.所以,发车时间间隔为6分钟时地铁的载客量为()2640024368p =-⨯=(人).【小问2详解】解:当210t ≤<时,()21230004802460060015015033024p t t t Q t t t t ---⎛⎫=-=-=-+ ⎪⎝⎭33090≤-(元),当且仅当5t =时,等号成立;当1020t ≤≤时,()1230001800150150p t Q tt-=-=-,此时函数1800150Q t =-单调递减,则18001503010Q ≤-=,当且仅当10t =时,等号成立.综上所述,当地铁发车时间间隔为6分钟时,该线路每分钟的净收益最大.22.对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数.①对任意的[0,1]x ∈,总有()0f x ≥;②当11120,0,1x x x x ≥≥+≤时,总有()()()1212f x x f x f x +≥+成立.已知函数2()g x x =与()21x h x a =⋅-是定义在[0,1]上的函数.(1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,(i )求实数a 的值;(ii )讨论关于x 的方程()21()()xg h x m m R --=∈解的个数情况.【答案】(1)是,理由见解析;(2)(i )1;(ii )详见解析.【解析】【分析】(1)根据G 函数的定义求解;(2)(i )根据函数()h x 是G 函数,由[0,1]x ∈,总有021x a ⋅-≥成立,求得1a ≥再由②当11120,0,1x x x x ≥≥+≤时,总有()121221222x x x x a a +≥⋅-+-成立,由()()12111221x x a -≤--,对11120,0,1x x x x ≥≥+≤时成立,求得1a ≤求解;(ii )将方程()21()()xg h x m m R --=∈,转化为()()22121x xm ---=,令[]210,1xt =-∈,转化为221124m t t t ⎛⎫=-=-- ⎪⎝⎭求解.【小问1详解】解:函数()g x 是为G 函数,理由如下:①对任意的[0,1]x ∈,总有2()0g x x =≥;②当12120,0,1x x x x ≥≥+≤时,()()()()222212122121212122x x x x x x g g x x x x x g x ==+++⋅=++≥+,所以函数()g x 是为G 函数,【小问2详解】(i )因为函数()h x 是G 函数,则①[0,1]x ∈,总有021x a ⋅-≥成立,即12xa ⎛⎫≥ ⎪⎝⎭,对[0,1]x ∈成立,所以1a ≥②当11120,0,1x x x x ≥≥+≤时,总有()121221222x x x x a a +≥⋅-+-成立,即()()12111221x x a -≤--,对11120,0,1x x x x ≥≥+≤时成立因为11120,0,1x x x x ≥≥+≤,所以12211,21100x x ≤≤--≤≤,因为12,x x 不同时为1,所以()()120211211xx <---≤,当120x x ==时,等号成立,所以1a ≤,综上:1a =,(ii )方程()21()()xg h x m m R --=∈,即为()()22121x xm ---=,令[]210,1xt =-∈,则方程为221124m t t t ⎛⎫=-=-- ⎪⎝⎭,当14m <-或0m >时,方程无解;当14m=-时,方程一个解;当104m-<≤时,方程有两个解.。

福建省福州三中届高三第一学期期中考试(数学理).pdf

福建省福州三中届高三第一学期期中考试(数学理).pdf

* * * * ③唐雎一连举了专诸、聂政、要离等三个人物,其目的是什么? ④“若士必怒……今日是也。

”表现了唐雎的什么精神? 以这三个人物刺杀国君的事例,表明自己的决心,同时也是对秦王的一种威胁。

三个人物,三个排比句,语气强烈。

献身精神 ⑤讨论:唐雎说,怀怒未发,休降于天,你认为正确吗?为什么呢? 正确,唐雎这样说,主要说明一个人,在关键的时候,他会有所选择。

特别逝那些有胆识,有勇气的人,在国难当头时,会选择舍生取义。

学习课文第四段 : 秦王色挠,长跪而谢之曰: “先生坐!何至于此!寡人谕矣: 夫韩、魏灭亡,而安陵以五十里 之地存者,徒以有先生也。

” 脸色 náo 屈服 道歉 通“喻”,明白 可是 凭 仅,只 因为 再读本段课文 ,讨论问题: 1、面对唐雎严厉反击,秦王有什么行动和言语? 面对唐雎的反击,秦王软弱了,“色挠”“长跪而谢之”以及他说的“徒以有先生也”,都说明了他的外强中奸、色厉内荏的内心世界。

2、秦王的反映对刻画唐雎的形象有什么好处? 从侧面刻画了唐雎的形象,表现了唐雎的智勇超群、英气逼人的大无畏精神。

读课文,思考 : 1.人物的对话主要用了哪些修辞手法?试举例说明。

主要用了夸张、排比、对偶等修辞手法。

夸张:伏尸二人,流血五步,天下缟素。

排比;夫专诸刺王潦也……苍鹰击于殿上。

对偶:天子之怒,伏尸百万,流血千里。

2.这些修辞手法的运用有什么作用呢? 增强了文章的气势和语言的力量,使人物的对话具有强大的说服力,体现了雄峻奇伟的语言风格。

3.本文主要使用对话来描写,请分析对话的作用。

本文的对话描写的作用主要有: 其一,通过人物对话的描写有力地渲染了人物活动的环境。

其二,全文主要描写了人物的三处对白,传神而生动地刻画了不同人物的思想性格。

其三,通过人物对话描写巧妙地推动了故事情节的发展。

4.文中的对话,哪些详写,那些略写,为什么?可以看出文章的什么特点? 本文重点详写了唐雎与秦王的对话,而秦王与安陵君的对话一笔带过,这样突出了主人公,并通过其语言、动作描写,刻画了人物性格,突出了中心。

2020-2021福州市高中必修三数学上期中试题附答案

2020-2021福州市高中必修三数学上期中试题附答案

2020-2021福州市高中必修三数学上期中试题附答案一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .492.函数()log a x xf x x=(01a <<)的图象大致形状是( )A .B .C .D .3.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为an D .这组新数据的标准差为a n4.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<5.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +6.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长7.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i=A.9B.8C.7D.68.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,89.某城市2017年的空气质量状况如下表所示:污染指数T3060100110130140概率P1101613730215130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .5610.微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A .1.19B .1.23C .1.26D .1.3111.已知0,0,2,a b a b >>+=则14y a b=+的最小值是 ( ) A .72B .4C .92D .512.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,则该45名学生的数学成绩的中位数为( )A .127B .128C .128.5D .129二、填空题13.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________; 14.执行如图所示的框图,输出值______.15.如图,四边形ABCD 为矩形,3AB =,1BC =,以A 为圆心,1为半径作四分之一个圆弧»DE,在DAB ∠内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.16.在1270x y x y x -≤⎧⎪+≤⎨⎪>⎩的可行域内任取一点(),x y ,则满足230x y -≥的概率是__________.17.从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是______. 18.在平面直角坐标系中,横坐标与纵坐标都在集合A ={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线y x =上的概率为________.19.在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据: 年龄x21 24 3441 脂肪y9.5175.24.928.1由表中数据求得y 关于x 的线性回归方程为0.6ˆˆyx a =+,若年龄x 的值为50,则y 的估计值为 .20.从一副扑克牌中取出1张A ,2张K ,2张Q 放入一盒子中,然后从这5张牌中随机取出两张,则这两张牌大小不同的概率为__________.三、解答题21.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$y abx =+$ 42.0≈27.5≈22.现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进入高三后,由于改进了学习方法,甲、乙这两个学生的考试成绩预计同时有了大的提升:若甲(乙)的高二任意一次考试成绩为x ,则甲(乙)的高三对应的考试成绩预计为4x +.(1)试预测:高三6次测试后,甲、乙两个学生的平均成绩分别为多少?谁的成绩更稳定?(2)若已知甲、乙两个学生的高二6次考试成绩分别由低到高进步的,定义y 为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,求y 的平均值.23.袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为a ,第二次取出的小球标号为b . (1) 记事件A 表示“2a b +=”, 求事件A 的概率;(2) 在区间[]0,2内任取2个实数,x y , 记()2a b -的最大值为M ,求事件“22x y M +<”的概率.24.有编号为1210,,,A A A L 的10个零件,测量其直径(单位:cm ),得到下面数据: 编号1A2A3A4A5A6A7A8A9A10A直径 1.51 1.491.491.511.491.511.471.461.531.47其中直径在区间[]1.48,1.52内的零件为一等品.(1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率. (2)从一等品零件中,随机抽取2个; ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.25.某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车付费多于14元的概率为512,求甲停车付费恰为6元的概率;()2若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.26.为了了解某省各景区在大众中的熟知度,随机从本省1565:岁的人群中抽取了n 人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家AAAAA 级旅游景区?”,统计结果如下表所示: 组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525, a0.5第2组 [)2535, 18x第3组 [)3545, b 0.9 第4组 [)4555, 9 0.36第5组[)5565,3y(1)分别求出,,,a b x y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组抽取的人数;(3)在(2)中抽取的6人中随机抽取2人,求所抽取的人中恰好没有年龄段在[)3545,的概率【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==,故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.C解析:C 【解析】 【分析】确定函数是奇函数,图象关于原点对称,x >0时,f (x )=log a x (0<a <1)是单调减函数,即可得出结论. 【详解】由题意,f (﹣x )=﹣f (x ),所以函数是奇函数,图象关于原点对称,排除B 、D ; x >0时,f (x )=log a x (0<a <1)是单调减函数,排除A . 故选C . 【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n ,标准差为,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n ,标准差为.故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.4.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.5.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210.........1101010y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A.考点:样本数据的方差和平均数.6.D解析:D 【解析】 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项. 【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】模拟执行程序,当3,1n i == ,n 是奇数,得10,2n i ==,不满足条件1n =,不满足条件n 是奇数,5,3n i == ,不满足条件1n =,满足条件n 是奇数,16,4n i ==,不满足条件1n =,不满足条件n 是奇数,8,5n i ==,不满足条件1n =,不满足条件n 是奇数,4,6n i ==,不满足条件1n =,不满足条件n 是奇数,2,7n i ==,不满足条件1n =,不满足条件n 是奇数,1,8n i ==,满足条件1n =,输出8i =,选B.点睛:本题主要考查的知识点是循环结构的程序框图,当循环的次数不多或有规律时,常常采用模拟循环的方法解答,属于基础题.8.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图9.A解析:A 【解析】【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.10.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.11.C解析:C 【解析】 【分析】由题意结合均值不等式的结论即可求得14y a b=+的最小值,注意等号成立的条件. 【详解】 由题意可得:14y a b =+()11414522b a a b a b a b ⎛⎫⎛⎫=⨯++=⨯++ ⎪ ⎪⎝⎭⎝⎭152⎛≥⨯+ ⎝92=,当且仅当24,33a b==时等号成立.即14ya b=+的最小值是92.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.12.D解析:D【解析】分析:由茎叶图得出45名学生的数学成绩,从而求出中位数.详解:根据茎叶图得出45名学生的数学成绩,可知中位数为129.故选D.点睛:本题考查了茎叶图的应用问题,解题时应根据茎叶图中的数据,进行解答,属基础题..二、填空题13.【解析】【分析】设事件A表示第一张抽到奇数事件B表示第二张抽取偶数则P(A)P(AB)利用条件概率计算公式能求出在第一次抽到奇数的情况下第二次抽到偶数的概率【详解】解:从标有12345的五张卡片中依解析:1 2【解析】【分析】设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P(A)35 =,P(AB)3235410=⨯=,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率.【详解】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P(A)35=,P(AB)3235410=⨯=,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P(A|B)()()3P AB1103P A25===.【点睛】本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力.14.-1【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得a=2i=1不满足条件i≥2解析:【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得,不满足条件,执行循环体,,不满足条件,执行循环体,,不满足条件,执行循环体,,观察规律可知a的取值周期为3,由于,可得:不满足条件,执行循环体,,此时,满足条件,退出循环,输出a的值为.故答案为:.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【解析】【分析】连接可求得满足条件的事件是直线AP与线段BC有公共点根据几何概型的概率公式可得【详解】连接如图所示所以满足条件的事件是直线AP在∠CAB内且AP与BC相交即直线AP与线段BC有公共点解析:1 3【解析】【分析】连接AC,可求得CAB∠,满足条件的事件是直线AP与线段BC有公共点,根据几何概型的概率公式可得CAB PDAB∠=∠.【详解】连接AC,如图所示,3 tan3CBCABAB∠==,所以π6CAB∠=,满足条件的事件是直线AP在∠CAB内且AP与BC相交,即直线AP与线段BC有公共点,所以所求事件的概率π16π32CABPDAB∠===∠.故答案为:13.【点睛】本题考查几何概型的概率计算,考查学生的计算能力与推理能力,属于基础题. 16.【解析】分析:首先绘制可行域结合点的坐标求得可行域的面积然后结合题意利用几何概型计算公式即可求得最终结果详解:绘制不等式组所表示的平面区域如图所示由解得即A(32)且故作出直线2x-3y=0则2x-解析:29【解析】分析:首先绘制可行域,结合点的坐标求得可行域的面积,然后结合题意利用几何概型计算公式即可求得最终结果.详解:绘制不等式组所表示的平面区域如图所示,由127x yx y-=⎧⎨+=⎩解得32xy=⎧⎨=⎩,即A(3,2).且()70,,0,12B C⎛⎫-⎪⎝⎭,故172713224ABCS⎛⎫=⨯+⨯=⎪⎝⎭V.作出直线2x-3y=0.则2x-3y≥0所以表示区域为△OAC,即不等式2x-3y≥0所表示的区领为△OAC,面积为131322AOCS=⨯⨯=V,所以满足230x y-≥的概率是为3222794AOCABCSpSVV===.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.17.【解析】两球颜色不同的概率是解析:35【解析】两球颜色不同的概率是252363105C ⨯== 18.【解析】【分析】试验发生包含的事件是横纵坐标都在内任取一个点共有种结果满足条件的事件是点正好在直线上可以列举出结果数得到概率【详解】由题意知本题是一个等可能事件的概率∵试验发生包含的事件是横纵坐标都解析:16【解析】 【分析】试验发生包含的事件是横纵坐标都在{}012345A =,,,,,内任取一个点,共有66⨯种结果,满足条件的事件是点正好在直线y x =上,可以列举出结果数,得到概率. 【详解】由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是横纵坐标都在{}012345A =,,,,,内任取一个点, 共有6636⨯=种结果,满足条件的事件是点正好在直线y x =上,可以列举出共有(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)共有6种结果, ∴要求的概率是61366P ==,故答案为16. 【点睛】本题考查等可能事件的概率,解决本题的关键是注意利用列举法求满足条件的事件数时,注意做到不重不漏,千万不要漏掉原点.19.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程 解析:32【解析】 【分析】 【详解】试题分析: 由题意可得30,20x y ==将()30,20代入0.6ˆˆyx a =+解得ˆ2a =,所以线性回归方程为0.62ˆyx =+,再将50x =代入0.62ˆy x =+得ˆ32y =,故答案为32. 考点: 回归分析及线性回归方程.20.【解析】试题分析:从这5张牌中随机取出两张的情况有:其中不同的有8种故概率是 解析:45【解析】试题分析:从这5张牌中随机取出两张的情况有:,,,,,,,,,AK AK AQ AQ KK KQ KQ KQ KQ QQ ,其中不同的有8种,故概率是84105P == 。

2020-2021学年福建省福州一中高三(上)期中数学试卷

2020-2021学年福建省福州一中高三(上)期中数学试卷

2020-2021学年福建省福州一中高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知命题P:∀x≥1,2x﹣log2x≥1,则¬p为()A.∀x<1,2x﹣log2x<1B.∀x≥1,2x﹣log2x<1C.∃x<1,2x﹣log2x<1D.∃x≥1,2x﹣log2x<12.(5分)设复数z满足,则|z|=()A.5B.C.2D.3.(5分)已知集合P={x|log2(3﹣x)≤1},,则(∁R P)∩Q=()A.(0,1)B.(0,1]C.[1,2]D.(1,2]4.(5分)已知等差数列{a n}的公差为5,前n项和为S n,且a1,a2,a5成等比数列,则S6=()A.80B.85C.90D.955.(5分)已知函数f(x)=,若f(m)>f(﹣m)()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)6.(5分)《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,上袤二丈,无广,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈;上棱长2丈,无宽(如图).问它的体积是多少?”这个问题的答案是()A.5立方丈B.6立方丈C.7立方丈D.9立方丈7.(5分)设a=x lnx,b=y lny,c=x lny,其中x>y,则下列说法正确的是()A.a≤c≤b B.b≤c≤a C.ab≤c2D.c2≤ab8.(5分)已知函数f(x)=e x+a•e﹣x+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x),则a的取值范围是()A.a<0B.a≤﹣1C.0<a≤4D.a<0或0<a≤4二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分9.(5分)已知f(x)=2sin x cos x+2cos2x﹣,下列说法正确的有()A.f(x)的最小正周期是2πB.f(x)最大值为2C.f(x)的图象关于对称D.f(x)的图象关于对称10.(5分)已知平面向量、、为三个单位向量,且,若(x,y∈R),则x+y的可能取值为()A.0B.1C.D.211.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F,且EF=1,以下结论正确的有()A.AC⊥BEB.异面直线AE,BF所成的角为定值C.点A到平面BEF的距离为定值D.三棱锥A﹣BEF的体积是定值12.(5分)在△A n B n∁n(n=1,2,3,…)中,内角A n,B n,∁n的对边分别为a n,b n,c n,△A n B n∁n的面积为S n,若a n=5,b1=4,c1=3,且,,则()A.△A n B n∁n一定是直角三角形B.{S n}为递增数列C.{S n}有最大值D.{S n}有最小值三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,,且在上的投影为3,则m =.14.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最大值为.15.(5分)已知函数f(x)=sin x+a cos x的图象关于直线对称,x1是f(x)的一个极大值点,x2是f(x)的一个极小值点,则|x1+x2|的最小值为.16.(5分)三棱锥A﹣BCD中,∠ABC=∠CBD=∠DBA=60°,BC=BD=2,则此三棱锥外接球的表面积为.四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在①,②a﹣b=1,③sin A=2sin B这三个条件中任选一个,若问题中的三角形存在,求三角形的周长,请说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且,18.(12分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.(1)若M,N分别是CC1,AB的中点,求证:CN∥平面AB1M;(2)若,求二面角A﹣B1M﹣C的大小.19.(12分)已知等比数列{a n}的公比q>1,满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若,S n为数列{b n}的前n项和,求使成立的正整数n的最小值.20.(12分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABC,∠ABC=90°,AD=2,(1)求证:平面PBD⊥平面P AC;(2)P A长为何值时,直线PC与平面PBD所成角最大?并求此时该角的正弦值.21.(12分)一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示.小球从A点出发以8v的速度沿半圆O轨道滚到某点E处后,落点记为F.记∠AOE=θ.(1)用θ表示小球从A到F所用的时间f(θ);(2)当小球从A到F所用的时间最短时,求cosθ的值.22.(12分)已知函数f(x)=(x﹣2)e x+1+a(x+1)2(a>0,e是自然对数的底数),f'(x)是f(x)(1)若a,求证:f′(x)在(﹣1,+∞)单调递增;(2)证明:f(x)有唯一的极小值点(记为x0),且﹣e2<f(x0)<﹣3.2020-2021学年福建省福州一中高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知命题P:∀x≥1,2x﹣log2x≥1,则¬p为()A.∀x<1,2x﹣log2x<1B.∀x≥1,2x﹣log2x<1C.∃x<1,2x﹣log2x<1D.∃x≥1,2x﹣log2x<1【分析】根据全称命题的否定是特称命题进行判断即可.【解答】解:全称命题的否定为特称命题,改变量词.即∃x≥1,2x﹣log5x<1,故选:D.【点评】本题主要考查含有量词的命题的否定,结合全称命题的否定是特称命题是解决本题的关键.比较基础.2.(5分)设复数z满足,则|z|=()A.5B.C.2D.【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由复数模的计算公式得答案.【解答】解:由,得z+1=z﹣3﹣3i•z+6i,∴=,∴|z|=.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(5分)已知集合P={x|log2(3﹣x)≤1},,则(∁R P)∩Q=()A.(0,1)B.(0,1]C.[1,2]D.(1,2]【分析】可以求出集合P,Q,然后进行交集和补集的运算即可.【解答】解:∵,∴∁R P={x|x<1或x≥3},(∁R P)∩Q=(8,1).【点评】本题考查了对数函数的定义域和单调性,分式不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.4.(5分)已知等差数列{a n}的公差为5,前n项和为S n,且a1,a2,a5成等比数列,则S6=()A.80B.85C.90D.95【分析】利用等比数列的关系式,求出等差数列的首项,然后求解数列的和即可.【解答】解:等差数列{a n}的公差为5,且a1,a7,a5成等比数列,可得a23=a5•a1,(a2+5)2=a3(a1+20),解得a1=,前6项和为S2=6×+=90.故选:C.【点评】本题考查等差数列以及等比数列的应用,考查计算能力.5.(5分)已知函数f(x)=,若f(m)>f(﹣m)()A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【分析】对m讨论,分m>0,m<0,注意分段函数的各段的解析式,运用对数函数的单调性,解不等式,最后求并集即可得到.【解答】解:当m>0时,f(m)>f(﹣m)即为log3m>,即有log3m>log6,即为m>,由m>2则m>1;当m<0,则f(m)>f(﹣m)即为>log3(﹣m),即log5>log3(﹣m),即为﹣m<,由于m<0.综上可得,m的取值范围是(﹣1,+∞).【点评】本题考查对数不等式的解法,考查对数函数的单调性,考查分类讨论的思想方法,考查运算能力,属于中档题和易错题.6.(5分)《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,上袤二丈,无广,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈;上棱长2丈,无宽(如图).问它的体积是多少?”这个问题的答案是()A.5立方丈B.6立方丈C.7立方丈D.9立方丈【分析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,利用所给数据,即可求出体积.【解答】解:将该几何体分成一个直三棱柱,两个四棱锥,则,故选:A.【点评】本题考查几何体体积的计算,正确分割与计算是关键.7.(5分)设a=x lnx,b=y lny,c=x lny,其中x>y,则下列说法正确的是()A.a≤c≤b B.b≤c≤a C.ab≤c2D.c2≤ab【分析】构造函数,lnx=m,lny=n,分别表示出a,b,c,再根据指数幂的运算性质即可求出.【解答】解:令lnx=m,lny=n,因为x>y,所以m>n,所以a=,b=mn,虽然y=e x是单调递增函数,但是m6,n2无法比较大小,所以a,b的大小无法确定,c2=e8mn,ab==e2mn=c8,故D正确,故选:D.【点评】本题考查了比较大小,构造函数,利用函数的单调性是关键,属于中档题.8.(5分)已知函数f(x)=e x+a•e﹣x+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x),则a的取值范围是()A.a<0B.a≤﹣1C.0<a≤4D.a<0或0<a≤4【分析】a<0时,y=f(x)与y=f(f(x))的值域相同,均为R,即可得出结论.【解答】解:a=1时,f(x)=e x+e﹣x+2≥5,此时g=f(x)与y=f(f(x))的值域不相同,D;a<0时,y=f(x)与y=f(f(x))的值域相同,故选:A.【点评】本题考查函数的值域,考查学生的计算能力,比较基础.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分9.(5分)已知f(x)=2sin x cos x+2cos2x﹣,下列说法正确的有()A.f(x)的最小正周期是2πB.f(x)最大值为2C.f(x)的图象关于对称D.f(x)的图象关于对称【分析】由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的图象和性质,得出结论.【解答】解:∵已知=sin2x+),∴f(x)的最小正周期是=π;显然,f(x)最大值为2;令x=,求得f(x)=0;令x=﹣,求得f(x)=0对称,故选:BD.【点评】本题主要考查三角恒等变换,正弦函数的图象和性质,属于中档题.10.(5分)已知平面向量、、为三个单位向量,且,若(x,y∈R),则x+y的可能取值为()A.0B.1C.D.2【分析】根据可得出,从而可设,从而得出,进而得出x2+y2=1,然后设x=cosθ,y=sinθ,从而可得出,这样即可得出x+y的可能取值.【解答】解:∵,,∴,设,∴,x2+y2=4,设x=cosθ,y=sinθ,∴,∴x+y的可能取值为0,3,.故选:ABC.【点评】本题考查了单位向量的定义,向量垂直的充要条件,设向量的坐标解决向量问题的方法,两角和的正弦公式,考查了计算能力,属于中档题.11.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F,且EF=1,以下结论正确的有()A.AC⊥BEB.异面直线AE,BF所成的角为定值C.点A到平面BEF的距离为定值D.三棱锥A﹣BEF的体积是定值【分析】因为AC⊥BD,AC⊥DD1,由线面垂直的判定定理可得AC⊥平面D1DBB1,再由线面垂直的性质定理可得AC⊥BE,即可判断A是否正确.取特例,异面直线AE,BF′所成的角是∠C1BF′,异面直线AE′,BF所成的角∠A1AE′不相等,即可判断B是否正确.由AC⊥平面D1DBB1,推出点A到平面BDD1B1的距离是,即可判断C是否正确.先求三棱锥A﹣BEF的高,再求S△BEF,进而可得三棱锥A﹣BEF的体积,即可判断D是否正确,【解答】解:因为AC⊥BD,AC⊥DD1,可证AC⊥平面D1DBB6,从而AC⊥BE,故A正确.取特例,当点E与点D1重合时,F是F′,AE即AD1平行BC4,异面直线AE,BF′所成的角是∠C1BF′,当F与B1重合时,E是E′8,异面直线AE′,BF所成的角∠A1AE′不相等,故异面直线AE,BF所成的角不是定值.连接BD交AC于O,AC⊥平面D1DBB8点A到平面BDD1B1的距离是AO=,也即点A到平面BEF的距离是,故C正确.AO=为三棱锥A﹣BEF的高,又S△BEF=×3×3=,故三棱锥A﹣BEF的体积为××=为定值,故选:ACD.【点评】本题考查立体几何问题,直线与平面的位置关系,解题中注意数形结合思想的应用,属于中档题.12.(5分)在△A n B n∁n(n=1,2,3,…)中,内角A n,B n,∁n的对边分别为a n,b n,c n,△A n B n∁n的面积为S n,若a n=5,b1=4,c1=3,且,,则()A.△A n B n∁n一定是直角三角形B.{S n}为递增数列C.{S n}有最大值D.{S n}有最小值【分析】先结合已知条件得到,进而得到,即可判断出选项A,再由面积公式得到递推关系,通过作差法判定数列的单调性,进而分析最值情况,即可判断选项B,C,D.【解答】解:由且,,可得=,故,又,所以,所以,故△A n B n∁n一定是直角三角形,故选项A正确;△A n B n∁n的面积为,而=×=,故==,故,又,当且仅当时等号成立,所以≥0,又由b6=4,c1=3,可知b n≠c n不是恒成立,即,故S n+1>S n,故{S n}为递增数列,{S n}有最小值S1=2,无最大值,C错误.故选:ABD.【点评】本题考查了归纳推理的应用,涉及了基本不等式的应用以及数列知识的应用,数列的单调性经常用作差法进行判定,解题的关键是利用递推关系得到.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,,且在上的投影为3,则m=.【分析】根据向量的坐标即可求出,然后根据在上的投影为3即可求出m的值.【解答】解:∵,且在上的投影为3,∴,解得.故答案为:.【点评】本题考查了向量坐标的数量积的运算,投影的计算公式,考查了计算能力,属于基础题.14.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最大值为.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图阴影部分,联立,解得A(),化目标函数z=x+2y为y=,由图可知,当直线y=过A时,z有最大值为z=.故答案为:.【点评】本题考查简单的线性规划,考查数形结合的解题思想,是中档题.15.(5分)已知函数f(x)=sin x+a cos x的图象关于直线对称,x1是f(x)的一个极大值点,x2是f(x)的一个极小值点,则|x1+x2|的最小值为.【分析】先由函数关于x=对称求出a的值,然后根据已知可得x=x1时取得最大值,x=x2时取得最小值,则根据正弦函数的最值可求出x1,x2的关系式,进而可以求解.【解答】解:因为f(x)的图象关于x=对称,所以有f(0)=f(),即a=sin,解得a=,所以函数f(x)=sin x+cos x=2sin(x+),所以由已知可得:x2+=2k8π+,k1∈Z,且x5+=2k6π﹣,k2∈Z,则|x4+x2|=|2(k6+k2)π﹣|,则当k1+k2=8时,|x1+x2|min=,故答案为:.【点评】本题考查了函数的对称性以及最值问题,考查了学生的运算能力,属于基础题.16.(5分)三棱锥A﹣BCD中,∠ABC=∠CBD=∠DBA=60°,BC=BD=2,则此三棱锥外接球的表面积为16π.【分析】利用三角形全等和三角形的面积公式求出高AE=,AC=AD=2,进而利用余弦定理,得出∠ACB=∠ADB=90°,进而可以得出AB为外接圆的直径,进而可以求解.【解答】解:如图所示因为BC=BD=2,∠ABC=∠CBD=∠DBA=60°,所以三角形ABC≌三角形ABD,则AC=AD,又由平面ACD的面积为,则三角形ACD的高AE=,且由余弦定理可得;AC=AD=2,因为∠ABC=∠ABD=60°,则AB=4,所以AC⊥BC,AD⊥BD,所以AB=2R=8,所以R=2,所以三棱锥的外接球的表面积为S=4πR2=16π,故答案为:16π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了球的性质以及直角三角形的性质,还考查了学生的运算推理能力,属于中档题.四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在①,②a﹣b=1,③sin A=2sin B这三个条件中任选一个,若问题中的三角形存在,求三角形的周长,请说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且,【分析】利用正弦定理,诱导公式结合sin A≠0,可得,结合范围C∈(0,π),可求,由余弦定理得a2+b2﹣ab=7,若选①:利用三角形的面积公式可求ab=8,可得(a﹣b)2=7﹣8=﹣1,与(a﹣b)2≥0矛盾,满足条件的三角形不存在.若选②:由题意,利用诱导公式可求ab=6,进而可求a+b=5,即可得解三角形周长.若选③:利用正弦定理可得a=2b,进而求解a,b的值,即可得解.【解答】解:因为,所以,又因为sin A≠2,所以,即,又因为C∈(0,π),所以,所以.由余弦定理得c2=a2+b2﹣2ab cos C,即a5+b2﹣ab=7,若选①:因为,所以ab=8,所以(a﹣b)2=7﹣8=﹣6,与(a﹣b)2≥0矛盾,所以满足条件的三角形不存在.若选②:因为a﹣b=8,所以a2+b2﹣5ab=1,所以ab=6故a3+b2+2ab=25,即a+b=4,所以三角形周长.若选③:又因为sin A=4sin B,所以a=2b,联立,解得,,所以三角形周长.【点评】本题主要考查了正弦定理,诱导公式,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.(1)若M,N分别是CC1,AB的中点,求证:CN∥平面AB1M;(2)若,求二面角A﹣B1M﹣C的大小.【分析】(1)连结A1B交AB1于P.证明四边形MCNP是平行四边形,得到CN∥MP,然后证明CN∥平面AB1M.(2)以C为原点,CA,CB,CC1分别为x轴,y轴,z轴建立空间直角坐标系C﹣xyz.求出平面AMB1的法向量,平面MB1C的一个法向量,利用空间向量的数量积,求解二面角A﹣MB1﹣C的大小.【解答】(1)证明:连结A1B交AB1于P,因为三棱柱ABC﹣A2B1C1,所以P是A5B的中点,因为M,N分别是CC1,AB的中点,所以NP∥CM,且NP=CM,所以四边形MCNP是平行四边形,所以CN∥MP,因为CN⊄平面AB1M,MP⊂平面AB2M,所以CN∥平面AB1M.(2)解:因为AC=BC=2,AB=5,又因为CC1⊥平面ABC,以C为原点,CA,CC2分别为x轴,y轴,因为,所以C(0,0,A(3,0,B1(3,2,4),,,1的法向量,则,,即令x=8,则y=﹣3,即,又平面MB1C的一个法向量是,所以.由图可知二面角A﹣MB1﹣C为锐角,所以二面角A﹣MB5﹣C的大小为.【点评】本题考查直线与平面平行的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力,逻辑推理能力.19.(12分)已知等比数列{a n}的公比q>1,满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若,S n为数列{b n}的前n项和,求使成立的正整数n的最小值.【分析】(1)由题设求得q与a2,即可求得a n;(2)先由(1)求得b n,然后利用错位相减法求得S n,再求解不等式即可.【解答】解:(1)由题设可得:,解得:或,∵q>1,∴,∴a n=a2q n﹣6=2n;(2)由(1)可得:=﹣n•2n,∴S n=﹣(1×21+2×52+3×83+…+n•2n),4S n=﹣[1×27+2×25+…(n﹣1)•2n+n•4n+1],两式相减得:﹣S n=﹣(26+22+…+6n)+n•2n+1=﹣+n•2n+2,整理得:S n=(1﹣n)•2n+3﹣2,∵,∴2n+1>1002,又∵n∈N*,∴n+2≥10,∴n≥9,∴使成立的正整数n的最小值为9.【点评】本题主要考查等比数列基本量的计算及错位相减法在数列求和与求解不等式的应用,属于中档题.20.(12分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABC,∠ABC=90°,AD=2,(1)求证:平面PBD⊥平面P AC;(2)P A长为何值时,直线PC与平面PBD所成角最大?并求此时该角的正弦值.【分析】(1)证明BD⊥P A,BD⊥AC(E为AC与BD交点).然后证明BD⊥平面P AC,即可证明平面PBD⊥平面P AC.(2)以AB为x轴,以AD为y轴,以AP为z轴,建立空间坐标系,设AP=t,求出平面PBD法向量,求出,利用空间向量的数量积求出cos≤,说明直线PC与平面PBD所成角最大,即可求出该角的正弦值.【解答】(1)证明:∵P A⊥平面ABCD,BD⊂平面ABCD,又,∴∠ABD=30°,∠BAC=60°,即BD⊥AC(E为AC与BD交点).又P A∩AC,∴BD⊥平面P AC又因为BD⊂平面PBD,所以平面PBD⊥平面P AC.(2)解:如图,以AB为x轴,以AP为z轴,如图,设AP=t,则B(2,4,C(2,4,D(0,2,P(8,0,则=(﹣2,2,=(0,t),,6,﹣t)=((x,y,则,即,取x=1,得平面PBD的一个法向量为=(1,,),所以cos===,因为,当且仅当t=2,所以cos≤=,记直线PC与平面PBD所成角为θ,则sinθ=|cos|,故,即时,直线PC与平面PBD所成角最大.【点评】本题考查直线与平面垂直,平面与平面垂直的判断定理的应用,直线与平面所成角的求法,考查空间想象能力,逻辑推理能力以及计算能力.21.(12分)一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示.小球从A点出发以8v的速度沿半圆O轨道滚到某点E处后,落点记为F.记∠AOE=θ.(1)用θ表示小球从A到F所用的时间f(θ);(2)当小球从A到F所用的时间最短时,求cosθ的值.【分析】(1)分三段求出所用时间,即弧AE段、半径EO段、线段OF段,利用速度与时间的关系,容易得到f(θ);(2)对函数f(θ)求出导数和极值点,结合单调性求出取最小值时cosθ的值.【解答】(1)A到E弧长为θ,OE=1,,所以,(2),记θ3∈(0,π),且,则,当时,,所以f′(θ)<2,当时,,所以f′(θ)>8,所以时,用时最短.答:当时,小球从A到F所用的时间最短.【点评】本题考查三角函数在实际问题中的应用,同时考查导数的应用.属于中档题.22.(12分)已知函数f(x)=(x﹣2)e x+1+a(x+1)2(a>0,e是自然对数的底数),f'(x)是f(x)(1)若a,求证:f′(x)在(﹣1,+∞)单调递增;(2)证明:f(x)有唯一的极小值点(记为x0),且﹣e2<f(x0)<﹣3.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而证明结论成立即可;(2)通过讨论a的范围,求出函数的单调区间,得到函数的极值,从而证明结论成立.【解答】证明:(1)f'(x)=(x﹣1)e x+1+4a(x+1),记g(x)=f'(x),则g'(x)=xe x+1+8a,g''(x)=(x+1)e x+1,因为x>﹣5,所以g''(x)>0,+∞)单调递增,当时,g'(x)>g'(﹣1)≥0,+∞)单调递增,(2)当a≥时,f(x)在(﹣1,又f'(﹣2)=﹣2<0,f'(1)=7a>0,+∞)有唯一的零点,当时,g'(﹣1)<0,故∃t∈(﹣4,使得g'(t)=0,且x∈(﹣1,g'(x)<8,x∈(t,+∞)时,g(x)单调递增,又g(﹣1)=﹣2<6,g(1)=4a>0,+∞)有唯一的零点.综上所述,f'(x)在(﹣2.当x≤﹣1时,f'(x)≤(x﹣1)e x+4<0,又f'(x)有唯一的零点,且当x<s时,f'(x)<0,当x>s时,f(x)单调递增,所以s是f(x)唯一的极小值点,即x7=s∈(﹣1,1)且满足,由单调性知f(x0)<f(﹣5)=﹣3,另一方面,,记,则,所以h(z)单调递减,又因为x4∈(﹣1,1),综上所述,﹣e2<f(x8)<﹣3.【点评】本题考查了函数的单调性,极值,零点问题,考查导数的应用以及转化思想,是一道综合题.。

福建省福州市2022-2021学年高一数学上学期期中联考试题(含解析)

福建省福州市2022-2021学年高一数学上学期期中联考试题(含解析)

福建省福州市2020-2021学年高一上学期期中联考数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的4个选项中,只有一项符合题目要求。

1.集合A={1,3},B={x|2≤x≤5,x∈Z},则A∩B=()A. {1}B. {3}C. {1,3}D. {2,3,4,5}【答案】B【解析】【分析】化简集合B,根据交集的定义写出A∩B.【详解】集合A={1,3},B={x|2≤x≤5,x∈Z}={2,3,4,5},则A∩B={3}.故选:B.【点睛】本题考查了集合的化简与运算问题,是基础题.2.下列函数中哪个与函数y=x相等()A. y =()2 B. y C. y D. y【答案】C【解析】【分析】可看出y=x的定义域为R,通过求定义域可得出选项A,B的两函数的定义域和y=x的定义域都不相同,从而判断A,B都错误.而通过化简选项D的函数解析式,可得出D的解析式和y=x不同,从而判断D也错误,只能选C.【详解】y=x的定义域为R;A .的定义域为{x|x≥0},定义域不同,与y=x不相等;B.的定义域为{x|x≠0},定义域不同,不相等;C.的定义域为R,且解析式相同,与y=x相等;D.,解析式不同,不相等.故选:C.【点睛】本题考查函数的定义,判断两函数是否相等的方法:定义域和解析式是否都相同.3.若偶函数f(x)在(﹣∞,﹣1]上是减函数,则()A. B.C. D.【答案】B【解析】【分析】根据题意,由函数的奇偶性可得f(2)=f(﹣2),结合函数的单调性分析可得答案.【详解】根据题意,f(x)为偶函数,则f(2)=f(﹣2),又由函数f(x)在(﹣∞,﹣1]上是减函数,则f(﹣1)<f()<f(﹣2),即f(﹣1)<f()<f(2),故选:B.【点睛】本题考查函数的奇偶性与单调性的综合应用,注意利用奇偶性分析函数值的关系,属于基础题.4.三个数a=0.312,b=log20.31,c=20.31之间大小关系为()A. a<c<bB. a<b<cC. b<a<cD. b<c<a 【答案】C【解析】【分析】利用指数函数和对数函数的单调性即可得出.【详解】∵0<0.312<0.310=1,log20.31<log21=0,20.31>20=1,∴b<a<c.【点睛】熟练掌握指数函数和对数函数的单调性是解题的关键.5.若2x=3,则x等于()A. log32B. lg2﹣lg3C.D.【答案】D【解析】【分析】化指数式为对数式,再由换底公式得答案.【详解】由2x=3,得x.故选:D.【点睛】本题考查指数式与对数式的互化,考查换底公式的应用,是基础题.6.函数f(x)的零点所在的大致区间()A. (0,1)B. (1,2)C. (2,3)D. (3,4)【答案】B【解析】【分析】根据零点存在性定理,验证所给的区间的两个端点处的函数值是同号还是异号即可.【详解】∵函数f(x),在x>0时,是连续函数且为增函数,f(1)=1﹣2=﹣1<0,f(2)=e﹣1>0,∴函数的零点在(1,2)上,故选:B.【点睛】本题考查函数零点存在性定理的应用,考查了函数单调性的应用,属于基础题.7.设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则集合B的子集个数为()A. 1B. 2C. 3D. 4【解析】【分析】由题意知1是方程x2﹣4x+m=0的实数根,求出m的值和集合B,即知集合B的子集个数.【详解】集合A={1,2,4},B={x|x2﹣4x+m=0},若A∩B={1},则1是方程x2﹣4x+m=0的实数根,∴m=4﹣1=3,∴集合B={x|x2﹣4x+3=0}={x|x=1或x=3}={1,3},∴集合B的子集有22=4(个).故选:D.【点睛】本题考查了集合的定义与运算问题,是基础题.8.若f(x),则f(x)的定义域为()A. ()B. ()C. ()D. ()∪(1,+∞)【答案】D【解析】【分析】由对数式的真数大于0,分式的分母不为0联立不等式组求解.【详解】由,得x且x≠1.∴f(x)的定义域为()∪(1,+∞).故选:D.【点睛】本题考查函数的定义域及其求法,是基础题.9.函数y的图象是()A. B. C. D.【答案】A【解析】【分析】根据奇偶性,单调性再带入特殊点即可选出答案.【详解】函数y是奇函数,排除B,C;当x时,x2﹣1<0,∴y0,图象在x轴的下方.排除D;故选:A.【点睛】本题考查了函数图象的识别,利用函数的性质及特殊函数值进行排除是解决此类问题的常见方法,是基础题.10.某学校开展研究性学习活动,一组同学获得了下面的一组试验数据:x 1.99 2.8 4 5.1 8y 0.99 1.58 2.01 2.35 3.00现有如下4个模拟函数:①y=0.6x﹣0.2;②y=x2﹣55x+8;③y=log2x;④y=2x﹣3.02.请从中选择一个模拟函数,使它比较近似地反应这些数据的规律,应选()A. ①B. ②C. ③D. ④【答案】C【解析】【分析】根据表中提供的数据,可通过描点,连线,画出图象,看哪个函数的图象能接近所画图象,这个函数便可反应这些数据的规律.【详解】根据表中数据,画出图象如下:通过图象可看出,y=log2x能比较近似的反应这些数据的规律.故选:C.【点睛】本题考查画函数图象的方法:列表,描点,连线,熟悉对数函数、指数函数、一次函数和二次函数的图象是关键.11.已知函数f(x)=x2﹣kx﹣6在[2,8]上是单调函数,则k的取值范围是()A. (4,16)B. [4,16]C. [16,+∞)D. (﹣∞,4]∪[16,+∞)【答案】D【解析】【分析】根据题意,求出二次函数f(x)的对称轴,结合二次函数的性质可得2或8,解可得k 的取值范围,即可得答案.【详解】根据题意,函数f(x)=x2﹣kx﹣6的对称轴为x,若f(x)在[2,8]上是单调函数,必有2或8,解可得:k≤4或k≥16,即k的取值范围是(﹣∞,4]∪[16,+∞);故选:D.【点睛】本题考查二次函数单调性的性质,注意二次函数的性质,属于基础题.12.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.给出下列四个结论:①f(0)=0;②f(x)为偶函数;③f(x)为R上减函数;④f(x)为R上增函数.其中正确的结论是()A. ①③B. ①④C. ②③D. ②④【答案】A【解析】【分析】根据题意,令y=x=0计算f(0)的值,判断①正确;令y=﹣x,得出f(﹣x)=﹣f(x),f(x)是奇函数,判断②错误;根据x>0,f(x)<0,x=0时f(x)=0,x<0时,f(x)>0,判断f(x)为R上的减函数,③正确,④错误.【详解】对于①,令x=y=0,则f(0)=f(0)+f(0)=2f(0),∴f(0)=0,①正确;对于②,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),f(x)是奇函数,②错误;对于③,当x>0,f(x)<0,令<,f()﹣f()=f(﹣)<0,∴f()<f(),∴f(x)为R上的减函数,③正确;对于④,f(x)为R上增函数,④错误.综上,其中正确的结论是①③.故选:A.【点睛】本题考查了抽象函数的性质与应用问题,要注意抽象函数的性质证明要紧扣定义,是基础题.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知幂函数y=f(x)的图象经过点(2,)则f(3)=__________【答案】【解析】 【分析】求出幂函数的解析式,然后求解f (3)的值. 【详解】因为幂函数y =f (x )的图象经过点(2,),所以幂函数的解析式为:f (x ),则f (3). 故答案为:.【点睛】本题考查幂函数的解析式的求法,函数值的求法,考查计算能力.14.已知集合A ={x |2x +1<0},B ={x |2x ≤1},则A ∪B =__________ 【答案】【解析】 【分析】可求出A ,B ,然后进行并集的运算即可. 【详解】,B ={x |x ≤0}; ∴A ∪B ={x |x ≤0}. 故答案为:(【点睛】本题考查描述法的定义,考查了指数函数的单调性的应用及并集的运算,属于基础题.15.已知函数f (x ),则______________.【答案】 【解析】 【分析】先利用分段函数及对数运算求出f (),再由指数的运算求出.【详解】∵函数f (x ),∴f()2,∴f(﹣2)=2﹣2.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.16.若函数f(x)同时满足:①对于定义域上的任意x恒有f(x)+f(﹣x)=0,②对于定义域上的任意x1,x2,当x1≠x2时,恒有0,则称函数f(x)为“理想函数”.给出下列四个函数中①f(x);②f(x);③f(x);④f(x),能被称为“理想函数”的有_______________(填相应的序号).【答案】③④【解析】【分析】由题意可得f(x)为定义域上的奇函数和减函数,可得f(x)为“理想函数”,对四个函数,分别考虑其奇偶性和单调性,即可得到正确结论.【详解】由题意可得f(x)为定义域上的奇函数和减函数,可得f(x)为“理想函数”,由①f(x)为{x|x≠0}的奇函数,在x>0,x<0函数递减,不为“理想函数”;由②f(x),可得f(﹣x)=f(x),即f(x)为偶函数,不为“理想函数”;由③f(x)(﹣1<x<1),f(﹣x)+f(x)=log2log2log21=0,可得f(x)为﹣1<x<1的奇函数,且0<x<1时,f(x)=log2(1)递减,即有f(x)在(﹣1,1)递减,为“理想函数”;对于④f(x),即f(x)=﹣x|x|,可得f(x)为R上的奇函数,且为减函数,故④为“理想函数”.故答案为:③④.【点睛】本题考查函数的奇偶性和单调性的判断,注意运用定义法,考查运算能力和推理能力,属于中档题.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.化简求值(1);(2)lg lg25+ln.【答案】(1)3;(2).【解析】【分析】(1)利用指数运算性质即可得出.(2)利用对数运算性质即可得出.【详解】(1)原式3=2+3﹣2=3.(2)原式2.【点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题.18.已知集合A={x|1<x<6},B={x|2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁R A)∩B;(2)若C⊆B,求实数a的取值范围.【答案】(1)A∪B={x|1<x<10},(∁R A)∩B={x|6≤x<10} ;(2).【解析】【分析】(1)进行并集、交集和补集的运算即可;(2)根据C⊆B,可讨论C是否为空集:C=∅时,5﹣a≥a;C≠∅时,,这样即可得出实数a的取值范围.【详解】(1)∵A={x|1<x<6},B={x|2<x<10},A∪B={x|1<x<10},∁R A={x|x≤1,或x≥6};∴(∁R A)∩B={x|6≤x<10};(2)∵C⊆B;①C=∅时,5﹣a≥a;∴;②C≠∅时,则;解得;综上得,a≤3;∴a的取值范围是(﹣∞,3].【点睛】本题考查描述法的定义,交集、并集和补集的运算,以及子集的定义,考查了分类讨论思想,属于基础题.19.已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2+2x.现已画出函数f (x)在y轴左侧的图象如图所示,(1)画出函数f(x),x∈R剩余部分的图象,并根据图象写出函数f(x),x∈R的单调区间;(只写答案)(2)求函数f(x),x∈R的解析式.【答案】(1)图象见解析;递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)f(x).【分析】(1)根据题意,由奇函数的性质结合函数f(x)在y轴左侧的图象,即可补充函数图象,据此写出函数的单调区间即可得答案;(2)根据题意,由奇函数的性质可得f(0)=0,设x>0时,则﹣x<0,由函数的解析式可得f(﹣x),结合奇函数的性质可得f(x)的解析式,综合即可得答案.【详解】(1)根据题意,函数f(x)是定义在R上的奇函数,则其图象如图:其递减区间为(﹣∞,﹣1],[1,+∞);增区间为(﹣1,1);(2)根据题意,函数f(x)是定义在R上的奇函数,则f(0)=0,满足f(x)=x2+2x;当x>0时,则﹣x<0,则f(﹣x)=(﹣x)2+2(﹣x)=x2﹣2x,又由函数f(x)是定义在R上的奇函数,则f(x)=﹣f(﹣x)=﹣x2+2x,综上:f(x).【点睛】本题考查函数奇偶性的性质以及应用,涉及函数解析式的计算,关键是补充函数的图象,属于基础题.20.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A万元,则超出部分按2log5(A+1)进行奖励.记奖金y(单位:万元),销售利润x(单位:万元)(1)写出该公司激励销售人员的奖励方案的函数模型;(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元.【答案】(1)见解析;(2)老张的销售利润是34万元.【解析】(1)直接由题意列出分段函数解析式;(2)由y=5.6,可知x>10,代入第二段函数解析式求解.【详解】(1)由题意得;(2)由x∈(0,10],0.16x≤1.6,而y=5.6,∴x>10.因此1.6+2log5(x﹣9)=5.6,解得x=34(万元).∴老张的销售利润是34万元.【点睛】本题考查简单的数学建模思想方法,考查了分段函数的求值问题,是基础的计算题.21.已知二次函数f(x)=x2+bx+c有两个零点1和﹣1.(1)求f(x)的解析式;(2)设g(x),试判断函数g(x)在区间(﹣1,1)上的单调性并用定义证明;(3)由(2)函数g(x)在区间(﹣1,1)上,若实数t满足g(t﹣1)﹣g(﹣t)>0,求t的取值范围.【答案】(1)f(x)=x2﹣1;(2)见解析;(3)(0,).【解析】【分析】(1)由题意可得﹣1和1是方程x2+bx+c=0的两根,运用韦达定理可得b,c,进而得到函数f(x)的解析式;(2)函数g(x)在区间(﹣1,1)上是减函数.运用单调性的定义,注意取值、作差和变形、定符号以及下结论等;(3)由题意结合(2)的单调性可得﹣1<t﹣1<﹣t<1,解不等式即可得到所求范围.【详解】(1)由题意得﹣1和1是方程x2+bx+c=0的两根,所以﹣1+1=﹣b,﹣1×1=c,解得b=0,c=﹣1,所以f(x)=x2﹣1;(2)函数g(x)在区间(﹣1,1)上是减函数.证明如下:设﹣1<x1<x2<1,则g(x1)﹣g(x2),∵﹣1<x1<x2<1,∴x2﹣x1>0,x1+1>0,x2+1>0,可得g(x1)﹣g(x2)>0,即g(x1)>g(x2),则函数g(x)在区间(﹣1,1)上是减函数;(3)函数g(x)在区间(﹣1,1)上,若实数t满足g(t﹣1)﹣g(﹣t)>0,即有g(t﹣1)>g(﹣t),又由(2)函数g(x)在区间(﹣1,1)上是递减函数,可得﹣1<t﹣1<﹣t<1,解得0<t.则实数t的取值范围为(0,).【点睛】本题考查函数的零点的定义和单调性的判断和证明,考查了单调性的应用,考查运算能力和推理能力,属于中档题.22.已知奇函数f(x)=a(a为常数).(1)求a的值;(2)若函数g(x)=|(2x+1)f(x)|﹣k有2个零点,求实数k的取值范围;(3)若x∈[﹣2,﹣1]时,不等式f(x)恒成立,求实数m的取值范围.【答案】(1);(2)k∈(0,1);(3)[4,+∞).【解析】【分析】(1)由f(x)为R上的奇函数可得f(0)=0,解方程可得a;(2)由题意可得方程|2x﹣1|﹣k=0有2个解,即k=|2x﹣1|有2个解,即函数y=k和y=|2x﹣1|的图象有2个交点,画出图象即可得到所求范围;(3)由题意可得m≥2﹣x x∈[﹣2,﹣1]时恒成立,由g(x)=2﹣x在R上单调递减,即可得到所求范围.【详解】(1)f(x)是定义在R上的奇函数,可得f(0)=a﹣1=0,即a=1,可得f(x)=1,由f(﹣x)+f(x)0,即f(x)为R上的奇函数,故a=1;(2)函数g(x)=|(2x+1)f(x)|﹣k有2个零点⇔方程|2x﹣1|﹣k=0有2个解,即k=|2x﹣1|有2个解,即函数y=k和y=|2x﹣1|的图象有2个交点,由图象得k∈(0,1);(3)x∈[﹣2,﹣1]时,f(x),即1,即m≥2﹣x在x∈[﹣2,﹣1]时恒成立,由g(x)=2﹣x在R上单调递减,x∈[﹣2,﹣1]时,g(x)的最大值为g(﹣2)=4,则m≥4,即m的取值范围是[4,+∞).【点睛】本题考查函数的奇偶性和单调性、以及函数零点个数、函数恒成立问题解法,考查数形结合思想和运算能力,属于中档题.。

2020-2021福州市高中必修一数学上期中模拟试卷带答案

2020-2021福州市高中必修一数学上期中模拟试卷带答案

2020-2021福州市高中必修一数学上期中模拟试卷带答案一、选择题1.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( )A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦2.已知函数()1ln1x f x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭ B .11,32⎛⎤⎥⎝⎦ C .12,43⎡⎫⎪⎢⎣⎭ D .12,23⎡⎫⎪⎢⎣⎭3.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( )A .a c b >>B .a b c >>C .c a b >>D .c b a >>4.函数()sin lg f x x x =-的零点个数为( )A .0B .1C .2D .3 5.已知函数()245fx x x +=++,则()f x 的解析式为( ) A .()21f x x =+B .()()212f x x x =+≥C .()2f x x =D .()()22f x x x =≥6.函数223()2xx x f x e +=的大致图像是( ) A . B .C .D .7.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( )A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)8.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 9.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a>c>bB .a>b>cC .c>a>bD .b>c>a10.方程 4log 7x x += 的解所在区间是( )A .(1,2)B .(3,4)C .(5,6)D .(6,7)11.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( )A .3B .2C .1D .0 12.设0.13592,ln,log 210a b c ===,则,,a b c 的大小关系是 A .a b c >> B .a c b >> C .b a c >> D .b c a >>二、填空题13.设,则________14.函数6()12log f x x =-的定义域为__________.15.函数的定义域为___.16.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.17.已知函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,则a 取值范围是_________.18.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.19.计算:__________. 20.已知函数()()0f x ax b a =->,()()43f f x x =-,则()2f =_______.三、解答题21.已知3a ≥,函数F (x )=min{2|x−1|,x 2−2ax+4a−2},其中min{p ,q}={,.p p q q p q ,,≤> (Ⅰ)求使得等式F (x )=x 2−2ax+4a−2成立的x 的取值范围;(Ⅱ)(ⅰ)求F (x )的最小值m (a );(ⅱ)求F (x )在区间[0,6]上的最大值M (a ).22.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).23.计算下列各式的值:(Ⅰ)22log lg25lg4log (log 16)+- (Ⅱ)2102329273()( 6.9)()()482-----+ 24.已知幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式; (2)试判断是否存在0a >,使得函数()(21)1()a g x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.25.如果f (x )是定义在R 上的函数,且对任意的x ∈R ,均有f (-x )≠-f (x ),则称该函数是“X —函数”.(1)分别判断下列函数:①y =211x +;②y =x +1;③y =x 2+2x -3是否为“X —函数”?(直接写出结论)(2)若函数f (x )=x -x 2+a 是“X —函数”,求实数a 的取值范围; (3)设“X —函数”f (x )=21,,x x A x x B ⎧+∈⎨∈⎩在R 上单调递增,求所有可能的集合A 与B . 26.已知函数24,02()(2)2,2x x f x xx a x a x ⎧-<≤⎪=⎨⎪-++->⎩,其中a 为实数. (1)若函数()f x 为定义域上的单调函数,求a 的取值范围.(2)若7a <,满足不等式()0f x a ->成立的正整数解有且仅有一个,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可.【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a a x x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.2.D解析:D【解析】【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论.【详解】根据题意,函数()1ln1x f x x -=+, 则有101x x->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x x f x f x x x +--==-=--+, 即函数()f x 为奇函数, 设11x t x-=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1x f x x -=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥--()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩, 解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D .【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.A解析:A【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A . 4.D解析:D【解析】【分析】画出函数图像,根据函数图像得到答案.【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点.当10x >时,lg 1sin x x >≥,故不存在交点.故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.5.B解析:B【解析】【分析】利用换元法求函数解析式,注意换元后自变量范围变化.令2x t +=,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥ 即()21f x x =+ ()2x ≥. 【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.6.B解析:B【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232x x x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 7.C解析:C【解析】【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案.【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.8.B解析:B【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 9.A解析:A【解析】 试题分析:∵函数2()5x y =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.10.C解析:C【解析】【分析】令函数4()log 7x f x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7x f x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间.【详解】令函数4()log 7x f x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f∴(5)(6)0f f ⋅<∴故函数4()log 7x f x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6故选C.零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.11.B解析:B【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,⎛⎫ ⎪ ⎪⎝⎭,22,⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.12.A解析:A【解析】试题分析:,,即,,.考点:函数的比较大小. 二、填空题13.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1- 解析:-1【解析】【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】,,所以,故答案为-1.【点睛】 本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值. 14.【解析】要使函数有意义则必须解得:故函数的定义域为:点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0(3)一次函数二次函数的定义域均为R(4 解析:(0,6⎤⎦【解析】要使函数()f x 有意义,则必须6012log 0x x >⎧⎨-≥⎩,解得:06x ≤<, 故函数()f x 的定义域为:(0,6⎤⎦.点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y =x0的定义域是{x|x≠0}.(5)y =ax(a>0且a≠1),y =sin x ,y =cos x 的定义域均为R.(6)y =logax(a>0且a≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为π{|π,}2x x k k ≠+∈Z . 15.(-12)∪(2+∞)【解析】【分析】根据式子成立的条件对数式要求真数大于零分式要求分母不等于零即可求得函数的定义域【详解】要使函数有意义则x+1>012-x≠0解得x>-1且x≠2所以函数的定义域解析:【解析】【分析】根据式子成立的条件,对数式要求真数大于零,分式要求分母不等于零,即可求得函数的定义域.【详解】要使函数有意义,则, 解得且,所以函数的定义域为:,故答案是:.【点睛】 该题考查的是有关函数的定义域的求解问题,在求解的过程中,注意对数式和分式成立的条件即可,属于简单题目.16.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6【解析】【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值.【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+= ()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.17.;【解析】【分析】分为和两种情形分类讨论利用复合函数的单调性结合对数函数的性质求出取值范围【详解】∵函数(且)在上是减函数当时故本题即求在满足时函数的减区间∴求得当时由于是减函数故是增函数不满足题意 解析:(1,4);【解析】【分析】分为1a >和01a <<两种情形分类讨论,利用复合函数的单调性,结合对数函数的性质求出a 取值范围.【详解】∵函数()log (4)a f x ax =-(0a >,且1a ≠)在[0,1]上是减函数,当1a >时,故本题即求4t ax =-在满足0t >时,函数t 的减区间,∴40a ->,求得14a <<,当01a <<时,由于4t ax =-是减函数,故()f x 是增函数,不满足题意,综上可得a 取值范围为(1,4),故答案为:(1,4).【点睛】本题主要考查复合函数的单调性,对数函数,理解“同增异减”以及注意函数的定义域是解题的关键,属于中档题.18.y =a (1+b )x (x∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a(1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案.【详解】设年产量经过x 年增加到y 件,第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2,第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3,…∴y =a (1+b %)x (x ∈N *).故答案为:y =a (1+b %)x (x ∈N *)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.19.4【解析】原式=log3332+lg(25×4)+2-(23)3-13=32+2+2-32=4故填4 解析:【解析】原式=,故填.20.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题 解析:3【解析】【分析】先由()()43f f x x =-求出a 、b 的值,可得出函数()y f x =的解析式,然后再求出()2f 的值.【详解】由题意,得()()()()()243f f x f ax b a ax b b a x ab b x =-=⋅--=-+=-, 即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此()23f =,故答案为3. 【点睛】本题考查函数求值,解题的关键就是通过题中复合函数的解析式求出函数的解析式,考查运算求解能力,属于中等题.三、解答题21.(Ⅰ)[]2,2a .(Ⅱ)(ⅰ)()20,32{42,2a m a a a a ≤≤=-+->.(ⅱ)()348,34{2,4a a a a -≤<M =≥. 【解析】试题分析:(Ⅰ)分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(Ⅱ)分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()M a .试题解析:(Ⅰ)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->, 当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a . (Ⅱ)(ⅰ)设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-, 所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32{42,2a m a a a a ≤≤+=-+-> (ⅱ)当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=.所以,()348,34{2,4a a M a a -≤<=≥. 【考点】函数的单调性与最值,分段函数,不等式.【思路点睛】(Ⅰ)根据x 的取值范围化简()F x ,即可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(Ⅱ)根据x 的取值范围求出()F x 的最大值,进而可得()M a .22.(1){a|a≤7};(2){a|a <6或a >152} 【解析】【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围【详解】(1)若A =∅,则A∩B =∅成立.此时2a +1>3a -5,即a <6. 若A≠∅,则2135{2113516a a a a +≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B =∅的实数a 的取值范围是{a|a≤7}.(2)因为A ⊆(A∩B ),且(A∩B )⊆A ,所以A∩B =A ,即A ⊆B .显然A =∅满足条件,此时a <6.若A≠∅,则2135{351a a a +≤--<-或2135{2116a a a +≤-+> 由2135{351a a a +≤--<-解得a ∈∅;由2135{2116a a a +≤-+>解得a >152. 综上,满足条件A ⊆(A∩B )的实数a 的取值范围是{a|a <6或a >152}. 考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用23.(Ⅰ)12;(Ⅱ)12. 【解析】 试题分析:(1)根据对数运算法则log ,lg lg lg ,m a a m m n mn =+= 化简求值(2)根据指数运算法则01(),1,m n mn m m a a a aa -===,化简求值 试题解析:(Ⅰ)原式()3111log 3lg 254222222=+⨯-=+-=. (Ⅱ)原式1223233343441112292992⎛⎫⨯⨯- ⎪⎝⎭⎛⎫⎛⎫=--+=--+= ⎪ ⎪⎝⎭⎝⎭. 24.(1)1()f x x -=;(2)存在,6a =.【解析】【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论.【详解】(1)因为幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去), 所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立.【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.25.(1)①②是“X —函数”,③不是“X —函数”.(2)(0,+∞)(3)A =[0,+∞),B =(-∞,0)【解析】【分析】(1)直接利用信息判断结果;(2)利用信息的应用求出参数的取值范围;(3)利用函数的单调性的应用和应用的例证求出结果.【详解】(1)①②是“X —函数”,③不是“X —函数”;(2)∵f (-x )=-x -x 2+a ,-f (x )=-x +x 2-a ,f (x )=x -x 2+a 是“X —函数”,∴f (-x )=-f (x )无实数解,即x 2+a =0无实数解,∴a >0,∴a 的取值范围为(0,+∞);(3)对任意的x ≠0,若x ∈A 且-x ∈A ,则-x ≠x ,f (-x )=f (x ),与f (x )在R 上单调增矛盾,舍去; 若x ∈B 且-x ∈B ,f (-x )=-f (x ),与f (x )是“X —函数”矛盾,舍去;∴对任意的x ≠0,x 与-x 恰有一个属于A ,另一个属于B ,∴(0,+∞)⊆A ,(-∞,0)⊆B ,假设0∈B ,则f (-0)=-f (0),与f (x )是“X —函数”矛盾,舍去;∴0∈A ,经检验,A =[0,+∞),B =(-∞,0)符合题意.【点睛】本题考查的知识要点:信息题型的应用,反证法的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.26.(1)2a ≤(2)03a ≤<【解析】【分析】(1)分析当02x <≤时的单调性,可得2x >的单调性,由二次函数的单调性,可得a 的范围;(2)分别讨论当0a <,当02a ≤≤时,当23a <<时,当37a ≤<,结合函数的单调性和最值,即可得到所求范围.【详解】(1)由题意,当02x <≤时,4()f x x x =-为减函数, 当2x >时,()()222f x x a x a =-++-,若2a ≤时,()()222f x x a x a =-++-也为减函数,且()()20f x f <=, 此时函数()f x 为定义域上的减函数,满足条件;若2a >时,()()222f x x a x a =-++-在22,2a +⎛⎫ ⎪⎝⎭上单调递增,则不满足条件. 综上所述,2a ≤.(2)由函数的解析式,可得()()13, 20f f ==,当0a <时,()()20, 13f a f a =>=>,不满足条件;当02a ≤≤时,()f x 为定义域上的减函数,仅有()13f a =>成立,满足条件; 当23a <<时,在02x <≤上,仅有()13f a =>,对于2x >上,()f x 的最大值为22(2)1244a a f a +-⎛⎫=≤< ⎪⎝⎭, 不存在x 满足()0f x a ->,满足条件;当37a ≤<时,在02x <≤上,不存在整数x 满足()0f x a ->,对于2x >上,22(2)(4)123444a a a ----=<-, 不存在x 满足()0f x a ->,不满足条件;综上所述,03a ≤<.【点睛】本题主要考查了分段函数的运用,以及函数的单调性的判断和不等式有解问题,其中解答中熟练应用函数的单调性,以及把函数的有解问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档题.。

福建省福州市高一数学上学期期中试题(有答案)(精选)

福建省福州市高一数学上学期期中试题(有答案)(精选)

福建省福州市高一数学上学期期中试题(完卷时间:120分钟,总分150分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在答题纸上.) 1.下列关系正确..的是( ) A .{}10,1∈B .{}10,1∉C .{}10,1⊆D .{}{}10,1∈2.下列四组函数中,相等的两个函数是( )A .2(),()x f x x g x x == B .,0()||,(),0x x f x x g x x x ≥⎧==⎨-<⎩C .lg y x =,21lg 2y x =D .()()f x g x x == 3.函数()12log 21-=x y 的定义域为( )A . (,+∞) B .( ,1 C .[1,+∞ D .()+∞,14.已知幂函数()αx x f =的图象经过点22,⎛⎝⎭,则()4f 的值为( ) A .116 B . 16 C .2 D . 125.下列函数中,既是奇函数又在区间(0,)+∞上单调递增的函数为( ) A 1y x=B ln y x =C 3y x = D 2y x = 6.下列大小关系正确的是( )A 3.0log 34.044.03<< B 4.04333.0log 4.0<<C 4.03434.03.0log << D 34.044.033.0log <<7.若函数()xa x f =(0>a ,且1≠a )的图象如图,其中a 为常数.则函数()()0≥=x xx g a的大致图象是( )A .B .C .D .8.随着我国经济不断发展,人均GDP (国内生产总值)呈高速增长趋势,已知2008年年底我国人均GDP 为22640元,如果今后年平均增长率为%9,那么2020年年底我国人均GDP 为( ) A .1322640(1 1.09)⨯+元 B .1222640(1 1.09)⨯+元 C .1322640 1.09⨯元D .1222640 1.09⨯元9.根据表格中的数据,可以断定方程20xe x --=的一个根所在的区间是( )A . (-1,0)B . (0,1)C . (1,2)D . (2,3) 10.可推得函数2()21f x ax x =-+在区间[1,2]上为增函数的一个条件是( ) A .0a =B .011a a<⎧⎪⎨<⎪⎩C .012a a >⎧⎪⎨>⎪⎩D .011a a>⎧⎪⎨<⎪⎩11.已知函数()x x f x3log 21-⎪⎭⎫⎝⎛=,若实数0x 是方程()0=x f 的解,且010x x <<,则()1x f 的值( )A. 恒为正值B.恒为负值C. 等于0D.不能确定12.定义在R 上的偶函数()f x ,当[1,2]x ∈时,()0f x <且()f x 为增函数,给出下列四个结论: ①()f x 在[2,1]--上单调递增; ②当[2,1]x ∈--时,有()0f x <; ③()f x -在[2,1]--上单调递减; ④ ()x f 在[2,1]--上单调递减. 其中正确的结论是( ) A .①③B .②③C .②④D .③④二、填空题:(本大题共4小题,每小题5分,共20分。

2020-2021福州市高中必修一数学上期中试题附答案

2020-2021福州市高中必修一数学上期中试题附答案

2020-2021福州市高中必修一数学上期中试题附答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 3.设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A .2B .4C .6D .84.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③5.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >> B .c a b >>C .b a c >>D .a b c >>7.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð8.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭9.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞ D .(4,)+∞10.函数sin21cos xy x=-的部分图像大致为A .B .C .D .11.函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题13.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____14.已知函数()32f x x x =+,若()()2330f a a f a -+-<,则实数a 的取值范围是__________.15.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.16.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 17.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .18.函数6()12log f x x =-的定义域为__________.19.设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则(1)(2)(3)(4)(5)f f f f f ++++= .20.若关于的方程有三个不相等的实数根,则实数的值为_______.三、解答题21.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><,在同一周期内,当12x π=时,()f x 取得最大值4:当712x π=时,()f x 取得最小值4-. (1)求函数()f x 的解析式; (2)若,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21h x f x t =+-有两个零点,求实数t 的取值范围. 22.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.23.某单位建造一间背面靠墙的小房,地面面积为212m ,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3m ,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少? 24.已知集合A={x|x <-1,或x >2},B={x|2p-1≤x≤p+3}.(1)若p=12,求A∩B;(2)若A∩B=B,求实数p 的取值范围. 25.已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.26.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y 表示第()*x x ∈N 天的群落单位数量,某研究员提出了两种函数模型;①2y ax bx c =++;②x y p q r =⋅+,其中a ,b ,c ,p ,q ,r 都是常数.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-.考点:集合的运算3.C解析:C 【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =得2(11)a a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【名师点睛】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式,代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.4.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .5.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.6.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.7.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可.【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.8.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.9.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数.当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.11.B解析:B 【解析】 【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果. 【详解】设32()22x x x y f x -==+,则332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.12.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞U【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >,即x 的取值范围为()(),40,-∞-+∞U , 故答案为()(),40,-∞-+∞U ; 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.14.(13)【解析】由题意得为单调递增函数且为奇函数所以点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式然后根据函数的单调性去掉转化为具体的不等式(组)此时要注意与的取值应在外层函数的定义域内解析:(1,3) 【解析】由题意得()f x 为单调递增函数,且为奇函数,所以()()2330f a a f a -+-<22(3)(3)3313f a a f a a a a a ⇒-<-⇒-<-⇒<<点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内15.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 16.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+ 【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.17.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值18.【解析】要使函数有意义则必须解得:故函数的定义域为:点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0(3)一次函数二次函数的定义域均为R(4解析:(0,6⎤⎦ 【解析】 要使函数()f x 有意义,则必须6012log 0x x >⎧⎨-≥⎩,解得:06x ≤<, 故函数()f x 的定义域为:(0,6⎤⎦.点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y =x0的定义域是{x|x≠0}.(5)y =ax(a>0且a≠1),y =sin x ,y =cos x 的定义域均为R.(6)y =logax(a>0且a≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为π{|π,}2x x k k ≠+∈Z . 19.0【解析】试题分析:的图像关于直线对称所以又是定义在上的奇函数所以所以考点:函数图象的中心对称和轴对称解析:0【解析】试题分析:()y f x =的图像关于直线12x =对称,所以()(1)f x f x =-,又()f x 是定义在R 上的奇函数,所以(5)(15)(4)(4)f f f f =-=-=-,(3)(13)(2)(2)f f f f =-=-=-,(1)(11)(0)0f f f =-==,所以(1)(2)(3)(4)(5)0f f f f f ++++=.考点:函数图象的中心对称和轴对称.20.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3解析:3【解析】令,则由题意可得函数与函数的图象有三个公共点.画出函数的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则.答案:3 三、解答题21.(1)()4sin 23f x x π⎛⎫=+⎪⎝⎭ (2)1439t +< 【解析】【分析】(1)根据三角函数性质确定振幅、周期以及初相,即得解析式;(2)先确定23x π+范围,再结合正弦函数图象确定实数t 满足的条件,解得结果. 【详解】(1)解:由题意知74,212122T A πππ==-=,得周期T π= 即2ππω=得,则2ω=,则()()4sin 2f x x ϕ=+ 当12x π=时,()f x 取得最大值4,即4sin 2412πϕ⎛⎫⨯+= ⎪⎝⎭,得πsin φ16骣琪+=琪桫 得2()62k k Z ππϕπ+=+∈,,得23()k k Z πϕπ=+∈, ,ϕπ<∴Q 当0k =时,=3πϕ,因此()4sin 23f x x π⎛⎫=+ ⎪⎝⎭ (2)()()210h x f x t =+-=,即()12t f x -=当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,则220,33x ππ⎡⎤+∈⎢⎥⎣⎦ 当232x ππ+=时,4sin 42π= 要使()12t f x -=有两个根,则12342t -≤<,得1439t +≤< 即实数t 的取值范围是1439t +<【点睛】本题考查三角函数解析式以及利用正弦函数图象研究函数零点,考查综合分析求解能力,属中档题.22.(1)2a =(2)()1,1-(3)(10,3)+∞ 【解析】【分析】(1)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m ,利用换元法,结合函数的单调性求解最大值,推出结果即可.【详解】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=- 即:242422x x x x a a a a a a a a---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+, 211121x ∴-<-<+ ∴函数()f x 的值域为()1,1-.(3)由()220xmf x +-> 可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+. 当[]1,2x ∈时,(21)(22)21x x x m +->- 令(2113)x t t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t =-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=,103m ∴>, 故实数m 的取值范围为(10,3)+∞ 【点睛】 本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.23.当底面的长宽分别为3m ,4m 时,可使房屋总造价最低,总造价是34600元【解析】 设房屋地面的长为米,房屋总造价为元.24.(1)722x x ⎧⎫<≤⎨⎬⎩⎭;(2)3 4.2p p ><-或 【解析】【分析】(1)根据集合的交集得到结果即可;(2)当A∩B=B 时,可得B ⊆A ,分B 为空集和不为空集两种情况即可.【详解】(1)当时,B={x |0≤x ≤}, ∴A∩B={x |2<x ≤};(2)当A∩B=B 时,可得B ⊆A ;当时,令2p -1>p +3,解得p >4,满足题意; 当时,应满足解得; 即综上,实数p 的取值范围.【点睛】 与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.25.(1){}11x x -<<(2)函数()f x 为奇函数,证明见解析(3){}01x x <<【解析】【分析】(1)根据题意,求函数定义域结合对数函数真数大于零得到关于x 的不等式组,求解即可得出答案。

2020-2021福州市高中必修三数学上期中模拟试卷带答案

2020-2021福州市高中必修三数学上期中模拟试卷带答案

2020-2021福州市高中必修三数学上期中模拟试卷带答案一、选择题1.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为0m ,平均值为x ,则( )A .e m =0m =xB .e m =0m <xC .e m <0m <xD .0m <e m <x2.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .3.设,m n 分别是先后抛掷一枚骰子得到的点数,则方程20x mx n ++=有实根的概率为( ) A .1936B .1136C .712D .124.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油5.阅读下边的程序框图,运行相应的程序,则输出s 的值为( )A .1B .0C .1D .36.已知变量,x y 之间满足线性相关关系ˆ 1.31yx =-,且,x y 之间的相关数据如下表所示: x 12 3 4 y0.1m3.14则实数m =( ) A .0.8B .0.6C .1.6D .1.87.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .568.运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >9.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .410.若同时掷两枚骰子,则向上的点数和是6的概率为( ) A .16B .112C .536D .51811.设点(a,b)为区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内任意一点,则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为 A .13B .2 3C .1 2D .1 412.某产品的广告费用x 与销售额y 的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元 二、填空题13.判断大小,,,,则、、、大小关系为_____________.14.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.15.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__ . 16.在长为10cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于225cm 与249cm 之间的概率为__________.17.执行如图所示的程序框图,则输出S 的结果为________.18.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为ˆˆ1.02yx a =+,则实数ˆa =__________.19.从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是______.20.已知方程0.85 2.1ˆ87yx =-是根据女大学生的身高预报其体重的回归方程, ˆ,x y 的单位是cm 和kg ,则针对某个体()160,53的残差是__________.三、解答题21.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4 组[45,55),第5组[55,65],得到的频率分布直方图如图所示(1) 求a 的值(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取12人,再从这12人中随机抽取3人进行问卷调查,求在第1组已被抽到1人的前提下,第3组被抽到2人的概率; (3)若从所有参与调查的人中任意选出3人,记关注“生态文明”的人数为X ,求X 的分布列与期望.22.袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为a ,第二次取出的小球标号为b . (1) 记事件A 表示“2a b +=”, 求事件A 的概率;(2) 在区间[]0,2内任取2个实数,x y , 记()2a b -的最大值为M ,求事件“22x y M +<”的概率.23.某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究.该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).根据上述数据作出散点图,可知绿豆种子出芽数y (颗)和温差x (0C )具有线性相关关系. (1)求绿豆种子出芽数y (颗)关于温差x (0C )的回归方程y bx a =+$$$;(2)假如4月1日至7日的日温差的平均值为110C ,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.附:121()()()niii nii x x y y bx x ==--=-∑∑$1221ni ii ni i x y nxyx nx ==-=-∑∑,a y bx =-$$24.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求1A 被选中的概率; (2)求1B 和1C 不全被选中的概率.25.某地随着经济的发展,居民收入逐年增长该地一建设银行统计连续五年的储蓄存款(年底余额)得到下表: 年份x2014 2015 2016 2017 2018 储蓄存款y (千亿元)567810为便于计算,工作人员将上表的数据进行了处理(令2013,t x =-5=-z y ),得到下表: 时间t 1 2 3 4 5 储蓄存款z1235(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程,求出y 关于x 的回归方程;(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?附:线性回归方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-⋅=-∑∑,ˆˆay bx =-. 26.为了调查教师对教育改革认识水平,现从某市年龄在[]20,45的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在[)[)[]30,35,35,40,40,45中用分层抽样的方法选取6名教师代表.(1)求年龄在[)35,40中的教师代表人数;(2)在这6名教师代表中随机选取2名教师,求在[)35,40中至少有一名教师被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即e m =5.5,5出现的次数最多,故0m =5,23341056637282921030x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=≈5.97于是得0m <e m <x .考点:统计初步.2.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.3.A解析:A【解析】由题意知本题是一个等可能事件的概率,试验发生包含的事件数是6×6=36种结果,方程x2+mx+n=0有实根要满足m2−4n⩾0,当m=2,n=1m=3,n=1,2m=4,n=1,2,3,4m=5,n=1,2,3,4,5,6,m=6,n=1,2,3,4,5,6综上可知共有1+2+4+6+6=19种结果∴方程x2+mx+n=0有实根的概率是19 36;本题选择A选项.4.D解析:D【解析】【分析】【详解】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误; 对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率, ∴用丙车比用乙车更省油,故D 正确 故选D .考点:1、数学建模能力;2、阅读能力及化归思想.5.B解析:B 【解析】经过第一次循环得到32s i ==,,不满足4i >, 执行第二次循环得到43s i ==,, 不满足4i >,, 执行第三次循环得到s=1,i=4,不满足4i >,, 经过第四次循环得到05s i ==,, 满足判断框的条件 执行“是”输出0S =.故选B . 6.D解析:D 【解析】分析:由题意结合线性回归方程的性质整理计算即可求得最终结果. 详解:由题意可得:12345 2.542x +++===,0.1 3.14 1.844m m y +++==+, 线性回归方程过样本中心点,则:1.8 1.3 2.514m+=⨯-, 解得:8.1=m . 本题选择D 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】 【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.8.D解析:D 【解析】运行该程序,第一次,1,k 2x ==, 第二次,2,k 3x ==, 第三次,4,k 4x ==, 第四次,16,k 5x ==, 第五次,4,k 6x ==, 第六次,16,k 7x ==, 第七次,4,k 8x ==, 第八次,16,k 9x ==, 观察可知,若判断框中为5k ≥.,则第四次结束,输出x 的值为16,满足; 若判断框中为4k >.,则第四次结束,输出x 的值为16,满足; 若判断框中为9k ≥.,则第八次结束,输出x 的值为16,满足; 若判断框中为7k >.,则第七次结束,输出x 的值为4,不满足; 故选D.9.C解析:C 【解析】 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知: 第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=, 要使的输出的结果为48,根据选项可知8k =,故选C. 【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.10.C解析:C 【解析】由图表可知,点数和共有36种可能性,其中是6的共有5种,所以点数和是6的概率为536,故选C.点睛:本题考查古典概型的概率,属于中档题目.具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=.11.A解析:A 【解析】作出不等式组对应的平面区域如图所示:若f (x )=2ax 2bx 3-+在区间[12,+∞)上是增函数, 则02122a b a >⎧⎪-⎨-≤⎪⎩,即020a a b >⎧⎨-≥⎩,则A (0,4),B (4,0),由4020a b a b +-=⎧⎨-=⎩得8343a b ⎧=⎪⎪⎨⎪=⎪⎩,即C (83,43), 则△OBC 的面积S=14423⨯⨯=83. △OAB 的面积S=14482⨯⨯=. 则使函数f(x)=2ax 2bx 3-+在区间[12,+∞)上是增函数的概率为P=OBC OABS S n n =13, 故选:A .12.B解析:B 【解析】 【分析】 【详解】试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程二、填空题13.a<c<b<d 【解析】【分析】利用中间值01来比较得出a<00<b<10<c<1d>1再利用中间值12得出bc 的大小关系从而得出abcd 的大小关系【详解】由对数函数的单调性得a=log305<log解析:.【解析】 【分析】利用中间值、来比较,得出,,,,再利用中间值得出、的大小关系,从而得出、、、的大小关系. 【详解】由对数函数的单调性得,,即,,即,,即.又,即,因此,,故答案为.【点睛】本题考查对数值的大小比较,对数值大小比较常用的方法如下:(1)底数相同真数不同,可以利用同底数的对数函数的单调性来比较;(2)真数相同底数不同,可以利用对数函数的图象来比较或者利用换底公式结合不等式的性质来比较;(3)底数不同真数也不同,可以利用中间值法来比较.14.3个【解析】【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x和y满足关系y=-2x+3则x与y正相关;应该是:x与y负相关故错误(2)线性回归直线必过点线性回归直线解析:3个【解析】【分析】直接利用线性回归直线的相关理论知识的应用求出结果.【详解】(1)已知变量x和y满足关系y=-2x+3,则x与y正相关;应该是:x与y负相关.故错误.(2)线性回归直线必过点(),x y,线性回归直线必过中心点.故正确.(3)对于分类变量A与B的随机变量2k,2k越大说明“A与B有关系”的可信度越大.根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R2的值越大,说明拟合的效果越好.故正确,根据课本上有原句.故填3个.【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.15.【解析】由题意可知与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积即所以与三个顶点的距离都大于2的区域的面积由几何概型的概率公式知其恰落在与三个顶点的距离都大于2的地方的概率为答案解析:15 15π-【解析】由题意可知,与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积,即2π,所以与三个顶点的距离都大于2的区域的面积302π-。

福建省2020-2021学年高一数学上学期期中试题(A)

福建省2020-2021学年高一数学上学期期中试题(A)

福建省建瓯市芝华中学2020-2021学年高一数学上学期期中试题(A )考试时长:120分钟,满分:150, 使用时间:11.18一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.设集合{}2,1,0,2M =--,{}2|N x x x ==,则M C N =( )A. {}01,B. {}2,1,2--C. {}2,1,0,2--D.2,0,22.函数lg(2)y x =-的定义域是 ( ) A. [1,+∞)B. (1,+∞)C. (2,+∞)D. [2,+∞)3. 已知空间两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是( ) A 若//,,m n αα⊂ 则//m n B 若,,m m n αβ⋂=⊥则n α⊥ C //,//,//m n m n αα若则 D 若//,,,m m n αβαβ⊂⋂= 则//m n4、下列函数中,既是偶函数又在()0+∞,上单调递增的函数是( ) A. 21y x =-B. 3y x =C. ln y x =D.+1=y x5、函数()33log f x x x =-+的零点所在区间是( ) A. ()0,1 B. ()1,2 C. ()2,3 D. ()3,+∞6、一空间几何体的三视图如图所示,则该几何体的体积为( )A. 1B. 3C. 6D. 27、函数f (x )=1+与在同一坐标系中的图象大致是( )8.如图,在三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中点,则AD 与平面ABC 所成角的大小是( )A. 30︒B. 45︒C. 60︒D. 90︒9、已知函数f (x )=⎩⎪⎨⎪⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,12B.⎝ ⎛⎦⎥⎤13,611C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 10、某正方体的平面展开图如图所示,则在这个正方体中( )A. NC 与DE 相交B. CM 与ED 平行C. AF 与CN 平行D. AF 与CM 异面11、函数有两个零点,则的取值范围是( )A. B. C. D.12.如下图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠= ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD .给出下面四个命题:①A D BC '⊥;②三棱锥A BCD '-的体积为2;③CD ⊥平面A BD '; ④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A. ①②B. ③④C. ①③D. ②④二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置. 13.计算:()312log 433213ln 83log 4π-++--=e _______. 14、如图,已知三棱锥S ABC -中,,则二面角的平面角的大小为15、棱长为2的正方体外接球的体积是 16、已知,,,则c b a ,,的大小关系是三.解答题:本大题共6个小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17、(10分)已知集合A ={x |},B ={x |},若B ⊆A ,求实数m 的取值范围。

2020-2021福州市高中必修一数学上期中模拟试卷附答案

2020-2021福州市高中必修一数学上期中模拟试卷附答案

2020-2021福州市高中必修一数学上期中模拟试卷附答案一、选择题1.f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .22.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭3.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)74.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件5.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .6.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]7.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z8.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]11.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1 B .(]0,1 C .[]1,1- D .(]1,1- 12.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________. 14.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.15.函数f(x)为奇函数,且x>0时,f(x)x +1,则当x<0时,f(x)=________. 16.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.17.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 18.10343383log 27()()161255-+--+=__________.19.计算:__________.20.用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式22.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围. 23.已知函数()2xf x =,1()22xg x =+.(1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.24.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.25.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值; (2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.26.已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.2.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.3.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.4.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.5.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数,所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.7.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.C解析:C【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.11.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.12.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】 【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 15.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填解析:1x ---【解析】当x <0时,-x >0,∴f (-x )= x -+1,又f (-x )=-f (x ),∴f (x )=1x ---,故填1x ---.16.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2]. 【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集. 易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.17.7【解析】【分析】【详解】设则因为所以故答案为7解析:7 【解析】 【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.18.【解析】19.4【解析】原式=log3332+lg(25×4)+2-(23)3-13=32+2+2-32=4故填4 解析:【解析】原式=,故填.20.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6 【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6 考点:分段函数的最值问题三、解答题21.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】 【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式. 【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2,则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.·(3)当x >0时,-x <0,()111f x x -=-+ 由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式. 22.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求 试题解析:(1)f (x )=(2x )2-4·2x -6(0≤x ≤3). 令t =2x,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数. ∴f (x )min =h (2)=-10,f (x )max =h (8)=26. (2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立, ∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10. 故a 的取值范围为(-∞,-10].23.(1)(2,3];(2)2log (1x =. 【解析】试题分析:(1)化简函数的解析为||||11()2()222x x g x =+=+,根据||10()12x <≤,即可求解函数的值域;(2)由()()0f x g x -=,得||12202xx --=,整理得到2(2)2210x x -⋅-=,即可求解方程的解.试题解析:(1)||||11()2()222x x g x =+=+, 因为||0x ≥,所以||10()12x <≤,即2()3g x <≤,故()g x 的值域是(2,3].(2)由()()0f x g x -=,得||12202xx --=, 当0x ≤时,显然不满足方程,即只有0x >时满足12202xx --=,整理得2(2)2210x x -⋅-=,2(21)2x -=,故21x =±因为20x >,所以21x =2log (1x =. 考点:指数函数的图象与性质.24.(1)2a =,定义域为()1,3-;(2)2 【解析】 【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域; (2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值.【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-, 则1030x x +>⎧⎨->⎩,解得13x -<<,故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题.25.(1)a=1,b=0;(2) (],0-∞. 【解析】 【分析】(1)依据题设条件建立方程组求解;(2)将不等式进行等价转化,然后分离参数,再换元利用二次函数求解. 【详解】(1)()()2g x a x 11b a =-++-,因为a 0>,所以()g x 在区间[]23,上是增函数, 故()()21{34g g ==,解得1{0a b ==. (2)由已知可得()12=+-f x x x ,所以()20-≥x f kx 可化为12222+-≥⋅x x x k , 化为2111+222-⋅≥x x k (),令12=x t ,则221≤-+k t t ,因[]1,1∈-x ,故1,22⎡⎤∈⎢⎥⎣⎦t , 记()221=-+h t t t ,因为1,22⎡⎤∈⎢⎥⎣⎦t ,故()0=min h t ,所以k 的取值范围是(],0∞-. 【点睛】(1)本题主要考查二次函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力,(2)本题的关键有两点,其一是分离参数得到2111+222-⋅≥x x k (),其二是换元得到221≤-+k t t ,1,22⎡⎤∈⎢⎥⎣⎦t . 26.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解;(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数, 证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数,∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭, ∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.。

2020-2021福州市高三数学上期中第一次模拟试卷含答案

2020-2021福州市高三数学上期中第一次模拟试卷含答案

2020-2021福州市高三数学上期中第一次模拟试卷含答案一、选择题1.已知首项为正数的等差数列{}n a 的前n 项和为n S ,若1008a 和1009a 是方程2201720180x x --=的两根,则使0n S >成立的正整数n 的最大值是( )A .1008B .1009C .2016D .20172.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) A.3B.3C.3D.3-3.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-4.已知{}n a 为等差数列,n S 为其前n 项和,若3572a a +=,则13S =( ) A .49B .91C .98D .1825.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .166.已知数列{a n } 满足a 1=1,且111()(233nn n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n7.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b cc+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形8.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .99.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B相距,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km10.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B .13C .12+D .411.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 23sin 0b A a B +=,3b c =,则ca的值为( )A .1B 3C 5D 7 二、填空题13.设0,0,25x y x y >>+=xy______.14.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__15.在无穷等比数列{}n a 中,123,1a a ==,则()1321lim n n a a a -→∞++⋯+=______. 16.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 17.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos23C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .18.若两个正实数,x y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是____________ .19.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.22.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,nn n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .23.如图,在平面四边形ABCD 中,42AB =,22BC =,4AC =.(1)求cos BAC ∠;(2)若45D ∠=︒,90BAD ∠=︒,求CD .24.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值.25.在ABC ∆角中,角A 、B 、C 的对边分别是a 、b 、c ,若3asinB bcosA =. (1)求角A ;(2)若ABC ∆的面积为235a =,,求ABC ∆的周长. 26.在△ABC 中,角,,A B C 所对的边分别是,,a b c ,且4cos 5A =. (1)求2sincos 22B CA ++的值; (2)若2b =,ABC ∆的面积3S =,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】依题意知100810091008100920170,20180a a a a +=>=-<,Q 数列的首项为正数,()()1201610081009100810092016201620160,0,022a a a a a a S +⨯+⨯∴>∴==,()12017201710092017201702a a S a+⨯==⨯<,∴使0n S >成立的正整数n 的最大值是2016,故选C.2.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a≤ 故1212a x x x x ++的最大值为. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.B解析:B 【解析】∵3572a a +=,∴11272(4)a d a d ++=+,即167a d +=,∴13711313(6)13791S a a d ==+=⨯=,故选B .5.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.6.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,() ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.9.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =+=+⨯=km ,所以6033cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,2222232cos (603)90260390BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯g 10800=,所以603BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.10.A解析:A 【解析】 【分析】将函数()y f x =的解析式配凑为()()1222f x x x =-++-,再利用基本不等式求出该函数的最小值,利用等号成立得出相应的x 值,可得出a 的值. 【详解】当2x >时,20x ->,则()()1122222f x x x x x =+=-++≥-- 4=, 当且仅当()1222x x x -=>-时,即当3x =时,等号成立,因此,3a =,故选A. 【点睛】本题考查基本不等式等号成立的条件,利用基本不等式要对代数式进行配凑,注意“一正、二定、三相等”这三个条件的应用,考查计算能力,属于中等题.11.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年福建省福州三中高一(上)期中数学试卷一、选择题,本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0D.∀x∈R,x2+x+1≥02.(5分)集合A={x|﹣1<x<3,x∈N}的真子集的个数是()A.3B.4C.7D.83.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(5分)若f(2x+1)=x2﹣2x,则f(2)的值为()A.﹣B.C.0D.15.(5分)以下关于函数f(x)=2x的说法正确的是()A.f(m+n)=f(m)f(n)B.f(mn)=f(m)+f(n)C.f(mn)=f(m)f(n)D.f(m)+f(n)=f(m+n)6.(5分)设a=,b=,c=,则a,b,c的大小关系正确的是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a7.(5分)设a>0,b>0,不等式恒成立,则实数k的最大值等于()A.0B.8C.9D.108.(5分)已知函数,则使得f(2x﹣1)<f(x)成立的实数x的取值范围是()A.(﹣∞,1)B.C.D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.(5分)下列各组函数中,两个函数是同一函数的有()A.f(x)=|x|与B.f(x)=x+1与C.f(x)=与g(x)=D.与10.(5分)如图,某湖泊蓝藻的面积y(单位:m2)与时间t(单位:月)的关系满足y=a t,则下列说法正确的是()A.蓝藻面积每个月的增长率为200%B.蓝藻每个月增加的面积都相等C.第4个月时,蓝藻面积就会超过80m2D.若蓝藻面积蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则一定有2t2=t1+t3 11.(5分)已知ab>0且,则下列不等式一定成立的有()A.a<b B.C.D.2a+a<2b+b 12.(5分)狄利克雷函数是高等数学中的一个典型函数,对于狄利克雷函数f(x),下列命题中真命题的有()A.对任意x∈R,都有f[f(x)]=1B.对任意x∈R,都有f(﹣x)+f(x)=0C.若a<0,b>1,则有{x|f(x)>a}={x|f(x)<b}D.存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等腰三角形三、填空题,本题共4小题,每小题5分,共20分,在答题卡上的相应题目的答题区域内作答.13.(5分)已知函数f(x)的对应关系如表所示,则f(f(4))=.x12345 f(x)54312 14.(5分)=.15.(5分)已知函数满足对任意x1≠x2,都有成立,则实数a的取值范围是.16.(5分)方程x2+2x﹣1=0的解可视为函数y=x+2的图象与函数的图象交点的横坐标,若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i =1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.在答题卡上的相应题目的答题区域内作答.17.(10分)设全集U=R,集合A={x|x2﹣8x<0},.(1)求A∪B,(∁U A)∩B.(2)若集合C={x|a﹣3<x<2a,a∈R},B∩C=B,求实数a的取值范围.18.(12分)已知函数f(x)=且f(f(1))=0.(1)求a的值,并在直角坐标系中作出函数f(x)的大致图象.(2)若方程f(x)﹣b=0有三个实数解,求实数b的取值范围.19.(12分)已知函数是奇函数.(1)求b的值;(2)判断函数f(x)在定义域上的单调性并用定义证明;(3)若对任意t∈R,不等式f(kt2)+f(2kt﹣1)<0恒成立,求实数k的取值范围.20.(12分)已知f(x)=2x2﹣(a+2)x+a,a∈R.(1)解关于x的不等式f(x)>0;(2)若方程f(x)=x+1有两个正实数根x1,x2,求+的最小值.21.(12分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x万箱,需另投入成本p(x)万元,当产量不足90万箱时,p(x)=+40x;当产量不小于90万箱时,p(x)=101x﹣2180,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?22.(12分)已知幂函数f(x)=(p2﹣3p+3)满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=f2(x)+mf(x),x∈[1,9],是否存在实数m使得g(x)的最小值为0?若存在,求出m的值;若不存在,说明理由.(3)若函数h(x)=n﹣f(x+3),是否存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.2020-2021学年福建省福州三中高一(上)期中数学试卷参考答案与试题解析一、选择题,本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∃x0∈R,x02+x0+1≤0”的否定是()A.∀x∈R,x2+x+1≤0B.∀x∈R,x2+x+1>0C.∃x0∈R,x02+x0+1>0D.∀x∈R,x2+x+1≥0【分析】特称命题“∃x0∈R,x02+x0+1≤0”的否定是:把∃改为∀,其它条件不变,然后否定结论,变为一个全称命题.即“∀x∈R,x2+x+1>0”.【解答】解:特称命题“∃x0∈R,x02+x0+1≤0”的否定是全称命题:“∀x∈R,x2+x+1>0”.故选:B.【点评】写含量词的命题的否定时,只要将“任意”与“存在”互换,同时将结论否定即可,属基础题.2.(5分)集合A={x|﹣1<x<3,x∈N}的真子集的个数是()A.3B.4C.7D.8【分析】根据真子集的定义,写出所有的真子集即可.【解答】解:根据题意,A={0,1,2},集合A的真子集有{0},{1},{2},{0,1},{0,2},{1,2},∅共7个.故选:C.【点评】本题考查集合的真子集.3.(5分)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(5分)若f(2x+1)=x2﹣2x,则f(2)的值为()A.﹣B.C.0D.1【分析】直接利用函数的解析式,求解即可.【解答】解:f(2)=f(2×)==.故选:A.【点评】本题考查函数的基本知识的应用,函数值的求法,考查计算能力.5.(5分)以下关于函数f(x)=2x的说法正确的是()A.f(m+n)=f(m)f(n)B.f(mn)=f(m)+f(n)C.f(mn)=f(m)f(n)D.f(m)+f(n)=f(m+n)【分析】由有理指数幂的运算性质逐一分析四个选项得答案.【解答】解:∵f(x)=2x,∴f(mn)=2mn,f(m)f(n)=2m•2n=2m+n,f(m+n)=2m+n,f(m)+f(n)=2m+2n,则f(m+n)=f(m)f(n).故选:A.【点评】本题考查有理指数幂的运算性质,是基础题.6.(5分)设a=,b=,c=,则a,b,c的大小关系正确的是()A.a<b<c B.b<a<c C.a<c<b D.b<c<a【分析】利用幂函数的性质比较a,c的大小,利用指数函数的性质比较a,b的大小即可.【解答】解:设a=,b=,c==3,由于y=x在(0,+∞)上为增函数,则a<c,由于y=2x为增函数,则b<a,则b<a<c,故选:B.【点评】本题是基础题,考查指数函数与对数函数的单调性的应用,考查基本知识的掌握情况.7.(5分)设a>0,b>0,不等式恒成立,则实数k的最大值等于()A.0B.8C.9D.10【分析】由恒成立,得,然后利用基本不等式求出的最小值,再得到k的最大值.【解答】解:∵a>0,b>0,∴由恒成立,得,∴只需,∵,当且仅当,即a=2,b=1时取等号,∴k≤9,∴k的最大值为9.故选:C.【点评】本题考查了不等式恒成立问题和利用基本不等式求最值,考查了转化思想,属中档题.8.(5分)已知函数,则使得f(2x﹣1)<f(x)成立的实数x的取值范围是()A.(﹣∞,1)B.C.D.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:由可得f(﹣x)=|﹣x|﹣=|x|﹣=f(x),所以f(x)为偶函数,当x≥0时,f(x)=x﹣单调递增,由f(2x﹣1)<f(x)可得|2x﹣1|<|x|,解得,.故选:B.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.(5分)下列各组函数中,两个函数是同一函数的有()A.f(x)=|x|与B.f(x)=x+1与C.f(x)=与g(x)=D.与【分析】判断函数的定义域与对应法则是否相同,即可判断两个函数是否相同函数.【解答】解:对于选项A:函数g(x)==|x|,两函数的定义域都、值域和解析式都相同,所以它们是同一个函数,对于选项B:函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠1},它们的定义域不同,所以它们不是同一个函数,对于选项C:函数f(x)=,两函数的定义域都、值域和解析式都相同,所以它们是同一个函数,对于选项D:函数f(x)的定义域为{x|x≤﹣1或x≥1},函数g(x)的定义域为{x|﹣1≤x≤1},它们的定义域不同,所以它们不是同一个函数,故选:AC.【点评】本题考查函数的基本性质,判断两个函数是否相同,需要判断定义域与对应法则是否相同.10.(5分)如图,某湖泊蓝藻的面积y(单位:m2)与时间t(单位:月)的关系满足y=a t,则下列说法正确的是()A.蓝藻面积每个月的增长率为200%B.蓝藻每个月增加的面积都相等C.第4个月时,蓝藻面积就会超过80m2D.若蓝藻面积蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则一定有2t2=t1+t3【分析】由函数y=a t图象经过(1,3)可得函数解析式,再根据解析式逐一判断各选项即可.【解答】解:由图可知,函数y=a t图象经过(1,3),即a1=3,则a=3,∴y=3t;∴3t+1﹣3t=3t不是常数,则蓝藻每个月的面积是上个月的3倍,则每个月的增长率为200%,A对、B错;当t=4时,y=34=81>80,C对;若蓝藻面积蔓延到2m2,3m2,6m2所经过的时间分别是t1,t2,t3,则3=2,3=4,3=8,∴(3)2=3•3,则t1+t3=2t2,D对;故选:ACD.【点评】本题主要考查指数函数的性质及指数的运算法则,属于基础题.11.(5分)已知ab>0且,则下列不等式一定成立的有()A.a<b B.C.D.2a+a<2b+b【分析】根据不等式的基本性质对各个选项进行判断即可.【解答】解:对于A:∵ab>0,,∴﹣=>0,∴b>a,即a<b,故A正确;对于B:∵ab>0,∴a<b<0时,a2>b2,0<a<b时,a2<b2∴﹣=,无法比较大小,故B错误;对于C:∵ab>0,a<b,∴>0,>0+>2=2,故C正确;对于D:∵a<b,∴a﹣b<0,2a﹣2b<0,∴2a+a﹣2b﹣b=(2a﹣2b)+(a﹣b)<0,故D正确:故选:ACD.【点评】本题考查了不等式的基本性质,考查转化思想,是一道基础题.12.(5分)狄利克雷函数是高等数学中的一个典型函数,对于狄利克雷函数f(x),下列命题中真命题的有()A.对任意x∈R,都有f[f(x)]=1B.对任意x∈R,都有f(﹣x)+f(x)=0C.若a<0,b>1,则有{x|f(x)>a}={x|f(x)<b}D.存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等腰三角形【分析】根据狄利克雷函数,分别讨论当x∈Q和x∈∁R Q时,对应命题是否成立即可.【解答】解:当x∈Q,则f(x)=1,f(1)=1,则[f(x)]=1,当x∈∁R Q,则f(x)=0,f(0)=1,则[f(x)]=1,即对任意x∈R,都有f[f(x)]=1,故A正确,当x∈Q,则﹣x∈Q,则f(﹣x)=1,f(x)=1,此时f(﹣x)=f(x),当x∈∁R Q,则﹣x∈∁R Q,则f(﹣x)=0,f(x)=0,此时f(﹣x)=f(x),即恒有f(﹣x)=f(x),即函数f(x)是偶函数,故B错误,∵f(x)≥0恒成立,∴对任意a,b∈(﹣∞,0),都有{x|f(x)>a}={x|f(x)>b}=R,故C正确,当x1∈Q,x2∈Q,x3∈Q,此时f(x1)+f(x2)=f(x3)=1;ABC够不成三角形,故D 不正确,故选:AC.【点评】本题主要考查命题的真假判断,涉及新定义,正确理解狄利克雷函数的分段函数意义是解决本题的关键.三、填空题,本题共4小题,每小题5分,共20分,在答题卡上的相应题目的答题区域内作答.13.(5分)已知函数f(x)的对应关系如表所示,则f(f(4))=5.x12345 f(x)54312【分析】推导出f(4)=1,从而f(f(4))=f(1),由此能求出结果.【解答】解:由题意得:f(4)=1,f(f(4))=f(1)=5.故答案为:5.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.(5分)=.【分析】根据指数幂的运算性质计算即可.【解答】解:原式=﹣﹣(3﹣)=﹣3=,故答案为:.【点评】本题考查了指数幂的运算性质,是一道基础题.15.(5分)已知函数满足对任意x1≠x2,都有成立,则实数a的取值范围是[,).【分析】根据题意,由函数单调性的定义可得函数f(x)在R上为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.【解答】解:根据题意,函数f(x)满足对任意x1≠x2,都有成立,则函数f(x)在R上为减函数,而函数,则,解可得≤a<,即a的取值范围为[,),故答案为:[,).【点评】本题考查分段函数的单调性,注意分析函数f(x)的单调性,属于基础题.16.(5分)方程x2+2x﹣1=0的解可视为函数y=x+2的图象与函数的图象交点的横坐标,若方程x4+ax﹣4=0的各个实根x1,x2,…,x k(k≤4)所对应的点(i =1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(﹣∞,﹣6)∪(6,+∞).【分析】原方程等价于x3+a=,分别作出y=x3+a与y=的图象:分a>0与a<0讨论,利用数形结合即可得到结论.【解答】解:方程的根显然x≠0,原方程x4+ax﹣4=0,等价为方程x3+a=,原方程的实根是曲线y=x3+a与曲线y=的交点的横坐标;曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的.若交点(x i,)(i=1,2,k)均在直线y=x的同侧,因直线y=x与y=交点为:(﹣2,﹣2),(2,2);所以结合图象可得:或,解得a>6或a<﹣6,即实数a的取值范围是(﹣∞,﹣6)∪(6,+∞),故答案为:(﹣∞,﹣6)∪(6,+∞).【点评】本题考查函数与方程的综合运用,利用数形结合是解决本题的关键.注意合理地进行等价转化.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.在答题卡上的相应题目的答题区域内作答.17.(10分)设全集U=R,集合A={x|x2﹣8x<0},.(1)求A∪B,(∁U A)∩B.(2)若集合C={x|a﹣3<x<2a,a∈R},B∩C=B,求实数a的取值范围.【分析】(1)求出集合A,B,求出A∪B,∁U A∩B.(2)由B∩C=B,得B⊆C,由此能求出a的取值范围.【解答】解:(1)集合A={x|x2﹣8x<0}={x|0<x<8},={x|﹣1<x<2},则A∪B={x|﹣1<x<8},∁U A={x|x≤0或x≥8},∴∁U A∩B={x|﹣1<x≤0}.(2)∵集合C={x|a﹣3<x<2a,a∈R},B={x|﹣1<x<2},B∩C=B,∴B⊆C,∴,解得1≤a≤2,故a的取值范围是[1,2].【点评】本题考查并集、交集、补集的求法,考查实数的取值范围的求法,考查并集、交集、补集的定义等基础知识,考查运算求解能力,是基础题.18.(12分)已知函数f(x)=且f(f(1))=0.(1)求a的值,并在直角坐标系中作出函数f(x)的大致图象.(2)若方程f(x)﹣b=0有三个实数解,求实数b的取值范围.【分析】(1)通过函数的解析式,求出函数值,然后推出a,即可得到函数的解析式.(2)【解答】解:(1)f[f(1)]=f(0)=1﹣a=0,则a=1;所以.(2)的图象如图,方程f(x)﹣b=0有三个实数解,根据图象可知b的取值范围是(﹣1,0].【点评】本题考查函数与方程的应用,考查数形结合以及计算能力,是中档题.19.(12分)已知函数是奇函数.(1)求b的值;(2)判断函数f(x)在定义域上的单调性并用定义证明;(3)若对任意t∈R,不等式f(kt2)+f(2kt﹣1)<0恒成立,求实数k的取值范围.【分析】(1)由f(x)是R上的奇函数,则f(0)=0,解得b,检验可得所求值;(2)f(x)在(﹣∞,+∞)上单调递增.运用函数的单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(3)由函数的奇偶性和单调性,可得kt2<1﹣2kt对一切t∈R恒成立,讨论k=0,k<0且判别式小于0,解不等式可得所求范围.【解答】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即,解得b=1,经检验b=1时,是R上奇函数;(2),则f(x)在(﹣∞,+∞)上单调递增.证明如下:任取x1,x2∈R且x1<x2,则=,因为x1<x2,所以,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以函数f(x)在(﹣∞,+∞)上单调递增;(3)因为f(x)是R上奇函数,所以f(kt2)+f(2kt﹣1)<0等价于f(kt2)<﹣f(2kt﹣1),即f(kt2)<f(1﹣2kt),因为f(x)为R上增函数,则kt2<1﹣2kt对一切t∈R恒成立,即kt2+2kt﹣1<0恒成立,①k=0显然成立,②,解得﹣1<k<0.综上所述,k的取值范围是(﹣1,0].【点评】本题考查函数的奇偶性和单调性的判断和运用,以及不等式恒成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.20.(12分)已知f(x)=2x2﹣(a+2)x+a,a∈R.(1)解关于x的不等式f(x)>0;(2)若方程f(x)=x+1有两个正实数根x1,x2,求+的最小值.【分析】(1)根据函数f(x)=2x2﹣(a+2)x+a的解析式,可将f(x)>0化为(2x﹣a)(x﹣1)>0,分类讨论可得不等式的解集.(2)由方程f(x)=x+1有两个正实数根x1,x2⇒a>1,利用韦达定理可得+===,再结合均值不等式即可.【解答】解:(1)由f(x)>0得(2x﹣a)(x﹣1)>0,当a>2时,原不等式的解集为(﹣∞,1)∪(,+∞),当a=2时,原不等式的解集为{x|x≠1},当a<2时,原不等式的解集为(﹣∞,)∪(1,+∞);(2)方程f(x)=x+1有两个正实数根x1,x2,等价于2x2﹣(a+3)x+a﹣1=0有两个正实数根x1,x2,∴⇒a>1,则+===[(a﹣1)+]+2=2+≥6当且仅当a=5时取等号,故+的最小值为6.【点评】本题考查了二次函数的λ性质、解含参数一元二次不等式、韦达定理、均值不等式,属于中档题.21.(12分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x万箱,需另投入成本p(x)万元,当产量不足90万箱时,p(x)=+40x;当产量不小于90万箱时,p(x)=101x﹣2180,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?【分析】(1)根据题意结合“利润=销售收入﹣成本”,即可列出函数关系式;(2)利用二次函数性质及基本不等式,求出分段函数各段函数上的最大值即可求解.【解答】解:(1)当0<x<90时,;当x≥90时,,∴.(2)①当0<x<90时,≤1600,②当x≥90时,>1600,当且仅当,即x=90时,y取得最大值,最大值为1800万元.综上,当产量为90万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1800万元.【点评】本题是一道关于分段函数的实际应用题,关键是熟练掌握二次函数的性质及基本不等式的应用,属于中档题.22.(12分)已知幂函数f(x)=(p2﹣3p+3)满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=f2(x)+mf(x),x∈[1,9],是否存在实数m使得g(x)的最小值为0?若存在,求出m的值;若不存在,说明理由.(3)若函数h(x)=n﹣f(x+3),是否存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.【分析】(1)根据幂函数f(x)是幂函数,可得p2﹣3p+3=1,求解p,可得解析式;(2)由函数g(x)=f2(x)+mf(x),x∈[1,9],利用换元法转化为二次函数问题求解最小值,可得m的值;(3)由函数h(x)=n﹣f(x+3),求解h(x)的解析式,判断其单调性,根据在[a,b]上的值域为[a,b],转化为方程有解问题求解n的取值范围.【解答】解:(1)∵f(x)是幂函数,∴得p2﹣3p+3=1,解得:p=1或p=2当p=1时,f(x)=,不满足f(2)<f(4).当p=2时,f(x)=,满足f(2)<f(4).∴故得p=2,函数f(x)的解析式为f(x)=;(2)由函数g(x)=f2(x)+mf(x),即g(x)=,令t=,∵x∈[1,9],∴t∈[1,3],记k(x)=t2+mt,其对称在t=,①当≤1,即m≥﹣2时,则k(x)min═k(1)=1+m=0,解得:m=﹣1;②当13时,即﹣6<m<﹣2,则k(x)min═k()==0,解得:m=0,不满足,舍去;③当时,即m≤﹣6时,则k(x)min═k(3)=3m+9=0,解得:m=﹣3,不满足,舍去;综上所述,存在m=﹣1使得g(x)的最小值为0;(3)由函数h(x)=n﹣f(x+3)=n﹣在定义域内为单调递减函数,若存在实数存在实数a,b(a<b),使函数h(x)在[a,b]上的值域为[a,b]则h(x)=两式相减:可得:=(a+3)﹣(b+3).∴③将③代入②得,n=a+=a+1令,∵a<b,∴0≤t,得:n=t2﹣t﹣2=(t﹣)2﹣故得实数n的取值范围(,﹣2].【点评】本题主要考查幂函数解析式,函数最值的求解,方程与不等式的性质,讨论思想以及一元二次函数的性质是解决本题的关键.属于难题.。

相关文档
最新文档