220kV智能变电站二次系统结构与设备配置6页
智能变电站二次设备
对采样值组网传输的方式,提供相应的以太网口 对采样值点对点传输的方式,提供足够的输出接口分别对应
保护、测控、录波、计量等不同的二次设备。 模块化并可根据需要增加输出模块。
9
1、合并单元:其他功能要求
➢ 具备合理的时间同步机制和采样时延补偿机制。 ➢ 能保证在异常情况下(电源中断、电压异常、采集单元异常、通
信中断、通信异常、装置内部异常等)不误输出,具有完善的自 诊断功能,能输出上述各种导常信号和自检信息。
➢ 具备光纤通道光强监视功能,实时监视光纤通道接收到的光信号 的强度,并根据检测到的光强度信息,提前预警。
➢ 支持可配置的采样频率,采样频率应满足保护、测控、录波、计 量及故障测距等采样信号的要求。
功能。 ➢ 事件报文记录功能。 ➢ 跳、合闸命令需要两帧确认。 ➢ 动作时间应不大于7ms。 ➢ 具备跳/合闸命令输出的监测功能。当接收命令后,应
通过GOOSE网发出收到跳令的报文。 ➢ 具备完善的告警功能,告警信息通过GOOSE上送。 ➢ 配置单工作电源,保留检修压板、断路器操作回路出口
压板和操作把手/按钮。
➢ 输入接口:
电子式互感器:光纤。 常规互感器或模拟小信号互感器:模拟信号接口。 智能化一次设备:(用在母线电压并列功能)开关信号接口
➢ 数量:按间隔配置的合并单元应提供至少接收12路电 子式互感器的采样信号。
电流信号7路 电压信号5路
➢ 调试接口:
对所发送通道的顺序、相序、极性、比例系数等进行配置。
➢ 智能开关等设备的过渡产品 ➢ 完成断路器、隔离刀闸、地刀等位置的采集 ➢ 完成断路器、隔离刀闸、地刀等的分合控制 ➢ 采集主变档位、温度等信息 ➢ 采集在线监测的信息 ➢ 断路器操作回路
110(66)kV~220kV智能变电站设计规范
六、规范主要内容介绍
5 电气一次部分 5.2 互感器 3)工程实施中应关注的重点方面: ——关口计量点互感器的配置方案。 用于电量平衡的关口计量点可配置“电子式互感器+数字式电能表”,满足0.2S 精度要求,电能表按双表配置;
用于计费结算的关口计量点(计费依据或电量校核),在取得供电公司营销部门或用 户认可的情况下可考虑采用“电子式互感器+数字式电能表”方式,否则,涉及到计 费关口处需另增常规互感器,并采用常规电能表进行计量,计量精度应满足0.2S要 求,电能表按双表配置。
应用了IEC61850的有关规定。
3.智能变电站设计除应执行本标准外,尚应严格执行强制性国家标准和行业标准,
应符合现行的国家标准、行业和企业有关标准的规定。
第8页,共43页。
四、主要工作过程
第9页,共43页。
四、主要工作过程
1.2009年8月14日,由基建部牵头成立编写工作组,拟定编制大纲、工作计 划;
——工作重点在于统一后台机、分析软件、接口类型和传输规约,应对设备 的供货现状、现有实现方案开展充分的调研,并联合一次设备、状态监测厂家、 运行部门采取合理的方案解决设备间安装配合、状态监测的统一以及状态监测 主站的建设工作。
第28页,共43页。
六、规范主要内容介绍
6 二次部分 6.1 变电站自动化系统
2. 2009年8月~9月,编制初稿,并讨论形成初稿修改稿;
3. 2009年9月18日,讨论初稿修改稿并提出修改意见;
4. 2009年9月25日,修改完善形成征求意见稿; 5. 2009年9月28日,征求意见稿广泛征求意见; 6.2009年10月17日~28日,汇总梳理反馈意见,经讨论和修改完善形成送审 稿; 7.2009年10月30日,召开设计规范送审稿评审会议; 8.2009年11月18日,根据送审稿评审意见修改完善形成报批稿。
智能变电站介绍PPT课件
.
IEC61850数据组织示例
V
A
Functional Constraint
MX
MX
Logical Nodes
MMXU1
MMXU2
Logical Device (e.g. Relay1)
Physical Device
(network address)
“MMXU2$MX$A” =
.
30
如何利用IEC61850规约构建智能化变电站?
——从变电站层次结构上来看 从变电站层次结构上来看,智能化变电站由站控层,间隔层,过程层组成。
站控层设备:监控主机,工程师站等。 间隔层设备:保护装置,测控装置等。 过程层设备:光CT/PT,合并单元,智能开关等。
.
如何利用IEC61850规约构建智能化变电站?
.
关于IEC61850规约的一些疑问
What? 什么是IEC61850规约?
Why? 为什么要采用IEC61850规约? How? 如何利用IEC61850规约构建智能化变电站?
.
如何利用IEC61850规约构建智能化变电站?
我们从以下三个角度来看智能化变电站的构建情况: 1、从变电站层次结构上来看 2、从使用设备上来看 3、从使用服务上来看
——从使用设备上来看
从使用设备来看,构建一个完整的智能化变电站需要以下三个部分: 1、智能化的一次设备
一次设备从信号继电器到控制回路,全部采用微处理器(智能开关)和光电技术(无 源光CT)设计。同时用于数字量信号传输的网络取代传统的电缆导线连接。换言之, 变电站二次回路中常规的继电器及其逻辑回路及常规的强电模拟信号和控制电缆被光
电数字和光/电网络代替。
220kV智能变电站设计方案及应用
220kV智能变电站设计方案及应用摘要:随着科学技术的发展,传统变电站的自动化系统面临很多挑战。
我国智能变电站的发展起步较晚,但是由于其应用优势明显,因此已经成为变电站发展的主要方向。
在此背景下,要求220kV智能变电站具备较高的技术水平,不断增强设备以及自动化系统的功能,提高供电稳定性,这样才能保障电网运行可靠性。
基于此,本文将着重分析探讨220kV智能变电站设计方案及应用,以期能为以后的实际工作起到一定的借鉴作用。
关键词:220kV;智能变电站;设计1、220kV智能变电站设计1.1、智能变电站一次设备智能高压设备是指具有测量数字化、控制网络化、状态可视化、信息交互化、功能一体化等技术特征的高压设备。
目前智能变电站一次设备相关的主要技术包括一次设备智能化、电子式互感器、状态在线检测等。
一次设备智能化由高压设备本体、集成于高压设备本体的传感器和智能组件组成。
其中智能组件是一次设备智能化的关键部位,由合并单元、智能终端等若干智能电子装置集合而成,实现主设备的测量、控制、监视等功能。
以智能变压器为例,所需智能组件包括测量IED、OLTC控制IED、冷却装置控制IED、监测主IED、局部放电检测IED、油中溶解气体IED、绕组光纤测温IED、非电量保护IED、合并单元等,实现常规信息测量、分接头开关智能控制、告警、检测等功能。
电子式互感器通常由传感模块和合并单元组成。
传感模块负责检测一次侧电压、电流信号,并将其转换为数字信号;合并单元则对传来的信号进行同步处理。
相对于传统互感器,电子式互感器具有体积小、重量轻、绝缘性能优良、造价低、无磁饱和和铁磁谐振现象、测量精度高、频率响应范围宽、易于智能化实现等优点。
一次设备状态检测的基本原理是当设备绝缘性能、缺陷发展到一定时期时,设备电气量、非电气量特性有渐进变化的征兆。
基于此理论,通过实时采集、分析设备的运行状态信息,对各信息数值大小和变化趋势进行处理和综合分析,在线评估设备运行状态,预测设备可靠性和剩余寿命,必要时提供预警、诊断故障类型等。
智能变电站二次系统网络结构和信息流分析
智能变电站二次系统网络结构和信息流分析首先是监测与控制系统,该系统对变电站中的各个设备进行监测和控制。
传感器和监测装置将设备的相关参数和工作状态信息采集并传输给监测与控制系统,通过该系统可以实时了解变电站的运行状态。
监测与控制系统将根据设定的参数进行自动控制操作,以确保变电站的正常运行。
其次是保护系统,保护系统通过监测变电站的电气参数和设备状态,及时采取措施以保护电力设备和传输线路的安全与正常运行。
保护系统中的继电器、开关和保护装置会接收、处理并响应来自各个设备的信息,以及时切断故障设备,并将相应的告警信号传输给控制中心。
第三个部分是电力管理系统,该系统主要用于对电网的运行状态进行实时监测、分析和预测,以及对电力负荷的调整与控制。
电力管理系统通过采集变电站的数据,包括电压、电流、功率因数等参数,对电网的电量进行统计和分析,并根据需求进行智能调控,保证电网的安全、稳定和高效运行。
最后是通信网络系统,该系统是实现智能变电站信息传输与共享的基础。
通信网络系统将二次系统各个部分的信息进行集中管理和传输,以保证信息的实时性、准确性和可靠性。
通信网络可以使用有线通信和无线通信技术,将数据传输到控制中心,并实现与其他智能电网设备的互联互通。
在智能变电站的二次系统中,信息流是实现智能化运行的核心。
各个部分的数据采集和传输构成了信息流的基础。
监测与控制系统通过传感器和监测装置采集设备的参数和状态信息,并将其传输到控制中心;保护系统通过继电器和保护装置采集故障设备的信息,并将告警信号传输到控制中心;电力管理系统将变电站的数据传输到控制中心进行分析和决策;通信网络系统将各个部分的信息进行传输和共享。
控制中心是智能变电站二次系统信息流的汇聚和处理中心。
控制中心负责接收和处理来自各个部分的数据,并进行分析和决策。
通过对数据的分析和处理,控制中心可以实时监测变电站的运行状态,并根据需要做出相应的控制和调整。
总的来说,智能变电站的二次系统网络结构以及其中的信息流是实现智能化运行的关键。
220kV智能变电站二次系统结构与设备配置
3 . 2保护采样 、跳 闸方式的转 变 为 了满 足继 电保护 装置 对 电流 电压量 采 样 以及 保护 出 口跳 闸 的可靠 性及 实 时性 的要
在 一次设 备智能化、设备检修状态化和二次设 智 能终端等构 成,是一次设备与间隔层设备的 求 ,同时 出于降低 工程造 价的 目的 ,智能变 电 备 网络 化,其中二次设备在采样方式和组 网形 转换接 口,完 成电流电压量的采样、设备运行 站保护采样和跳 闸均采用 “ 直采直跳” 。考虑 式上都 发生了重大的变化,随着 电力技术 的进 状 态信 号的监测 和分合 闸命令 的执 行等。 到全 站保护装置均 为就地下放布置 ,故 S V采 步 ,越 来越多的新技术应用到二次系 统中,因 用 点对点方式 ,2 2 0 k V及 l 1 0 k V GO OS E为独 3 智能变 电站 与常规 变电站 的二 次设 备 此研 究智能变 电站的二次系统设计和设备配置 立组双 星形 网方式。 目前随着保护就地化推广 有 着重 要的意义。 比较 及 优势 展现 ,出现 了不 少关 于 2 2 0 k V分 布式
I l l / I V 区 通 信 网 关 机
站控层设备配置 【 关键词 】智能变电站 系统结构 二 次设备 配
置
站控层 交换机 × 2 规约转换
通信规约
1 0 3 / mo d b u s等 量等功能。
站控层交换机 × 4 6 1 8 5 0
1 概 述
随着 社 会经济 的快速 增长 ,人们 对供 电 可靠性和安全性有 了更高的要求。而风力、太 阳能等新能源 电源 的并网运 行对 电网系统稳定 性造成 了一定 的影 响。智能电网能有效利用 电 力资源 ,提高供 电可靠 性,实现电网的可靠、 安全 、 经济 、 高效、 环境友好和使用安全的 目标 。 2 0 1 1年起 ,作 为智 能 电网的关 键节 点 , 智 能变 电站 在全 国范 围 内进入 全面 推广 建设 阶 段,新 建 2 2 0 k V变 电站 按 《 国 家 电 网 公 司 输 变 电工 程 通 用 设 计 一 1 1 0( 6 6 )~ 7 5 0 k V 智 能变 电站 部 分》 ( 2 0 1 1年 版 )中 “第 五篇 2 2 0 k V变 电站通 用设计技术导则”的技术方案 。 与传 统变电站相 比,智能变 电站最大特征体现
智能变电站二次系统结构(运维)
智能变电站二次网络结构
主变不配置独立过程层网络, 主变保护、 测控等装置宜接入高、 中 压侧过程层网络,主变低压侧过程层 SV 报文、 GOOSE 报文可接 入中压侧过程层网络。 变压保护、 测控等装置接入不同电 压等级的过程层网络时,应采用相互独立的数据接口控制器。
主变不配置独立过程层网络, 主变保护、 测控等装置宜接入高、 中 压侧过程层网络,主变低压侧过程层 SV 报文、 GOOSE 报文可接 入中压侧过程层网络。 变压保护、 测控等装置接入不同电 压等级的过程层网络时,应采用相互独立的数据接口控制器。
智能变电站体系结构介绍
调试所 高级工程师 王天锷
提纲
变电站信息数字化 智能变电站的层结构 智能变电站二次系统的网络结构 智能变电站运维应注意的事项
变电站信息数字化
变电站信息数字化
变电站二次系统本质上是一个信息交换系统 二次系统是一次系统的镜像
➢ 收集一次设备信息 ➢ 根据负荷对一次设备进行控制 ➢ 根据一次设备的运行状态做出相应的反应
智能变电站运维应注意的事项
PT、CT品质异常
PT、CT品质异常和SV链路异常或SV断链属于同等类型的 故障,CT品质异常会闭锁与电流相关的保护,PT品质异常 会导致复压开放
PT、CT品质异通常是由光口污染、光纤受损、光缆受损 导致
PT、CT品质异常现象不能长时间消失,必须尽快找出原 因,利用备用光口进行排除
主变保护
高
高
高
压
压
压
侧
侧
侧
合
智
母
并
能
联
单
终
智
元
端
能
终
端
至机构跳闸
电缆
变电站综合自动化系统的结构形式和配置
• (1)分层(级)分布式的配置系统采用按功 的分布式多CPU系统
• (2)继电保护相对独立 • (3)具有与系统控制中心通信功能 • (4)模块化结构,可靠性高 • (5)室内工作环境好,管理维护方便
能划分
第5页/共21页
分层分布式系统集中组屏结构的综合自动化系统框图(一)
第6页/共21页
分层分布式系统集中组屏结构的综合自动化系统框图(二)
第11页/共21页
全分散式结构形式
• 将每个电网元件(包括变压器,高、低压线路,电容器等)的保护、控制、测量功能设计安装在同一个微 机装置中,并且分散安装在各个开关柜中,然后通过通信网络和监控主机进行信息交换。这种结构形式中, 主控室内只有监控用的微机和直流操作电源及网络信号集中转换的柜子,主控室结构简单,设备环境好, 检修更方便。
护控制模式 • 分层是指变电所综合自动化系统按逻辑上划分为三层,即站级管理层、通信层、间
隔层
第17页/共21页
综合自动化技术发展方向
• 系统结构的转变 • 智能电子装置的发展 • 光感互感器的应用 • 监控系统的发展 • 人工智能技术的发展应用
第18页/共21页
通信方式的发展
•以太网通信结构
•
是一种总线型拓扑结构,增减用户方便,某一节点故障不影响其他部分工作。
第9页/共21页
调度端
牵引变电所
监控机 监控机
变
电
所
主
控
通信网络
室
高压电气设备及高压开关柜
高 压 室
视 屏 盘当 地 监 控 盘1主 变 盘 # 1馈 线 盘 10并 补 盘2主 变 盘 # 计 量 盘交 流 盘直 流 盘
第10页/共21页
220kV自动化变电站中的电气二次设计
220kV自动化变电站中的电气二次设计摘要:随着电力系统自动化技术的不断发展,220kV自动化变电站成为电力系统中不可或缺的重要环节,其电气二次设计的优化和升级已经成为当前电力系统运行和安全保障的研究热点。
本文旨在对220kV自动化变电站中的电气二次设计进行简单探讨,以满足电网的快速发展需求,并提高变电站的自动化程度和运行安全性。
关键词:220kV;自动化变电站;电气二次设计1.电气二次系统的结构与功能电气二次系统是变电站中的重要组成部分,其主要功能是对于电气信号进行采集、处理、传输和保护。
其结构一般包括采集单元、处理单元、传输单元和保护单元四个部分。
采集单元主要是用于采集各种电气信号,例如变压器、断路器、开关等设备的运行状态信号,以及来自保护装置的信号。
处理单元则对这些采集到的电气信号进行分析、加工处理,生成控制信号,并向传输单元传输。
传输单元则负责电气信号的传输,一般采用数字通讯,例如IEC61850等协议进行标准化传输。
保护单元则是主要用于变电站中各种保护装置的控制和监测,保证电网的稳定运行。
2.220kV自动化变电站中的电气二次设计2.1电气二次系统中的设备选型电气二次系统中设备的选型是设计中的重要环节,选型合适的设备可以提高设备的可靠性和系统的稳定性,延长设备寿命,降低维护费用。
在进行设备选型时,需要仔细考虑以下因素:首先,需要根据系统的实际情况和工作负载量,选取适当容量的设备。
这些设备包括防雷器、电流互感器、电压互感器、保护装置等。
在选取设备容量时,需要根据实际的工况条件,选取合适的安全装置和设备类型。
其次,在设备选用中,还需考虑到设备的稳定性和可靠性问题。
这些设备的稳定性和可靠性直接影响到电气系统的正常运行。
因此,我们需要尽可能选择质量可靠、技术成熟、品牌知名度高的设备,以保证电气系统的稳定性和可靠性。
第三,设备选型还要考虑到设备的安全性和环境因素。
设备的安全性包括保护装置的动作特性、一次设备特性等。
220kV智能变电站网络结构及交换机配置优化方案研究
孙中尉/工程师关键词/Keywords智能变电站·两层一网·单环形网络·GMRP 组播注册协议·220kV 智能变电站网络结构及交换机配置优化方案研究围绕智能变电站自动化设计方案,分析智能变电站网络结构及以太网交换机的先进技术,结合工程实际提出采用数字化系统网络的措施和方案及以太网交换机配置优化方案。
孙中尉张凡束娜/山东电力工程咨询院有限公司近年来基于IEC 61850标准的智能变电站建设越来越多,多数220kV 的智能变电站配置站控层、间隔层和过程层3层结构。
随着对IEC 61850标准研究和应用的深入以及国内各厂商基于IEC 61850标准产品的丰富,特别是智能一次设备中更多的整合二次设备的功能,利用先进的以太网交换机信息传播技术,使间隔层与过程层合并在技术上成为可能。
本文描述的智能变电站含2个电压等级220/66kV ,2台主变压器,4回220kV 出线,10回66kV 出线,220kV 配电装置采用双母线接线,66kV 采用单母线分段接线。
通过经济技术比较,提出了220kV 智能变电站两层设备一层网络的网络结构体系,并对组网交换机进行优化配置。
智能变电站设备的整合优化1)智能化的一次设备。
一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,变电站二次回路中常规的继电器及其逻辑回路被可编程序控制器代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。
220kV 智能变电站220kV 配电装置集成智能接口装置,包括合并单元和智能终端,智能接口装置对外接口均为光纤以太网口,实现了一次设备对二次的智能接入。
2)网络化的二次设备。
变电站内常规的二次设备,如继电保护装置、测量控制装置、防误闭锁装置、远动装置、故障录波装置、同期操作装置以及在线状态检测装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现功能装置重复的I /O 现场接口,通过网络真正实现数据共享、资源共享,常规的功能装置变成了逻辑的功能模块。
智能变电站二次技术介绍
●过程层SV网(光以太网交换机)(点对点方式下逐渐在淘汰) 如果采样值报文采用网络传输时: 500KV: 3/2接线时宜按串冗余配置2台交换机; 220KV:双母线接线时宜按4个断路器单元冗余配置2台交换机; 66/35KV:宜按母线段配置。
智能变电站二次技术介绍
智能站二次设备特点
7)对时系统 站控层设备:SNTP(Simple Network Time Protocol)简单网络对时协 议。 间隔层设备:IRIG-B(一般用电B码)、SNTP。 过程层设备:IRIG-B(一般用光B码)、PPS。 整个变电站也可采用 基于网络系统的IEEE 1588对时。
光纤以太网:GOOSE 过程层交换机
北京四方
SV
电缆
GOOSE
SV
GOOSE
低压装置
北京四方
保护装置
北京四方
保护柜
测控装置
北京四方
间隔层设备
电以太网: MMS\GOOSE
北京四方
电以太网:MMS
北京四方
站控层交换机电ຫໍສະໝຸດ 太网:MMS北京四方监控系统 远动装置 站控层设备
智能变电站二次技术介绍
智能站系统网络结构
一次导线 空芯线圈 AD采集模块
A/D 采集器1
浅色为保护采样线圈、深色为测量采样线圈
A/D CPU PWR 光纤至 合并单元1
绝缘子
A/D CPU A/D PWR 光纤至 合并单元2
采集器: 双AD方案,保证采 样可靠性; 低功耗设计; 双电源方案; 测温功能; 完善的自检功能, 如A/D电源低等。
智能变电站二次技术介绍
智能站二次设备特点
2)合并单元(MU: Merging Unit ) 2-1)作用:信号合并、数据同步、数据输出、电压并列。通过SV光 信号将电流、电压传给保护、测控等间隔层设备。 私有协议
《智能变电站运行管理规范》(最新版)资料
《智能变电站运行管理规范》(最新版)为进一步规范电网智能化变电站运行管理工作,保证智能设备安全可靠运行,本规范结合国家电网公司及相关网、省电力公司相关管理标准及现场运行实际,参考各省的《智能变电站运行管理规范》,完成现《智能变电站运行管理规范(最新版)》,供各单位参考和借鉴。
目录1 总则2 引用标准3 术语4 管理职责4。
1 管理部门职责4。
2 运检单位职责5 运行管理5。
1 巡视管理5。
2 定期切换、试验制度5。
3 倒闸操作管理5.4 防误管理5.5 异常及事故处理6 设备管理6。
1 设备分界6。
2 验收管理6。
3 缺陷管理6。
4 台账管理7 智能系统管理7。
1 站端自动化系统7。
2 设备状态监测系统7.3 智能辅助系统8 资料管理8。
1 管理要求8.2 应具备的规程8.3 应具备的图纸资料9 培训管理9。
1 管理要求9。
2 培训内容及要求1 总则1。
1 为规范智能变电站设备生产管理,促进智能变电站运行管理水平的提高,保证智能变电站设备的安全、稳定和可靠运行,特制定本规范。
1.2 本规范依据国家和电力行业的有关法规、规程、制度,智能变电站技术标准、规范等,并结合智能变电站变电运行管理的实际而制定。
1.3 本规范对智能变电站设备的管理职责、运行管理、设备管理、智能系统管理、资料管理和培训管理等六个方面的工作内容提出了规范化要求。
1.4 本规范适用于江苏省电力公司系统内的智能变电站的运行管理。
常规变电站中的智能设备的运行管理参照执行。
1。
5 本规范如与上级颁发的规程、制度等相抵触时,按上级有关规定执行。
2 引用标准Q/GDW 383-2010《智能变电站技术导则》Q/GDW 393—2010《110(66)kV~220kV 智能变电站设计规范》Q/GDW394 《330kV~750kV 智能变电站设计规范》Q/GDW 410-2010《高压设备智能化技术导则》及编制说明Q/GDW 424—2010《电子式电流互感器技术规范》及编制说明Q/GDW 425—2010《电子式电压互感器技术规范》及编制说明Q/GDW 426-2010《智能变电站合并单元技术规范》及编制说明Q/GDW 427-2010《智能变电站测控单元技术规范》及编制说明Q/GDW 428—2010《智能变电站智能终端技术规范》及编制说明Q/GDW 429—2010《智能变电站网络交换机技术规范》及编制说明Q/GDW 430-2010《智能变电站智能控制柜技术规范》及编制说明Q/GDW 431—2010《智能变电站自动化系统现场调试导则》及编制说明Q/GDW 441-2010《智能变电站继电保护技术规范》Q/GDW580 《智能变电站改造工程验收规范(试行)》Q/GDWZ414 《变电站智能化改造技术规范》Q/GDW640 《110(66)千伏变电站智能化改造工程标准化设计规范》Q/GDW6411 《220kV 千伏变电站智能化改造工程标准化设计规范》Q/GDW642 《330kV 及以上330~750 千伏变电站智能化改造工程标准化设计规范》Q/GDW750—2012 《智能变电站运行管理规范》国家电网安监[2006]904 号《国家电网公司防止电气误操作安全管理规定》国家电网生[2008]1261 号《无人值守变电站管理规范(试行)》国家电网科[2009]574 《无人值守变电站及监控中心技术导则》国家电网安监[2009]664 号国家电网公司《电力安全工作规程(变电部分)》国家电网生[2006]512 号《变电站运行管理规范》国家电网生[2008]1256 号《输变电设备在线监测系统管理规范(试行)》3 术语3。
220kV智能变电站电气主设备选型及优化配置的相关思考
220kV智能变电站电气主设备选型及优化配置的相关思考摘要:220kV智能变电站电气设备的选型及优化配置对变电站的安全稳定运行具有重要意义。
为解决220kV智能变电站电气主设备选型及优化配置存在的问题,基于传统220kV变电站电气主设备的选型及优化配置的相关思考,结合智能变电站“五大系统”(电网一次系统、电网调度数据中心、变电站综合自动化、智能设备管理)、“三大功能”(运行控制功能、安全防护功能和信息交互功能)等关键技术,提出了220kV智能变电站电气主设备的选型及优化配置的相关思考。
关键词:220kV智能变电站;电气主设备选型;优化配置策略前言智能变电站是基于现代电子技术、计算机技术、通信技术、网络技术等多项高新技术集成的智能化变电站,它实现了一次设备的智能化,并通过信息化手段将电网中所有的电力设备和生产过程进行信息共享,同时可以实现电网对电力生产和输送的全程监控,实现无人值班智能化变电站。
本文将以220kV智能变电站电气主设备选型及优化配置为研究对象,探讨220kV智能变电站电气主设备选型及优化配置存在的问题,并提出相关解决措施。
一、220kV智能变电站电气主设备选型及优化配置存在的问题(一)电气设备的选型与优化配置缺乏相应的标准一是我国相关技术规范尚未建立,目前存在着国家电网公司发布的《220kV智能变电站设计技术导则》和《220kV智能变电站设计技术导则实施细则》两个技术规范,由于没有相应的行业标准,这两个标准在电气主设备选型与优化配置方面存在着不一致和冲突。
如《220kV智能变电站设计技术导则》中没有规定油断路器和开关设备的选型原则和参数。
在《220kV智能变电站设计技术导则》中,则明确规定了变电站的电气主接线,同时也规定了一次设备、二次设备的选型原则和参数,但对于主接线图以及相关的控制、保护、测量等系统的配置等却没有具体规定。
二是在《220kV智能变电站设计技术导则》中,对断路器的选型原则和参数也没有明确的规定,但对于开关设备的选型原则和参数,却有相应的规定,这两个标准在电气主设备选型与优化配置方面存在着不一致和冲突。
220kV变电站预制舱式二次组合设备机架式结构设计方案
060河南电力2020年增刊220kV 变电站预制舱式二次组合设备机架式结构设计方案郭放(国网河南省电力公司经济技术研究院,河南郑州450000)作者简介:郭放(1989-),男,硕士,工程师,主要研究方向:电力系统继电保护、自动化系统及智能变电站的设计。
摘要:针对当前预制舱空间利用率低、施工周期长、线缆敷设不规范等问题,提出了由舱外到舱内分层嵌套式的机架结构设计方案,通过三层结构的嵌套组合,并行施工,有利于节约舱内空间,缩短施工工期;设计了机架内设备的标准化布置方式,并以某220kV 线路间隔为例,实现了舱内设备的标准化布置;提出了优化舱内线缆敷设的三种措施,实现舱内光电缆分离走线,提高施工效率。
关键词:预制舱;分层嵌套式;标准化;设计中图分类号:TM762文献标识码:B文章编号:411441(2020)01-0060-030前言目前,新建智能变电站的二次设备多放置在配电装置区的预制舱内。
舱体生产完毕后,由二次设备厂家进舱安装、调试,施工过程较为复杂、繁琐。
一个典型的220kV 智能变电站往往需要设置2个预制舱,一个220kV 预制舱,一个110kV 预制舱,两个舱均采用Ⅱ型舱,尺寸为6200mm ˑ2800mm ˑ3300mm 。
Ⅱ型舱内能放置19面尺寸为800mm ˑ600mm ˑ2260mm 的屏柜,舱内空间利用率低。
为解决当前智能变电站预制舱模式建设过程中的突出问题,本文提出采用机架式预制舱的模式,从优化预制舱结构、舱内设备布置、光电缆走线等方面对预制舱进行整体设计,从而达到减少施工工期、提高空间利用效率等的目的。
1分层嵌套式机架结构方案机架式结构在方案设计中,将二次设备承载结构视为预制舱体结构的一部分,在舱体结构的大背景下,自顶向下层次化设计。
1.1嵌套式安装结构第一层考虑到预制舱本体为热轧型钢,整体焊接成型,如果将长方形片状垂直构件直接安装在预制舱体内,对机架的安装精度影响较大,不利于工程实施。
220kV智能变电站二次系统的设计
220kV智能变电站二次系统的设计摘要:根据我国电网公司对于智能电网的发展展望,智能变电站已经成为电网建设的重点。
其中220kV智能变电站的二次系统的设计工作尤为重要,本文对220kV智能变电站二次系统的设计问题、结构和优化方案进行了分析和探讨。
关键词:220kV智能变电站;二次系统;设计一、概述智能变电站二次系统设计中的问题根据我国电网公司对于智能电网的发展展望,智能变电站已经成为电网建设的重点。
二次系统的设计中涉及到众多一次设备和二次设备,承担着发电、配电和输电这些重要工作,对整个电网的正常运营具有重要影响。
我国现阶段运营的智能变电站在二次系统的设计中存在不少子系统,对于维护变电站和电网的顺利运行并不可靠,其主要问题有:第一,各级子系统间因为分属于不同专业而被单独设立,为主站进行数据计算增加了难度;第二,传统的设计方案中,站控层设备比较冗杂,间隔层与过程层中的设备没有进行整合,具有优化空间;第三,传统的二次系统设计不能适应数字化测控体系的要求。
针对这些问题,220kV智能变电站的二次系统设计应当以自动化技术和信息化技术作为基础,构建更加高效、灵活的设备结构,适应智能电网时代的发电、配电和输电的需求,并保障电网的可靠性,兼顾灵活性和安全性。
二、智能变电站二次系统的常规设计流程(一)绘制SV与GOOSE 信息流图在对设备类型、保护测控原理、自动化目标、间隔设计进行过分析研究之后,着手绘制SV和GOOSE 信息流图,将设备之间的逻辑关系表现在两份信息流图纸上。
其中,SV信息流图与传统的保护原理图、电流和电压回路图的主要功能类似,能表达出电流数据流和电压数据流之间的连接关系;GOOSE 信息流图集中体现了信息传输和设备控制的逻辑原理。
SV和GOOSE 信息流图的绘制涵盖了信息流向、信息传输回路两个部分的内容。
信息流向能表现出SV 和 GOOSE信息所采用的传输路径,展现出该设计是否使用了交换机,明确了信息流向。
智能变电站二次设备软件版本在线管控系统的设计和应用
智能变电站二次设备软件版本在线管控系统的设计和应用智能变电站二次设备软件版本在线管控系统的设计和应用随着智能电网的快速发展,智能变电站作为电力系统中的重要组成部分,承担着电能的输送、配电以及监控的核心任务。
智能变电站中的二次设备软件在保障变电站的正常运行和安全性方面起到了关键作用。
为了有效管理和控制智能变电站中二次设备软件的版本,提高系统的稳定性和可靠性,设计并应用一套智能变电站二次设备软件版本在线管控系统是非常必要和重要的。
一、系统设计1.系统结构设计智能变电站二次设备软件版本在线管控系统主要包含三个模块:数据采集模块、版本管理模块和远程控制模块。
数据采集模块负责采集智能变电站中各个二次设备软件的版本信息,并将其传输到版本管理模块进行处理。
版本管理模块负责对接收到的版本信息进行存储、分类和检索,同时提供版本升级和回滚的功能。
远程控制模块则负责与智能变电站中的二次设备进行通信,实现对设备状态的监控和控制。
2.数据采集模块设计数据采集模块使用传感器来采集二次设备软件版本的信息,包括版本号、发布时间、开发者等。
通过数据采集模块,系统可以实时获取二次设备的版本信息,并与存储在数据库中的版本信息进行比对,查找是否有新版本发布。
3.版本管理模块设计版本管理模块通过与数据采集模块进行数据交互,将采集到的版本信息存储在数据库中,并根据需要对版本进行分类和检索。
系统会自动生成版本变更记录,便于管理员对版本发布和升级进行追踪和掌控。
此外,版本管理模块还提供版本升级和回滚的功能。
当发现新版本时,管理员可以选择升级,系统会自动下载并安装新版本。
而当发现新版本存在问题时,管理员也可以选择回滚到之前的版本,确保系统的正常运行。
4.远程控制模块设计远程控制模块主要负责与智能变电站中的二次设备进行通信。
通过该模块,管理员可以实时监控二次设备的状态,包括运行状态、故障报警等。
同时,管理员还可以通过远程控制模块远程操作二次设备,如开关操作、故障排除等。
220kV智能变电站二次系统结构与设备配置
220kV智能变电站二次系统结构与设备配置发表时间:2018-01-23T09:44:48.357Z 来源:《基层建设》2017年第31期作者:程芳君[导读] 摘要:220kv智能变电站二次系统的结构与设备配置直接关系到变电站的运作效率,要想变电站的高效运行就必须优化二次系统结构,升级设备配置,提高变电站的工作效率,所以文章就220kv智能变电站二次系统结构与设备配置进行分析探讨。
武汉联动设计股份有限公司湖北武汉 430070摘要:220kv智能变电站二次系统的结构与设备配置直接关系到变电站的运作效率,要想变电站的高效运行就必须优化二次系统结构,升级设备配置,提高变电站的工作效率,所以文章就220kv智能变电站二次系统结构与设备配置进行分析探讨。
关键词:220kv智能变电站;二次系统;结构;设备配置科学技术的快速发展,使得人员对电力系统运行安全稳定性的需求越来越高。
电气运行调试工作是保证电力系统运行状态良好的重要组成部分,相关建设人员应在明确其运行调试现状的情况下,找出具体控制的方式方法。
1 220kV智能变电站二次系统相关概述随着社会经济的快速增长,人们对供电可靠性和安全性有了更高的要求。
而风力、太阳能等新能源电源的并网运行对电网系统稳定性造成了一定的影响。
智能电网能有效利用电力资源,提高供电可靠性,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。
2011年起,作为智能电网的关键节点,智能变电站在全国范围内进入全面推广建设阶段,新建220kV变电站按《国家电网公司输变电工程通用设计―110(66)~750kV智能变电站部分》(2011年版)中“第五篇 220kV变电站通用设计技术导则”的技术方案。
与传统变电站相比,智能变电站最大特征体现在一次设备智能化、设备检修状态化和二次设备网络化,其中二次设备在采样方式和组网形式上都发生了重大的变化,随着电力技术的进步,越来越多的新技术应用到二次系统中 2 220kV智能变电站二次系统的结构分析以S省某220kV变电站为例,智能变电站系统采用三层两网结构,三层即站控层、间隔层、过程层,两网即站控层网络和过程层网络。
220kV智能变电站网络结构分析
220kV智能变电站网络结构分析摘要:随着智能变电站的快速发展和大规模建设,其在智能电网中的枢纽地位越来越突出。
智能变电站采用光纤数字通信技术和网络技术代替传统的电缆传输模拟量,相比较而言,智能变电站简化了二次电缆接线,增强了抗干扰能力,提高了系统的互操作性与可拓展性。
而网络结构的优劣则会直接影响到变电站内的网络传输效率、设备配置数量和投资。
基于此,本文主要对220kV智能变电站网络结构进行分析探讨。
关键词:220kV智能变电站;网络结构1、前言随着我国“建成智能化电网”工作的全面铺开,智能化设计已经成为220kV及以上变电站设计的必然趋势。
显然,在继电保护机理及元件都基本不变的情况下,智能化变电站相较于以往综自站最突出的变化就是网络结构的革新。
2、智能变电站系统结构与组网方案结合某新建220kV智能变电站,分析设计智能变电站的网络结构,1.1系统结构根据DL/T860(IEC61850)协议的规定,智能变电站自动化系统可以从功能上划分为3层,分别是站控层、间隔层、过程层。
站控层位于变电站的顶层,包括主机与操作员站、远动通信系统、对时系统等,其主要功能是汇总实时数据,实现全站设备的监视、告警、控制等交互功能,同时执行调度下达的操作命令;间隔层位于站控层与过程层的中间,包括保护、测量、控制和录波等二次装置,其主要任务是通过智能终端对一次设备进行保护和控制,实现本间隔内的操作闭锁,并进行一次电气量的运算和计量;过程层位于智能变电站的最底层,典型设备包括常规/电子式互感器、智能终端(执行单元)、合并单元等,其主要功能是进行一次电气量采集、执行操控命令和检测设备状态。
依据国家电网公司颁布的《110(66)kV~220kV智能变电站设计规范》,智能变电站网络可从逻辑上分为“两网”,即站控层网络和过程层网络。
其中,站控层网络连接了站控层设备与间隔层设备,主要是传输站控层内部、间隔层内部、以及站控层与间隔层之间的数据信息,内容以MMS报文为主。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
220kV智能变电站二次系统结构与设备配置智能变电站的二次系统结构与设备较常规变电站发生了重大的变化。
本文分析了220kV智能?电站“三层两网”的系统结构,阐述了二次系统设备配置基本原则,结合目前二次设计实施中遇到的问题,提出了改进意见。
1 概述
随着社会经济的快速增长,人们对供电可靠性和安全性有了更高的要求。
而风力、太阳能等新能源电源的并网运行对电网系统稳定性造成了一定的影响。
智能电网能有效利用电力资源,提高供电可靠性,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。
2011年起,作为智能电网的关键节点,智能变电站在全国范围内进入全面推广建设阶段,新建220kV变电站按《国家电网公司输变电工程通用设计―110(66)~750kV智能变电站部分》(2011年版)中“第五篇 220kV 变电站通用设计技术导则”的技术方案。
与传统变电站相比,智能变电站最大特征体现在一次设备智能化、设备检修状态化和二次设备网络化,其中二次设备在采样方式和组网形式上都发生了重大的变化,随着电力技术的进步,越来越多的新技术应用到二次系统中,因此研究智能变电站的二次系统设计和设备配置有着重要的意义。
2 220kV智能变电站系统结构
以上海地区某220kV变电站为例,智能变电站系统采用三层两网结构,三层即站控层、间隔层、过程层,两网即站控层网络和过程层网络。
2.1 站控层
负责变电站的数据处理、集中监控和数据通信,由主机、操作员站、远动通信装置、保护故障信息子站和其他各种功能站构成,是全站监控、管理中心,并与远方监控/调度中心通信。
站控层网络采用百兆星形双网结构,冗余网络采用双网双工方式运行。
站控层网络MMS、GOOSE(逻辑闭锁)、SNTP三网(功能)合一,共网运行,全站数据传输数字化、网络化、共享化。
2.2 间隔层
间隔层包括保护、测控、计量、录波、相量测量等,不依赖于站控层和通信网络,可以对间隔层设备进行就地独立监控功能。
保护测控装置配置如下:
(1)主变保护双套配置,高、中、低压侧及本体测控装置单套独立配置。
(2)220kV线路、母线、母联(分段)保护双套配置;
(3)110kV线路、母线、分段保护单套配置,采用保护测控一体化装置,母线测控单独配置;
(4)35kV 线路、电容器、站用变保护集成测控、计量功能,母差保护单套配置;
(5)110kV、35kV母线配置低压减载装置。
(6)过程层:过程层由互感器、合并单元、智能终端等构成,是一次设备与间隔层设备的转换接口,完成电流电压量的采样、设备运行状态信号的监测和分合闸命令的执行等。
3 智能变电站与常规变电站的二次设备比较
常规变电站中电流、电压等模拟量直接从互感器经电缆连接送至保护、测控和计量等二次装置,保护采用直采直跳方式,各类信号量通过硬接点上传。
而智能变电站中电子互感器或者常规互感器+智能组件的配置使得采样、命令和信号传输方式和传输介质的转变,电信号在就地转变为光信号,大大节省了电缆的用量,具体如下:
3.1 过程层设备的应用
合并单元、智能终端等智能组件的引入实现了就地采样信号和分合闸命令数字化。
合并单元接收常规互感器输出的模拟信号,经同步和合并之后对外提供采样值数据,同时满足保护、测控、录波、计量设备使用。
间隔层保护测控设备的分合闸命令通过GOOSE网络下发,智能终端挂在过程层网上接收命令,实现对断路器、刀闸、主变等一次设备的控制、测量等功能。
220kV及主变各侧为满足继电保护双重化配置要求,合并单元双套配置,除220kV母线设备和主变本体智能终端单套配置外,其余均双套配置。
110kV侧根据《智能变电站110kV保护测控装置集成技术要求(试行)》的要求,110kV采用合并单元智能终端合一装置,除主变间隔和母线设备外均单套配置,同时两个装置合一可以把“直采直跳”的点对点SV 和GOOSE 通信口进行合并,减少间隔层装置和过程层的通信端口,使间隔层的装置设计更加紧凑。
35kV部分不考虑配置智能组件。
3.2 保护采样、跳闸方式的转变
为了满足继电保护装置对电流电压量采样以及保护出口跳闸的可靠
性及实时性的要求,同时出于降低工程造价的目的,智能变电站保护采样
和跳闸均采用“直采直跳”。
考虑到全站保护装置均为就地下放布置,故SV采用点对点方式,220kV 及110kV GOOSE为独立组双星形网方式。
目前随着保护就地化推广及优势展现,出现了不少关于220kV分布式母差保护的研究,基于FPGA(现场可编程门阵列)的媒体访问控制(MAC)核仿真技术,利用新型具有延时明确和等间隔数据交换的过程层数据交换装置,SV采样由于延时明确可不依赖外部对时,220kV母线保护实现“网采网跳”,在满足保护可靠性要求的前提下简化220kV过程层网络。
在保证跳闸动作可靠性的前提下,网采网跳可以发挥更大的作用。
3.3 监控系统的整合优化
智能变电站一体化监控系统在网络组成、分区方式和设备配置上都与常规站有所不同,具体见表1。
4 设计中常见问题
目前220kV智能变电站二次设计中主要碰到如下问题:
4.1 就地智能控制柜布置及接线需多次沟通
220kV智能变电站保护装置均就地下放至户内智能控制柜内,有效节省继保室屏位、缩减变电站建筑面积,同时极大减少站内通信光电缆长度及现场敷设工作量,便于运维人员开展巡视和检修校验工作。
保护就地化对智能控制柜的组屏和接线也提出了新的要求。
国家电网企管[2014]909号文《国家电网公司关于印发等22项技术标准的通知》和新“六统一”保护装置的要求,有利于标准化设计,缩短供货周期,提高回路接线正确性和合理性。
但实际工程中智能控制柜由一次设备厂家提供,智能组件和保护测控装置由其它二次厂家提供,需要对屏面布置、装
置间接线和端子排进行整体设计及优化,由于一次厂家对不同厂家的二次设备原理及图纸了解程度不同,设计需要和厂家之间进行多次沟通。
4.2 故障录波、网络报文分析记录装置占用过程层中心交换机光口数较多
根据国网公司调自[2013]185号文的要求,故障录波装置和网络报文记录分析仪在技术要求、运行要求、配置原则等方面有较大差异,不应进行整合。
因此目前220kV智能变电站分别配置故障录波装置和网络报文记录分析装置。
220kV变电站中双重化保护应接入两套独立录波装置和网络分析装置,采用点对点方式接受SV 报文,采用网络方式接受GOOSE 报文。
实际工程中一个合并单元数据量按8M计算,同时预留50%的裕度,故障录波、网络分析装置每个百兆LC光口能接入4~6个合并单元,数据通过过程层中心交换机接入,会有多个光口分别用于故障录波和网络分析,而两者采样上有很大的重复性,今后可考虑采样上的整合,以减少光口数量、防止光纤接口处过热。
4.3 现有独立五防与集成
220kV智能变电站通过计算机监控系统的逻辑闭锁软件实现全站的防误操作闭锁功能,若已建成分控中心站内已设置防误闭锁主站系统,新建受控站受分控中心集控,需支持无缝接入中心站防误闭锁主站系统,受控站防误闭锁系统必须作为客户端以RPC 远程接口调用的方式接入至上级中心站防误主站系统,且要有完善的安全机制。
防误闭锁逻辑以唯一性为原则,防误闭锁逻辑在中心站防误主站系统,受控站不得存有防误闭锁逻辑。
5 总结
数字化、标准化是智能变电站的重要特点,我国变电站智能化技术正在日趋完善和更新发展中,目前已制定了较完善的技术原则。
智能变电站带来了二次系?y相关设备前所未有的融合,也给二次系统设计带来了新思路。
220kV智能变电站采用“三层两网”的系统结构,较常规变电站更突出组网的概念。
随着“调控一体、运维一体”要求的提出,对智能变电站进行二次系统进行功能整合和新技术的应用将是将来发展方向之一。
希望以上资料对你有所帮助,附励志名言3条:
1、要接受自己行动所带来的责任而非自己成就所带来的荣耀。
2、每个人都必须发展两种重要的能力适应改变与动荡的能力以及为长期目标延缓享乐的能力。
3、将一付好牌打好没有什么了不起能将一付坏牌打好的人才值得钦佩。