Mass Measurement and Top-Down HPLC-MS
高效液相色谱-质谱法测定特定用途保健药品中的褪黑激素
卷第 期 年 月
色
谱
高效液相色谱质谱法测定特定用途保健药品中的褪黑激素
陈文锐
提 要 采用
Ξ
陈永红
胡国昌
广州
国家进口食品卫生监督检验中心
联用法测定了具有改善睡眠等特定功能的保健药品中的褪黑激素 ∀ 利用质谱谱库检索
Β
和 二 极 管 阵 列 检 测 光 谱 图 鉴 定 松 果 体 素 药 品 中 的 褪 黑 激 素 以 甲 醇 水
Ù 质量浓度范围内
精密度
表
对一个样品进行
精密度测定 ν
ετηοδ ν Σ∆
次测定的结果
Ù Ù
见表 ∀
Ταβλ ε Πρεχισιον οφ τηε
作标准曲线 进样 Λ 见图 回归方程为 Ψ
测得相关系数为
Ξ ∀
测定值
平均值
Ξ
标准偏差
变异系数
Χς
图
Φιγ
为褪黑激素标准品和样品的在线紫外光谱图 在 和 和 附近各有一个吸收峰 与文献值 相符 而且样品和标准品的在 为样品组分的质谱图
线紫外光谱图完全一致 ∀ 图
杂质
褪黑激素组分的鉴定
及从谱库检索到的对照图 ∀ Ù 为分子离子峰 ζ 为主要的碎片离子峰 ∀ Ù ζ
图
Φιγ
褪黑激素标准品 α 和样品 β 的在线 Υ ς 谱图
联用技术的成熟 则使非挥发性化合 分别
物的分离和鉴定变得简单 我们将这两者结合起来对 样品中的褪黑激素组分进行确认∀图 的 和
图 褪黑激素标准品 α 和样品 β 色谱图
Φιγ 褪黑激素 Χηρο ατογ ρα σ οφ στανδαρδ α ανδ σ α ∀ ελ ατονιν λ ε β
液相色谱-串联质谱(LCMSMS)方法测定人血浆中佐米曲普坦的含量
液相色谱-串联质谱(LC/MS/MS)方法测定人血浆中佐米曲普坦的含量王健吉林大学药物代谢研究中心(130021)E-mail: wjpsw@摘 要:本文建立了液相色谱-串联质谱(LC/MS/MS)方法测定人血浆中佐米曲普坦的含量。
色谱柱:Zorbax Extend-C18柱,5µm粒径,150×4.6 mm I.D.,美国Agilent公司;流动相:甲醇-水-甲酸(80:20:1,v/v/v);流速:0.8 mL/min。
本方法具有良好的灵敏度、准确度、精确度以及专属性,完全适用于临床应用及药物代谢研究。
关键词:佐米曲普坦;LC/MS/MS1. 引言佐米曲普坦(Zolmitriptan)为选择性5-HT1B/1D受体激动剂,通过对颅部血管扩张和三叉神经系统感觉神经的5-HT1B/1D受体的激动作用,促进颅部血管收缩,抑制炎症后神经肽的释放,临床用于治疗偏头痛[1,2]。
本试验建立了测定人血浆中佐米曲普坦含量的液相色谱-串联质谱(LC/MS/MS)分析方法用于临床应用及药物代谢研究。
2. 试验2.1仪器与药品API 4000型三重四极杆串联质谱仪,配有离子喷雾离子化源以及Analyst 1.3.2 数据处理软件,美国Applied Biosystem公司;Agilent 1100 高效液相色谱系统,包括二元输液泵,自动进样器,切换阀,美国Agilent公司。
佐米曲普坦标准品(纯度>99%):英国AstraZeneca公司提供;苯海拉明对照品(纯度>99%):中国药品生物制品检定所提供;甲醇为色谱纯,其它试剂均为分析纯,空白人血浆由吉林大学第一医院提供。
2.2血浆样品的分析方法血浆样品的预处理精密取血浆样品0.5 mL置具塞试管中,加入内标溶液(2 ng/mL- 1 -苯海拉明甲醇溶液)100 µL,加入100 µL甲醇-水(50:50,v/v)混合溶液,加入1 mol/L Na2CO3溶液100 µL,混匀;加入3mL正已烷-二氯甲烷-异丙醇(300:150:15,v/v),涡流混合1 min,往复振荡10 min(240次/分),离心5 min(3500 rpm),取上层有机相于另一试管中,40°C 空气流下吹干,残留物加入100 µL流动相溶解,涡流混合,取20 µL进行LC/MS/MS分析。
实验室专业术语中英文翻译对照
实验室专业术语中英文翻译对照自动化实验室Automation Lab语言实验室Language Lab现代产品设计与制造技术实验室Modern Product Design & Manufacturing Technology Lab计算机集成制造实验室Computer Integrated Manufacturing System Lab先进设计技术实验室Advanced Design Technology Lab机械设计基础实验室Machine Design Lab包装工程实验室Packing Engineering Lab机械制造技术实验室Machine Manufacturing Lab精密机械测量技术实验室Precise Machine Measuring Technology Lab数控技术与传动控制实验室NC Technology & Transmission Control Lab设计创新实验室Innovation & Practice Lab机械CAD中心Mechanical CAD Center工作设计与时间研究实验室Job Design & Time Study Lab企业资源规划实验室Enterprise Resource Planning Lab系统仿真与设施规划实验室System Simulation & Facility Layout Lab人因工程实验室Human Factors & Ergonomics Lab液压与气动实验室Hydraulic & Pneumatic Lab汽车性能和结构实验室Auto Performance & Construction Lab发动机性能实验室Engine Performance Lab汽车电子电气实验室Auto Electronic & Electric Lab数字媒体技术实验室Digital Media Technology Lab数字媒体技术基础实验分室Digital Media Technology Foundation Lab数字影视实验分室Digital TV & Film Lab计算机动画与虚拟现实实验室Computer Animation & Virtual Reality Lab先进控制技术实验室Advanced Control T echnology Lab楼宇智能化实验分室Intelligent Building Lab智能测控实验分室Intelligent Measurement & Control Technology Lab运动控制与图象识别系统实验分室Motion Control & Image Recognition System Lab控制网络实验分室Control Network Lab自动控制系统实验分室Automatic Control System Lab自动控制原理实验分室Automatic Control Principle Lab自动化学科创新实验室Automation Subject Innovation Lab电力电子技术分室Power Electronics Technology Lab计算机控制技术实验分室Computer Control T echnology Lab高压实验室High Voltage Technology Lab电机与控制实验室Electrical Machinery & Control Lab电路与系统实验室Circuitry & System LabIC设计实验室IC Design LabESDA 与嵌入式技术实验室ESDA & Embedded Technology Lab微机原理实验室Microcomputer Principle Lab电力系统继电保护实验室Power System Relay Protection Lab供配电技术实验室Power Supply Lab电力系统仿真实验室Power System Emulation Lab现代工业网络技术实验室Modern Industry Networks Lab信息集成系统实验室Information Integration System Lab无机化学分室Inorganic Chemistry Lab有机化学分室Organic Chemistry Lab基础分析化学分室Basic Analytical Chemistry Lab物理化学分室Physical Chemistry Lab综合仪器实验室Instrumental Lab化工原理实验室Chemical Engineering Principle Lab化学工程与工艺实验室Chemical Engineering & Technology Lab食品科学与工程实验室Food Science & Engineering Lab生物工程实验室Biological Engineering Lab应用化学实验室Applied Chemistry Lab制药工程实验室Pharmacy Engineering Lab清洁化学技术实验室Clean Chemical Technology Lab电动汽车研究实验室Electro-Motion Auto Research Lab电动汽车驱动性能检测分室Electro-Motion Auto Performance Test Lab现代信息技术实验室Modern Information T echnology Lab宽带及视频通信分室ADSL & Video Communication LabSDH技术分室SDH Technology Lab虚拟测试技术分室Virtual Test T echnology Lab网络测控与光机电一体化分室Network Control & Electromechanical Lab光电信息分室Photo-Electricity Information Technology Lab网络多媒体技术分室Network Multimedia Technology Lab生物特征图像识别技术分室Bio- Character Image Recognition Technology Lab EDA与DSP技术分室EDA & DSP Technology Lab现代通信技术实验室Modern Communication Technology Lab通信原理分室Communication Principle Lab现代交换技术分室Modern Switch Technology Lab无线通信分室Wireless Communication Technology Lab光纤通信分室Optic-Fiber Communication Lab移动通信分室Mobile Communication Lab网络通信与软件分室Network & Software Lab应用电子技术实验室Applied Electronic Technology Lab信号与系统实验室Signal & System Lab数字电视实验室Digital TV Lab微机测控技术实验室Microcomputer Measurement & Control Technology Lab单片微机与嵌入式系统实验室Single Chip-Microcomputer & Embedded System Lab 动态测试与控制实验室Dynamic Test & Control Lab传感器与检测技术实验室Sensor & Measurement Technology Lab精密仪器与光电工程实验室Precise Instrument & Optoelectronic Engineering Lab 信息技术基础实验室IT Foundation Lab高频技术实验室High Frequency Technology Lab道路与桥梁工程实验室Highway & Bridge Engineering Lab给水排水工程实验室Water Supply & Waste Water Lab土木工程材料实验室Civil Engineering Materials Lab工程测量实验室Engineering Surveying Lab建筑与土木工程CAD实验室Architecture & Civil Engineering CAD Lab建筑设备工程实验室Building Equipment Lab交通运输工程实验室Communication & Transportation Lab结构工程实验室Structural Engineering Lab控制测量实验室Control Survey Lab力学实验室Mechanics Lab流体力学实验室Hydrodynamics Lab"S"技术实验室S Technology Lab岩土工程实验室Geotechnical Engineering Lab城市规划实验室Urban Planning Lab工程管理模拟实验室Engineering Management Simulating Lab电子商务专业实验室Electronic Commerce Lab企业管理实验室Enterprise Management Lab地理信息系统实验室Geographic Information System Lab信息系统基础实验室Information Systems Lab会计手工模拟实验室Hand Accounting Imitative Lab计算机体系结构实验室Computer Architectures & Organization Lab计算机组成原理分室Computer Organization Lab接口与通讯分室Interface & Communication Lab智能工程分室Intelligent Engineering Lab微处理器设计分室Microprocessor Design Lab计算机软件工程实验室Computer Software Engineering Lab软件分室Computer Software Lab.图象处理和图形学分室Image Processing & Computer Graphics Lab网络安全分室Network Security Lab软件项目管理分室Software Project Management Lab现代计算机技术实验室Modern Computer Technology LabSUN工作站分室SUN Work Station Lab计算机网络工程分室Computer Network Engineering Lab材料与能源学院热处理实验室Heat Treatment Lab金属腐蚀与防护实验室Metal Corrosion & Protection Lab金相显微镜实验室Metallographical Microscope Lab物理性能实验室Physical Property Lab高分子材料制备实验室Polymer Materials Preparation Lab高分子材料结构与性能实验室Polymer Materials Structure & Properties Lab 高分子材料成型实验室Polymer Materials Processing Lab热工基础实验室Basic Thermal Engineering Lab制冷与空调实验室Air Conditioning & Refrigeration Lab集成电路工艺实验室IC Process Lab电子元器件测试实验室Electronic Device Measurement Lab电子薄膜材料实验室Electronic Film Materials Lab材料成型及控制实验室Material Processing & Control Lab模具技术实验室Die & Mould Technology Lab功能材料的制备与应用技术实验室Preparation & Application of Advanced Functional Materials Lab无机纳米材料分室Inorganic Nanophase Materials Lab非晶态材料分室Amorphous Materials Lab表面工程分室Surface Engineering Lab储能材料分室Energy Storage Materials Lab先进材料结构与性能分室Advanced Materials Structure & Properties Lab环境工程实验室Environmental Engineering Lab水污染控制工程分室Water Pollution Control Lab大气污染控制工程分室Air Pollution Control Lab固体废物处理工程分室Solid Waste Treatment Lab噪声污染控制工程分室Noise Pollution Control Lab环境监测分室Environment Monitoring Lab环境科学实验室Environmental Science Lab环境信息分室Environmental Information System Lab环境化学分室Environmental Chemistry Lab环境生物实验室Environmental Biology Lab大型精密仪器室Exactitude Apparatuses Room信息与计算科学实验室Information & Computation Science Lab光电技术实验室Optoelectronic Technology Lab光信息技术实验室Technology of Optical Information Lab微电子技术实验室Microelectronic Technology Lab电子技术综合实验室Electronic T echnology Lab工业设计实验室Industrial Design Lab服装设计与工程实验室Apparel Design Lab基础造型实验室Fundamental Design Lab摄影分室Photography Lab陶艺设计与制作分室Pottery Design & Facture Lab环境艺术设计实验室Environment Design Lab视觉传达设计实验室Visual Communication Design Lab家具设计实验室Furniture Decoration Lab模拟法庭Mock Trial Room数码钢琴室Digital Piano Room社会工作实验室Social Work Lab工程训练实验教学示范中心Engineering Training Demonstration Center铸造实习室Casting铣刨磨实习室Milling/ Planer/Grinder数控加工实习室CNC Machining数控编程实习室Programming普通车床实习室Turning Lathe焊接实习室Welding钳工实习室Bench Work热处理/金相分析实习室Heat Treatment & Microstructure压力加工实习室Forging测量实习室Measurement装配实习室Assembling大学物理实验教学示范中心College Physics Experimental Teaching Demonstration Center 大学物理基础实验室College Physics Foundation Lab大学物理综合实验室College Physics Synthesized Lab电工电子实验中心Electrical & Electronic Experimental Center电子技术实验室Electrical Technology Lab电工与电子技术实训室Electrical & Electronic Training计算机基础实验中心Computer Experimental Center计算机基础实验室Computer Foundation Lab计算机组装实验室Computer Assembling Lab计算机组网实验室Computer Network Lab实验仪器名称中英文对照表仪器中文名称仪器英文名称英文缩写原子发射光谱仪Atomic Emission Spectrometer AES电感偶合等离子体发射光谱仪Inductive Coupled Plasma Emission Spectrometer ICP直流等离子体发射光谱仪 Direct Current Plasma Emission Spectrometer DCP紫外-可见光分光光度计 UV-Visible Spectrophotometer UV-Vis微波等离子体光谱仪 Microwave Inductive Plasma Emission Spectrometer MIP原子吸收光谱仪Atomic Absorption Spectroscopy AAS原子荧光光谱仪Atomic Fluorescence Spectroscopy AFS傅里叶变换红外光谱仪FT-IR Spectrometer FTIR傅里叶变换拉曼光谱仪FT-Raman Spectrometer FTIR-Raman气相色谱仪 Gas Chromatograph GC高压/效液相色谱仪High Pressure/Performance Liquid Chromatography HPLC离子色谱仪 Ion Chromatograph凝胶渗透色谱仪Gel Permeation Chromatograph GPC体积排阻色谱 Size Exclusion Chromatograph SECX射线荧光光谱仪 X-Ray Fluorescence Spectrometer XRFX射线衍射仪X-Ray Diffractomer XRD同位素X荧光光谱仪Isotope X-Ray Fluorescence Spectrometer电子能谱仪 Electron Energy Disperse Spectroscopy能谱仪 Energy Disperse Spectroscopy EDS质谱仪 Mass Spectrometer MSICP-质谱联用仪ICP-MS ICP-MS 气相色谱-质谱联用仪 GC-MS GC-MS 液相色谱-质谱联用仪 LC-MS LC-MS 核磁共振波谱仪Nuclear Magnetic Resonance Spectrometer NMR电子顺磁共振波谱仪 Electron Paramagnetic Resonance Spectrometer ESR极谱仪 Polarograph伏安仪 Voltammerter自动滴定仪 Automatic Titrator电导仪 Conductivity MeterpH计 pH Meter水质分析仪 Water Test Kits电泳仪 Electrophoresis System表面科学Surface Science电子显微镜 Electro Microscopy光学显微镜 Optical Microscopy金相显微镜 Metallurgical Microscopy扫描探针显微镜Scanning Probe Microscopy无损检测仪 Instrument for Nondestructive Testing物性分析Physical Property Analysis热分析仪Thermal Analyzer粘度计 Viscometer流变仪 Rheometer粒度分析仪 Particle Size Analyzer热物理性能测定仪 Thermal Physical Property T ester电性能测定仪 Electrical Property T ester光学性能测定仪Optical Property T ester机械性能测定仪Mechanical Property Tester燃烧性能测定仪Combustion Property Tester老化性能测定仪Aging Property Tester生物技术分析 Biochemical analysisPCR仪Instrument for Polymerase Chain Reaction PCR DNA及蛋白质的测序和合成仪 Sequencers and Synthesizers for DNA and Protein传感器 Sensors其他 Other/Miscellaneous流动分析与过程分析 Flow Analytical and Process Analytical Chemistry气体分析Gas Analysis基本物理量测定Basic Physics样品处理Sample Handling金属/材料元素分析仪 Metal/material elemental analysis环境成分分析仪CHN Analysis发酵罐 Fermenter生物反应器 Bio-reactor摇床 Shaker离心机 Centrifuge超声破碎仪 Ultrasonic Cell Disruptor超低温冰箱 Ultra-low Temperature Freezer恒温循环泵 Constant Temperature Circulator超滤器 Ultrahigh Purity Filter冻干机 Freeze Drying Equipment部分收集器 Fraction Collector氨基酸测序仪 Protein Sequencer氨基酸组成分析仪 Amino Acid Analyzer多肽合成仪 Peptide synthesizerDNA测序仪 DNA SequencersDNA合成仪 DNA synthesizer紫外观察灯 Ultraviolet Lamp分子杂交仪 Hybridization OvenPCR仪PCR Amplifier化学发光仪 Chemiluminescence Apparatus紫外检测仪 Ultraviolet Detector电泳 Electrophoresis酶标仪 ELIASACO2培养箱 CO2 Incubators超净工作台 Bechtop流式细胞仪 Flow Cytometer微生物自动分析系统 Automatic Analyzer for Microbes生化分析仪 Biochemical Analyzer血气分析仪 Blood-gas Analyzer电解质分析仪 Electrolytic Analyzer尿液分析仪 Urine Analyzer临床药物浓度仪Analyzer for Clinic Medicine Concentration 血球计数器 Hematocyte Counter实验室家具laboratory/lab furniture威盛亚wilsonart台面countertop/worktop实验台laboratory casework/cabinet中央台island bench边台wall bench试剂架reagent shelf/rack天平台balance table仪器台instrument table通风系统ventilation system通风柜/橱fume hood/cupboard药品柜medical (storage) cabinet/cupboard器皿柜vessel cabinet气瓶柜gas cylinder (storage) cabinet实验凳laboratory/lab stool实验椅lab chair配件accessories。
HPLC_MS_MS法定量测定人血浆中多潘立酮的浓度
论著HPLC-MS-MS法定量测定人血浆中多潘立酮的浓度郝光涛,董瑞华,高洪志,梁文娟,刘泽源(军事医学科学院附属医院药理室,北京,100071)摘要目的:建立HPLC-MS-MS方法定量测定人血浆中多潘立酮浓度。
方法:以地西泮为内标,采用甲醇:0.5%乙酸=80:20为流动相,以Inerstil C18(2.1mm×100mm,3.0μm)色谱柱为分析柱,通过电喷雾离子源(ESI),以正离子多反应监测(MRM)方式进行检测。
多潘立酮和地西泮用于定量分析的离子对分别为[M+H]+m/z426.2→m/z175.2和[M+H]+m/z285.0→m/z 193.0。
结果:多潘立酮线性范围为1~80μg·L-1,定量下限为1μg·L-1(n=6)。
日内、日间的RSD均<15%,平均回收率> 75%。
结论:本方法专属性强,样品处理方便,灵敏度高,适用于多潘立酮临床药动学研究。
关键词多潘立酮;液相色谱-质谱联用法;血浆药物浓度中图分类号:R969.1文献标识码:A文章编号:1672-8157(2008)05-0019-03Quantitative determination of domperidone in human plasma by high performance liquid chro-matography-tandem mass spectrometryHAO Guang-tao,DONG Rui-hua,GAO Hong-zhi,LIANG Wen-juan,LIU Ze-yuan(Affiliated Hospital of the Academy of Military Medical Sciences,Beijing,100071)ABSTRACT Objective:To establish a HPLC-MS-MS method for the determination of domperidone in human plasma.Methods: Diazepam was used as internal standard.Domperidone was separated on an Inerstil C18column(2.1mm×100mm,3.0μm).The mo-bile phase consisted of methanol-0.5%acetic acid(80:20).Electrospray ionization(ESI)was applied and operated in the positive mul-tiple reaction monitoring(MRM)mode,used the transitions of[M+H]+m/z426.2→m/z175.2and[M+H]+m/z285.0→m/z193.0 to quantify domperidone and the internal standard respectively.Results:The linear calibration curve was obtained over the concen-tration range of1~80μg·L-1.The limit of quantification was1μg·L-1(n=6).The inter and intra-day precision(RSD)were less than15%.The average recovery was above75%.Conclusion:The method is proved to be specific,convenient,sensitive and suit-able for the clinical investigation of domperidone pharmacokinetics.KEY WORDS Domperidone;HPLC-MS-MS;Plasma concentration1实验部分1.1仪器与装置Agilent1200液相色谱仪(美国Agilent公司);API-3000三重四极杆串联质谱(美国Applied Biosystems公司);电喷雾离子源(ESI);Analist1.4.2工作站;Mettler Toledo AB104十万分之一精密电子天平(美国Mettler Toledo公司);B600A型低速自动平衡离心机(北京白洋离心机厂);MTN-2800W氮吹浓缩仪(天津奥特赛恩斯仪器有限公司);QL-901涡旋混合器(江苏海门其林贝尔仪器制造有限公司)。
质谱分析法中英文专业词汇
质谱分析法:mass spectrometry质谱:mass spectrum,MS棒图:bar graph选择离子检测:selected ion monitoring ,SIM直接进样:direct probe inlet ,DPI接口:interface气相色谱-质谱联用:gas chromatography-mass spectrometry,GC-MS 高效液相色谱-质谱联用:high performance liquid chromatography-mass spectrometry,HPLC-MS电子轰击离子源:electron impact source,EI离子峰:quasi-molecular ions化学离子源:chemical ionization source,CI场电离:field ionization,FI场解析:field desorptiion,FD快速原子轰击离子源:fast stom bombardment ,FAB质量分析器:mass analyzer磁质谱仪:magnetic-sector mass spectrometer四极杆质谱仪(四极质谱仪):quadrupole mass spectrometer紫外-可见分光光度法:ultraviolet and visible spectrophotometry;UV-vis 相对丰度(相对强度):relative avundance原子质量单位:amu离子丰度:ion abundance基峰:base peak质量范围:mass range分辨率:resolution灵敏度:sensitivity信噪比:S/N分子离子:molecular ion碎片离子:fragment ion同位素离子:isotopic ion亚稳离子:metastable ion亚稳峰:metastable peak母离子:paren ion子离子:daughter含奇数个电子的离子:odd electron含偶数个电子的离子:even eletron,EE 均裂:homolytic cleavage异裂(非均裂):heterolytic cleavage 半均裂:hemi-homolysis cleavage重排:rearragement分子量:MWα-裂解:α-cleavage 电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy肩峰:shoulder peak末端吸收:end absorbtion生色团:chromophore助色团:auxochrome红移:red shift长移:bathochromic shift短移:hypsochromic shift蓝(紫)移:blue shift增色效应(浓色效应):hyperchromic effect 减色效应(淡色效应):hypochromic effect 强带:strong band弱带:weak band吸收带:absorption band透光率:transmitance,T吸光度:absorbance谱带宽度:band width杂散光:stray light噪声:noise暗噪声:dark noise散粒噪声:signal shot noise闪耀光栅:blazed grating全息光栅:holographic graaing光二极管阵列检测器:photodiode array detector偏最小二乘法:partial least squares method ,PLS褶合光谱法:convolution spectrometry 褶合变换:convolution transform,CT离散小波变换:wavelet transform,WT 多尺度细化分析:multiscale analysis供电子取代基:electron donating group 吸电子取代基:electron with-drawing group荧光:fluorescence荧光分析法:fluorometryX-射线荧光分析法:X-ray fulorometry 原子荧光分析法:atomic fluorometry分子荧光分析法:molecular fluorometry 振动弛豫:vibrational relexation内转换:internal conversion外转换:external conversion 体系间跨越:intersystem crossing激发光谱:excitation spectrum荧光光谱:fluorescence spectrum斯托克斯位移:Stokes shift荧光寿命:fluorescence life time荧光效率:fluorescence efficiency荧光量子产率:fluorescence quantum yield荧光熄灭法:fluorescence quemching method散射光:scattering light瑞利光:Reyleith scanttering light拉曼光:Raman scattering light红外线:infrared ray,IR中红外吸收光谱:mid-infrared absorption spectrum,Mid-IR远红外光谱:Far-IR微波谱:microwave spectrum,MV红外吸收光谱法:infrared spectroscopy 红外分光光度法:infrared spectrophotometry振动形式:mode of vibration伸缩振动:stretching vibrationdouble-focusing mass spectrograph 双聚焦质谱仪trochoidal mass spectrometer 余摆线质谱仪ion-resonance mass spectrometer 离子共振质谱仪gas chromatograph-mass spectrometer 气相色谱-质谱仪quadrupole spectrometer 四极(质)谱仪Lunar Mass Spectrometer 月球质谱仪Frequency Mass Spectrometer 频率质谱仪velocitron 电子灯;质谱仪mass-synchrometer 同步质谱仪omegatron 回旋质谱仪。
超高效液相色谱-串联质谱法测定化妆品中全氟及多氟化合物
第42 卷第 11 期2023 年11 月Vol.42 No.111413~1423分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)超高效液相色谱-串联质谱法测定化妆品中全氟及多氟化合物梁梓洋1,张秋炎1,周熙1,康怀腾1,梁韵蕊1,轩申鑫1,吴惠勤1,黄芳1,陈桂琴2,李杨杰2*,罗辉泰1*(1.广东省科学院测试分析研究所(中国广州分析测试中心),广东省化学测量与应急检测技术重点实验室,广东省中药质量安全工程技术研究中心,广东广州510070;2.广东省药品检验所,国家药品监督管理局化妆品风险评估重点实验室,广东广州510070)摘要:该文基于超高效液相色谱-串联质谱法(UHPLC-MS/MS),建立了多种类型化妆品中全氟及多氟化合物(PFASs)的分析方法。
水剂、膏霜、乳液、凝胶和粉剂样品经过饱和乙酸铵-氯化钠溶液(含1%甲酸)分散后采用1%甲酸-乙腈溶液提取,油状和蜡基类化妆品经过正己烷分散后采用饱和乙酸铵-乙腈溶液(含0.001%氨水)提取,提取液以Agilent RRHD Eclipse Plus Zorbax C18色谱柱(3.0 mm×100 mm,1.8 μm)进行分离,在电喷雾离子源(ESI)下以多反应监测(MRM)模式检测,基质匹配外标法定量。
通过考察不同前处理方式对30种PFASs回收率的影响,确定最优前处理方法。
在优化条件下,30种PFASs在1~250 μg/L 范围内呈良好线性关系,相关系数(r2)为0.990 3~0.999 8;方法检出限为0.025~0.125 μg/g,定量下限为0.050~ 0.250 μg/g,30种PFASs的平均回收率为70.8%~112%,相对标准偏差(RSD,n=6)为0.50%~12%,24 h内各基质溶液中30种PFASs的峰面积相对标准偏差(RSD)均小于10%。
HPLC—MS测定大鼠血浆中青蒿素浓度及其应用
HPLC—MS测定大鼠血浆中青蒿素浓度及其应用目的:建立青蒿素大鼠体内药物浓度的分析方法。
方法:采用高效液相色谱质谱联用技术,选用艾司唑仑为内标,样品与内标使用甲基叔丁基醚提取,并分别于m/z305,296进行测定。
结果:在5~500μg·L-1,青蒿素峰面积与内标峰面积比值与浓度有良好的线性关系,最低定量质量浓度为5μg·L-1。
结论:方法学证明该法能够满足青蒿素大鼠体内血药浓度的测定,可用于动物体内药物动力学的研究需求。
标签:青蒿素;高效液相色谱质谱联用;药物动力学1材料11仪器美国Waters2695高效液相色谱仪、Waters ZQ4000质谱仪、Waters Masslynx V41色谱工作站;BS210s电子天平(Sartorius,Germany),HC2517高速离心机(安徽中科中佳科学仪器有限公司),VORTEX GENIUS3型混悬仪(德国IKA公司),GM033Ⅱ津腾隔膜真空泵(天津市腾达过滤器件厂),CQ205型超声清洗仪(上海超声波仪器厂),MicrSprayer Aerosolizer_Model IA_1B肺部给药装置(美国PennCentury)12试药青蒿素对照品(100713,四川协力制药提供,纯度99%),艾司唑仑对照品(中国食品药品检定研究院,12190102)。
青蒿素对照品溶液:精密称取青蒿素2550mg,用甲醇溶解并定容于25mL量瓶,得青蒿素对照品储备液(102g·L-1),4℃冷藏保存。
精密取上述储备液,用50%甲醇稀释,配制成25,50,100,250,500,1000,2500μg·L-1的对照品工作液。
内标溶液:精密称取艾司唑仑对照品535mg,甲醇溶解并定容于10mL量瓶,得艾司唑仑对照品储备液1(535mg·L-1),4℃冷藏保存。
取94μL储备液1于10mL量瓶内,50%甲醇定容即得约5mg·L-1内标储备液2,临用前用50%甲醇稀释2倍,即得内标溶液。
HPLC_MS_MS法测定Beagle犬血浆中硝苯地平的含量
HPLC-MS/MS法测定Beagle犬血浆中硝苯地平的含量付晓菲①②,高锦①,聂渝琼①,嵇扬①[摘要]目的建立HPLC-MS/MS法测定Beagle犬血浆中硝苯地平的方法。
方法以尼莫地平为内标,血浆样品经乙酸乙酯提取,采用Zorbax Exrend-C18柱(2.1mmˑ100mm,3.5μm)进行分离,乙腈-10mmol NH4CH3COOH缓冲液(60ʒ40)为流动相,流速为0.3ml·min-1,柱温为40ħ。
质谱采用电喷雾离子化源,正离子检测,扫描方式采用多反应监测(MRM),定量离子分别为硝苯地平m/z347.2→315.2,内标尼莫地平m/z419.2→343.3。
结果硝苯地平在0.2 200ng·ml-1浓度范围内线性关系良好,最低定量限为0.2ng·ml-1。
结论本方法简便、准确、专属性好,适用于硝苯地平在Beagle犬体内血药浓度检测及药代动力学研究。
[关键词]硝苯地平;HPLC-MS/MS;药代动力学[中图分类号]R969.1[文献标志码]A[文章编号]1008-9926(2014)1-070-3[DOI]10.3969/j.issn.1008-9926.2014.01.019Determination of Nifedipine with HPLC-MS/MS in Beagle dogs'PlasmaFU Xiao-fei①②,GAO Jin①,NIE Yu-qiong①,JI Yang①①Institute for Drug and Instrument Control,Health Dept.,GLD of PLA,Beijing100071,China;②General Hospital of PLA,Beijing100853,China[Abstract]Objective To develop an HPLC-MS/MS method for the determination of nifedipine in the plasma of Beagle dogs.Methods Nimodipine was used as the internal standard.After extraction with acetoacetate,nifedipine was separated on a Zorbax Exrend-C18column(2.1mmˑ100mm,3.5μm)at40ħwith acetonitrile-10mmol ammonium ac-etate(60ʒ40)as the mobile phase at a flow rate of0.3ml·min-1.A tandem mass spectrometer equipped with electros-pray ionization(ESI)source was applied as the detector and operated in the positive ion mode.m/z347.2→315.2and m/z419.2→343.3were proved to quantify nifedipine and nimodipine respectively.Results The calibration curves were linear over the range of0.2-200ng·ml-1.The lower limit of quantification of nifedipine was0.2ng·ml-1.Conclusion This method is simple,accurate and suitable for pharmacokinetic studies of Beagle dogs.[Key words]nifedipine;HPLC-MS/MS;pharmacokinetics硝苯地平(nifedipine)为二氢吡啶类钙拮抗剂的代表药物,具有降低心肌收缩性和扩张血管的作用,是临床上治疗高血压和心绞痛的首选药物之一[1]。
《药物分析学报:英文版》投稿攻略-发表论文
药物分析学报:英文版一、发表说明本团队专注于论文写作与发表服务,擅长案例分析、编程仿真、图表绘制、理论分析等,论文写作、发表300起,具体价格信息联系:本团队并非任何杂志编辑中心,本中心是专业代发论文的机构,与各个杂志社具有长期良好的合作关系,也就是我们通过我们的特殊渠道将论文送给杂志社我们特定的内部人处理论文,保证较高的上稿率,以解决投稿人投稿后焦急的等待与石沉大海的结局。
通过我们可以较为容易达到发表的目地,当然,论文的质量也是重要的基础。
二、期刊简介如下是西安交通大学主办、教育部主管的学术理论刊物,2011年1月由“Academic Journal of Xi’an Jiaotong University:《西安交通大学学报(英文版)》”,经报请教育部、科技部、新闻出版总署批准,于2011年2月更名为“Journal of Pharmaceutical Analysis(JPA,药物分析学报)”。
JPA为国内外公开发行的英文学术期刊,季刊。
JAP主要集中反映与药品质量、用药安全和分析方法等相关的最新研究成果,重点报道:(1)中药(药材、成药、方剂、注射剂)分析;(2)药物复杂体系分析;(3)生物技术药物质量控制技术与方法;(4)药物体内作用过程分析;(5)药物发现过程中的定量与定性分析;(6)分子药理学中的示踪分析;(7)生物药剂学中的定量分析;(8)临床检验与生物分析等。
栏目有:Review、Original Articles 和 Short Communication。
JPA是世界上第一份有关药物分析的专业学术期刊,主编由西安交通大学医学院药物研究所所长、中国药学会药物分析专业委员会主任委员贺浪冲教授担任。
JPA目前被美国《化学文摘》(CA)和荷兰《医学文摘》(EM)收录,并进入中文科技期刊数据库、万方数据库、中国学术光盘数据库(CNKI) 和重庆维普数据库等多家国内著名检索系统。
ReviewPaperQuantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: A revieworiginalArticle Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acidsORIGlNAL ARTICLEDetermination of cilostazol and its active metabolite 3,4-dehydro cilostazol from small plasma volume by UPLC-MS/MSSHORT COMMUNICATION Capillary electrophoresis to determine entrapment efficiency of a nanostructured lipid carrier loaded with piroxicamINFORMATION Application of analytical instruments in pharmaceutical analysisBioautography and its scope in the field of natural product chemistryORIGINAL ARTICLENon-covalent binding analysis of sulfamethoxazole to human serum albumin:Fluorescence spectroscopy, UV-vis, FT-IR, voltammetric and molecular modelingSHORT COMMUNICATIONIsolation and characterization of a degradation product in leflunomide and a validated selective stability-indicating HPLC-UV method for their quantificationINFORMATIONApplication of analytical instruments in pharmaceutical analysisReviewPaperQuantitative bioanalytical and analytical method development of dibenzazepine derivative, carbamazepine: A revieworiginalArticle Development and validation of a GC-FID method for quantitative analysis of oleic acid and related fatty acidsREVIEW ARTICLEMeasurement uncertainty in pharmaceutical analysis and its applicationORIGINAL ARTICLEMetabolic profiling of plasma from cardiac surgical patients concurrently administered with tranexamic acid:DI-SPME-LC-MS analysisINFORMATIONApplication of analytical instruments in pharmaceutical analysisORIGINAL ARTICLECharge-transfer interaction of drug quinidine with quinol, picric acidand DDQ:Spectroscopic characterization and biological activity studies towards understanding the drug-receptor mechanismINFORMATION Application of analytical instruments in pharmaceutical analysisREVIEW PAPERDevelopment of forced degradation and stability indicating studies of drugs-A review0RIGINAL ARTICLEDirect detection and identification of active pharmaceutical ingredients in intact tablets by helium plasma ionization (HePI) mass spectrometryINFORMATI0NApplication of analytical instruments in pharmaceutical analysisREVIEW PAPERChemometrics: A new scenario in herbal drug standardizationORIGINAL ARTICLEQuantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatographyelectrospray mass spectroscopyINFORMATIONApplication of analytical instruments in pharmaceutical analysisREVIEW PAPERPioglitazone:A review of analytical methodsORIGINAL ARTICLERisk evaluation of impurities in topical excipients:The acetol caseSHORT COMMUNICATIONSimultaneous determination of borneol and its metabolite in rat plasma by GC-MS and its application to pharmacokinetic studyINFORMATIONApplication of analytical instruments in pharmaceutical analysisSynthesis of carbon nanosheet from barley and its use as non-enzymatic glucose biosensor0RIGINALARrICLEQuantitation of bivalirudin, a novel anticoagulant peptide, in human plasma by LC-MS/MS: Method development, validation and application to pharmacokineticsLiquid chromatography tandem mass spectrometry method for the estimation of lamotrigine in human plasma:Application to a pharmacokinetic studySimultaneous quantification of prodrug oseltamivir and its metabolite oseltamivir carboxylate in human plasma by LC-MS[MS to support a bioequivalence studyA sensitive, simple and rapid HPLC-MS/MS method for simultaneous quantification of buprenorpine and its N-dealkylated metabolitenorbuprenorphine in human plasmaSPECIALISSUE:HPLCinpharmaceuticalanalysisFused-core particle technology in high-performance liquid chromatography: An overviewREVIEWPAPERApplication of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fuids0RIGINALARTICLEChiral separation of bavachinin in Fructus Psoraleae and rat plasma by liquid chromatography using permethylated-p-CD as a chiral selectorSHORTCOMMUNICATIONA novel and rapid microbiological assay for ciprofoxacin hydrochlorideORIGINAL ARTICLEPharmacokinetic study of inosiplex tablets in healthy Chinese volunteers by hyphenated HPLC and tandem MS techniquesSHORT COMMUNICATIONI Simultaneous determination of five diterpenoid alkaloids in Herba Delphinii by HPLC/ELSDRapid determination of anti-estrogens by gas chromatography/mass spectrometry in urine:Method validation and application to real samplesImmobilized enzyme reactors in HPLC and its application in inhibitor screening:A reviewSimultaneous determination of pioglitazone and candesartan in human plasma by LC-MS/MS and its application to a human pharmacokinetic studySchisandra chinensis (Turcz.) BaillSimultaneous determination of telmisartan and amlodipine in human plasma by LC-MS]MS and its application in a human pharmacokinetic studyORIGINAL ARTICLESeparation and enrichment of trace ractopamine in biological samples by uniformly-sized molecularly imprinted polymersSHORT COMMUNIC ATION An analytical method for Fe(Ⅱ)and Fe(Ⅲ)determination in pharmaceutical grade iron sucrose complex and sodium ferric gluconate complexORIGINAL ARTICLESIdentification and determination of the major constituents in traditional Chinese medicine Longdan Xiegan Pill by HPLC-DAD-ESI-MSINFORMATIONPublished the papers of GC-MS analysis—Traditional ChinesemedicineRECRUITMENTLecturer/Professor Wanted at Xi'an Jiaotong UniversityREVIEWApplications of HPLC/MS in the analysis of traditional Chinese medicinesORIGlNAL ARTICLESDetermination of phthalate esters in physiological saline solution by monolithic silica spin column extraction methodINFORMATION Published papers about fingerprint and quality control of traditional Chinese medicineRECRUITMENTLecturer/Professor Wanted at Xi'an Jiaotong UniversityORIGINAL ARTICLEHighly sensitive chemiluminescence technology for protein detection using aptamer-based rolling circle amplification platformINFORMATION Published papers about food safetyRECRUITMENTChair Professors and Visiting Professors of "Chang Jiang Scholars Program"Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicinesDetection of captopril based on its enhanced resonance lightscattering signals of fluorosurfactant-capped gold nanoparticlesLC-ESI-MS/MS,a modified method for simultaneous quantification of isoflavonoids,flavonoids,alkaloids and saponins in a Chinese herbal preparation Gegen-Qinlian decoctionStudy on chromatographic fingerprint of sarcandra glabra (Thunb.) by microwave-assisted extraction coupled to HPLC/DAD。
质谱分析法中英文专业词汇
质谱分析法:mass spectrometry质谱:mass spectrum,MS棒图:bar graph选择离子检测:selected ion monitoring ,SIM直接进样:direct probe inlet ,DPI接口:interface气相色谱-质谱联用:gas chromatography-mass spectrometry,GC-MS 高效液相色谱-质谱联用:high performance liquid chromatography-mass spectrometry,HPLC-MS电子轰击离子源:electron impact source,EI离子峰:quasi-molecular ions化学离子源:chemical ionization source,CI场电离:field ionization,FI场解析:field desorptiion,FD快速原子轰击离子源:fast stom bombardment ,FAB质量分析器:mass analyzer磁质谱仪:magnetic-sector mass spectrometer四极杆质谱仪(四极质谱仪):quadrupole mass spectrometer紫外-可见分光光度法:ultraviolet and visible spectrophotometry;UV-vis 相对丰度(相对强度):relative avundance原子质量单位:amu离子丰度:ion abundance基峰:base peak质量范围:mass range分辨率:resolution灵敏度:sensitivity信噪比:S/N分子离子:molecular ion碎片离子:fragment ion同位素离子:isotopic ion亚稳离子:metastable ion亚稳峰:metastable peak母离子:paren ion子离子:daughter含奇数个电子的离子:odd electron含偶数个电子的离子:even eletron,EE 均裂:homolytic cleavage异裂(非均裂):heterolytic cleavage 半均裂:hemi-homolysis cleavage重排:rearragement分子量:MWα-裂解:α-cleavage 电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy肩峰:shoulder peak末端吸收:end absorbtion生色团:chromophore助色团:auxochrome红移:red shift长移:bathochromic shift短移:hypsochromic shift蓝(紫)移:blue shift增色效应(浓色效应):hyperchromic effect 减色效应(淡色效应):hypochromic effect 强带:strong band弱带:weak band吸收带:absorption band透光率:transmitance,T吸光度:absorbance谱带宽度:band width杂散光:stray light噪声:noise暗噪声:dark noise散粒噪声:signal shot noise闪耀光栅:blazed grating全息光栅:holographic graaing光二极管阵列检测器:photodiode array detector偏最小二乘法:partial least squares method ,PLS褶合光谱法:convolution spectrometry 褶合变换:convolution transform,CT离散小波变换:wavelet transform,WT 多尺度细化分析:multiscale analysis供电子取代基:electron donating group 吸电子取代基:electron with-drawing group荧光:fluorescence荧光分析法:fluorometryX-射线荧光分析法:X-ray fulorometry 原子荧光分析法:atomic fluorometry分子荧光分析法:molecular fluorometry 振动弛豫:vibrational relexation内转换:internal conversion外转换:external conversion 体系间跨越:intersystem crossing激发光谱:excitation spectrum荧光光谱:fluorescence spectrum斯托克斯位移:Stokes shift荧光寿命:fluorescence life time荧光效率:fluorescence efficiency荧光量子产率:fluorescence quantum yield荧光熄灭法:fluorescence quemching method散射光:scattering light瑞利光:Reyleith scanttering light拉曼光:Raman scattering light红外线:infrared ray,IR中红外吸收光谱:mid-infrared absorption spectrum,Mid-IR远红外光谱:Far-IR微波谱:microwave spectrum,MV红外吸收光谱法:infrared spectroscopy 红外分光光度法:infrared spectrophotometry振动形式:mode of vibration伸缩振动:stretching vibrationdouble-focusing mass spectrograph 双聚焦质谱仪trochoidal mass spectrometer 余摆线质谱仪ion-resonance mass spectrometer 离子共振质谱仪gas chromatograph-mass spectrometer 气相色谱-质谱仪quadrupole spectrometer 四极(质)谱仪Lunar Mass Spectrometer 月球质谱仪Frequency Mass Spectrometer 频率质谱仪velocitron 电子灯;质谱仪mass-synchrometer 同步质谱仪omegatron 回旋质谱仪。
HPLC-MS/MS法测定瓜蒌皮注射液中腺苷和唾液酸的含量
HPLC-MS/MS法测定瓜蒌皮注射液中腺苷和唾液酸的含量摘要目的:建立瓜蒌皮注射液中腺苷和唾液酸的HPLC-MS/MS定量分析方法。
方法:采用Waters Xbridge C18色谱柱(4.6 mm×50 mm,3.5 mm),流动相为甲醇-0.1%甲酸溶液,梯度洗脱。
质谱条件为电喷雾离子源(ESI),负离子模式监测,源喷射电压:-4.500 kV;雾化温度:550 ℃,采用多反应监测模式(MRM)对瓜蒌皮注射液中腺苷和唾液酸进行定量分析。
结果:腺苷和唾液酸线性关系均良好(R≥0.995),线性范围均为250~32 000 nmol/L,腺苷和唾液酸的检出限分别为31.25 nmol/L和3.91 nmol/L。
应用建立的HPLC-MS/MS方法测定了3批瓜蒌皮注射液中腺苷和唾液酸的含量,分别为1.407~1.465 mmol/L和251.0~678.7 nmol/L。
结论:该方法灵敏性、专属性和选择性好,可用于瓜蒌皮注射液中腺苷和唾液酸的定量测定和质量控制。
ABSTRACT Objective:To establish an HPLC-MS/MS method for the determination of adenosine and N-acetylneuraminic acid (NANA)in Gualoupi injection. Method:HPLC analysis was performed on a column of Waters Xbridge C18 (4.6 mm×50 mm,3.5 mm)with linear gradient elution of methanol-0.1% formic acid solution. Mass spectrometry analysis was carried out at ion spray voltage of ?4.500 kV and the turbo spray temperature of 550 ℃with electrospray ionization (ESI)ion source in negative mode. The contents of adenosine and NANA in Gualoupi injection were quantitatively determined by multiple reaction monitoring (MRM). Results:The standard curves of both adenosine and NANA showed good linearity (R≥0.995)over the range of 250-32 000 nmol/L and their detective limits were 31.25 nmol/L and 3.91 nmol/L. The contents of adenosine and NANA determined by HPLC-MS/MS in three batches of Gualoupi injections were 1.407-1.465 mmol/L and 251.0-678.7 nmol/L,respectively. Conclusion:This method possesses good sensitivity,specification and selectivity and can be used for the determination and quality control of adenosine and NANA in Gualoupi injection.KEy WORDS Gualoupi injection;HPLC-MS/MS;adenosine;N-acetylneuraminic acid瓜蔞皮注射液为上药集团子公司上海第一生化药业有限公司独家产品,是以瓜蒌皮为原料,经水提醇沉,再经过离子交换树脂洗脱而制成的灭菌水溶液,收载于国家中成药标准汇编内科-心系分册438页(WS-11417(ZD-1417)-2002-2008)。
HPLC-MS
HPLC-MS/MS法测定猪肉中噻虫胺残留量的不确定度评定陈琳涵,陈慧冰(广州南沙明曦检测服务有限公司,广东广州 511400)摘 要:通过对高效液相色谱-串联质谱法测定噻虫胺过程中的主要不确定度来源进行分析,评定猪肉中噻虫胺残留量测定的不确定度,寻找控制测量准确度的方法。
结果表明,当猪肉中噻虫胺含量为0.020 1 mg·kg-1时,其扩展不确定度为0.001 2 mg·kg-1,k=2,各项不确定度来源中对检测结果影响最大的是标准曲线拟合。
关键词:高效液相色谱-串联质谱法;噻虫胺;不确定度Uncertainty Evaluation for the Determination of Clothianidin Residues in Pork by HPLC-MS/MSCHEN Linhan, CHEN Huibing(Guangzhou Nansha Mingxi Detection Service Co., Ltd., Guangzhou 511400, China) Abstract: By analyzing the main sources of uncertainty in the determination of thiacloprid by high-performance liquid chromatography tandem mass spectrometry, the uncertainty in the determination of thiacloprid residues in pork is evaluated, and methods for controlling measurement accuracy are sought. The results showed that when the content of thiacloprid in pork was 0.020 1 mg·kg-1, the expanded uncertainty was 0.001 2 mg·kg-1, k=2, and the standard curve fitting had the greatest impact on the detection results among various sources of uncertainty.Keywords: high performance liquid chromatography-tandem mass spectrometry; clothianidin; uncertainty噻虫胺是高效、高选择性的新烟碱类杀虫剂,主要用于水稻、蔬菜、水果等作物的害虫防治[1-2]。
基于Top-down技术评定液相色谱法测定棉籽油中游离棉酚的不确定度
分析检测基于Top-down技术评定液相色谱法测定棉籽油中游离棉酚的不确定度孙晓晗,李 烁(济南市食品药品检验检测中心,山东济南 250102)摘 要:目的:利用Top-down技术评定液相色谱法测定棉籽油中游离棉酚的不确定度。
方法:按照《食品安全国家标准植物性食品中游离棉酚的测定》(GB 5009.148—2014)规定的分析方法,在期间精密度条件下,对棉籽油质控样品中游离棉酚的含量进行测定,基于Top-down法的原理对检测数据进行分析。
结果:在证明分析结果呈正态性、独立性且偏倚受控的情况下,不确定度为1.56 mg·kg-1。
结论:Top-down技术将不确定度评定与实验室内部质量控制工作有机结合起来,客观地监测实验室的期间精密度水平,在化学分析领域具有很强的可操作性。
关键词:游离棉酚;不确定度;液相色谱法Evaluation of Uncertainty of Determination of Free Gossypol in Cottonseed Oil by Liquid Chromatography Based on Top-Down TechniqueSUN Xiaohan, LI Shuo(Jinan Inspection and Testing Center for Food and Drug Control, Jinan 250102, China) Abstract: Objective: To evaluate the uncertainty of determination of free gossypol in cottonseed oil by liquid chromatography with Top-down technique. Method: According to the analysis method specified in GB 5009.148—2014, the content of free gossyol in the quality control sample of cottonseed oil was determined under the condition of period precision, and the detection data was analyzed based on the principle of Top-down method. Result: An uncertainty of 1.56 mg·kg-1 was assessed with normality, independence, and controlled bias demonstrated. Conclusion: The Top-down technique combines the uncertainty assessment with the internal quality control of the laboratory, objectively monitors the period precision level of the laboratory, and has strong operability in the field of chemical analysis.Keywords: free gossypol; uncertainty; liquid chromatography游离棉酚是有活性醛基和活性羟基的萘醛类化合物,其生物毒性较大,人们食用含有过量棉酚的食物后会损伤心、肝、肾等器官,甚至导致不育[1]。
载药量的测定方法
载药量的测定方法Determining the payload of a drug is a crucial aspect of pharmaceutical research and development. Accurate measurement of the quantity of medication in a given dosage form is essential for ensuring its efficacy and safety. There are several methods commonly used for determining drug payload, each with its advantages and limitations.药物的荷载量测定是制药研发的关键环节。
准确测量给定剂型中的药物数量对于确保其疗效和安全至关重要。
目前有几种常用的方法可用于测定药物的荷载量,每种方法都有其优点和局限性。
One commonly used method for determining drug payload is high-performance liquid chromatography (HPLC). This technique involves separating and quantifying the individual components of a drug formulation based on their interactions with a stationary phase and mobile phase. HPLC is known for its high sensitivity and ability to provide precise measurements, making it a preferred choice for many pharmaceutical applications.测定药物荷载量的一种常用方法是高效液相色谱法(HPLC)。
两种不同方法检测血清中甘氨鹅脱氧胆酸钠的对比分析
医疗医务标准化两种不同方法检测血清中甘氨鹅脱氧胆酸钠的对比分析■ 王煌煌1 王素玉1 王 丽1 李金英2 王志永3*(1.河北艾欧路生物科技有限责任公司;2.淄博岜山万杰医院;3.河北省药品职业化检查员总队)摘 要:本文探讨生化法与高效液相色谱-串联质谱法(HPLC-MS/MS)检测血清中甘氨鹅脱氧胆酸钠(GCDC)结果的相关性。
根据美国国家临床实验室标准委员会(NCCLS)EP9-A文件,每天取临床样本8份,分别采用自主研发的体外诊断生化试剂和HPLC-MS/MS测定血清GCDC含量,共测定5d,记录结果,去除离群点,计算线性回归方程和相关系数,进行偏倚估计,对比生化试剂测量的准确性。
通过试验得出生化法和HPLC-MS/MS方法检测血清GCDC的相关方程为Y生化法=0.9642XHPLC-MS/MS-1.2266,相关系数(r)=0.9954,两种方法结果高度相关,有很好的可比性;两种血清中GCDC检测结果具有很好的可比性,由于检测原理和仪器不同,当采用不同方法时,应对其进行对比分析和偏倚评估。
关键词:血清,甘氨鹅脱氧胆酸钠,对比DOI编码:10.3969/j.issn.1002-5944.2023.12.058Comparative Analysis of Two Different Methods in Detecting SerumSodium Glycine DeoxycholateWANG Huanghuang1 WANG Suyu1 WANG Li1 LI Jinying2 WANG Zhiyong3*(1. Hebei Aiou Road Biotechnology Co., Ltd.; 2. Zibo Bashan Wanjiang Hospital;3. Hebei Provincial Drug Professional Inspector Corps)Abstract: This paper investigates the correlation between biochemical method and high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the detection of serum glycochenodeoxycholate (GCDC).According to the document EP9-A of American Committee for Clinical Laboratory Standardization (NCCLS), 40 cases of serum GCDC were detected by self-developed in vitro diagnostic biochemical reagents and HPLC-MS/MS in 5 operating days and the correlation regression and bias estimation were made. The duplicates were assessed for each method within the same run. The results were recorded and the outliers were removed. The linear regression equation and correlation coefficient were calculated to estimate the bias and compare the measurement accuracy of biochemical reagents. The results of serum GCDC were highly correlated and comparable between the two methods. The results of GCDC detection in the two sera are very comparable. Due to the different detection principles and instruments, comparative analysis and bias assessment should be carried out when different methods are used.Keywords: serum, sodium deoxycholate, comparison基金项目:本文受石家庄市重点研发计划项目“基于传统生化和高分辨质谱联合技术的肝病精准临床诊断试剂的研发”(项目编号:221200123A)资助。
高效液相色谱分析中分子量测定方法的工作原理
高效液相色谱分析中分子量测定方法的工作原理在生物制药领域,多肽作为重要的生物活性分子,具有广泛的应用前景。
为了确定多肽的结构和特性,准确测定其分子量成为一项重要任务。
高效液相色谱(High-Performance Liquid Chromatography,HPLC)分析技术以其高分辨率、高灵敏度和广泛的应用性在多肽分析中发挥着重要作用。
本文将详细介绍高效液相色谱分析中分子量测定方法的工作原理,揭示其在多肽鉴定中的关键作用。
图1。
一、高效液相色谱的基本原理。
高效液相色谱是一种基于液相的色谱技术,其基本原理是通过样品在流动相和固定相之间的分配行为进行分离。
在高效液相色谱中,样品溶液通过色谱柱,其中填充有固定相,通过流动相的流动,不同成分根据其亲水性、分子量、化学性质等因素发生分离。
这种分离过程使得多肽能够按照其分子量的大小进行分离。
二、分子量测定方法的工作原理。
在高效液相色谱分析中,常用的多肽分子量测定方法包括准分子量测定和精确分子量测定。
准分子量测定通过与已知分子量的参照物进行相对比较来确定多肽的分子量范围,而精确分子量测定则通过测量多肽的准确分子量来获得更精确的结果。
(1)准分子量测定:准分子量测定常使用反相高效液相色谱(Reverse-Phase High-Performance Liquid Chromatography,RP-HPLC)进行。
在该方法中,多肽样品与参照物一起通过色谱柱进行分离,通过测量多肽峰与参照物峰之间的保留时间差来估算多肽的分子量范围。
(2)精确分子量测定:精确分子量测定方法常使用峰形定量法和串联质谱法(Tandem Mass Spectrometry,MS/MS)进行。
峰形定量法通过测量多肽的保留时间和峰形参数,结合标定曲线来计算多肽的精确分子量。
而串联质谱法则结合质谱仪器的高分辨率和高灵敏度,通过测量多肽的质荷比和质谱碎片来获得准确的分子量信息。
三、多肽鉴定中的应用与重要性。
HPLC-MS法快速定量分析人血浆中硫普罗宁浓度(英文)
HPLC-MS法快速定量分析人血浆中硫普罗宁浓度(英文)刘娜;张蓓蓓;张尊建;田媛;许风国;陈沄【期刊名称】《中国药科大学学报》【年(卷),期】2008(39)1【摘要】目的:建立快速测定人血浆中硫普罗宁浓度的HPLC-MS联用分析方法。
方法:在全血中加入抗氧剂半胱氨酸后,于分得的血浆中加入霉酚酸为内标,酸化后经乙酸乙酯提取,进行HPLC-MS测定。
色谱柱为Shim-pack VP-ODSC18column(250mm×2.0mm,5μm),流动相为甲醇-0.1%乙酸(70∶30),流速为0.2mL/min。
结果:方法的线性范围为30~4000ng/mL,提取回收率大于70%,批间和批内精密度均小于8.5%,单样品分析时间7.5min。
并将所建立的方法成功地应用于硫普罗宁片生物等效性研究。
结论:本方法操作简单、快速,灵敏度、准确度、精密度和定量分析线性关系均良好,符合生物样品测定要求。
【总页数】6页(P46-51)【关键词】硫普罗宁;半胱氨酸;HPLC—MS;生物等效性【作者】刘娜;张蓓蓓;张尊建;田媛;许风国;陈沄【作者单位】药物质量与安全预警教育部重点实验室;中国医学科学院皮肤病研究所【正文语种】中文【中图分类】R917【相关文献】1.HPLC-MS/MS法检测人血浆中卡马西平浓度 [J], 杜晓琳;雍小兰;黄娟;代小娇2.HPLC-MS/MS法快速测定人血浆中氟哌噻吨浓度及生物等效性研究 [J], 谭献文;廖日房;温预关3.HPLC法测人血浆中丹皮酚浓度及其药代动力学研究(英文) [J], 武静;王本杰;魏春敏;孔祥麟;郭瑞臣4.HPLC-MS法快速测定人血浆中洛索洛芬钠的浓度及其药代动力学研究 [J], 李昊;孙建国;王广基;姜希凌;谢媛媛;李鹏5.HPLC-MS法快速测定健康人体血浆中环维黄杨星D的浓度及其药代动力学研究[J], 何俊;王焱;任晓亮;潘桂湘;杨佳凤;王保和;黄宇虹;高秀梅因版权原因,仅展示原文概要,查看原文内容请购买。
QuEChERS-UPLC-MS/MS法快速测定香茅草中33种农药残留量
杂质,主要涉及了磺酸酯、N- 亚硝基胺及卤代烷烃等 (80∶20,v/v)混合溶剂中开展相关的稳定性及相应 警示结构物质[1]。2007 年欧洲药物监管机构首次在 的水解动力学研究,由此希望为磺酸酯这一类别的基
Roche 公司生产的艾滋病治疗药物甲磺酸奈非那韦中 因毒性杂质在药物中的准确测定及残留控制提供一 发现甲磺酸乙酯含量超标[2],此后人用药品注册技术 定的参考借鉴。
70
21 555
18 694
7 847
7 327
顶空瓶中,立即压盖,按“1.3”项下色谱条件进行测
77
21 479
18 336
7 672
7 158
定。 各 甲 磺 酸 酯 经 衍 生 化 后 生 成 了 相 应 的 碘 代 烷
95
21 399
20 006
8 360
7 773
烃(图 2),出峰顺序依次为 MeI m/z 142、EtI m/z 156、
药 物 分 析 杂 志 Chin J Pharm Anal 2021,41(3)
·4 6 1·
iodide solution as the derivative reagent.The concentrations of the methansulfonates were monitored periodically by their corresponding derivative products of alkyl iodides.Results:EMS and PMS were stable under the above mentioned temperatures,while MMS and IMS were found to be stable only under 298 K.As the temperature raised to 313 K and 323 K,both MMS and IMS degraded due to the hydrolysis reaction on their corresponding ester groups.Both the hydrolysis kinetic parameters were obtained.Conclusion:Different kinds of methanesulfonates possess characteristic stability properties,whereas,indicating that serious attentions should be paid on the strict requirements of the temperature control for preparing the sample solutions during assay determinations. Keywords:genotoxic impurity;methanesulfonates;gas chromatography-mass spectrometry;stability;hydrolysis degradation;hydrolysis kinetics
GC-MS校准规范
台式气相色谱-质谱联用仪校准规范1、术语和计量单位:分辨力(resolution):分辨两个相邻质谱峰的能力,对于台式GC-MS以某种离子峰峰高50%处的峰宽度(半峰宽)表示,记为W1/2,单位是u。
基线噪声(baseline noise):基线峰底与峰谷之间的宽度,单位计数。
信噪比(signal-to-noise ratio):待测样品信号强度与基线噪声的比值,记为S/N。
质量色谱图(mass chromatography):质谱仪在一定质量范围内自动重复扫描所获得的质谱数据,可以不同形式再现,其中以一个或多个离子强度随时间变化的图谱,称为质量色谱图。
质量准确性(mass accuracy):仪器测量值对理论值的偏差。
u(atomic mass unit):原子质量单位。
2、概述GC-MS是将GC与MS通过一定接口耦合到一起的分析仪器。
样品通过GC分离后的各个组分依次进入质谱检测器,组分在离子源被电离,产生带有一定电荷、质量数不同的离子。
不同离子在电场和/或磁场中的运动行为不同,采用不同质量分析器把带电离子按质荷比(m/z)分开,得到依质量顺序排列的质谱图。
通过对质谱图的分析处理,可以得到样品的定性、定量结果。
GC-MS主要包括气相色谱系统(一般不带检测器)、离子源、质量分析器、检测器、真空系统和计算机系统几部分。
3.计量特性主要技术指标技术指标要求质量范围不低于600u质量准确性**±0.3u分辨力(R)**W1/2<1uEI100pg八氟萘,m/z272处S/N≥10:1(峰峰值)信噪比**正CI10.0ng的苯甲酮,m/z183处S/N≥10:1(峰峰值)负CI100pg八氟萘,m/z272处S/N≥100:1(峰峰值)测量重复性*RSD≤10%谱库检索10ng的硬脂酸甲酯,相似度≥75%气相色谱柱箱温度控制柱箱温度稳定性(10min)优于0.5%,程序升温重复性优于2%注:1、标有**的为必须校准的项目2、用于定性测试时,标*的可不做,用于定量测试时,标*的必须做,但可使用客户自己的工作标准溶液,指标也可根据用户使用要求而定。
高效液相色谱-三重四级杆质谱分析血样中托吡酯及代谢物
高效液相色谱-三重四级杆质谱分析血样中托吡酯及代谢物张朝辉;季宏建;巩克民【摘要】采用高效液相色谱-三重四级杆质谱(HPLC-MS/MS),对血样中托吡酯及主要代谢物2,3-二羟基托吡酯,4,5-二羟基托吡酯进行一级质谱和二级质谱分析检测,首次建立了快速、高效、检测限更低的多反应质谱检测(MRM)分析方法,该方法成功应用于服用托吡酯联合苯妥英钠等其他药物的癫痫患者,同时准确地进行托吡酯及代谢物的血药浓度监测.%In this study,a novel liquid chromatogrphy-tandem mass spectrometry method for simultneous determination of topiramate and its main metabolites in human plasma was presented.It is the first method allowing the determination of plasma topiramate and its main metabolites in one run.The method was succeeded in metabolic investigation of topiramate disposition in patients with epilepsy by measurements of the metabolites in plasma.【期刊名称】《分析仪器》【年(卷),期】2017(000)005【总页数】4页(P37-40)【关键词】液相色谱-三重四级杆质谱;多反应监测;血样;托吡酯及代谢物【作者】张朝辉;季宏建;巩克民【作者单位】湖北省黄冈市罗田县九资河镇卫生院,黄冈438636;盐城市第三人民医院,盐城224005;江苏医药职业学院,盐城224005【正文语种】中文托吡酯(TPM)具有广谱的抗神经兴奋和抗惊厥作用,主要用于抗癫痫和偏头痛的治疗,该药物口服生物利用度高达80%,蛋白结合率仅有13%~17%,消除半衰期达20~30h,托吡酯往往与其他抗癫痫药物一起服用如:卡马西平、苯妥英钠等控制癫痫症状,这些药物可导致托吡酯血药浓度的降低,因此定量研究托吡酯及其代谢物显得尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F OCUS:T HE O RBITRAPMass Measurement and Top-Down HPLC/MS Analysis of Intact Monoclonal Antibodies on a Hybrid Linear Quadrupole Ion Trap–Orbitrap Mass SpectrometerPavel V.Bondarenko,a Tonya P.Second,b Vlad Zabrouskov,b Alexander A.Makarov,c and Zhongqi Zhang aa Amgen Incorporated,Thousand Oaks,California,USAb Thermo Fisher,San Jose,California,USAc Thermo Fisher,Bremen,GermanyMass and top-down analyses of150-kDa monoclonal immunoglobulin gamma(IgG)antibod-ies were performed on an Orbitrap analyzer.Three different sample delivery methods were tested including(1)infusion of an off-line desalted IgG sample using nano-electrospray;(2) on-line desalting followed by a step elution with a high percentage of organic solvent;and(3) reversed-phase HPLC separation and on-line mass and top-down analyses of disulfide isoforms of an IgG2antibody.The accuracy of mass measurements of intact antibody was withinϮ2Da(15ppm).The glycoforms of intact IgG antibodies separated by162Da were baseline resolved.In-source fragmentation of the intact antibodies produced mainly115 residue fragments including N-terminal variable domains of heavy and light chains.The sequence coverage(the number of cleavages)was greatly increased after reduction of disulfide bonds and HPLC/MS/MS analysis of light and heavy chains using collision-induced dissociation in the ion trap of the LTQ-Orbitrap.This is an attractive alternative to peptide mapping for characterization and monitoring of post-translational modifica-tions attributed to minimal sample preparation,high speed of the mass/top-down analysis,and relatively minor method-induced sample modifications.(J Am Soc Mass Spectrom2009,20,1415–1424)©2009Published by Elsevier Inc.on behalf of American Society for Mass SpectrometryB ecause of their predictable properties,controlledfunction and long circulation lifetime,monoclo-nal human immunoglobulin gamma(IgG)anti-bodies have emerged as a popular therapeutic modality [1,2].This has resulted in a strong need for a high-throughput methods for analysis of different antibody drug candidates.Mass spectrometry has become one of the most powerful techniques for the structural charac-terization of monoclonal antibodies(mAbs)[3].Tradi-tionally,structural characterization of mAbs has been performed by a“bottom-up”approach after first digest-ing them to peptides[4–6].Unfortunately,enzymatic digestion is a laborious,time-consuming process and it often introduces artificial modifications,such as cycliza-tion of N-terminal glutamine and deamidation[5,7]. Alternatively,protein molecular mass analysis is rela-tively fast,does not require lengthy sample preparation, and induces fewer,if any,modifications[8]compared with the peptide mapping[5,7].Analysis of intact monoclonal IgG antibodies and their large domains has been reported for matrix-assisted laser desorption/ ionization(MALDI)and electrospray ionization(ESI) sources and almost all mass analyzers including MALDI-time of flight(TOF)[9–11],ESI quadrupole(Q) [4,12–14],ion trap[15],orthogonal TOF[8,11,16,17], and the LTQ-Orbitrap during direct infusion[18].Al-though a mass change in a population of mAbs can be used to monitor post-translational modifications[8],it cannot reveal the site of modification.For that purpose, fragmentation of intact proteins,also known as“top-down”mass spectrometry,has been developed during the past decade[19–25]using mainly high-resolving power Fourier transform ion cyclotron resonance(FT-ICR)mass bination of intact protein mass measurement and top-down fragmentation anal-ysis provided useful information about sites of post-translational modifications(PTMs)in several studies including oxidation of viral prolyl-4-hydroxylase[20] and deamidation of ribonuclease A[23],to name a few. Discovery of the Orbitrap analyzer[26]and its first commercialization as a hybrid linear quadrupole ion trap–Orbitrap mass spectrometer(LTQ Orbitrap,ThermoAddress reprint requests to Dr.Pavel V.Bondarenko,Amgen,Departmentof Pharmaceutics,One Amgen Center Drive,MS8-1-C,Thousand Oaks,CA91320.E-mail:pavel.bondarenko@Published online March28,2009©2009Published by Elsevier Inc.on behalf of American Society for Mass Spectrometry.Received December28,2008 1044-0305/09/$32.00Revised March18,2009 doi:10.1016/j.jasms.2009.03.020Accepted March20,2009Scientific,Bremen,Germany)provided many laborato-ries with the opportunity to achieve high mass resolu-tion without a superconducting magnet and its special and expensive maintenance.The LTQ-Orbitrap was used for top-down analysis of intact monoclonal IgG antibodies[27]and their light and heavy chains[18] during direct infusion as well as on-line with HPLC[3]. In addition,top-down(tandem mass spectroscopy, MS/MS)analysis of antibody chains was performed using a q-TOF mass spectrometer during direct infusion [28],and on-line with HPLC using in-source N-terminal fragmentation on an orthogonal-TOF instrument[29]. During production and formulation of a mAb,it is important to separate and quantify all isoforms of therapeutic antibody with different PTMs to further identify the sites of the modifications and their impact on potency,stability,and other critical attributes of the therapeutic molecules.To avoid time-consuming and costly fractionation and fraction collection and subse-quent peptide mapping of the separated isoforms,it is very attractive to separate the intact protein isoforms by liquid chromatography and then perform on-line mass and top-down analyses to determine the sites of modi-fications and their abundances in one short assay.In the previous work by Zhang and Shah the modifications inside the variable domains of antibodies were success-fully characterized by a simple top-down method on the Orbitrap analyzer[27].However,mass measure-ment of the intact antibodies was usually performed on a separate TOF analyzer,limiting the throughput of the analysis.Therefore,it was desirable to combine the mass measurement and the top-down fragmentation analysis of a mAb in one automated procedure.This report describes a step toward implementation of such analysis of human monoclonal antibodies and their large subunits(light and heavy chains after reduction of disulfide bonds)using the LTQ Orbitrap.We report mass measurements and top-down fragmentation anal-yses of intact and reduced IgG antibodies on the LTQ-Orbitrap connected to reversed-phase HPLC. ExperimentalMaterialsThe recombinant monoclonal IgG1and IgG2antibodies analyzed in this study were produced and purified at Amgen using standard manufacturing procedures.Wa-ter and acetonitrile(ACN)were obtained from VWR International(West Chester,PA,USA).Formic acid (FA)and trifluoroacetic acid(TFA)were from Pierce (Rockford,IL,USA).Guanidine HCl(GdnHCl)was obtained from Mallinckrodt Baker(Phillipsburg,NJ, USA).Reduction and Alkylation ProcedureOne IgG2antibody used in this study was reduced and alkylated according to the procedure described in Reh-der et al.[30].Briefly,the antibody was diluted to2 mg/mL using a buffer including7.5M GdnHCl,0.1M Tris–HCl(Sigma,St.Louis,MO,USA),and1mM ethylenediaminetetraacetic acid(EDTA,Sigma)at pHϭ7.5to a volume of0.5mL.The sample was reduced with dithiothreitol(DTT,Sigma)and alkylated with iodoace-tic acid(IAA,Sigma).The buffer(0.5mL)of the reduced and alkylated protein was exchanged into1mL of10 mM sodium acetate(J.T.Baker,Phillipsburg,NJ,USA) solution at pHϭ5.0to a final protein concentration of 1mg/mL.Buffer exchange was performed using a NAP-5gel-filtration column packed with Sephadex G-25medium(Amersham Pharmacia Biotech,Orsay, France)following the manufacturer’s recommenda-tions.Alternatively,instead of using buffer exchange, the reduced and alkylated sample was simply diluted 2-fold in20mM sodium acetate(pHϭ5.0)to lower the pH and dilute guanidine-HCl to prevent its crystalliza-tion in the autosampler at4–8°C.Nano-ESI Infusion,Step Elution,and RP HPLC Three different sample delivery systems were imple-mented as follows.First,nano-ESI infusion was per-formed with a solution containing3.5g/L of anti-body in a ratio of50:49:1of acetonitrile:water:formic acid,respectively.Second,step elution from a10ϫ2 mm(lengthϫdiameter)reversed-phase guard column (Vydac C-4)was carried out using95%acetonitrile, 0.02%TFA,and0.08%formic acid at0.2mL/min. Third,reversed-phase(RP)chromatography of intact and reduced antibodies was performed on an Agilent 1100Capillary HPLC system with a Zorbax SB300 300-Åpore size, 3.5-m particle size,50ϫ1-mm column maintained at75°C,and50L/min flow rate. The mobile phase was water with0.1%(vol/vol)TFA (solvent A)and90%(vol/vol)n-propanol(Burdick& Jackson,Muskegon,MI,USA),9.9%(vol/vol)water, and0.1%(vol/vol)TFA(solvent B).The elution gradi-ent was from21to27%B over20min for intact and from21to27%over40min for reduced mAbs.Other details of the RP HPLC were described elsewhere for analysis of intact[31,32]as well as reduced and alkylated[30]mAbs.The column eluate was analyzed by the on-line UV detector at214nm and then directed to mass spectrometric analysis.LTQ OrbitrapFor the analysis of intact mAbs using nano-ESI infusion, a Thermo Scientific Nanospray I source was used equipped with an emitter with an external conductive coating and a4-m-diameter tip(PicoTip,New Objec-tive,Inc.,Woburn,MA,USA).The instrument was operated with a spray voltage of1.4kV,a capillary voltage of35V,a capillary temperature of250°C,a tube lens voltage of220V,an Orbitrap target value of106, and an Orbitrap resolving power of15,000(at m/zϭ400).For on-line analysis after step elution and RP1416BONDARENKO ET AL.J Am Soc Mass Spectrom2009,20,1415–1424HPLC,the LTQ Orbitrap mass spectrometer was equipped with the regular Ion Max ESI/API source (Thermo Scientific).The source was operated using elevated voltages and temperature in the atmosphere–vacuum interface:a capillary voltage of140V,a tube lens of250V,a temperature of350°C,a sheath gas flow of50units,and an auxiliary gas flow of8units.One scan included three microscans with maximum injec-tion time of500ms.Other Orbitrap parameters optimal for IgG mass measurement used a resolving power of 7500(at m/zϭ400),an automatic gain control(AGC) target value of106,and each scan including five mi-croscans with the Fourier transform mass spectrometry (FTMS)maximum injection time of500ms.The method included one FTMS high mass range scan within m/z 1000–3500for mass measurement and one FTMS nor-mal mass range scan within m/z400–2000with source fragmentation energy of75V for top-down fragmenta-tion analysis.The fragmentation spectra were acquired at the instrument-resolving power of60,000(at m/zϭ400),an AGC target value of106and each scan includ-ing five microscans with the FTMS maximum injection time of500ms.Data acquisition for the molecular ions and fragments was performed in profile mode.Al-though abundant fragments were observed during in-source collision-induced dissociation(CID)of intact antibodies,better sequence coverage for light and heavy chains was usually achieved when a true MS/MS (isolation and fragmentation of parent ions in the ion trap)was performed because of reduced interference of an MS/MS experiment.For analysis of heavy and light chains,the atmosphere–vacuum interface throughput of the Ion Max ESI/API source was optimal with the capillary at14V,tube lens at120V and temperature at350°C.In-trap CID was used because it produced better fragmentation and sequence coverage compared with in-source dissocia-tion.The method included one Orbitrap(FTMS)high mass range scan(m/zϭ600–3000)with resolving power of60,000(at m/zϭ400)and an AGC target value of5ϫ105followed by one MS/MS normal mass range scan (m/zϭ350–2000)with the same Orbitrap resolving power and an AGC target value of5ϫ105.Each scan included five microscans with the FTMS maximum injection time of1500ms.The MS/MS scan was per-formed using an isolation width of m/z100around the parent ions with m/zϭ990.The isolated multiply charged ions were activated using the default CID parameters of30-ms activation time,a35%normalized collision energy,and an activation q of0.25.All work was conducted in the positive-ion mode.For nano-ESI infusion and step-elution experiments, the Orbitrap analyzer was calibrated in the high mass range(maximum m/z value of4000)using the calibrant PPG2700and sodium-TFA cluster ions,respectively. For RP HPLC/MS studies,the Orbitrap analyzer was calibrated in the normal mass range(maximum m/z value of2000)using the Ultramark calibrant.This calibration was used for both the high mass range MS scans and normal mass range in-source and in-trap MS/MS fragmentation scans.Data Analysis SoftwareMagTran[33]and ProMass software programs were used for deconvolution of ESI mass spectra.A program developed at Amgen,MassAnalyzer,was used to auto-matically assign the fragment ions[34,35]and to prepare the fragment coverage map[27].It was also used to calculate the theoretical average masses of the antibodies and their fragments,using atomic weights of elements from organic sources listed in reference[3]. Results and DiscussionThree different sample delivery approaches were eval-uated for intact mAb mass measurement including direct infusion of an off-line desalted IgG sample using nano-electrospray(Figure1);on-line desalting followed by a step elution with acetonitrile from a short guard column(Figure2)and reversed-phase HPLC separation of disulfide isoforms of an IgG2antibody(Figure3and Supplemental Figures S1and S2,which can be found in the electronic version of this article)and also reduced antibody(Figures4–6).IgG Mass Measurements Using Direct Infusion For direct infusion,the capillary voltage was set rela-tively low(35V)to avoid significant fragmentation of the molecular ions.Only minor fragment ions appeared below m/zϭ1700(Figure1a).The higher tube lens voltage(220V)helped transmitting the higher m/z value ions.An Orbitrap resolving power of15,000gave the optimal resolution of the glycosylation forms.Hu-man IgG antibodies are glycoproteins containing two identical copies of light chain(LC)and heavy chain (HC)connected by interchain disulfide bonds(Supple-mental Figure S2).The heavy chain has one conserved N-glycosylation site at asparagine residue297(N297) according to the Edelman numbering system.The gly-cosylation profile typically consists of two biantennary glycans with a variable number of terminal galactose residues[typically from zero(G0)to four(G4),Figure 1c].The natural variability in terminal galactose sugar residues resulted in peaks that were162Da apart (Figure1b and c).The oligosaccharides of IgG mole-cules do not contain(or contain only a minor percent-age)of terminal sialic acid residues.A minor percentage of high mannose,defucosylated and other glycoforms of mAbs were previously reported[30,36]and may contribute to the background peaks in Figure1c.IgG Mass Measurements Using Step ElutionStep elution from a short cartridge provided conve-nience of on-line desalting and automatic analysis of multiple samples(Figure2).After directing salts to1417J Am Soc Mass Spectrom2009,20,1415–1424INTACT ANTIBODIES ON THE ORBITRAPwaste within the first4min,the percentage of acetoni-trile through the column was stepped from0to95% and the eluting antibody molecules were ionized and detected by the on-line Orbitrap.Sensitivity and mass spectrometric resolution during the step elution were better than that during the RP HPLC separation,with slow increase of organic solvent described in the fol-lowing text,probably because of the higher percentage of organic solvent(95%acetonitrile)and the lower percentage of TFA(0.02%)during the step elution, which created more favorable electrospray conditions. IgG1and IgG2antibodies typically precipitate in solu-tions containingϾ40%of organic solvent and pHϾ3. Therefore a low pH(pHϽ2.5)is required to maintain the antibodies in solution with a high percentage of organic solvent.Mass Measurement and Top-Down Fragmentation Analysis of IgG2Disulfide Isoforms after RP HPLC SeparationThe utility of the RP HPLC/MS analysis was illustrated by measuring masses of disulfide isoforms of an IgG2 antibody(Figure3).Deconvoluted ESI mass spectra of the reversed-phase peaks1–4of the intact monoclonal IgG2antibody(Figure3c)revealed identical mass val-ues within theϮ2Da measurement error for the IgG2 disulfide isoforms,supporting previous findings[31, 37,38].Using nonreduced peptide mapping of collected fractions,the peaks were previously identified as hav-ing the same amino acid sequence and glycosylation, but different disulfide structure at the hinge[37,38]. The measured masses were within2–4Da from the theoretical mass of147,250Da using atomic weights of elements from organic sources listed in Zhang et al.[3].As expected,formic acid instead of TFA in the mobile phases(used in the nano-ESI and step-elution sample delivery systems)increased the ion abundance and mass spectrometric resolution,but decreased the HPLC resolution of the IgG2disulfide isoforms and the heavy chain N-terminal forms(described in the follow-ing text).The step-elution option is not designed to separate the sample components chromatographically (only to desalt them),and thus it does not require a UV detector to quantify the components.Therefore,for better sensitivity,it can be implemented in micro-and nanoflow formats,for example by using the Advance Plug and Play Nanospray source(Michrom Biore-sources,Inc.,Auburn,CA,USA).The nano-ESI sample delivery option produced the highest intensity(per injectedg)and resolution mass spectrum becauseofFigure1.Intact IgG using nano-ESI infusion;the average of1000scans for5min of static nano-electrospray;0.9g was infused.(a)ESI mass spectrum of an intact monoclonal IgG antibody witha theoretical molecular mass of147,250Da for the G0glycoform.The Orbitrap resolving power was15,000at m/z400.(b)A sectionof ESI mass spectrum exhibiting multiply charged ions of intactantibody with54,55,and56protons.(c)Deconvoluted ESI massspectrum of the IgG.Deconvolution was performed using Pro-Mass software program.1418BONDARENKO ET AL.J Am Soc Mass Spectrom2009,20,1415–1424the most effective droplet evaporation,ion formation,and declustering inherent to the nano-ESI process.In addition to the accurate mass,the top-down fragmentation information was obtained by in-source CID within the same HPLC/MS run (Supplemental Figure S1).Although a detailed assessment of fragmen-tation differences for the disulfide isoforms is still under way and will be presented in a future publication,several general features of the top-down fragmentation analysis should be summarized here.The fragmenta-tion pattern of this IgG2was similar to the fragmenta-tion pattern of another IgG2antibody published previ-ously [27]and several other IgG1and IgG2antibodies analyzed in the course of this study (data not shown).The most prominent fragments were large 12-kDa frag-ment ions containing N-terminal variable regions of the light and heavy chains (Supplemental Figure S1),sim-ilar to the fragments of the other mAb described in Zhang and Shah [27].The cleavage sites for these fragments were located in the loop between the variable and conserved domains of light and heavy chains shown in red in Supplemental Figure S2.Supplemental Figure S2shows the most complete available high-resolution (2.7Å,Protein Data Bank entry 1HZH)crystal structure of an IgG1antibody [39].Because no crystal structure of any IgG2has been obtained to date,we used this available IgG1crystal structure to visu-alize the cleavage sites.IgG2and IgG1are very similar in primary structure and several other bio-chemical properties,strongly suggesting similarity in three-dimensional structure as well.Several IgG1and IgG2antibodies were analyzed in this study to show abundant fragmentation in the same conserved interdo-main linker region shown in Supplemental Figure S1c.It is interesting to note that fragmentation of the heavy chain was more abundant when acetonitrilewasFigure 2.Intact IgG after step elution;2g was injected.(a )A total-ion chromatographic peak profile after a step elution from a 2ϫ10-mm reversed-phase guard column.(b )A section of ESI mass spectrum used for deconvolution.(c )Deconvoluted ESI mass spectrum using MagTran software program.The theoretical molecular mass is 149,610.2Da for the G0glycoform.1419J Am Soc Mass Spectrom 2009,20,1415–1424INTACT ANTIBODIES ON THE ORBITRAPused in the mobile phase (Supplemental Figure S1b)compared with the fragmentation during elution with n -propanol (Supplemental Figure S1a).The same col-umn temperature and similar mobile-phase conditions were used in both cases.An even higher abundance of heavy chain fragments was obtained when an IgG2antibody was step-eluted with 95%acetonitrile (data not shown).The observed difference intop-downFigure 3.Mass measurement of IgG2disulfide isoforms separated by RP HPLC;4g injected.(a )Reversed-phase chromatogram with UV absorbance at 214nm.(b )Total ion chromatogram featuring a series of MS scans (peaks)for mass measurement and in-source CID scans (valleys)for top-down analysis.(c )Deconvoluted ESI mass spectra of reversed-phase peaks 1–4of intact monoclonal IgG2antibody.Deconvolution was performed onMagTran.Figure 4.RP HPLC/MS/MS analysis of heavy and light chains after reduction and alkylation of an IgG2antibody,4g was injected.(a )The UV chromatogram of separated light chain and the two partially separated variants of the heavy chain.(b )The total ion chromatogram containing a series of MS scans (peaks)for mass measurement and in-ion trap CID scans (valleys)for fragmentation analysis.The deconvoluted ESI mass spectra of (c )the light chain with theoretical molecular mass 23,647Da and (d )the two heavy chain variants with theoretical mass values for Q-HC molecular mass of 50,893Da and pE-HC of molecular mass of 50,876Da for the G0glycoform.Deconvolution was performed using MagTran software program.1420BONDARENKO ET AL.J Am Soc Mass Spectrom 2009,20,1415–1424fragmentation pattern suggested that there may be a difference in folding of the molecules eluting from the column in the presence of acetonitrile and n -propanol.The higher abundance of the heavy chain fragments for acetonitrile suggests that eluted mole-cules were more loosely folded and are more suscep-tible to fragmentation in the case of acetonitrile.The ESI charge envelope was slightly shifted to lower m/z and higher charge states for acetonitrile,supporting the hypothesis about the less folded and a more open structure in acetonitrile that carries a larger number of charges (protons).RP HPLC/MS/MS Analysis of Light and Heavy Chains after Reduction of Disulfide BondsThe interchain disulfide bonds between the heavy and light chains and also intrachain disulfide bonds inside the chains hold the structure together and suppress the fragmentation in IgG1(data not shown)and IgG2antibodies analyzed in this study.As a result,the top-down analysis of intact antibody molecules pro-vided poor structural resolution with a relatively small number of cleavages.After reduction and alkylation of the disulfide bonds,HPLC/MS/MS analysisrevealedFigure 5.The fragmentation mass spectra of (a )the heavy chain variant pE-HC and (b )the light chain.The CID of precursor ion mass m/z 990with an isolation width m/z 100(m/z 940–1040as the isolation region)was performed in the ion trap during automated RP HPLC/MS/MS analysis of the reduced and alkylated IgG antibody.Ions labeled as a range indicate internal fragments.Only the most abundant fragment ions are labeled.1421J Am Soc Mass Spectrom 2009,20,1415–1424INTACT ANTIBODIES ON THE ORBITRAPaccurate masses of the light chain and two heavy chain variants and also increased the number of fragmenta-tion sites and sequence coverage (Figures 4–6).Using an Orbitrap resolving power of 60,000at m/z 400,isotopic resolution was achieved for the light chain with an average MW 23,647(Figure 4c).Isotopes of the heavy chain could not be resolved at any resolving power during our studies.The mass spectra provided useful mass information and closely matched the calculated masses of heavy chain sequence with N-terminal glu-tamine (Q-HC,earlier eluting)and pyro-glutamic acid (pE-HC,later eluting in Figure 4).N-terminal cycliza-tion is a common modification in IgGs and requires monitoring together with other modifications.In-trap CID of the light and heavy chains (Figure 5)produced a better sequence coverage compared with that of in-source dissociation (not shown).The reason for the better sequence coverage when applying in-trap CID was likely a result of the reduced noise in the spectrum achieved by isolating an m/z 100range of the precursor ions.The signal to noise was lower for the in-source CID,when all ions from the entire m/z range were fragmented.Monoclonal antibodies against different antigens (targets)have different sequences and slightly different numbers of amino acid residues in the variable regions.Depending on the sequences of the variable regions,the masses of heavy and light chains are typically within 1kDa from the average mass values of ϳ51and ϳ23kDa,respectively.The m/z 100isolation window from m/z 940–1040contained several abundant multiply charged ions of light chain (typically 23ϩ,24ϩ,25ϩ)and heavy chain (typically from 49ϩto 54ϩ).Selection of a large isolation width (m/z 940–1040)was an attractive option because it provided a universal fragmentation parameter for light and heavy chains of different mAbs (against different antigens)with differ-ent masses.This enabled an automated analysis of different IgG molecules without a prior knowledge of their ing the maximal allowed isolation width of m/z 100,it was possible to reliably isolate and perform an automated MS/MS analysis of chains from any monoclonal IgG ing a large isolation width,however,calls for complete chromatographic separation of isoforms.For those experiments where complete chromatographic separation could not be achieved,an isoform of interest was isolated with a width of m/z 10(data not shown),similar to the proce-dure described by Macek et al.[22].This approach of using a narrow isolation window has an advantage,because it minimizes the need for chromatographic separation of protein variants.On the other hand,it requires a prior knowledge of the mass of protein isoform of interest,which is not practical for an auto-mated high-throughput analysis of different antibodies.The fragmentation spectrum of the heavy-chain vari-ant with N-terminal glutamine (Q-HC,not shown here)was similar to the fragmentation mass spectrum of the heavy chain with N-terminal pyro-glutamate (pE-HC,Figure 5a).All b-fragment ions of Q-HC were 17Da heavier,pointing to the difference between the two heavy chain variants is on the N-terminus.These find-ings unambiguously indicated that these two variants were attributed to the N-terminal cyclization.In addi-tion to the b-fragment ions containing N-terminal glu-tamine,the fragmentation mass spectrum of the earlier eluting variant also contained abundant (b-17)Dafrag-Figure 6.Amino acid sequence and fragment coverage maps of (a )the heavy chain and (b )the light chain of the reduced and alkylated IgG2antibody generated by MassAnalyzer using the collision-induced dissociation mass spectra in Figure 5a and b.Only the sequences for the frames and conserved regions are provided.The letters “X”indicate complementarity determining regions unique only to this IgG2.1422BONDARENKO ET AL.J Am Soc Mass Spectrom 2009,20,1415–1424ment ions(not shown here).Two reasons may explain these peaks.They could be attributed to the incomplete separation of Q-HC and pE-HC or to the susceptibility of N-terminal glutamine to ammonia loss during frag-mentation in the gas phase[30].The chromatographic peaks for the heavy and light chains provided useful fragmentation coverage(Figure6),which can be poten-tially used in other applications to identify sites of modifications,even if they are located in the middle of the chains.The majority of the fragments were repre-sented by two or more charged forms(Figure5).All fragment assignments shown here were automatically generated by MassAnalyzer software(using typically an8ppm mass accuracy threshold)and then validated manually by comparing their experimental isotope pat-tern to the calculated(by MassAnalyzer)theoretical isotope pattern.ConclusionsAverage masses of several150-kDa intact monoclonal IgG antibody molecules were accurately determined using an Orbitrap analyzer withinϮ2Da using the following delivery methods:(1)nano-ESI infusion,(2) step-elution,and(3)on-line reversed-phase HPLC.For online HPLC/MS analysis,both accurate mass and top-down fragmentation data were acquired within a short20-min reversed-phase HPLC/MS run,using the Orbitrap analyzer alternating between a high mass range scan(for intact protein mass measurement)and a normal mass range scan with in-source fragmentation (for top-down analysis).The method can be used in pharmaceutical applications to establish identity and assess chemical modifications and mutations of thera-peutic monoclonal IgG antibodies.The utility was illus-trated by characterizing disulfide isoforms of an IgG2 antibody(Figure3and Supplemental Figures S1and S2)and glutamine and pyro-glutamate variants of a heavy chain(Figures4–6).The glycosylation profile, including several glycoforms with different numbers of terminal galactose residues(nϫ162Da),were deter-mined from mass spectra of intact and reduced IgG antibodies.The use of acetonitrile instead of n-propanol in the mobile-phase increased abundance of heavy-chain top-down fragments,but decreased HPLC resolution.An initial evaluation indicated that HPLC/MS/MS of light and heavy chains of a reduced and alkylated IgG increased the number of fragmentation sites and structural resolution of analysis(Figures4–6),com-pared with the top-down analysis of intact IgG.This “middle-down”method was further developed and previously described[40].Isotopic resolution of the light chain with an approximate MW23kDa during on-line RP HPLC/MS analysis was achieved.Although isotopes for the heavy chain(MW51kDa)and intact antibody(MW150kDa)were unresolved at this time, we are looking forward to resolving them on new generations of Orbitrap analyzers.A future direction is aimed at obtaining more complete structural coverage (cleavage at every residue),which should be possible with additional dissociation methods and further devel-opment of Orbitrap technology. AcknowledgmentsThe authors thank Jason Richardson for his contributions to the method development,and Joseph Phillips,David Brems,and Jim Thomas for fruitful discussions,support of this study,and valu-able suggestions during review of the manuscript. Appendix ASupplementary MaterialSupplementary material associated with this article may be found in the online version at10.1016/j.jasms. 2009.03.020.References1.Reichert,J.M.;Rosensweig,C.J.;Faden,L.B.;Dewitz,M.C.Monoclo-nal Antibody Successes in the Clinic.Nat.Biotechnol.2005,23,1073–1078.2.Maggon,K.Monoclonal Antibody“Gold Rush.”Curr.Med.Chem.2007,14,1978–1987.3.Zhang,Z.;Chen,X.;Pan,H.Mass Spectrometry for Structural Charac-terization of Therapeutic Antibodies.Mass Spectrom.Rev.2009,28, 147–176.4.Lewis,D.A.;Guzzetta,A.W.;Hancock,W.S.;Costello,M.Character-ization of Humanized Anti-TAC,an Antibody Directed against the Interleukin2Receptor,Using Electrospray Ionization Mass Spectrom-etry by Direct Infusion,LC/MS,and MS/MS.Anal.Chem.1994,66, 585–595.5.Bongers,J.;Cummings,J.J.;Ebert,M.B.;Federici,M.M.;Gledhill,L.;Gulati,D.;Hilliard,G.M.;Jones,B.H.;Lee,K.R.;Mozdzanowski,J.;Naimoli,M.;Burman,S.Validation of a Peptide Mapping Method for a Therapeutic Monoclonal Antibody:What Could We Possibly Learn about a Method We Have Run100Times?J.Pharm.Biomed.Anal.2000, 21,1099–1128.6.Chelius,D.;Xiao,G.;Nichols,A.C.;Vizel,A.;He,B.;Dillon,T.M.;Rehder,D.S.;Pipes,G.D.;Kraft,E.;Oroska,A.;Treuheit,M.J.;Bondarenko,P.V.Automated Tryptic Digestion Procedure for HPLC/ MS/MS Peptide Mapping of Immunoglobulin Gamma Antibodies in Pharmaceutics.J.Pharm.Biomed.Anal.2008,47,285–294.7.Chelius,D.;Rehder,D.S.;Bondarenko,P.V.Identification and Char-acterization of Deamidation Sites in the Conserved Regions of Human Immunoglobulin Gamma Antibodies.Anal.Chem.2005,77,6004–6011.8.Gadgil,H.S.;Pipes,G.D.;Dillon,T.M.;Treuheit,M.J.;Bondarenko,P.V.Improving Mass Accuracy of High Performance Liquid Chroma-tography/Electrospray Ionization Time-of-Flight Mass Spectrometry of Monoclonal Antibodies.J.Am.Soc.Mass Spectrom.2006,17,867–872.9.Alexander,A.J.;Hughes,D.E.Monitoring of IgG Antibody ThermalStability by Micellar Electrokinetic Capillary Chromatography and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.Anal.Chem.1995,67,3626–3632.10.Downard,K.M.Contributions of Mass Spectrometry to StructuralImmunology.J.Mass Spectrom.2000,35,493–503.11.Beck,A.;Bussat,M.C.;Zorn,N.;Robillard,V.;Klinguer-Hamour,C.;Chenu,S.;Goetsch,L.;Corvaia,N.;van Dorsselaer,A.;Haeuw,J.F.Characterization by Liquid Chromatography Combined with Mass Spectrometry of Monoclonal Anti-IGF-1Receptor Antibodies Produced in CHO and NS0Cells.J.Chromatogr.B2005,819,203–218.12.Roberts,G.D.;Johnson,W.P.;Burman,S.;Anumula,K.R.;Carr,S.A.An Integrated Strategy for Structural Characterization of the Protein and Carbohydrate Components of Monoclonal Antibodies:Application to Anti-Respiratory Syncytial Virus MAb.Anal.Chem.1995,67,3613–3625.13.Bennett,K.L.;Smith,S.V.;Lambrecht,R.M.;Truscott,R.J.;Sheil,M.M.Rapid Characterization of Chemically-Modified Proteins by Electros-pray Mass Spectrometry.Bioconjug.Chem.1996,7,16–22.14.Masuda,K.;Yamaguchi,Y.;Kato,K.;Takahashi,N.;Shimada,I.;Arata,Y.Pairing of Oligosaccharides in the Fc Region of Immunoglobulin G.FEBS Lett.2000,473,349–357.15.Le,J.C.;Bondarenko,P.V.Trap for MAbs:Characterization of IntactMonoclonal Antibodies Using Reversed-Phase HPLC On-line with Ion-Trap Mass Spectrometry.J.Am.Soc.Mass Spectrom.2005,16, 307–311.16.Verentchikov,A.N.;Ens,W.;Standing,K.G.Reflecting Time-of-FlightMass Spectrometer with an Electrospray Ion Source and Orthogonal Extraction.Anal.Chem.1994,66,126–133.1423J Am Soc Mass Spectrom2009,20,1415–1424INTACT ANTIBODIES ON THE ORBITRAP。