静电场的高斯定理复习题十一月整理

合集下载

静电场 复习(1-3节)

静电场  复习(1-3节)

第一章 静电场 复习(1-3节)一、知识点整理1、带电方式摩擦起电、 、2、电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分.3、元电荷:(1)电荷的多少叫做电荷量.符号:Q 或q 单位:库仑 符号:C(2)元电荷:电子所带的电荷量,用e 表示.注意:所有带电体的电荷量或者等于e ,或者等于e 的整数倍。

就是说,电荷量是不能连续变化的物理量。

(3)电荷量e 的值:e =1.60×10-19C(4)比荷:电子的电荷量e 和电子的质量m e 的比值,为111076.1⨯=em e C/㎏ 4、库仑定律 (1)内容表述:真空中两个静止点电荷之间的相互作用力,跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上(2)公式:(3)静电力常量k = 9.0×109N ·m 2/C 2(4)适用条件:真空中, ——理想化模型5、电场:(1)电场的概念:_________________________________________________(2)电场的基本性质:①引入电场中的任何带电体都将受到___ __的作用,且同一点电荷在电场中不同处受到的电场力的大小或方向都可能____ _.②甲电荷对乙电荷的作用力,就是甲电荷的_______对乙电荷的作用力③检验空间有无电场,就看该空间对放入其中的_____有无力的作用(3)实质:场和分子、原子组成的实物一样具有______和动量,是物质存在的另一种形式。

(4)静电场:_______的电荷产生的电场。

6、电场强度(E):(1)试探电荷(检验电荷):用来检验电场_______及其_____分布情况的电荷;是研究电场的工具。

(2)场源电荷(源电荷):激发或产生我们正在研究的电场的电荷。

(3)电场强度:①概念:放入电场中某点的点电荷所受的_______与它的______的比值,简称场强。

静电场复习题及答案

静电场复习题及答案

静电场复习题一、选择题 1、1366如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30xqaεπ. (C)302x qa επ. (D) 204x q επ.[ B ]2、1405设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ C ]3、1559图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B) i a02ελπ. (C)i a 04ελπ. (D) ()j i a+π04ελ. [ B ]4、1033一电场强度为E 的均匀电场,E的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为 (A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E . (D) 0. [ D ]5、1035有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq . (B) 04επq(C)03επq . (D) 06εq [ D ]xq点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变.(C) 曲面S 的电场强度通量变化,曲面上各点场强变化.(D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ D ] 7、1414在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ 034επ .(B) a Q 032επ. (C) a Q 06επ. (D) a Q012επ .[ B ]8、1016静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ C ]9、1199如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A)a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ C ]10、1505如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ D ]11、5085在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为(A) ⎪⎪⎭⎫ ⎝⎛-π-210114r r Q ε. (B) ⎪⎪⎭⎫⎝⎛-π210114r r qQ ε.(C) ⎪⎪⎭⎫ ⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ C ]q2q-r 1一个带负电荷的质点,在电场力作用下从A 点经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:[ D ] 13、1299在一个带有负电荷的均匀带电球外,放置一电偶极子,其电矩p的方向如图所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转直到电矩p沿径向指向球面而停止. (B) 沿逆时针方向旋转至p沿径向指向球面,同时沿电场线方向向着球面移动.(C) 沿逆时针方向旋转至p沿径向指向球面,同时逆电场线方向远离球面移动.(D) 沿顺时针方向旋转至p沿径向朝外,同时沿电场线方向向着球面移动.[ B ] 14、1304质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e. (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ D ]15、1136一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地. (B) N 上有正电荷入地. (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ B ] 16、1210一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为(A) 104R q επ . (B) 204R qεπ .E(B)(D)(C)(A)q(C)102R q επ . (D)20R q ε2π . [ D ]17、1480当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 18、1140半径分别为R 和r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR / σr 为 (A) R / r . (B) R 2 / r 2.(C) r 2 / R 2. (D) r / R . [ D ] 19、5280一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'.(B) r εεσ0'.(C)02εσ'. (D) rεσ'. [ A ] 20、1460如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为: (A) 使电容减小,但与金属板相对极板的位置无关. (B) 使电容减小,且与金属板相对极板的位置有关. (C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ C ]二、填空题 21、1258一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =____________________________,场强方向为______________________.22、5166一均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为__________________.带电直线的延长线与球面交点P 处的电场强度的大小为________________________,方向__________________.23、1600在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________.24、1576 图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离.这是由_________________ ___________________产生的电场.25、1517真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________. 26、1418一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =______________________. 27、1592一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________. 28、1438如图所示, 在场强为E的均匀电场中,A 、B 两点间距离为d .AB 连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =_____________.29、1591如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A ,B ,C .已知U A >U B >U C ,且U A -U B =U B -U C ,则相邻两等势面之间的距离的关系是:R B -R A ______ R C -R B . (填<,=,>)30、1242一半径为R 的均匀带电细圆环,带有电荷Q ,水平放置.在圆环轴线的上方离圆心R 处,有一质量为m 、带电荷为q 的小球.当小球从静止下落到圆心位置时,它的速度为v = _______________.31、1614一“无限长”均匀带电直线,电荷线密度为λ.在它的电场作用下,一质量为m ,电荷为q 的质点以直线为轴线作匀速率圆周运动.该质点的速率v =_______________. 32、1330一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________. 33、1350空气的击穿电场强度为 2×106 V ·m -1,直径为0.10 m 的导体球在空气中时最多能带的电荷为______________. (真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )1 2 3EAE在一个带负电荷的金属球附近,放一个带正电的点电荷q 0,测得q 0所受的力为F ,则F / q 0的值一定________于不放q 0时该点原有的场强大小.(填大、等、小) 35、1606地球表面附近的电场强度约为 100 N /C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面带_____电,电荷面密度σ =__________.(真空介电常量ε0 = 8.85×10-12 C 2/(N ·m 2) ) 36、5109A 、B 为两块无限大均匀带电平行薄平板,两板间和左右两侧充满相对介电常量为εr 的各向同性均匀电介质.已知两板间的场强大小为E 0,两板外的场强均为031E ,方向如图.则A 、B 两板所带电荷面密度分别为 σA =___________, σB =_____________.37、1105半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________. 38、1237两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差______________;电容器1极板上的电荷____________.(填增大、减小、不变) 39、5287一个带电的金属球,当其周围是真空时,储存的静电能量为W e 0,使其电荷保持不变,把它浸没在相对介电常量为εr 的无限大各向同性均匀电介质中,这时它的静电能量W e =__________________________. 40、1334在电容为C 0的平行板空气电容器中,平行地插入一厚度为两极板距离一半的金属板,则电容器的电容C =__________________. 三、计算题 41、1011 半径为R 的带电细圆环,其电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.42、1013“无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.A B E 0E 0/3E 0/3 yRx φOO R’O'边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E 300200+= .试求穿过各面的电通量. 44、1197一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求:(1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布. 45、、1653电荷以相同的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V . (1) 求电荷面密度σ.(2) 若要使球心处的电势也为零,外球面上应放掉多少电荷?[ε0=8.85×10-12 C 2 /(N ·m 2)] 46、1421一半径为R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势. 47、1095如图所示,半径为R 的均匀带电球面,带有电荷q .沿某一半径方向上有一均匀带电细线,电荷线密度为λ,长度为l ,细线左端离球心距离为r 0.设球和线上的电荷分布不受相互作用影响,试求细线所受球面电荷的电场力和细线在该电场中的电势能(设无穷远处的电势为零). 48、1074两根相同的均匀带电细棒,长为l ,电荷线密度为λ,沿同一条直线放置.两细棒间最近距离也为l ,如图所示.假设棒上的电荷是不能自由移动的,试求两棒间的静电相互作用力. 49、1531两个同心金属球壳,内球壳半径为R 1,外球壳半径为R 2,中间是空气,构成一个球形空气电容器.设内外球壳上分别带有电荷+Q 和-Q 求:(1) 电容器的电容;(2) 电容器储存的能量. 50、5683一质量为m 、电荷为-q 的粒子,在半径为R 、电荷为Q (>0)的均匀带电球体中沿径向运动.试证明粒子作简谐振动,并求其振动频率.。

大学物理复习题

大学物理复习题

图1-9 1-9(1-121、静电场的高斯定理描述了它是 场。

2、在点电荷+q 的电场中,若取图1-2中P 点处电势为零点,则M 点的电势为: 。

3、如图1-3电路中两个电容器1和2,串联以后接上电动势恒定的电源充电。

在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差 电容器1极板上的电量 ;电容器2上的电势差 电容器2极板上的电量 。

(填增大、减小、不变) 5、载有电流为I 的无限长导线,弯成如图1-5所示形状,其中有一部分为半径为R 的半圆弧,则其圆心O 点的磁感应强度的大小为 ,方向为 。

6、闭合导体回路电阻R =5 ,回路所包围面积为0.08m 2,均匀磁场垂直于线圈平面。

欲使电路中有一稳定的感应电流i = 0.08 A ,则磁感应强度的变化率为:d B /d t = T/s 。

7、产生动生电动势和感生电动势的非静电力分别为 、 。

8、磁场能量密度为: ,电场能量密度为: 。

一个电容器加了电压之后储存的电场的能量为: 。

一个自感回路,其中通有电流时,其周围空间磁场的能量为: 。

9、如图1-9,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,如图(1-9)所示。

(1)两电流同向且随时间均匀增大时,线圈中有无感应电流 。

(2)两电流反向且随时间均匀增大时,线圈中有无感应电流 。

10、真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1/d 2 =1/2,当它们通以相同电流时,两螺线管贮存的磁能之比为W 1/W 2= 。

11、杨氏双缝干涉实验时,用红光和绿光分别做实验时,红光的干涉条纹间距比绿光图1-3图1-5 图1-2的 。

(填:宽 或 窄)。

12、获得相干光常用的方法有两种是: , 。

13、波长为 的单色光垂直照射到宽a 的单缝上,单缝后面放置一个凸透镜, 在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹两侧第二级暗纹之间的距离为 d ,则透镜的焦距 f 为: 。

第11章(高斯定理及安培环路定理)习题答案

第11章(高斯定理及安培环路定理)习题答案

ò ×
S
ò
S
= 0. ”这个推理正确吗? [ B 不一定要等于零 ] 答:不正确, B d S 各自有不同的方向,B 不一定要等于零 11­6 如图,在一圆形电流 I 所在的平面内,选取一个同心圆形闭合回路 L,则由安培 环路定理可知 (A) (B) I L O 思考题 11­6 图
q 1 1 ( - ) ] 4 pe 0 r R
解;
U 1 =
q 4 peo r
+
Q 4 peo R
U 2 =
q + Q 4 peo R
U1-U2 =
q 1 1 ( - ) 4 pe 0 r R
11­7 [
已 知 某 静 电 场 的 电 势 分 布 为 U = 8x + 12x2 y - 20y2 (SI) , 求 场 强 分 布 E .
B r r U C = U C - U B = ò E × d l = C
ò 4 pe r
o
2
11­5 两块面积均为 S 的金属平板 A 和 B 彼此平行放置,板间距离为 d(d 远小于板的 线度) , 设 A 板带有电荷 q1, B 板带有电荷 q2, 求 AB 两板间的电势差 UAB. [
(1)dq =
q dl 2 L
U = ò dU = ò
dq q q x + L = ò dl = ln 4pe o ( x - l ) 4pe o 2 L ( x - l ) 8pL e o x - L
(2)E= -
¶u q 1 1 1 q r = ( ) = i 2 ¶x 8p L e o x - L x + L 4 pe 0 x 2 - L

11-3 静电场的高斯定理

11-3 静电场的高斯定理
+
+
+ + +
R
+
E1
(2) r
R
Qr e 3 r 4 π 0 R Q SE dS 0 2
Q E2 er 2 4 π 0 r
例3 无限长均匀带电直线的电场强度 无限长均匀带电直线,单位长度上的电荷,即 电荷线密度为 ,求距直线为 处的电场强度.
q2 B
s
s
q1
在点电荷 q 和 q 的静电场中,做如下的三 个闭合面 S1 , S 2 , S3 , 求通过各闭合面的电通量 .
q Φe1 E dS
S1
Φe 2 0
Φe3
q
0
0
q
S1 S2
q
S3

应用高斯定理求场强 实 例
1 E dS
S S
0
点电荷在封闭曲面之外
dΦ E1 dS1 0 1 dΦ2 E2 dS2 0
E2
q
dS 2
dS1
E1
dΦ dΦ2 0 1
E dS 0
S
由多个点电荷产生的电场
E E1 E2
Φe E dS
S2
积分得
4 3 3 E2 4 r dV (r R1 ) 0 V2 0 3
2
0 1
1
4 3 ( R2 R13 ) 3 3 3 Q1 r R1 E2 ( 3 )er 2 3 4 0 r R2 R1
{
Q1
}
(3)当 R2 r R3 时,取同心的球面为高斯面, 由高斯定理得

(整理)浙江省大学物理试题库302-静电场的高斯定理

(整理)浙江省大学物理试题库302-静电场的高斯定理
答案:
题号:30232014
分值:2分
难度系数等级:2
一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量 _________________。
答案:
题号:30232015
分值:2分
难度系数等级:2
一点电荷 处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近时,穿过此高斯面的 通量是否会发生变化?_________________。
如图所示,真空中有两个点电荷,带电量分别为 和 ,相距 。若以负电荷所在处 点为中心,以 为半径作高斯球面 ,则通过该球面的电场强度通量 。
答案:
题号:30233005
分值:2分
难度系数等级:3
一均匀静电场,电场强度 ,则电场通过阴影表面的电场强度通量是______(正方体边长为 )。
答案:
题号:30233006
答案:
题号:30233020
分值:2分
难度系数等级:3
一均匀带电球面,半径是 ,电荷面密度为 。球面上面元 带有 的电荷,该电荷在球心处产生的电场强度为____________。
答案:
四计算题
题号:30242001
分值:10分
难度系数等级:2
一边长为 的立方体置于直角坐标系中,如图所示。现空间中有一非均匀电场 , 、 为常量,求:电场对立方体各表面的电场强度通量。
; ; ; 。〔〕
答案:
题号:30211011
分值:3分
难度系数等级:1
一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化:
将另一点电荷放在高斯面外; 将另一点电荷放进高斯面内;
将球心处的点电荷移开,但仍在高斯面内; 将高斯面半径缩小。

高斯电磁场定律练习题经典习题汇总

高斯电磁场定律练习题经典习题汇总

高斯电磁场定律练习题经典习题汇总
本文档汇总了一些经典的高斯电磁场定律练题,帮助读者巩固
和应用相关概念。

以下是一些题示例:
1. 问题描述:一个半径为R的闭合球面,球心位于电荷密度为ρ的均匀充电球体内,求球面上的电场强度。

解答提示:利用高斯定律,通过球面上的电通量计算电场强度。

2. 问题描述:一个位于原点的点电荷Q在真空中产生的电场强度为E,求通过一个半径为r的闭合球面上的电通量。

解答提示:由于球面是闭合的,电通量等于通过球面的总电荷。

3. 问题描述:一个长度为L的带电线性电荷在空间中产生的电
场强度为E,求通过一个长为d的闭合柱面的电通量。

解答提示:利用高斯定律,根据柱体上的电通量计算电场强度。

4. 问题描述:一个球形电荷分布体半径为R,并在球心产生电
场强度E,求通过一个半径为r(r<R)的闭合球面上的电通量。

解答提示:由于球体不均匀带电,需要考虑球体内不同位置的电荷量。

以上仅为几个经典题示例,读者可以通过解答这些题来加深对高斯电磁场定律的理解和应用。

注意:本文档仅提供习题示例,不提供具体解答。

读者可以根据自己的理解和知识进行思考和解答。

11-22章例题、习题答案

11-22章例题、习题答案

第十一章 静电场例题答案:11-1 (B ) 11-2(B ) 11-3(B ) 11-4.()30220824Rqdd R R qd εεπ≈-ππ;从O 点指向缺口中心点 11-5. 0/ελd ;()2204d R d-πελ ;沿矢径OP 11-6(D) 11-7.02εσ 向右 ; 023εσ向右 11-8 (1)o 2r 4r k E ε=,r <R ; (2) 204r r 4R k E ε=,r >R 。

[解](1)作与球体同心、而半径r <R 的球面S 1。

球体内电荷密度ρ随r 变化,因此,球面S 1内包含的电荷()dr r r 4Q ro 21⎰ρπ=。

根据高斯定理和已知的电荷体密度ρ(r ),可求得球体内任意点的场强。

即()⎰⎰ρπε=⋅=Φr 02s o r dr r r 41s d E 1 ,得:o2r 4r k E ε=,r <R 。

(2)作与球体同心、半径r >R 的球面S 2,因R 外电荷为零,故S 2内的电荷Q 2=Q 1,根据高斯定理得:Φ=()⎰⎰ρπε=⋅R02s 0r dr r r 41s d E 2 =4πr 2E r =⎰πεR3dr kr 41,∴204r r4R kE ε=,r >R 。

11-9(D) 11-10(C) 11-11.d 0L⋅=⎰E l 单位正电荷在静电场中沿任意闭合路径绕行一周,电场力作功等于零有势(或保守力)11-12. 45 V —15 V 11-13. -2000V 11-14. (B) 11-15.20R 4Q πε,0,R 4Q 0πε,20r 4Qπε。

11-16()()a b b c R R R R /ln /ln 21=λλ [解]:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为 E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差11100ln 22E r d d a a bbR R b BA R R aR r r R λλεε=⋅=-=ππ⎰⎰UB 、C 间电势差 22200ln 22E r d d c c bbR R c BC R R bR r U r R λλεε=⋅=-=ππ⎰⎰因U BA =U BC ,得到 ()()a b b c R R R R /ln /ln 21=λλ 练习详解:11-1. (1)E 0=0;(2)E 0=0;(3)0E =k 2a q 4i ;(4)0E = k 2aq 2i[解](1)如图(a )所示,各点电荷在点o 处产生的场强两两对应相消,所以,点o 处场强E 0=0(2)取图中(b )所示坐标。

静电场复习题(包含答案)

静电场复习题(包含答案)

______________________________________________________________________________________________________________精品资料练习一 库仑定律 电场强度σ,球面内电场强度处处为零(原因是场强叠加原理),球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(C)(面元相当于点电荷)(A) 电荷电量大,受的电场力可能小; (B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强(C) (用点电荷的场强叠加原理计算,注意是矢量叠加,有方向性)(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.图2.12(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.二、填空题1.4所示,带电量均为+q 的两个点电荷,分别位于x的+a 和-a 位置.则y 轴上各点场强表达式 为E = ,场强最大值的位置在y = .( 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.) (也是用点电荷的场强叠加原理计算)三、计算题1.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度. (此题的计算尽量掌握,涉及连续带电体的电场强度计算,可与书上总结部分的例子进行比较对应)解. 取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/πd E =d q/(4πε0r 2)=Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π)=-d E cos θ d E y =d E sin(θ+π)=-d E sin θ E x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x =Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0图1.4______________________________________________________________________________________________________________精品资料故 E=E x =()2022R Q επ方向沿x 轴正向.练习二 高斯定理一、选择题如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D)(此题注意场强的方向,联系场线穿入与穿出)(A) πR 2E . (B) πR 2E /2 . (C) 2πR2E . (D) 0 . 关于高斯定理,以下说法正确的是:(A)(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性;(实际是要求场具有对称性)(B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度;(D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度.3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) . (C) (如果是均匀带电球体,其E ~ r 又该如何画)图3.1图3.34(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的 正方形abcd 的中心线上,q 距正方形l/2(这一点很关键),则 通过该正方形的电场强度通量大小等于: (B) (要学会如何化解,考查对高斯定理通量的理解 (A)02εq . (B) 06εq .(C) 012εq .(D) 024εq .3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 .σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右.(考查对连续带电体场强叠加原理的理解。

(整理)浙江农林大学静电场的高斯定理习题

(整理)浙江农林大学静电场的高斯定理习题

四、计算题1、 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场两面间 , 1σ面外 , 2σ面外 . (填写A 、B 、C 或D ,从下面的选项中选取)A 、n E )(21210σσε-=B 、1201()E n σσε=+C 、n E)(21210σσε+-= D 、n E)(21210σσε+= 答案:A ,C ,D解: 如图所示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.2、一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线形平面电通量的大小.. (填写A 、B 、C 或D A 、()0arctan 22a b c λπε⎡⎤⎣⎦ B 、()0arctan 2a b c λπε⎡⎤⎣⎦ C 、()0arctan 24a b c λπε⎡⎤⎣⎦D 、()02arctan 2a b c λπε⎡⎤⎣⎦ 答案:B λ解:取窄条面元adx ds =,该处电场强度为rE 02πελ=过面元的电通量为()220022cos xc acdxadx r s d E d e +=⨯=⋅=Φπελπεθλ ()⎰⎰-+=Φ=Φ2/2/2202b b e e xc acdxd πελ2/2/0arctan 12b b cxc ac -⋅=πελ()[]02arctan πελc b a =3、 如图所示,在x -y 平面内有与y 轴平行、位于x=a / 2和x =-a / 2处的两条“无限长”平行的均匀带电细线,电荷线密度分别为+λ和-λ.求z 轴上任一点的电场强度.. . (填写A 、B 、C 或D ,从下面的选项中选取)A 、()2204a i a z λπε-+B 、()22024a i a z λπε-+ C 、()22024a i a z λπε-+ D 、()22044a i a z λπε-+ 答案:C解:过z 轴上任一点(0 , 0 , z )分别以两条带电细线为轴作单位长度的圆柱形高斯面,如图所示.按高斯定理求出两带电直线分别在该处产生的场强大小为 ()r E 02/ελπ=± 场强方向如图所示. 按场强叠加原理,该处合场强的大小为r a r E E 2/c o s 20⋅π==+ελθ ()22042z a a +π=ελ方向如图所示. 或用矢量表示 ()iz a a E 22042+π-=ελ4、均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C·m -3求距球心5cm 的场强 ,8cm 的场强 ,12cm 的场强 . (填写A 、B 、C 或D ,从下面的选项中选取).A 、43.4810⨯1C N -⋅, 方向沿半径向外 B 、44.1010⨯1C N -⋅ ,沿半径向外C 、44.1010⨯1C N -⋅,方向沿半径向外D 、 0 答案: D, A ,B解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.5、有两个半径分别为1R 、2R 的同心球壳,带电分别为1Q 、2Q ,试求空间电场分布。

静电场的高斯定理

静电场的高斯定理

r
E1
dS
S
E1 4
r
2
R
面内电量 qi 0
用高斯定理求解:
E1 4 r2 0 E1 0
E
高斯面
44
2) r R
Φe S E2 dS
r
E2
dS
S
E2
4
r2
qi q
E2 4r 2 q 0
E
E2
q
40r 2
q
40 R2
O
R
E
1 r2
r
45
例题 求均匀带电球体的电场。(已知 q、R)
复习
库仑定律
F12
1 4πε0
q1q2 r122
e12
电场强度
F
E
q0
电场强度的计算
(1)点电荷的场强
E
1 4πε0
q r2
r0
(2) 场强叠加原理
E E1 E2 En
1
(3) 电荷连续分布的带电体的电场
E
dE
(q)
dq (q)4πε0r 2
r0
电荷分布
dq ρdV (体 分 布) dq σdS (面 分 布)
其余三个面上直接计算困难
考虑用 8 个这样的立方体 将点电荷拥在中心
其外表面上的通量为
Φ'e
E
S
由对称性
dS
q
03
e 24
q
0

39
4. 高 斯 定 理 的 应 用
Applications of Gauss’ Law
Φe
E dS
1
S
ε0
qi (内)
高斯定理的一个重要应用是:计算带电体

静电场的高斯定理复习题

静电场的高斯定理复习题
- 选择题
1.关于高斯定理的理解有下 面几种说法,其中正确的是: ( A) 如果高斯面上 E 处处为零,则该面内 必无电荷; (B) 如果高斯面内无 电荷,则高斯面上 E 处处为零; (C ) 如果高斯面上 E 处处不为零,则高斯面内必有电荷; (D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。
(C) 1 Eac 2 Ec a2 b2 3 Ebc ; (D) 1 Eac 2 Ec a2 b2 3 Ebc 。
Cz B
Ac
xAaO
b E
y B
的法线向 则


答案: (B)
4.已知一高斯面所包围的体积内电荷代数和 qi 0 ,则可肯定:
( A) 高斯面上各点场强均为零。
(B) 穿过高斯面上每一面元的电通量均为零。
S
2
与平面法线的夹角为
(q
• •
)q,则通过该
1 2 3q
平面的电场强度通量的数值e ________________。
4
答案:| E | S cos
7.有一个球形的橡皮膜气球,电荷 q 均匀地分布在球面上,在此气球被吹大的过程中,被气球表面掠
过的点(该点与球中心距离为 r),其电场强度的大小将由

答案: (C)
二 填空题
1.如图所示,在场强为 E 的均匀电场中取一半球面,其半径为 R ,电场强度的方向与 E
半球面的对称轴平行。则通过这个半球面的电通量为

答案: E R2
2.如图所示,在场强为 E 的均匀电场中取一半球面,其半径为 R ,电场强度的
与半球面的对称轴垂直。则通过这个半球面的电通量为

答案: 0
y E 方向 Ox

浙江省大学物理试题库302-静电场的高斯定理

浙江省大学物理试题库302-静电场的高斯定理
答案:错
题号:30224003
分值:2分
难度系数等级4
一点电荷 处在球形高斯面的中心,当将另一个点电荷置于高斯球面外附近,此高斯面上任意点的电场强度是发生变化,但通过此高斯面的电通量不变化。
答案:对
题号:30222004
分值:2分
难度系数等级:2
对于两个相距较近的均匀带电球体所产生的电场,可以用高斯定律求出它的场强分布。
答案:
题号:30233020
分值:2分
难度系数等级:3
一均匀带电球面,半径是 ,电荷面密度为 。球面上面元 带有 的电荷,该电荷在球心处产生的电场强度为____________。
答案:
四计算题
题号:30242001
分值:10分
难度系数等级:2
一边长为 的立方体置于直角坐标系中,如图所示。现空间中有一非均匀电场 , 、 为常量,求:电场对立方体各表面的电场强度通量。
题号:30212009
分值:3分
难度系数等级:2
半径为R的均匀带电球体的静电场中各点的电场强度的大小 与距球心的距离 的关系曲线为:
〔〕
答案:
题号:30213010
分值:3分
难度系数等级:3
如图所示,两个“无限长”的共轴圆柱面,半径分别为 和 ,其上均匀带电,沿轴线方向单位长度上的带电量分别为 和 ,则在两圆柱面之间、距离轴线为 的 点处的场强大小 为:
〔〕
答案:
题号:30212013
分值:3分
难度系数等级:2
若穿过球形高斯面的电强度通量为零,则
高斯面内一定无电荷; 高斯面内无电荷或正负电荷的代数和为零;
高斯面上场强一定处处为零; 以上说法均不正确。〔〕
答案:

静电场的高斯定理复习题

静电场的高斯定理复习题

- 选择题1.关于高斯定理的理解有下面几种说法,其中正确的是:()A 如果高斯面上E处处为零,则该面内必无电荷;()B 如果高斯面内无电荷,则高斯面上E处处为零;()C 如果高斯面上E处处不为零,则高斯面内必有电荷;()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。

〔 〕 答案:()D2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为()A 0/q ; ()B 0/2q ; ()C 0/4q ; ()D 0/6q 。

〔 〕答案:()D3.在电场强度为E Ej v v的匀强电场中,有一如图所示的三棱柱,取表面的法线向外,设过面AA'CO ,面B'BOC ,面ABB'A'的电通量为1 ,2 ,3 ,则()A 1230Ebc Ebc ; ()B 1230Eac Eac ;()C 22123Eac Ec a b Ebc ;()D 22123Eac Ec a b Ebc 。

〔 〕答案:()B4.已知一高斯面所包围的体积内电荷代数和0iq,则可肯定:()A 高斯面上各点场强均为零。

()B 穿过高斯面上每一面元的电通量均为零。

()C 穿过整个高斯面的电通量为零。

()D 以上说法都不对。

〔 〕答案:()C5.有两个点电荷电量都是q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。

在球面上取两块相等的小面积1S 和2S ,其位置如图所示。

设通过1S 和2S 的电场强度通量分别为1 和2 ,通过整个球面的电场强度通量为 ,则 ()A 120,/q ;()B 120,2/q ; ()C 120,/q ;()D 120,/q 。

〔 〕 答案:()D6.一点电荷,放在球形高斯面的中心处。

下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。

静电场的高斯定理复习题

静电场的高斯定理复习题

- 选择题1.关于高斯定理的理解有下面几种说法,其中正确的是:()A 如果高斯面上E处处为零,则该面内必无电荷;()B 如果高斯面内无电荷,则高斯面上E处处为零;()C 如果高斯面上E处处不为零,则高斯面内必有电荷;()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。

〔 〕 答案:()D2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为()A 0/q ε ;()B 0/2q ε; ()C 0/4q ε; ()D 0/6q ε。

〔 〕 答案:()D3.在电场强度为E Ej =的匀强电场中,有一如图所示的三棱柱,取表面的法线向外,设过面AA'CO ,面B'BOC ,面ABB'A'的电通量为1φ,2φ,3φ,则 ()A 1230Ebc Ebc φφφ===; ()B 1230Eac Eac φφφ=-==; ()C123Eac Ebc φφφ=-=-=-;()D123Eac Ebc φφφ===。

〔 〕答案:()B4.已知一高斯面所包围的体积内电荷代数和0i q =∑()A()B()C()D〔 〕 答案:()C5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。

在球面上取两块相等的小面积1S 和2S ,其位置如图所示。

设通过1S 和2S 的电场强度通量分别为1φ和2φ,通过整个球面的电场强度通量为φ,则()A 120,/q φφφε>=; ()B 120,2/q φφφε<=;()C 120,/q φφφε==; ()D 120,/q φφφε<=。

〔 〕 答案:()D6.一点电荷,放在球形高斯面的中心处。

下列哪一种情况,通过高斯面的电场强度通量发生变化:()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。

高斯定理例题

高斯定理例题

作与带电球体同心且半径为r 的高斯面.

高斯面上的电场强度大小相同.
E
通过高斯面的电通量为:

E dS

E 4r 2

q
S
0
r
R
高斯面上的场强大小为:
E

q 4 0r 2
3
① 当 r R时,
E

q 4 0r 2
E
高斯面内包围电荷为:
R
q


dV



圆柱半径为R,沿轴线方向单位长度带电量为.
解:电场分布应有柱对称性,方向沿径向.
作与带电圆柱同轴的圆柱形高斯面. z
高斯面高为 l ,半径为r.
en

通过高斯面的电通量为:
+
E

+
E dS E dS E dS
S
s(侧面)
s(上底)

r l
+
+o
结论:无限大均匀带电平面激发的电场与离平面的距离
无关,即在两侧形成均匀电场,方向垂直于带电平面.
8
例4.求均匀带电球面内、外的电场,球面半径为R,带 电为q. 解:电场分析. 电场分布具有球对称性,方向沿径向.
作与带电球面同心且半径为r 的高斯面.
根据高斯定理得通过高斯面的电
场强度通量为:
E dS

eny
E dS E dS
s (下底)
s ( 侧面)
E 2rl
x
+ en
5
q
由高斯定理知: E dS
S
0

高斯定理例题

高斯定理例题
S
q
0
x
q

x
0
kxSdx
1 kSx 2 2
E1 S
1 kSx 2 E1 S E( x) S 2 0 1 2 kx E1 E ( x ) 2 0
1 1 2 kx ka 2 2 0 4 0
0
x
E( x)
a
E( x) 0
1 2 1 kx ka 2 2 4 0
用高斯定理求场强小结: 1 . 电荷对称性分析
点电荷 球对称性 均匀带电球面 均匀带电球壳 球体 电荷分布对称性→场强分布对称性 无限带电直线 轴对称性 无限带电圆柱 柱对称 无限圆柱面 无限同轴圆柱面 面对称性
无限大平面 无限大平板 若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。 ②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。 ③高斯面应取规则形状
q到曲面外一点,如图所示,则引入前后: (A)、曲面S的电通量不变,曲面上各点的场强不变; (B)、曲面S的电通量变化,曲面上各点的场强不变; (C)、曲面S的电通量变化,曲面上各点的场强变化; (D)、曲面S的电通量不变,曲面上各点的场强变化。
Q
S
q
[D]
3、已知一高斯面所包围的体积内电量代数和为零,则可以 肯定: [ C ] (A)高斯面上各点场强均为零; (B)穿过高斯面上每一面元的电通量为零; (C)穿过整个高斯面上的电通量为零; (D)以上说法均不对 4、如图所示,两个无限长的半径分别为R1和R2的共轴 圆柱面,均匀带电,沿轴线方向单位长为度上的带电量分别 为1,、2,则在外圆柱外面,距离轴线为r处的P点的电场强 度大小E为:

习题09 电场线 电通量 真空中的高斯定理

习题09 电场线 电通量 真空中的高斯定理

一、选择题1.关于高斯定理的理解有下面几种说法,其中正确的是( )。

(A )如果高斯面上E处处为零,则该面内必无电荷。

(B )如果高斯面内无电荷,则高斯面上E 处处为零。

(C )如果高斯面上E 处处不为零,则高斯面内必有电荷。

(D )如果高斯面内有净电荷,则通过高斯面的电通量必不为零。

2.如右图所示,闭合面S 内有一点电荷q ,P 点为S 面上一点,在S 面外A 点处有一点电荷q ′,若将q ′移至B 点,则( )。

(A )S 面的总电通量改变,P 点的场强不变。

(B )S 面的总电通量不变,P 点的场强改变。

(C )S 面的总电通量和P 点的场强都不改变(D )S 面的总电通量和P 点的场强都改变3.如右图所示,半径为R 1的均匀带电球面1,带电量为Q 1,其外有一同心的半径为R 2的均匀带电球面2,带电量为Q 2,则离球心为r (R 1< r <R 2)处的某点P 的场强为( )。

(A )r r Q E 2014πε= (B )r rQ Q E 20214πε+= (C )r r Q E 3014πε= (D )r r Q Q E 30214πε+= 二、填空题1.如右图所示,三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,则A 、B 、C 、D 四个区域的电场强度分别为:A E = ,B E = ,C E = ,DE = ,(设方向向右为正)。

2.带电量分别为1q 和2q 的两个点电荷单独在空间各点建立的静电场分别为1E 和2E ,空间各点总场强为21E E E +=。

现在作一封闭曲面S ,如下图所示,则以下两式可分别求出通过S 的电通量:3.(1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是 。

(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是 ; 。

一 D B C二 1. 032A E σε=-,02B E σε=-02C E σε=032D E σε= 2.10q ε,20q ε 3,06q ε,024q ε,0三 计算题1.解:薄板可近似为带电面分析知,场强分布是面对称的,因而建立如图所示的关于薄板面对称的柱形高斯面,两个底面分别为S 1和S 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档