2015秋高中数学 2.1.1指数与指数幂的运算(第1课时)学案设计 新人教A版必修1

合集下载

人教版高中数学必修1第2章2.1.1 指数与指数幂的运算(1)教案

人教版高中数学必修1第2章2.1.1  指数与指数幂的运算(1)教案

第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 指数与指数幂的运算(一)教学目标分析:知识目标:(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。

过程与方法:通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。

情感目标:通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。

重难点分析:重点:n次根式的性质和化简难点:n次根式的性质及应用互动探究:一、课堂探究:1、问题情境设疑探究一、根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001 ~ 2020年,各年的GDP可望为2000年的多少倍?如果把我国2000年GDP 看成是1个单位,2001年为第一年,那么: 1年后(即2001年),我国的GDP 可望为2000年的(17.3%)+倍;2年后(即2002年),我国的GDP 可望为2000年的2(17.3%)+倍; 3年后(即2003年),我国的GDP 可望为2000年的___________倍; 4年后(即2004年),我国的GDP 可望为2000年的___________倍; ……设x 年后我国的GDP 为2000年的y 倍,那么*(17.3%) 1.073(,20)x x y x N x =+=∈≤即从2000年起,x 年后我国的GDP 为2000年的1.073x 倍。

想一想,正整数幂1.073x 的含义是什么?它具有哪些运算性质。

探究2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系57301() (2)t P =(*),考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值。

高中数学 2.1.1.1指数与指数幂的运算(1)导学案 新人教A版必修1

高中数学 2.1.1.1指数与指数幂的运算(1)导学案 新人教A版必修1

四川省古蔺县中学高中数学必修一 2.1.1.1指数与指数幂的运算(1)导学案一、教学目标1.理解n 次方根与根式的概念;理解分数指数幂的概念2.正确运用根式运算性质化简、求值;掌握分数指数幂和根式之间的互化;分数指数幂的运算性质。

3.分类讨论思想,观察分析、抽象概括等的能力。

二、重难点1. 根式概念的理解与分数指数幂的理解;2. 运用根式与分数指数幂的运算性质。

三、课时学法指导(学习方法)从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n 次方根的概念,有理指数幂的运算性质。

四、预习案(任务布置+自评、互评+反馈与评价)完成任务情况自评: 学科组长评价: .1.任务布置:(1)阅读教材P47—51完成大聚焦课堂P23—24内容;(2)思考:①什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?你能由具体的例子推导a 的n 次方根吗?②类比平方根、立方根的概念,归纳出n 次方根的概念。

③类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?(3)回顾初中时的整数指数幂及运算性质是:(4)观察教材P50分数指数幂下具体式子,并总结分数指数幂规律:2.存在问题:五、探究案(教学流程与探究问题)探究1:根式的概念问题1:根据下面的具体例子概括n 次方根的概念?如果x 2=a ,那么x 叫做a 的平方根,例如±2是4的平方根;如果x 3=a ,那么x 叫做a 的立方根,例如2是8的立方根;16)2(4=±,±2是16的4次方根;25=32,2叫做32的5次方根;…… a n =2,……?问题2:若x 2=a ,那么x 如何用a 表示呢?有关概念是?(P49)(1)教材P50探究如何回答?(2)结论:n 为奇数时,nn a = ;n 为偶数时,n n a = = (3)训练与反馈:教材P50—例1;探究2:分数指数幂的概念问题3:观察①②③例子,结果的指数与被开方数的指数、根指数有什么关系?1025a a===)0(>a;842a a===)0(>a;1234a a===)0(>a;1025a a===)0(>a23(0)a a==>;12(0)b b==>;54(0)c c==>③34343451515==-;结论:问题4:问题3的结论中,若没有“0>a”这个条件行不行?原因是探究3:课堂检测:1.p51——例2;2. p54——练习1、2六、训练案1. 教材P59——习题2.1A组——1、2题2. 大聚焦课堂P23—24内容3. 小聚焦课堂P12内容七、反思与小结1.2.3.古蔺中学高 2013 级 数学 导学案模块 必修1 课题2.1.1指数与指数幂的运算(第2课时)课型: 检查时间: 月 日 学科组长评价: 教师评价: 一、教学目标 1. 掌握分数指数幂和根式之间的互化; 2. 理解有理指数幂的含义及其运算性质,并能进行化简,求值;理解无理数指数幂的概念; 3. 培养学生严谨的思维和科学正确的计算能力。

高中数学 2.1.1指数与指数幂的运算导学案 新人教A版必修1(1)

高中数学 2.1.1指数与指数幂的运算导学案 新人教A版必修1(1)

河北省唐山市开滦第二中学高中数学 2.1.1指数与指数幂的运算导学案 新人教A 版必修1学习目标:理解根式、分数指数幂、无理数指数幂、实数指数幂的定义 学习重点:会应用运算性质进行根式、指数幂的运算计算学习过程:一、 根式1、观察发现:422=中2叫做4的平方根,记作___; 4)2(2=-中2-叫做4的平方根,记作____ 823=中2叫做8的立方根,记作___;8)2(3-=-中2-叫做8-的立方根,记作___ 16)2(4=±中2±叫做16的4次方根,记作_________32)2(5-=-中2-叫做______________,记作_______64)2(6=±中2±叫做________________,记作________2、归纳总结:若a x n =,则x 叫做a 的_______ (其中*∈>N n n ,1)当n 是正奇数时,若0>a ,则x>0,x=________,若0<a ,则x____,x=_____当n 是正偶数时,若0>a ,则x=___________,若0<a ,则x_____________ 其中式子n a 叫做_______,这里n (*∈>N n n ,1)叫做_________,a 叫做_______ 注:______0=n ()=n n a ___________n 是正奇数时,=n n a __________;n 是正偶数时,=n n a __________3、练习体验: _______)8(33=- ______)10(2=- 44)3(π-=_______________)(66=-y x (x>y )_____)4(2=-π _____)(2=-b a 二、分数指数幂1、 观察与归纳:(1)_______________224===;_______________248===_______________510===a ______________412===a ()0____32>=a a ;()0_____>=b b ;()0_____45>=c c 正数的正分数指数幂)10______(>∈>=*,n N ,m、n a a m n(2)______21=- )0_______(1≠=-x x ______534—= _____32—=a正数的负分数指数幂)10______(—>∈>=*,n N ,m、n a a m n(3)0的正分数指数幂等于0;0的负分数指数幂没有意义。

高中数学 2.1.1指数与指数幂的运算(一)教案 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(一)教案 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(一)教案新人教A版必修1(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂及根式概念的理解三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学设想:第一课时一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a=,则x叫做a的平方根.同理,若3x a=,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.二、新课讲解类比平方根、立方根的概念,归纳出n次方根的概念.n 次方根:一般地,若nx a =,则x 叫做a 的n次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,正数用na 表示,如果是负数,用n a -表示,na 叫做根式.n 为奇数时,a 的n 次方根用符号na 表示,其中n 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?零的n 次方根为零,记为00n=举例:16的次方根为2±,527527--的次方根为等等,而27-的4次方根不存在.小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.根据n 次方根的意义,可得:()nna a=肯定成立,nna表示a n的n 次方根,等式nn a a=一定成立吗?如果不一定成立,那么nna 等于什么?让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论.通过探究得到:n nn a a=n 为偶数,0||,0nn a a a a a a ≥⎧==⎨-<⎩34334(3)27(8)|8|8--=--=-=小结:当n nna 绝对值,再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)33(1)(8)- 2(2)(10)- 44(3)(3)π-2(4)()a b -分析:当n ||nn a a =,然后再去绝对值.()nn nn a a =是否成立,举例说明.课堂练习:1. 求出下列各式的值22211,a a a a -+=-求的取值范围. 3343334(8)(32)(23)---三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n ,x a x a n是的次方根,n 为奇数时,=n为偶数时,nx a =±2.掌握两个公式:(0),||(0)n n n a a n a n a a a a ≥⎧==⎨-<⎩n 为奇数时,()为偶数时,3.作业:P 69习题2.1 A 组 第1题。

人教版高中数学必修1-2.1《指数与指数幂的运算(第1课时)》教学设计

人教版高中数学必修1-2.1《指数与指数幂的运算(第1课时)》教学设计

2.1指数函数2.1.1指数与指数幂的运算(第一课时)(胡文娟)一、教学目标 (一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础. (二)学习目标1.理解根式的概念并掌握运用根式的性质进行化简. 2.理解分数指数幂的概念.3.掌握根式与分数指数幂之间的互化. (三)学习重点1.根式与分数指数幂概念的理解. 2.分数指数幂的运算性质. (四)学习难点根式与分数指数幂的互化. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第49页至第51页,填空:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中1>n ,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数. 当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数. 式子n a 叫做根式.这里n 叫做根指数,a 叫做被开方数.(2)计算下列各式①364-;②44)6(1-;③)0,0(55≥≥+b a b a )( 观察上面的计算结果,你得到的结论是: (用字母表达).详解: ①44)4()4(6433-=-⨯-⨯-=-)(; ②61)6(1)6(1)6(1)6(161)6(144444=-⨯-⨯-⨯-=⎪⎭⎫ ⎝⎛-=-; ③()()()()()b a b a b a b a b a b a b a +=+⋅+⋅+⋅+⋅+=+555)( 结论:n 为奇数,R a a a n n ∈=,;n 为偶数,⎩⎨⎧<-≥=0,0a a a a a n n ,.2.预习自测(1)若x 表示实数,则下列说法正确的是( )A .x 一定是根式B .x -一定不是根式C .56x 一定是根式D .3x -只有当0≥x 才是根式【知识点】根式的定义. 【数学思想】【解题过程】根据根式定义可得C 正确. 【思路点拨】根据根式的定义直接判断.【答案】C .(2)=-552)(( ) A .4 B .2 C .4- D .2-【知识点】根式的化简. 【数学思想】【解题过程】()()()()()2222222555-=-⋅-⋅-⋅-⋅-=-)(. 【思路点拨】根据根式的运算性质直接进行计算.【答案】D .(3)将235写为根式,则正确的是( )A .325B .35 C .523 D .35【知识点】根式与分数指数幂的互化.【数学思想】【解题过程】32355=【思路点拨】运用根式与分数指数幂的互化关系. 【答案】D .(4)将536写为分数指数幂的形式,则正确的是( ) A .356 B .536 C .156D .26【知识点】根式与分数指数幂的互化.【数学思想】 【解题过程】535366=【思路点拨】运用根式与分数指数幂的互化关系. 【答案】B .(二)课堂设计 1.知识回顾 (1)平方根一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root )或二次方根. (2)立方根一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root )或三次方根.(3)正数有两个平方根,他们互为相反数,其中正的平方根称为算术平方根;0的平方根是0;负数没有平方根. 任何一个数都有唯一一个立方根,并且这个立方根的符号与原数相同. 2.问题探究探究一 根式的概念与根式的化简 ●活动① 回顾理解方根与根式的概念在初中,我们学习过二次方根概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root )或二次方根.其中,a 叫做被开方数.当a ≥0时,a 表示a 的算术平方根.我们也学习过三次方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root )或三次方根.提问:如果一个数的4次方等于a ,那么这时候这个数叫做什么呢? 这个数叫做a 的四次方根.追问:如果一个数的n 次方等于a ,那么这时候这个数又叫做什么呢?(抢答)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.【设计意图】通过回顾已学知识,从特殊到一般,让学生自己总结归纳,加深学生对根式的理解. ●活动② 根式的性质*,1)n n ∈N >表示n a 的n 次方根,等式a a n n =一定成立吗?如果不一定成立,那么n n a 等于什么?(分小组讨论)若00a ==n 为奇数时,a a n n =n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n也就是说,当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数;当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数. 追问:a a n n =)(一定成立吗?很明显,当根式有意义的情况下a a n n =)(一定成立.综上,根式的性质有:00)1(=n ,a a n n =))(2(,a a n n =)3((n 为大于1的奇数),⎩⎨⎧<-≥==)0()0()4(a a a a a a n n (n 为大于1的偶数).【设计意图】通过学生自主讨论探究归纳总结,得出根式的化简方法,加深印象. 探究二 分数指数幂的概念★ ●活动① 探究分数指数幂的概念当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值. 例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P分别为21,2)21(,3)21(,……当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(.问题:以上三个数的含义到底是什么呢?考古学家正式利用有理数指数幂的知识,计算出生物死亡6000年,10000年,100000年后体内碳14含量P 的值.例如,当t =6000时,600057301()0.4842p ==≈(精确到0.001),即生物死亡6000年后,其体内碳14的含量约为原来的48.4%.归纳:分数指数幂是一个数的指数为分数.【设计意图】从生活中的实际例子到数学语言,从特殊到一般,体会概念的提炼,抽象过程.探究三 根式与分数指数幂的互化 ●活动① 根式与分数指数幂的互化5102552510)(a a a a ===,4123443412)(a a a a ===问题:(1)从上两个例子你能发现什么结论?结论:当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a 的形式(2))(0,,4532>c c b a 如何表示?3232a a =,21b b =,4545c c =规定)1,,,0(*>∈>=n N n m a a a n m nm你能得出正数的负分数指数幂的根式表示形式吗?1*()0,,,1)m m nnaa a m n N n --==>∈>正数的分数指数幂是根式的另一种表示形式. 思考:负数的分数指数幂呢能不能用根式表示?不能,例如问题(2)中45c ,若c 为负数,则在实数范围内是不存在的. 0的正分数指数幂等于0,0的负分数指数幂没有意义.【设计意图】从给出的例子让学生总结出正数的负分数指数幂,检查反馈学生对正数的分数指数幂概念的理解,加深对正数的分数指数幂的认识. ●活动② 巩固基础,检查反馈例1 化简327-的值是( ). A .3 B .-3 C .±3 D .-9 【知识点】根式的化简求值. 【数学思想】【解题过程】3327333-=-=-)(. 【思路点拨】根据根式的运算法则直接进行计算. 【答案】B .同类训练552)()(b a b a -+-的值是( ). A .0 B .)(2b a - C .0或)(2b a - D .b a - 【知识点】根式的化简求值.【数学思想】分类讨论思想 【解题过程】【思路点拨】根据根式的运算性质直接进行计算.【答案】C .【设计意图】检查反馈学生对根式的定义以及根式的性质的理解,进一步掌握根式的化简.例2 当x -2有意义时,化简964422+--+-x x x x 的结果为( )A .52-x B .12--xC .1-D .x 25-【知识点】根式的化简求值.【数学思想】【解题过程】x -2有意义即是说02≥-x ,则2≤x ,这442+-x x x x -=-=222)(,同理x x x x -=-=+-339622)(,所以原式1-=. 【思路点拨】根据n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n 对根式进行化简求值.【答案】C . 同类训练 若21<a ,则化简()4212-a 的结果是( ) A .12-aB .12--aC .a 21-D .a 21--【知识点】根式的化简.【数学思想】【解题过程】21<a ,则012<-a ,()a a a 2112122142-=-=-)(.【思路点拨】根据n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n 对根式进行化简求值.【答案】C .●活动③ 强化提升、灵活应用例3 下列互化中正确的是( )A .)0(21≠-=-x x x )( B .)0(3162<=y y yC .)0,()(4343≠=-y x xy y x )( D .331x x -=【知识点】根式与分数指数幂的互化.【数学思想】【解题过程】A 选项)0(21≠-=-x x x ,B 选项)0(3162<-=y y y )(,D 选项331x x =.【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】C .同类训练 下列等式能成立的是( )A .7717)(m n mn=B .31242)2(-=-C .43433)(y x y x +=+D .833)43(23=【知识点】根式的化简,根式与分数指数幂的互化.【数学思想】【解题过程】A 选项777)(-m n m n=,B 选项31242)2(=-,C 选项显然不成立. 【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】D .例4 求下列各式的值:(1)5.03132)972()27125()027.0(-+(2)1416)31()16174()23(30----⋅+【知识点】根式的化简运算,根式与分数指数幂的互化.【数学思想】【解题过程】(1)原式09.0)35()35()3.0(233323=-+=(2)原式3903322==-= 【思路点拨】熟练掌握根式与分数指数幂的互化关系. 【答案】(1)09.0;(2).同类训练 求下列各式的值:(1)03115.03)27102(1.0)972(π-++--(2)313125.01041027.010)833(81)87(3)0081.0(⨯-⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡⨯----【知识点】根式的化简运算,根式与分数指数幂的互化.【数学思想】【解题过程】(1)原式53113103+73412=+-=+=; (2)原式983)323(31310)103(10)23(1331)103(133334444-=-+⨯-=⨯-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⨯-=. 【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】(1)11312;(2)98-. 【设计意图】通过计算,加强学生对根式的性质的运用以及对根式与分数指数幂的互化过程的熟练掌握. 3.课堂总结 知识梳理(1)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.(2)正数的分数指数幂(正数的分数指数幂是根式的另一种表示形式):)1,N ,,0(*>∈>=n n m a a a n m nm ,1*()0,,N ,1)m m nna a a m n n --==>∈>重难点归纳(1)在进行根式化简时一定注意当n 为奇数时,a a n n =,n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a nn . (2)根式化简过程中常出现乘方与开放并存,要注意两者的顺序何时可以交换,何时不能交换,并且幂指数不能随便约分.(3)在进行根式与分数指数幂的互化时,)1,N ,,0(*>∈>=n n m a a a n m nm*0,,N ,1)mnaa m n n -=>∈>,其中m ,n 的位置切勿记反.(三)课后作业 基础型 自主突破1.设a n n m ,1,,>N ∈*是正实数,则下列各式中正确的有( ). ①nmnma a =;②10=a ;③nmnm aa1=-A .3个B .2个C .1个D .0个 【知识点】根式与分数指数幂的互化,分数指数幂. 【数学思想】【解题过程】由分数指数幂的概念判断.【思路点拨】弄清根式与分数指数幂之间的互化关系. 【答案】A . 2.已知432=-x则x 等于( )A .8±B .81± C .443 D .322±【知识点】根式的化简运算,根式与分数指数幂的互化. 【数学思想】【解题过程】814143232332±=±=±==---)(x x【思路点拨】掌握根式的化简运算以及根式与分数指数幂之间的互化关系. 【答案】B .3.下列说法中正确的个数是( )①-2是16的四次方根 ②正数的n 次方根有两个 ③a 的n 次方根就是n a④a a n n =(≥a 0) A .0B .1C .2D .3【知识点】n 次方根和n 次根式的概念. 【数学思想】分类讨论思想.【解题过程】①是正确的,由4(2)16-=可验证;②不正确,要对n 分奇偶讨论;③不正确,a 的n 次方根可能有一个值,可能有两个值,而n a 只表示一个确定的值,它叫根式;④正确,根据根式运算的依据,当n 为奇数时,n n a =a 是正确的,当n 为偶数时,若a ≥0,则有n n a =a .综上,当a ≥0时,无论n 为何值均有n n a =a 成立.【思路点拨】根据方根与根式的定义直接进行判断. 【答案】C .4.若式子4321--)(x 有意义,则x 的取值范围是( ) A .R x ∈ B .21≠x C .21>x D .21<x【知识点】根式与分数指数幂的互化. 【数学思想】分类讨论思想. 【解题过程】434321121)()(x x -=--,若4321--)(x 有意义,则021>-x ,即21<x . 【思路点拨】化分数指数幂为根式,由根式内的代数式大于0求得x 的范围. 【答案】D . 5.计算下列各式:(1)44481⨯ (2)63125.132⨯⨯【知识点】根式与分数指数幂的互化,根式的化简求值. 【数学思想】【解题过程】(1)62323481444444=⨯=⨯=⨯;(2)633362363322332232332125.132⨯⨯⨯=⨯⨯⨯=⨯⨯6323332613121=⨯=⨯⨯⨯=.【思路点拨】运用根式的化简法则进行求解. 【答案】(1)6;(2)6.6.化简625625++-=________. 【知识点】根式的化简. 【数学思想】【解题过程】32232362562522=++-=++-)()(.【思路点拨】根号里面的部分用完全平方公式化简,再根据根式的化简得出结果. 【答案】32. 能力型 师生共研7.a a a n n n n 2)(=+时, 实数a 和正整数n 所应满足的条件. 【知识点】根式与分数指数幂的互化及其化简运算. 【数学思想】分类讨论思想【解题过程】由a a a n n n n 2)(=+,若n 为奇数,a a a a a n n n n 2)(=+=+,上式成立;若n 为偶数,则a ≥0,a a a a a n n n n 2)(=+=+,上式成立. 【思路点拨】利用指数的运算法则,对n 为奇数或偶数进行讨论. 【答案】n R a ,∈为正奇数或a ≥0,n 为正偶数. 8.已知*N ∈n ,化简()111112----++++++=L _____.【知识点】根式的化简运算. 【数学思想】转化与化归思想. 【解题过程】原式)21)(21(21-+-=++L1112312-+=-+++-+-=n n n【思路点拨】运用以前所学过的分母有理化将原式化简,将复杂问题简单化. 【答案】11-+n . 探究型 多维突破 9.已知32323232-+=+-=y x ,, 求下列各式的值. (1)xy y x +; (2)22y xy x +-.【知识点】根式的化简求值. 【数学思想】转化与化归思想.【解题过程】(1)194347347347347)32(32)32(322222=-+++-=-+++-=+)()(x y y x ;(2)19332323232323232322222=-++-+⋅+--+-=+-)()(y xy x 【思路点拨】直接将已知的等式带入要求的式子中,在运用根式的性质将式子化简.【答案】(1)194;(2)193.10.若0,0>>y x 且满足y xy x 152=-,求yxy x y xy x +-++322的值.【知识点】根式与分数指数幂的互化及其化简求值. 【数学思想】转化与化归思想.【解题过程】y xy x 152=-即为()()035=+-y x yx ,因为0,0>>y x ,故05=-y x ,所以y x 25=,321632525325225232222==+-++⨯=+-++yyyy y y y y yxy x y xy x .【思路点拨】运用分数指数幂进行根式计算. 【答案】3. 自助餐1.式子a a 1-经过计算可得到( )A .a -B .aC .-aD .-a -【知识点】根式的化简. 【数学思想】【解题过程】由原式知a <0,因此2a =|a |=-a ,故a =a -,于是aa 1-=-)1(2aa -=-a -.【思路点拨】负数的偶次方根等于其相反数. 【答案】D .2.下列说法正确的是( ). A .64的6次方根是2 B .664的运算结果是2±C .1>n 且*N ∈n 时,a a n n =)(对于任意实数a 都成立D .1>n 且*N ∈n 时,式子n n a 对于任意实数a 都有意义 【知识点】方根与根式的概念,根式的化简. 【数学思想】分类讨论思想.【解题过程】A 选项考察的是正数的偶次方根有两个,且互为相反数,B 选项的运算结果应该是2,C 选项当a 为负数则不成立.【思路点拨】根据方根与根式的概念,根式的化简进行判断. 【答案】D .3.当8<x <10时,=-+-22)10()8(x x __________. 【知识点】根式的化简. 【数学思想】【解题过程】2)8(-x 8-=x 8-=x ,2)10(-x x x -=-=1010. 【思路点拨】当n 为偶数时,n n a =a . 【答案】2.4.化简:=-+20122011)23()23(____________. 【知识点】根式的化简求值. 【数学思想】【解题过程】原式20112222⎡⎤=+⋅-⋅=-⎣⎦))).【思路点拨】根据根式的运算性质直接进行计算. 【答案】32-.5.求使下列等式成立的x 的取值范围. (1)1212--=--x x x x (2)2)2()4)(2(2+-=--x x x x 【知识点】根式的化简运算. 【数学思想】 【解题过程】(1)12--x x 成立的条件为⎩⎨⎧>-≥-0102x x 或⎩⎨⎧<-≤-0102x x ,解得2≥x 或1<x ,而12--x x 成立的条件为⎩⎨⎧>-≥-0102x x ,解得2≥x ,所以等式成立条件为2≥x . (2)原等式可变形为2)2()2()2(2+-=+-x x x x ,而使得a a -=2成立的条件是0≤a ,结合偶次根式的定义域即可得到⎩⎨⎧≥+≤-0202x x ,解得22≤≤-x .【思路点拨】明确a a n n =成立的条件. 【答案】(1)2≥x ;(2)22≤≤-x .6.计算下列各式(式中字母都是正数) (1)0143231)12(3256)71(027.0-+-+-----(2)23241)32()827(0081.0+--【知识点】根式与分数指数幂的互化化简求值. 【数学思想】转化与化归思想. 【解题过程】(1)原式[]191316449310131)4()7()103(43421313=+-+-=+-+--⎥⎦⎤⎢⎣⎡=---(2)原式103949410394)23(10394)23()103(2323414=+-=+-=+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=--【思路点拨】正确运用根式与分数指数幂的互化法则. 【答案】(1)19;(2)103.。

2.1.1指数与指数幂的运算学案

2.1.1指数与指数幂的运算学案

2.1.1 指数与指数幂的运算(第一课时)一.学习内容:必修一2.1.1《指数与指数幂的运算》的第一课时——根式。

二.学习要求:能说出n 次方根和根式的概念; 能记住n 次方根的性质和表示方式;记住根式成心义的条件并能用其求根式中字母的取值范围;会运用两个经常使用等式进行根式的化简和求值。

三.学习进程:引言:问题1 依照国务院进展研究中心2000年发表的《以后20年我国进展前景分析》判定,以后20年,我国GDP (国内生产总值)年平均增加率可望达到%,那么,在2001~2020年,各年的GDP 可望为2000年的多少倍?若是把我国2000年GDP 看成好是1个单位,2001年为第1年,那么:1年后(即2001年),我国的GDP 可望为2000年的_______________倍;2年后(即2002年),我国的GDP 可望为2000年的_______________倍;3年后(即2003年),我国的GDP 可望为2000年的_______________倍;……设x 年后我国的GDP 为2000年的y 倍,试写出y 与x 知足的关系式:______________________________________问题2 当生物死亡后,它机体内原有的碳14会按确信的规律衰减,大约通过5730年衰减为原先的一半,那个时刻称为“半衰期”。

依照此规律,人们取得了生物体内碳14含量P 与死亡年数t 之间的关系(*) 问题探讨:①以上两个问题中所涉及到的函数模型你是不是学过?②在问题1中正整数指数幂 的含义是什么,它具有哪些运算性质。

③在问题2中当生物死亡了5730 , , ,…年后,它体内碳14的含量P 别离为多少?若生物体死亡了6000年,10000万,100000年后,它体内碳14的含量为多少?探讨新知(一)问题探讨:① 若是 ,那么 确实是4的________________; 若是 ,那么3确实是27的_____________________; ② 若是 ,那么x 叫做a 的______________________; 若是 ,那么x 叫做a 的______________________;若是 ,那么x 叫做a 的______________________;③ 类比以上结论,一样地,若是 ,那么x 叫做a 的______________。

高中数学 2.1.1 指数与指数幂的运算(1)导学案 新人教A版必修1

高中数学 2.1.1 指数与指数幂的运算(1)导学案 新人教A版必修1

《2.1.1 指数与指数幂的运算(1)》导学案【学习目标】其中2、3是重点和难点1.了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法,理解根式的概念。

2.掌握n 次方根的求解。

3.理解根式的概念,了解指数函数模型的应用背景。

【课前导学】阅读教材第49-50页,完成新知学习。

1、n 次方根:一般地,如果 ,那么 ,其中1n n N *>∈且。

2、当n 为奇数时, 正数的n 次方根是一个 ,负数的n 次方根是一个 ,这时a的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,且互为 ,用符号 表示。

负数没有 方根,0的任何次方根都是 ,即= 。

3叫做 , 这里n 叫做 , a 叫做 。

4n = 。

当n 是奇数时,= ;当n 是偶数时,= = 。

【预习自测】首先完成教材上P59第1题,然后做自测题。

1= 。

2= 。

3)a b ≤= 。

4、下列说法正确的是( )A.4的平方根只有2B.27的立方根有3和-3C.a 的nD.若n x a =,则x 叫做a 的n 次方根 5、下列各式正确的是( )3 a ==2 D .0a =1 【课中导学】首先独立思考探究,然后合作交流展示。

探究一:思考1:4的平方根是什么?任何一个数有平方根吗?一个数的平方根有几个? 思考2:-27的立方根是什么?任何一个数有立方根吗?一个数的立方根有几个? 思考3:一般地,实常数a 的平方根、立方根是什么概念?思考4:如果4,x a =5,x a =6,x a =参照上面的说法,这里的x 分别叫什么名称? 思考5:推广到一般情形,a 的n 次方根是一个什么概念?试给出其定义。

探究二:思考1:-8的立方根,32的5次方根,-32的5次方根分别是什么数?怎样表示?思考2:设a 为实常数,则关于x 的方程3,x a =5x a =分别有解吗?有几个解? 思考3:一般地,当n 为奇数时,实数a 的n 次方根存在吗?有几个?思考4:设a 为实常数,则关于x 的方程4,x a = 6,x a =分别有解吗?有几个解? 思考5:一般地,当n 为偶数时,实数a 的n 次方根存在吗?有几个?思考6:n 叫做根指数,a 叫做被开方数.那么,a 的n 次方根用根式怎么分类表示?探究三:思考1:3,5,4分别等于什么?一般地,n 等于什么?思考2例1、求值化简:变式:a b <)例2变式: (推广:= a ≥0)【自我评价】你完成本节导学案的情况为( )A.很好B.较好C.一般D.较差【基础检测】当堂达标练习,(时量:5分钟 满分:10分)计分:1= 。

高中数学 2_1_1 指数与指数幂的运算教案 新人教版必修1

高中数学 2_1_1 指数与指数幂的运算教案 新人教版必修1

黑龙江省鸡西市高中数学 2.1.1 指数与指数幂的运算教案新人教版必修1课题:§2.1.1指数及指数幂的运算启发式模式与方法教学使学生理根式的概念,掌握n次方根的性质。

目的重点指数的运算难点指数的运算教学内容师生活动及时间分配一,引入课题为了讲解指数函数,需要把指数的概念扩充到实数指数幂,本小节主要学习分数指数幂的概念和运算性质,并给出了无理数指数幂的概念和性质。

2.为了学习分数指数的概念,首先要介绍根式的概念,学生在初中已学习了数的开平方、开立方和二次根式,根式的内容是这些已学内容的推广。

因此要结合这些已学内容引入根式的概念和n次方根的性质。

二、探索新知(一)引出根式的概念。

需要注意的是,当n是奇数时,表示a的n次方根;当n是偶数时,.a≥0,表示正的n次方根或0。

在两种情况下,。

也就是说,先开方,再乘方(同次),结果为被开方数,如果先乘方,再开方(同次),结果是什么呢?可让学生分别求出的结果,然后指出,一般地,当n 为奇数时,,当n为偶数时,。

可向学生说明,当n 是偶数时。

的结果为|a|,是因为≥0时,而则是根据绝对值的意义得出的。

课堂练习: 1、填空:(1)25的平方根是 (2)27的立方根是(3)-32的五次方根为 (4)16的四次方根是2、若244(),a a a -=-则a 的取值范围是 3、求下列各式的值(1)2(5) (2)33(2)- (3)44(2)- (4)2(3)π-.四,小结:教师引导学生总结并补充教师引导学生复习初中所学的公式及相关知识引导讨论x 的范围 加深对于公式的理解及应用欢迎您的下载,资料仅供参考!。

指数与指数幂的运算(第一课时)教案

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

高中数学人教版必修一:2.1.1指数与指数幂的运算教学设计

高中数学人教版必修一:2.1.1指数与指数幂的运算教学设计

数学教学设计检查结果及修改意见:合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中数学 2.1.1指数与指数幂的运算(1)教案 新人教版必

高中数学 2.1.1指数与指数幂的运算(1)教案 新人教版必

2.1.1(1)指数与指数幂的运算(教学设计)内容:根式教学目标1、知识与技能:理解根式的概念及性质,能进行根式的运算,提高根式的运算能力。

2、过程与方法:通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n 次方根;通过对“当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n ”的理解 ,培养学生分类讨论的意识。

3、态度情感价值关:通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,运用根式的性质化简、运算。

教学难点:当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n 的得出及运用教学过程一、创设情境,新课引入: 问题1(课本P48问题1):从2000年起的未来20年,我国国内生产总值年平均增长率可达到7.3%.那么,在2001——2020年,各年的国内生产总值可望为2000年的多少倍?引导学生逐年计算,并得出规律:设x 年后我国的国内生产总值为2000年的y 倍,那么)20*,(073.1≤∈=x N x y x. 问题2(课本P58问题2):当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =.当生物死亡了5730,2⨯5730,3⨯5730,…年后,它体内碳14的含量P 分别为21,2)21(,3)21(,….是正整数指数幂.它们的值分别为21,41,81,…. 当生物死亡6000年,10000年,100000年后,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(,这些式子的意义又是什么呢?这些正是本节课要学习的内容.二、师生互动,新课讲解:1、问题引入:(1)若a x =2,则x 叫a 的 .如:2±是4的平方根一个正数的平方根有 个,它们互为 数;负数没有平方根;零的平方根是 . (2)若a x =3,则x 叫a 的 .如:2是8的立方根,-2是-8的立方根。

高中数学 2.1.1指数与指数幂的运算(一)全册精品教案 新人教A版必修1

高中数学 2.1.1指数与指数幂的运算(一)全册精品教案 新人教A版必修1

2.1.1 指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程教学环节教学内容师生互动设计意图提出问题先让我们一起来看两个问题(见教材P52—53).在问题2中,我们已经知道23111,(),(),222…老师提出问题,学生思考回答.由实际问题引入,激发学是正整数指数幂,它们的值分别为111 ,,, 248….那么,600010000100000573057305730 111(),(),()222的意义是什么呢?这正是我们将要学习的知识.下面,我们一起将指数的取值范围从整数推广到实数.为此,需要先学习根式的知识.生的学习积极性.复习引入什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a=,则x叫做a的平方根.同理,若3x a=,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.师生共同回顾初中所学过的平方根、立方根的定义.学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课作好了知识上的准备.形成概念类比平方根、立方根的概念,归纳出n次方根的概念.n次方根:一般地,若n x a=,则x叫做a的n次方根(throot),其中n >1,且n∈N*,当n为偶数时,正数a的n次方根中,正数用n a表示,如果是负数,用n a-表示.当n为奇数时,a的n次方根用符号n a表示,n a叫做根式.其中n称为根指数,a为被老师点拨指导,由学生观察、归纳、概括出n次方根的概念.由特殊到一般,培养学生的观察、归纳、概括的能力.开方数.深化概念类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?nnn a n aan a n a⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为为正数:为偶数, 的次方根有两个,为nn a n aan a n⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为为负数:为偶数, 的次方根不存在.零的n次方根为零,记为00n=举例:16的次方根为2±,527527--的次方根为等等,而27-的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得:()nn a a=()nn a a=肯定成立,n n a表示a n的n次方根,等式n n a a=一定成立吗?如果不一定成立,那么n n a等于什么?让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.通过探究得到:n为奇数,n n a a=n为偶数,,0||,0n na aa aa a≥⎧==⎨-<⎩让学生对n为奇偶数进行充分讨论.通过探究得到:n为奇数,n n a a=;n为偶数,,0||,0n na aa aa a≥⎧==⎨-<⎩.举出实例,加深理解.通过分n为奇数和偶数两种情况讨论,掌握n次方根概念,培养学生掌握知识的准确性、全面性,同时培养学生的分类讨论的能力备选例题例1 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈) (3)1n >,且n N *∈)【解析】(1)a a =33)(.(2)当n =3π-; 当n =3π-. (3)||x y -,当x y ≥时,x y -; 当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =; 当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n的奇偶性对式子n n a值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.例2 求值:【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;==||2|2=+---=2(2=【小结】开方后带上绝对值,然后根据正负去掉绝对值.。

《指数与指数幂的运算》教案1(1课时)

《指数与指数幂的运算》教案1(1课时)

2.1.1 指数与指数幂的运算(1课时) 教学目标:1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。

教学重点:根式的概念、分数指数幂的概念和运算性质教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式教学过程:第一课时:9月20日星期一 (I )复习回顾 m n a += (m,n ∈Z); _____=1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -⋅,所以m n m n a a a -÷=可以归入性质m n m n a a a +⋅=;又因为n b a)(可看作m n a a -⋅,所以n nn ba b a =)(可以归入性质()n n n ab a b =⋅(n ∈Z)),这是为下面学习分数指数幂的概念和性质做准备。

为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。

(2)填空(3),(4)复习了平方根、立方根这两个概念。

如:的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。

由此,可有:2.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确?解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根;因为632a )a (=,所以a 2是a 6的3次方根。

结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。

此时,a 的n 次方根可表示为n a x =。

从而有:3273=,2325-=-,236a a =解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;因为任何实数的4次方都是非负数,不会等于-81,所以-81没有4次方根。

高中数学 2.1.1指数与指数幂的运算课时学案 新人教A版

高中数学 2.1.1指数与指数幂的运算课时学案 新人教A版

2.1.1指数与指数幂的运算1.理解分数指数幂和根式的概念.2.掌握分数指数幂和根式之间的互化.3.掌握有理数指数幂的运算性质.4.培养学生观察、分析、抽象等能力.1.a的n次方根(1)a的n次方根的概念:一般地,如果,那么x叫做a的n次方根,其中n>1,且.(2)a的n次方根的表示:①当n是奇数时,a的n次方根的表示为 .②当n是偶数时,a的n次方根的表示为 .2.根式的概念:式子叫做根式,其中n叫,a叫 .3.根式的性质:(1)当n为奇数时,= ;(2)当n为偶数时,= =4.分数指数幂的概念(1)正数的正分数指数幂的意义是= .(2)正数的负分数指数幂的意义是= .(3)零的正分数指数幂是,零的负分数指数幂 .5.有理数指数幂的运算性质:(1)·= ;(2)= ;(3)= .1.的值是()A.2B.C.D.2.化简·的结果是()A. B. C. D.3.以下化简结果错误的是(字母均为正数)()··=1B.C.=-ac=24y4.若有意义,则a的取值范围是()A.a≥2B.a≥2且a≠4C.a≠2D.a≠4一、根式的概念提出问题:1.若=a,则x叫做a的平方根.若=a,则x叫做a的立方根.若=a呢?结论:提出问题:2.如果a是实数,那么a的n次方根有几个?它们之间有什么关系?结论:提出问题:3.如果,分别是二次根式和三次根式,那么什么是n次根式?它具有什么性质?结论:例1求下列函数的值:(1);(2);(3);(4)(a>b).二、分数指数幂提出问题:1.当a>0,m,,且n>1时,的意义是什么?结论:反馈练习1 教材第54页练习第1题用根式的形式表示下列各式(a>0):,,,.提出问题:2.整数指数幂的运算性质是什么?能用语言表述吗?结论:例2求值:例3用分数指数幂的形式表示下列各式(其中a>0):·;·;.反馈练习2 教材第54页练习第2题用分数指数幂表示下列各式:(1)(x>0);(2)(a+b>0);(3)(m>n);(4)(m>n);(5);(6).例4计算下列各式(式中字母都是正数):;.例5计算下列各式:(1)()÷;(2)(a>0).反馈练习3 教材第54页练习第3题计算下列各式:(1);(2)2××;; .三、无理数指数幂提出问题:当指数是无理数时,应当如何理解?结论:1.下列说法正确的是()A.64的6次方根是2B.的运算结果是±2C.当n>1且时,(=a对任意实数a都成立D.当n>1且时,式子对任意实数a都有意义2.若a<,则化简的结果是()A. B.C. D.3.计算(a>0)正确的是()A.B.····4.= .。

【秋备课】高中数学 2.1.1 指数与指数幂的运算教案 新人教A版必修1

【秋备课】高中数学 2.1.1 指数与指数幂的运算教案 新人教A版必修1

2.1.1 指数与指数幂的运算一、教材分析本节是高中数学新人教版必修1的第二章2.1指数函数的内容 二、三维目标1.知识与技能(1)理解n 次方根与根式的概念; (2)正确运用根式运算性质化简、求值; (3)了解分类讨论思想在解题中的应用. 2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n 次方根的概念,进而学习根式的性质. 3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (2)培养学生认识、接受新事物的能力 三、教学重点教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质 四、教学难点教学难点:根式概念的理解 五、教学策略发现教学法1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.六、教学准备回顾初中时的整数指数幂及运算性质,0,1(0)n a a a a a a a =⋅⋅⋅⋅⋅=≠七、教学环节 教学教学内容师生互动 设计意图环节提出问题回顾初中时的整数指数幂及运算性质.,1(0)na a a a a a a=⋅⋅⋅⋅⋅=≠0无意义1(0)nna aa-=≠;()m n m n m n mna a a a a+⋅==(),()n m mn n n na a ab a b==什么叫实数?有理数,无理数统称实数.老师提问,学生回答.学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课作好了知识上的准备.复习引入观察以下式子,并总结出规律:a>0①1051025255()a a a a===②884242()a a a a===③1212343444()a a a a===④5105102525()a a a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:2323(0)a a a==>12(0)b b b==>5544(0)c c c==>即:*(0,,1)mn m na a a n N n=>∈>老师引导学生“当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)”联想“根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.”从而推广到正数的分数指数幂的意义.数学中引进一个新的概念或法则时,总希望它与已有的概念或法则是相容的.形成为此,我们规定正数的分数指数幂的学生计算、构造、猜想,允许交流让学概念意义为: *(0,,)m nmna a a m n N =>∈正数的定负分数指数幂的意义与负整数幂的意义相同. 即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义. 说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n m m m ma a a a a =⋅⋅⋅⋅>讨论,汇报结论.教师巡视指导. 生经历从“特殊一一般”,“归纳一猜想”,是培养学生“合情推理”能力的有效方式,同时学生也经历了指数幂的再发现过程,有利于培养学生的创造能力.深化 概念由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)rsr sa a aa r s Q +⋅=>∈(2)()(0,,)r S rsa a a r s Q =>∈(3)()(0,0,)r r r a b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 57——P 58.即:2的不足近似值,从由小于2的方向逼近2,2的过剩近似值从大于2的方向逼近2.让学生讨论、研究,教师引导.通过本环节的教学,进一步体会上一环节的设计意图.所以,当2不足近似值从小于2的方向逼近时,25的近似值从小于25的方向逼近25.当2的过剩似值从大于2的方向逼近2时,25的近似值从大于25的方向逼近25,(如课本图所示)所以,25是一个确定的实数.一般来说,无理数指数幂(0,)p a a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小. 思考:32的含义是什么? 由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈应用 举例例题例1(P 56,例2)求值238;1225-;51()2-;3416()81-.例2(P 56,例3)用分数指数幂的形式表或下列各式(a >0)3.a a ;322a a ⋅;3a a .分析:先把根式化为分数指数幂,再由运算性质来运算.学生思考,口答,教师板演、点评. 例1解: ① 223338(2)=2323224⨯===;② 1122225(5)--=通过这二个例题的解答,巩固所学的分数指数幂与根式的互化,以及分数指解:117333222.a a a a aa +=⋅==;232223a a a a ⋅=⋅28233aa +==;31442133332()a a a a a a a =⋅===.课堂练习:P 59练习 第 1,2,3,4题补充练习:1. 计算:142121(2)()248n n n ++-⋅的结果; 2. 若3103,384,a a ==1310733[()]n aa a -⋅求的值.12()121555⨯--===;③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==. 例2分析:先把根式化为分数指数幂,再由运算性质来运算.解:1332.a a a a =⋅17322aa +==;232223a a a a ⋅=⋅28233aa +==;31433a a a a a =⋅=421332()a a ==.练习答案:1.解:原式=4421262222n n n +---⋅⋅=92=512;2.解:原式=1373[(128)]n -⨯=332n -⨯.数幂的求值,提高运算能力.归纳总结1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.先让学生独自回忆,然后师生共同总结.巩固本节学习成果,使学生逐步养成爱总结、会总结的习惯和能力.课后作业作业:2.1 第二课时习案学生完成巩固新知提升能力八、板书设计第二章基本初等函数(I)2.1 指数函数2.1.1 指数与指数幂的运算九、教学反思通过本堂课的学习,同学们能够完成相关习题。

新人教版高中数学2.1.1 指数与指数幂的运算(1)学案

新人教版高中数学2.1.1 指数与指数幂的运算(1)学案

2.1.1 指数与指数幂的运算(1)学案学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材)复习1:正方形面积公式为;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作;如果一个数的立方等于a,那么这个数叫做a的,记作 .小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:2±=,那么2±就叫4的;(2)43=,那么3就叫27的;3274±=,那么3±就叫做81的 .(3)81依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根,其中1n >,n *∈N . 例如:328=,则2.反思:当n 为奇数时, n 次方根情况如何?例如:3=3=-, 记:x =.当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是00 试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:像n 叫做根指数,a 叫做被开方数.试试:计算2反思:从特殊到一般,n 、结论:n a =. 当n 是奇数时,a =;当n (0)||(0)a a a a a ≥⎧=⎨-<⎩.※ 典型例题例1求下类各式的值:(1) (2)(3) (4)a b <).变式:计算或化简下列各式.(1) (2)推广:(a ≥0).※ 动手试试练1.练2. 化简三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则1n a >;② 若01a <<,则01n a <<. 其中n ∈N *. 学习评价※ 当堂检测(时量:5分钟满分:10分)计分:1. ).A. 3B. -3C. ±3D. 812. 计算34a a-⨯和3(8)a+-,它们之间有什么关系?你能得到什么结论?3. 对比()n n nab a b=与()n nna ab b=,你能把后者归入前者吗?。

新人教版高中数学同步6 高中数学必修一2.1.1-指数与指数幂的运算1导学案

新人教版高中数学同步6   高中数学必修一2.1.1-指数与指数幂的运算1导学案

课题:2.1.1 指数与指数幂的运算学习目标1、记住n 次方根与根式的意义2、会利用根式的性质化简根式3、理解分数指数幂的意义并利用其进行根式与分数指数幂的互化4、记住指数幂的运算性质并会进行幂的运算学习重点1、n 次方根,根式及指数幂的含义的理解及其互化。

2、指数幂的运算性质及应用课前预习学案预习内容1.n次方根的定义:如果x n =a,那么x叫做 .(其中n>1且N n ∈)2.根式:形如 式子叫根式.这里n叫做 , 叫做被开方数。

3.根式的性质:(1)n 0= ;(2)n na )(= ; (3)当n 是奇数时nn a = ; 当n 是偶数时n na = . 4.分数指数幂:正数的正分数指数幂的意义是: .正数的负分数指数幂的意义是: .0的正分数指数幂的意义是: .0的负分数指数幂的意义是: .5.有理指数幂的运算性质:如果a>0,b>0,r,s∈Q,那么r s a a ⋅= ;)(a r s = ;)(ab r= 6.一般的,无理数指数幂是一个确定的 。

的运算同样适用于无理数指数幂。

7.根式的运算,可以先把根式化成分数指数幂,然后利用的运算性质进行运算.课内探究学案探究一 利用根式的性质化简或求值例1:计算下列各式的值:(1)33)8(-(2)2)10(-(3)33)3(π-(4))()(2b a b a -;变式练习 1.求下列各式的值: (1)432; (2)n a -b n +n a +b n (a <b <0,n >1,n ∈N *).探究二 根式与分数指数幂的互化例2求值: 328;43521)8116(;)21(;25---变式训练2.用分数指数幂表示下列各式: (1)3a ·6-a (a <0); (2)3ab2ab 3(a ,b >0); (3)(4b 23)23 (b <0); (4)13x5x 22(x ≠0).例3:用分数指数幂的形式表示下列各式(其中0 a ).;;33223a a a a a a⋅⋅变式训练3.计算下列各式:(1)(279)0.5+(0.1)-2+(21027)23-+3π0+3748; (2)52×5535×125; (3)0.025614--⎣⎢⎡⎦⎥⎤78-2.60+(34)34·(22)53-160.75.课堂小结:根式的意义,根式和分数指数幂的互化当堂检测1.以下说法正确的是( )A.正数的n次方根是正数 B.负数的n次方根是负数C.0的n次方根是0)(N n ∈ D.a的n次方根是n a2.若________,022=++<x x x x x 则 3.若n a =-n a ,则a= .4.下列各式中正确的是( )A.1)1(0-=- B.1)1(1-=-- C.a a 22313=- D.x x x 235)()(-=--5.当1<x<3时,化简)1()3(22x x --+的结果是( )A.4-2X B.2 C.2X-4 D.4[附加题]1.已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b >;(3)ba 11<;(4)1133ab >;(5)1133a b ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个2.化简 (1))1()1(22a a --+ +33)1(a -(2)a aa a -+-+-1311242课后反思:你的收获你的疑惑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章基本初等函数(Ⅰ)
2.1 指数函数
2.1.1 指数与指数幂的运算(第一课时)
学习目标
①理解n次方根与根式的概念;
②正确运用根式运算性质化简、求值;
③了解分类讨论思想在解题中的应用.
合作学习
一、设计问题,创设情境
问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题: 当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P分别为原来的多少?
当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P分别为原来的多少?
由以上的实例来推断生物体内碳14含量P与死亡年数t之间的关系式应该是什么?
考古学家根据上式可以知道,生物死亡t年后,体内碳14含量P的值.那么这些数(,(,(的意义究竟是什么呢?这正是我们将要学习的知识.
二、学生探索,尝试解决
问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?
问题2:如果x4=a,x5=a,又有什么样的结论呢?
问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?
问题4:上述结论中的n的取值有没有什么限制呢?
方根的定义:
一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.
三、信息交流,揭示规律
试根据n次方根的定义分别求出下列各数的n次方根.
(多媒体显示,学生完成)
(1)25的平方根是;
(2)27的立方根是;
(3)-32的5次方根是;
(4)16的4次方根是;
(5)a6的立方根是;
(6)0的7次方根是.
问题5:观察并分析以上各数的方根,你能发现什么?
问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?
问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?
问题8:同学们能否把所得到的结论再总结得具体一些呢?
n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:
(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n 次方根用符号表示.
(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n 次方根用符号表示,负的n次方根用符号表示.正的n次方根与负的n次方根可以合并写成(a>0).
注:①负数没有偶次方根;
②0的任何次方根都是0,记作=0;
③当a≥0时,≥0,所以类似=±2的写法是错误的.
另外,我们规定:
式子叫做根式,其中n叫做根指数,a叫做被开方数.
问题9:利用上面所学n次方根的知识,能否求出下列各式的值?
(1)()2;(2);(3);(4)(a>0).
问题10:上面的计算涉及了哪几类问题?
组织学生结合例题及其解答,进行分析讨论,归纳出以下结论:
(1)()n=a.例如,()3=27,()5=-32.
(2)当n是奇数时,=a;当n是偶数时,=|a|=例如,=-2,=2;=3,=|-3|=3.
四、运用规律,解决问题
【例1】求下列各式的值:
(1)()3;(2);
(3);(4)(a>b).
【例2】化简下列各式:
(1);(2);(3);(4);(5).
五、变式演练,深化提高
1.若x∈R,y∈R,下列各式中正确的是( )
A.=x+y
B.=x-y
C.=2x
D.=0
2.成立的条件是( )
A.≥0
B.x≠1
C.x<1
D.x≥2
3.在①;②;③;④(各式中n∈N,a∈R)中,有意义的是( )
A.①②
B.①③
C.①②③④
D.①③④
4.当8<x<10时,=.
六、反思小结,观点提炼
1.若x n=a(n>1,n∈N*),则x叫做a的n次方根.当n是奇数时,实数a的n次方根用符号表示;当n是偶数时,正数a的n次方根用符号表示,负数的偶次方根无意义.式子叫做,其中n叫做,a叫做被.
2.在实数范围内,正数的奇次方根是一个;负数的奇次方根是一个.正数的偶次方根是两个绝对值相等且符号相反的数;负数的偶次方根没有意义;0的任何次方根都是0.
3.(1)()n=.
(2)当n为奇数时,=;当n为偶数时,=|a|=
七、作业精选,巩固提高
1.复习课本P48~50内容,熟悉巩固有关概念和性质;
2.课本P59习题2.1A组第1题.
参考答案
一、设计问题,创设情境
,()2,()3,….
(,(,(.
P=(.
二、学生探索,尝试解决
问题1:若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.
问题2:如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.
问题3:一般地,如果x n=a,那么x叫做a的n次方根.
三、信息交流,揭示规律
(1)±5;(2)3;(3)-2;(4)±2;(5)a2;(6)0.
问题5:1.以上各数的对应方根都是整数;
2.第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;
3.第(1)(4)题的答案中的两个根互为相反数.
问题6:一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.
问题7:因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.
问题8:(1);(2),-,±.
问题9:(1)5;(2)-2;(3)2;(4)a-3.
问题10:主要涉及了()n与的问题.
四、运用规律,解决问题
【例1】解:(1)()3=-8;
(2)=|-10|=10;
(3)=|3-π|=π-3;
(4)=|a-b|=a-b.
【例2】解:(1);
(2);
(3)=-=-;
(4)=x2;
(5).
五、变式演练,深化提高
1.D
2.D
3.B
4.2x-18
六、反思小结,观点提炼
1.±根式根指数被开方数
2.正数负数
3.(1)a(2)a a-a。

相关文档
最新文档