高考数学一轮复习 6.4 数列求和精品教学案(教师版) 新人教版

合集下载

高三数学一轮复习精品教案4:6.4 数列求和教学设计

高三数学一轮复习精品教案4:6.4 数列求和教学设计

6.4 数列求和『考纲要求』1.考查非等差、等比数列求和的几种常见方法.2.通过数列求和考查学生的观察能力、分析问题与解决问题的能力以及计算能力. 『复习指导』1.熟练掌握和应用等差、等比数列的前n 项和公式.2.熟练掌握常考的错位相减法,裂项相消以及分组求和这些基本方法,注意计算的准确性和方法选择的灵活性. 『基础梳理』 数列求和的常用方法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的. 3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的. 4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减. 6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.『助学微博』 一种思路一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. 两个提醒在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项. 三个公式(1)1n n +1=1n -1n +1;(2)12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1; (3)1n +n +1=n +1-n .『考向探究』考向一 公式法求和『例1』►已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,S n 是其前n 项和,且4a 1,a 5,-2a 3成等差数列. (1)求公比q 的值;(2)求T n =a 2+a 4+a 6+…+a 2n 的值.『训练1』 在等比数列{a n }中,a 3=9,a 6=243,求数列{a n }的通项公式a n 及前n 项和公式S n ,并求a 9和S 8的值.考向二 分组转化求和『例2』►(2012·包头模拟)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.『训练2』 求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1.考向三 裂项相消法求和『例3』►在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .『训练3』 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n项和S n .考向四 错位相减法求和『例4』►已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.『训练4』 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .『专题突破』未对q =1或q ≠1讨论出错『问题诊断』 错位相减法适合于一个由等差数列{a n }及一个等比数列{b n }对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.『防范措施』 两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的n -1项是一个等比数列.『示例』►(2010·四川)已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 错因 未对q =1或q ≠1分别讨论,相减后项数、符号均出现了错误. 实录 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4, 即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4, 解得a 1=3,d =-1,∴a n =4-n . (2)由(1)知b n =n ·q n -1,∴S n =1+2·q 1+3·q 2+…+n ·q n -1, qS n =1·q +2·q 2+3·q 3+…+n ·q n ,两式相减得:(1-q )S n =1+q +q 2+…+q n -1+n ·q n =1-q n 1-q +n ·q n .∴S n =1-q n 1-q 2+n ·q n 1-q . 正解 (1)设{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧ a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4,即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1,故a n =3-(n -1)=4-n . (2)由(1)知,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1, 若q ≠1,上式两边同乘以q .qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n , 两式相减得:(1-q )S n =1+q 1+q 2+…+q n -1-n ·q n =1-q n 1-q-n ·q n . ∴S n =1-q n 1-q 2-n ·q n 1-q =n ·q n +1-n +1q n +11-q 2.若q =1,则S n =1+2+3+…+n =n n +12,∴S n=⎩⎪⎨⎪⎧n n +12 q =1,nq n +1-n +1q n +11-q2q ≠1.『试一试』已知数列{a n }是首项为a 1=14,公比q =14的等比数列,设b n +2=3log 14a n (n ∈N *),数列{c n }满足c n =a n ·b n . (1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .答案『例1』『审题视点』 求出公比,用等比数列求和公式直接求解. 解 (1)由题意得2a 5=4a 1-2a 3. ∵{a n }是等比数列且a 1=4,公比q ≠1, ∴2a 1q 4=4a 1-2a 1q 2,∴q 4+q 2-2=0, 解得q 2=-2(舍去)或q 2=1,∴q =-1.(2)∵a 2,a 4,a 6,…,a 2n 是首项为a 2=4×(-1)=-4,公比为q 2=1的等比数列,∴T n =na 2=-4n .应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式. 『训练1』解 在等比数列{a n }中,设首项为a 1,公比为q ,由a 3=9,a 6=243,得q 3=a 6a 3=2439=27,∴q =3.由a 1q 2=a 3,得9a 1=9,∴a 1=1.于是,数列{a n }的通项公式为a n =1×3n -1=3n -1, 前n 项和公式为S n =1×1-3n 1-3=3n -12.由此得a 9=39-1=6 561,S 8=38-12=3 280. 『例2』『审题视点』 第(1)问由已知条件列出关于p 、q 的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解.解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1.(2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12. 对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和. 『训练2』解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k .∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2⎣⎡⎦⎤1+1+…+1n 个-⎝⎛⎭⎫12+122+…+12n =2⎣⎢⎡⎦⎥⎤n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 『例3』『审题视点』 第(1)问利用a n =S n -S n -1(n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1(n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n2n +1.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的. 『训练3』解 a n =1n +1+2n +1+…+n n +1=1+2+…+n n +1=n n +12n +1=n2. ∴b n =2a n ·a n +1=2n 2·n +12=8nn +1=8⎝⎛⎭⎫1n -1n +1.∴S n =8⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =8⎝⎛⎭⎫1-1n +1=8nn +1. 『例4』『审题视点』 第(1)问列出关于首项a 1与公差d 的方程组可求解;第(2)问观察数列⎩⎨⎧⎭⎬⎫a n 2n -1的通项采用错位相减法.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,∵a n 2n -1=2-n 2n -1=12n -2-n 2n -1, ∴S n =⎝⎛⎭⎫2+1+12+122+…+12n -2-⎝⎛⎭⎫1+22+322+…+n 2n -1.记T n =1+22+322+…+n2n -1,① 则12T n =12+222+323+…+n2n ,②①-②得:12T n =1+12+122+…+12n -1-n 2n ,∴12T n =1-12n1-12-n 2n. 即T n =4⎝⎛⎭⎫1-12n -n 2n -1. ∴S n =2⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-4⎝⎛⎭⎫1-12n +n2n -1=4⎝⎛⎭⎫1-12n -4⎝⎛⎭⎫1-12n +n 2n -1=n 2n-1.用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式. 『训练4』解 (1)a 1+3a 2+32a 3+…+3n -1a n =n 3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13, ②①-②得:3n -1a n =n 3-n -13=13,∴a n =13n .当n =1时,a 1=13也适合上式,∴a n =13n .(2)b n =na n=n ·3n ,∴S n =1×3+2×32+3×33+…+n ·3n , ③ 则3S n =32+2×33+3×34+…+n ·3n +1, ④∴③-④得:-2S n =3+32+33+…+3n -n ·3n +1 =31-3n 1-3-n ·3n +1=-32(1-3n )-n ·3n +1.∴S n =34(1-3n)+n ·3n +12=34+2n -1·3n +14. 『试一试』『解答』 (1)由题意,知a n =⎝⎛⎭⎫14n(n ∈N *), 又b n =3log 14a n -2,故b n =3n -2(n ∈N *).(2)由(1),知a n =⎝⎛⎭⎫14n,b n =3n -2(n ∈N *),∴c n =(3n -2)×⎝⎛⎭⎫14n(n ∈N *).∴S n =1×14+4×⎝⎛⎭⎫142+7×⎝⎛⎭⎫143+…+(3n -5)×⎝⎛⎭⎫14n -1+(3n -2)×⎝⎛⎭⎫14n , 于是14S n =1×⎝⎛⎭⎫142+4×⎝⎛⎭⎫143+7×⎝⎛⎭⎫144+…+(3n -5)×⎝⎛⎭⎫14n +(3n -2)×⎝⎛⎭⎫14n +1, 两式相减,得34S n =14+3⎣⎡⎦⎤⎝⎛⎭⎫142+⎝⎛⎭⎫143+…+⎝⎛⎭⎫14n -(3n -2)×⎝⎛⎭⎫14n +1=12-(3n +2)×⎝⎛⎭⎫14n +1, ∴S n =23-3n +23×⎝⎛⎭⎫14n (n ∈N *).。

数列求和(高三一轮复习)---教学设计

数列求和(高三一轮复习)---教学设计
通过作业题的分层变式训练,达到引起学生积极思维的目的,提高分析问题、解决问题能力来满足不同层次学生需要,符合因材施教原则。从而达到培养学生养成“题后思考”的习惯和提高数学能力的效果。
教学评价
自主性:注重发展学生的个性,分层式练习和选择性作业,充分体现学生的主体地位。
实践性:通过学生评析中的变式训练,给学生提供了一个很好的做数学的学习环境和学习机会。
教学基本信息
课题
数列求和
学科
数学
学段
高中
年级
三年级
教材
书名:高三一轮复习用书
课型
复习
课时
1
开课日期
教学设计参与人员
姓名
单位
联系方式
执教者
课件制作
教学背景分析
教学内容:
研究近几年的高考试卷,发现数列与不等式,三角函数,向量等知识的综合应用往往出现在高考中的最后两题,成为学生的丢分题,从而加强数列综合应用的教学显得尤为重要。
(三)巩固检测题:
(1)
(2)
(3)
复习等差与等比数列的求和公式:
(1)中易忘讨论公比是否为1。
(2)与(3)是为用公式法求和作铺垫。
2




如何对非特殊的数列求和
3
例题讲解
〖例题引入〗
对下列数列求和
(1)设Sn=1-3+5-7+9+……+?
(2)设Sn=1-3+5-7+9+……+?101=?(3) 设Sn=-3+5-7+9+……+?
④为变式(1) 作铺垫
变式(1)让学生做的目的是①需讨论n的奇偶性②书写格式易出问题③让学生上黑板做④如何表示n的奇偶性见投影
利用变式训练,让学生感受高考题,激发学生的学习热情

高考数学一轮复习 6.4 数列求和精品课件 理 新人教A版

高考数学一轮复习 6.4 数列求和精品课件 理 新人教A版

n an
知,
1 为等比数列,其系 an
数构成数列{n}成等差数列,故可用错位相减法.
【解析】当a=1时,Sn=1+2+3+…+n= n(n +1);
2
当a≠1时,
12 3
n
Sn = a + a2 + a3 +…+ an .

两边同乘 1 a
,得
1 a
Sn
=
2 a2
+
3 a3
+
3 a4
…+
n an
-
9
9
1
1
(2)分析通项公式an=(xn+ xn )2=(xn)2+( xn )2+2,
1 可转化为两个等比数列{x2n}, { x2n }与常数列{2}的求
和问题.
【解析】(1)∵an=
1(10n-1),
9
∴Sn=1+11+111+…+11…1
︸n个
= 1 [(10-1)+(102-1)+…+(10n-1)]
9
= 1[(10+102+…+10n)-n]
9
= 1 〔 10(10n - 1) - n〕
=
9
10n+1
-
9n
9 - 10
.
81
1 (2)∵an=x2n+2+ x2n ,∴当x≠±1时,
Sn=(x+
1 )2+(x2+ x
1 x2
)2+…+(xn+
1 xn

高考数学一轮复习 第六章 数列 第4节 数列求和教学案(含解析)

高考数学一轮复习 第六章 数列 第4节 数列求和教学案(含解析)

第4节 数列求和考试要求 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知 识 梳 理1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. (4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[常用结论与微点提醒] 1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的三种变形 (1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 答案 (1)√ (2)√ (3)× (4)√2.(老教材必修5P47B4改编)已知数列a n =1(2n -1)(2n +1),则数列{a n }的前2 021项和为________.解析 ∵a n =12⎝⎛⎭⎪⎫12n -1-12n +1,∴数列{a n }的前2 021项和为a 1+a 2+…+a 2 021=12(1-13+13-15+…+14 041-14 043)=12⎝ ⎛⎭⎪⎫1-14 043=2 0214 043. 答案 2 0214 0433.(老教材必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.解析 由a 1=27,a 9=1243知,1243=27·q 8,又由q >0,解得q =13,所以S 6=27⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫1361-13=3649.答案 36494.(2019·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 答案 C5.(2019·珠海期末质检)已知数列{a n }的通项公式为a n =2n+n ,若数列{a n }的前n 项和为S n ,则S 8=________.解析 由a n =2n +n ,可得S 8=(2+22+23+…+28)+(1+2+…+8)=2(1-28)1-2+8×(1+8)2=546.答案 5466.(2020·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 答案 a n =2(n +1) 考点一 分组求和【例1】 (2019·汕头二模)记S n 为数列{a n }的前n 项和,若a 1=19,S n =na n +1+n (n +1).(1)求数列{a n }的通项公式;(2)设b n =|a n |,设数列{b n }的前n 项和为T n ,求T 20的值. 解 (1)因为S n =na n +1+n (n +1),① 所以S n -1=(n -1)a n +n (n -1)(n ≥2),② ①-②得a n =na n +1-(n -1)a n +2n (n ≥2), 即a n +1-a n =-2(n ≥2), 又S 1=a 2+2,即a 2-a 1=-2,所以数列{a n }是以19为首项,-2为公差的等差数列, 所以a n =19+(n -1)·(-2)=21-2n .(2)由(1)知a n =21-2n ,所以b n =|a n |=|21-2n |, 因为当n ≤10时,a n >0,当n >10时,a n <0,所以b n =⎩⎪⎨⎪⎧21-2n ,n ≤10,2n -21,n >10,所以T 20=b 1+b 2+…+b 20=(19+17+...+1)+(1+3+...+19) =2(19+17+ (1)=2×(19+1)×102=200.规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. 2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和. 【训练1】 (2020·郴州质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.解 (1)设等比数列{a n }的公比为q , ∵a 1,a 2,a 3-1成等差数列,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴{a n }的通项公式为a n =a 1qn -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1)=1+(2n -1)2·n +1-2n1-2=n 2+2n -1.∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n. 考点二 裂项求和 【例2】 (2020·黄山质检)已知数列⎩⎨⎧⎭⎬⎫n a n -1的前n 项和S n =n ,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =2n +1(a n -1)2(a n +1-1)2,数列{b n }的前n 项和为T n ,求证:对任意的n ∈N *,都有T n <1. (1)解 因为S n =n ,①所以当n ≥2时,S n -1=n -1,② 由①-②得na n -1=1,故a n =n +1(n ≥2),又因为a 1=2适合上式,所以a n =n +1(n ∈N *).(2)证明 由(1)知,b n =2n +1(a n -1)2(a n +1-1)2=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以T n =⎝ ⎛⎭⎪⎫112-122+⎝ ⎛⎭⎪⎫122-132+…+⎣⎢⎡⎦⎥⎤1n2-1(n +1)2=1-1(n +1)2.所以T n <1.规律方法 1.用裂项相消法求和时,要对通项进行变换,如:1n +n +k=1k (n +k -n ),1n (n +k )=1k (1n -1n +k ),裂项后可以产生连续相互抵消的项.2.抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项(对称剩项).【训练2】 (2019·山东师大附中模拟)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.解 (1)设等比数列{a n }的公比为q . 由a 23=9a 2a 6,得a 23=9a 24,所以q 2=19.由已知条件得q >0,所以q =13.由2a 1+3a 2=1,得2a 1+3a 1q =1,解得a 1=13.故数列{a n }的通项公式为a n =13n .(2)由(1)可得b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2,故1b n =-2n (n +1)=-2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1b 1+1b 2+…+1b n =-2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=-2nn +1. 故数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.考点三 错位相减法求和【例3】 (2019·河南六校联考)已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意的r ,t ∈N *,都有S r S t =⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否为等差数列,并证明你的结论;(2)若数列{b n }满足a n b n=2n -1(n ∈N *),设T n 是数列{b n }的前n 项和,求证:T n <6.(1)解 {a n }是等差数列.证明如下:∵对任意的r ,t ∈N *,都有S r S t =⎝ ⎛⎭⎪⎫r t 2,∴对任意的n ∈N *,有S n S 1=n 2,即S n =n 2.从而当n ≥2时,a n =S n -S n -1=2n -1.当n =1时,a 1=1也满足此式.∵a n +1-a n =2(n ∈N *), ∴{a n }是以1为首项,2为公差的等差数列.(2)证明 由a n b n =2n -1,得b n =2n -12n -1.∴T n =120+321+…+2n -12n -1,①∴T n2=121+322+…+2n -32n -1+2n -12n ,②①-②得,T n2=1+221+…+22n -1-2n -12n =1+2⎣⎢⎢⎡⎦⎥⎥⎤12⎝ ⎛⎭⎪⎫1-12n -11-12-2n -12n =3-2n +32n , ∴T n =6-2n +32n -1,又n ∈N *,∴T n =6-2n +32n -1<6.规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法. 2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形. (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 (2020·湘赣十四校联考)已知函数f (x )=2019sin ⎝⎛⎭⎪⎫πx -π3(x ∈R )的所有正数零点构成递增数列{a n },n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2n⎝⎛⎭⎪⎫a n +23,求数列{b n }的前n 项和为S n .解(1)令f (x )=2 019sin ⎝ ⎛⎭⎪⎫πx -π3=0,则πx -π3=k π(k ∈Z ),解得x =13+k (k ∈Z ).∵f (x )的所有正零点构成递增数列{a n }, ∴数列{a n }是首项为13,公差为1的等差数列,∴{a n }的通项公式为a n =13+1×(n -1)=n -23(n ∈N *).(2)由(1)可知a n =n -23(n ∈N *),又∵b n =2n⎝ ⎛⎭⎪⎫a n +23,∴b n =2n ⎝⎛⎭⎪⎫n -23+23=n ·2n .∴S n =1×21+2×22+3×23+…+(n -1)×2n -1+n ×2n.①两边同乘2,得2S n =1×22+2×23+3×24+…+(n -1)×2n+n ×2n+1.②②-①,得S n =-21-22-23-…-2n +n ×2n +1=-2(1-2n)1-2+n ×2n +1=(n -1)×2n +1+2.所以数列{b n }的前n 项和S n =(n -1)·2n +1+2.A 级 基础巩固一、选择题1.等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24B.-3C.3D.8解析 设{a n }的公差为d ,根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 答案 A2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B3.(2019·成都期末)在数列{a n }中,若a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N *),则该数列的前100项之和是( )A.18B.8C.5D.2解析 ∵a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N *),∴a 3=3-1=2,a 4=2-3=-1,a 5=-1-2=-3,a 6=-3+1=-2,a 7=-2+3=1,a 8=1+2=3, a 9=3-1=2,……,∴{a n }是周期为6的周期数列, ∵100=16×6+4,∴S 100=16×(1+3+2-1-3-2)+(1+3+2-1)=5. 答案 C4.(2020·河北“五个一”名校联盟诊断)已知等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009B.1 010C.2 019D.2 020解析 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,……,∴数列{a n cos n π}的前2 020项的和为(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×2 0202=2 020.答案 D5.(2019·广州天河一模)数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998B.2C.9950D.99100解析 对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1a 1+1a 2+…+1a 99=2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫199-1100]=2×⎝⎛⎭⎪⎫1-1100=9950.答案 C 二、填空题6.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于________.解析 因为a n =1n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1, 令n +1-1=9,得n =99. 答案 997.(2020·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3na n }的前15项和为________. 解析 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝ ⎛⎭⎪⎫13n -1=13n ,所以a n =13n (n 2+n ),则3na n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516. 答案 15168.(2020·福州调研)已知数列{na n }的前n 项和为S n ,且a n =2n,且使得S n -na n +1+50<0的最小正整数n 的值为________. 解析 S n =1×21+2×22+…+n ×2n, 则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案 5 三、解答题9.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和.解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.(2019·安徽江南十校联考)已知数列{a n }与{b n }满足a 1+a 2+a 3+…+a n =2b n ,且{a n }为正项等比数列,a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式;(2)若数列{c n }满足c n =a nb n b n +1,T n 为数列{c n }的前n 项和,求证:T n <1.(1)解 ∵a 1+a 2+a 3+…+a n =2b n ,①∴当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1.②①-②,得a n =2(b n -b n -1)(n ≥2),∴a 3=2(b 3-b 2)=8. 设{a n }的公比为q ,则a 1q 2=8. 又a 1=2,a n >0,∴q =2, ∴{a n }的通项公式为a n =2×2n -1=2n.∴2b n =21+22+23+ (2)=2(1-2n)1-2=2n +1-2,∴{b n }的通项公式为b n =2n-1.(2)证明 由已知,得c n =a n b n b n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1, ∴T n =c 1+c 2+c 3+…+c n =⎝ ⎛⎭⎪⎫121-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1<1. B 级 能力提升11.(2020·石家庄模拟)已知数列{a n }的前n 项和为S n ,且S n +1+S n =n 2-19n2(n ∈N *),若a 10<a 11,则S n 取最小值时n 的值为( )A.10B.9C.11D.12解析 ∵S n +1+S n =n 2-19n2(n ∈N *),∴S n +S n -1=(n -1)2-19(n -1)2(n ≥2且n ∈N *),两式作差得a n +1+a n =n -10(n ≥2且n ∈N *),当n =10时,a 11+a 10=0,又a 10<a 11, ∴a 10<0<a 11,∴S 11>S 10且S 9>S 10, 又S 12-S 10=a 12+a 11=11-10=1>0,∴由选项可得:S n 取最小值时n 的值为10,故选A. 答案 A12.(2019·许昌、洛阳三模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2an(2 an -1)(2a n+1-1),若k >T n恒成立,则k 的最小值为( ) A.17B.149C.49D.8441解析 当n =1时,6a 1=a 21+3a 1,解得a 1=3.当n ≥2时,由6S n =a 2n +3a n ,得6S n -1=a 2n -1+3a n -1, 两式相减并化简得(a n +a n -1)(a n -a n -1-3)=0,由于a n >0,所以a n -a n -1-3=0,即a n -a n -1=3(n ≥2), 故{a n }是首项为3,公差为3的等差数列, 所以a n =3n .则b n =2an(2 a n -1)(2 an+1-1)=17⎝ ⎛⎭⎪⎫18n -1-18n +1-1. 故T n =b 1+b 2+…+b n =17[⎝⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -18n +1-1] =17⎝ ⎛⎭⎪⎫17-18n +1-1=149-17(8n +1-1), 由于{T n }是单调递增数列,149-17(8n +1-1)<149, 所以k ≥149.故k 的最小值为149,故选B.答案 B13.(2020·长郡中学联考)数列b n =a n cosn π3的前n 项和为S n ,已知S 2 017=5 710,S 2 018=4 030,若数列{a n }为等差数列,则S 2 019=________.解析 设数列{a n }是公差为d 的等差数列,a 1cos π3+a 2cos 2π3+a 3cos π+a 4cos 4π3+a 5cos 5π3+a 6cos2π=12(a 1-a 2)+12(a 5-a 4)-a 3+a 6=-a 3+a 6. 由S 2 017=5 710,S 2 018=4 030,可得5 710=-(a 3+a 9+…+a 2 013)+(a 6+a 12+…+a 2 010+a 2 016)+12a 2 017,4 030=-(a 3+a 9+…+a 2 013)+(a 6+a 12+…+a 2 010+a 2 016)+12a 2 017-12a 2 018, 两式相减可得a 2 018=3 360,由5 710=1 008d +12(3 360-d ),解得d =4,则a n =a 2 018+(n -2 018)×4=4n -4 712,可得S 2 019=4 030-a 2 019=4 030-(4×2 019-4 712)=666. 答案 66614.(2019·东北三省四校联考)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列;(2)令b n =2na n ,求数列{b n }的前n 项和T n .(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S nn=1,又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列.(2)解 由(1)可知S nn=5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n,所以T n =5×2+7×22+9×23+…+(2n +3)2n,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,②所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8)=(2n +1)2n +1-2.C 级 创新猜想15.(新定义题)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个解析法一列表法根据题意得,必有a1=0,a8=1,则将0,1进行具体的排法一一列表如下:由上述表格可知,不同的“规范01数列”共有14个.法二列举法根据题意可得,必有a1=0,a8=1,而其余的各项:a2,a3,…,a7中有三个0和三个1,并且满足对任意k≤8,a1,a2,…,a8中“0”的个数不少于“1”的个数.可以一一列举出不同“规范01数列”,除第一项和第八项外,中间六项的排列如下:000111,001011,001101,001110,010011,010101,010110,011001,011010,100011,100101,100110,101001,101010,共14个.答案C。

2025年高考数学一轮复知识点复习-6.4数列求和【课件】

2025年高考数学一轮复知识点复习-6.4数列求和【课件】

1
Tn=(2-1

=
1
1
)+(22 -1
22 -1
2
(2 -1)(2 +1 -1)

=
1
2 -1
1
1
)+…+(2 -1
23 -1
1
− 2 +1 -1,
1
1
− 2 +1 -1)=1-2 +1 -1.
规律方法 裂项相消求和法的实质是将数列中的每项(通项)分解,然后重新
组合使之能消去一些项,最终达到求和的目的.利用裂项相消求和法的关键
所以当n≥2时,Sn=2(Sn-1+1),
两式相减可得Sn+1-Sn=2(Sn+1)-2(Sn-1+1),即an+1=2an(n≥2).
当n=1时,a1+a2=S2=2S1+2=2a1+2,
又a1=2,所以a2=4,符合上式.
所以an+1=2an(n∈N*),

+1
an≠0,所以 =2,

1
);
2+1
1
1
1
1
[

];(5)
2 (+1)
(+1)(+2)
++
=
1
(

+ − ).
2.常用求和公式
(+1)
(1)1+2+3+…+n= 2 ;
(2)1+3+5+…+(2n-1)=n2;
2
2
2
2

高三数学大一轮复习 6.4数列求和教案 理 新人教a版

高三数学大一轮复习 6.4数列求和教案 理 新人教a版

§6.4 数列求和2014高考会这样考 1.考查等差、等比数列的求和;2.以数列求和为载体,考查数列求和的各种方法和技巧;3.综合考查数列和集合、函数、不等式、解析几何、概率等知识的综合问题.复习备考要这样做 1.灵活掌握数列由递推式求通项公式的几种方法;2.掌握必要的化归方法与求和技巧,根据数列通项的结构特点,巧妙解决数列求和的问题.1. 等差数列前n 项和S n =n a 1+a n2=na 1+n n -2d ,推导方法:倒序相加法;等比数列前n 项和S n =⎩⎪⎨⎪⎧na 1, q =1,a 1-q n 1-q=a 1-a n q1-q , q ≠1.推导方法:乘公比,错位相减法. 2. 数列求和的常用方法(1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4)倒序相加:例如,等差数列前n 项和公式的推导.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.3. 常见的拆项公式(1)1nn +=1n -1n +1; (2)1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n .[难点正本 疑点清源]1. 解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2. 等价转化思想是解决数列问题的基本思想方法,它可将复杂的数列转化为等差、等比数列问题来解决.1. 在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________.答案 54解析 由等差数列的性质,a 2+a 8=18-a 5, 即2a 5=18-a 5,∴a 5=6, ∴S 9=a 1+a 92=9a 5=54.2. 等比数列{a n }的公比q =12,a 8=1,则S 8=________.答案 255解析 由a 8=1,q =12得a 1=27,∴S 8=a 1-q 81-q=27[1-128]1-12=28-1=255.3. 若S n =1-2+3-4+…+(-1)n -1·n ,则S 50=________.答案 -25解析 S 50=1-2+3-4+…+49-50=(-1)×25=-25.4. (2011·天津)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为 ( )A .-110B .-90C .90D .110答案 D解析 ∵a 3=a 1+2d =a 1-4,a 7=a 1+6d =a 1-12,a 9=a 1+8d =a 1-16,又∵a 7是a 3与a 9的等比中项,∴(a 1-12)2=(a 1-4)·(a 1-16),解得a 1=20.∴S 10=10×20+12×10×9×(-2)=110.5. (2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101C.99100D.101100答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+-2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.题型一 分组转化求和例1 已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求: (1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.思维启迪:第(1)问由已知条件列出关于p 、q 的方程组求解;第(2)问分组后用等差、等比数列的求和公式求解.解 (1)由x 1=3,得2p +q =3,又因为x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1. (2)由(1),知x n =2n+n ,所以S n =(2+22+ (2))+(1+2+…+n ) =2n +1-2+n n +2.探究提高 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+14+…+⎝ ⎛⎭⎪⎫1+12+14+…+12n -1.解 和式中第k 项为a k =1+12+14+…+12k -1=1-⎝ ⎛⎭⎪⎫12k1-12=2⎝ ⎛⎭⎪⎫1-12k . ∴S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-122+…+⎝ ⎛⎭⎪⎫1-12n =2[(1+1+…+1n 个-(12+122+…+12n )]=2⎝ ⎛⎭⎪⎫n -12⎝ ⎛⎭⎪⎫1-12n1-12=12n -1+2n -2.题型二 错位相减法求和例2 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n的特点是数列{n }与{3n}之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n .(2)∵b n =na n,∴b n =n ·3n.∴S n =3+2×32+3×33+…+n ·3n,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+ (3)),即2S n =n ·3n +1-31-3n1-3,∴S n =2n -13n +14+34.探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.(2011·辽宁)已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n . (2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .② 所以,当n >1时,①-②得S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n2n=1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立. 综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1. 题型三 裂项相消法求和例3 在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪:第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 探究提高 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n a n +2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n a n +2,n ∈N *,∴当n =1时,a 1=S 1=a 1a 1+2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n n +2,b n =12S n =1n n +=1n -1n +1. ∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.四审结构定方案典例:(12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n . 审题路线图等差数列{a n }中,特定项的值 ↓(a 3,a 5,a 7即为特定项)a 3=7,a 5+a 7=26↓(从特定项,考虑基本量a 1,d )列方程组⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26↓(根据条件的结构特征,确定了方程的方法) 用公式:a n =a 1+(n -1)d ,S n =na 1+n n -2d .↓(将a n 代入化简求b n )b n =14n n +↓(根据b n 的结构特征,确定裂项相消)b n =14⎝ ⎛⎭⎪⎫1n -1n +1↓T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=nn +.规范解答解 (1)设等差数列{a n }的首项为a 1,公差为d .因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.[4分]所以a n =3+2(n -1)=2n +1,S n =3n +n n -2×2=n 2+2n .[6分](2)由(1)知a n =2n +1, 所以b n =1a 2n -1=1n +2-1=14·1n n +=14·⎝ ⎛⎭⎪⎫1n -1n +1,[8分] 所以T n =14·(1-12+12-13+…+1n -1n +1)[10分]=14·(1-1n +1)=nn +,即数列{b n }的前n 项和T n =n n +.[12分]温馨提醒 本题审题的关键有两个环节.一是根据a 3=7,a 5+a 7=26的特征,确定列方程组求解.二是根据数列{b n }的通项b n =14n n +的特征,确定用裂项相消法求和.所以,在审题时,要根据数式的结构特征确定解题方案.方法与技巧 数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 失误与防范1.通过数列通项公式观察数列特点和规律,在分析数列通项的基础上,判断求和类型,寻找求和的方法,或拆为基本数列求和,或转化为基本数列求和.求和过程中同时要对项数作出准确判断.2.含有字母的数列求和,常伴随着分类讨论.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 ∵S n n =n +2,∴⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.2. 已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A .20B .17C .19D .21 答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=a 1+a 192=19a 10>0,S 20=a 1+a 202=10(a 10+a 11)<0.3. 若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为( )A .2n+n 2-1 B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n -2答案 C 解析 S n =2-2n1-2+n+2n -2=2n +1-2+n 2.4. 数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 二、填空题(每小题5分,共15分)5. 数列{a n }的前n 项和为S n ,a 1=1,a 2=2,a n +2-a n =1+(-1)n(n ∈N *),则S 100=________.答案 2 600解析 由a n +2-a n =1+(-1)n知a 2k +2-a 2k =2,a 2k +1-a 2k -1=0,∴a 1=a 3=a 5=…=a 2n -1=1,数列{a 2k }是等差数列,a 2k =2k .∴S 100=(a 1+a 3+a 5+…+a 99)+(a 2+a 4+a 6+…+a 100) =50+(2+4+6+…+100)=50++2=2 600.6. 数列{a n }的前n 项和S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|=________.答案 66解析 当n =1时,a 1=S 1=-1. 当n ≥2时,a n =S n -S n -1=2n -5.∴a n =⎩⎪⎨⎪⎧-1 n =2n -n.令2n -5≤0,得n ≤52,∴当n ≤2时,a n <0,当n ≥3时,a n >0,∴|a 1|+|a 2|+…+|a 10|=-(a 1+a 2)+(a 3+a 4+…+a 10)=S 10-2S 2=66.7. (2012·课标全国)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解. ∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234 =+2=1 830.三、解答题(共22分)8. (10分)求和:(1)S n =32+94+258+6516+…+n ·2n+12n; (2)S n =⎝⎛⎭⎪⎫x +1x 2+⎝ ⎛⎭⎪⎫x 2+1x 2+…+⎝ ⎛⎭⎪⎫x n +1x 2.解 (1)由于a n =n ·2n +12n=n +12n ,∴S n =⎝ ⎛⎭⎪⎫1+121+⎝ ⎛⎭⎪⎫2+122+⎝ ⎛⎭⎪⎫3+123+…+⎝ ⎛⎭⎪⎫n +12n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+122+123+ (12)=n n +2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n n +2-12n +1. (2)当x =±1时,S n =4n .当x ≠±1时,S n =⎝ ⎛⎭⎪⎫x +1x 2+⎝ ⎛⎭⎪⎫x 2+1x 22+…+⎝⎛⎭⎪⎫x n+1x n 2=⎝ ⎛⎭⎪⎫x 2+2+1x 2+⎝ ⎛⎭⎪⎫x 4+2+1x 4+…+⎝ ⎛⎭⎪⎫x 2n+2+1x 2n=(x 2+x 4+…+x 2n)+2n +⎝ ⎛⎭⎪⎫1x2+1x4+…+1x 2n=x 2x 2n -1x 2-1+x -21-x -2n 1-x -2+2n =x 2n -1x 2n +2+1x 2n x 2-1+2n .∴S n =⎩⎪⎨⎪⎧4n x =±1,x 2n-1x 2n +2+1x 2n x 2-1+2n x ≠±1.9. (12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…).(1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n =n1+n .(1)解 由已知得⎩⎪⎨⎪⎧a n +1=12S n,a n=12Sn -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2 =12⎝ ⎛⎭⎪⎫32n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1, n =1,12⎝ ⎛⎭⎪⎫32n -2, n ≥2.(2)证明 b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n .∴1b n b n +1=1n+n =1n -11+n . ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =n 1+n.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值等于 ( )A .126B .130C .132D .134答案 C解析 b n +1-b n =lg a n +1-lg a n =lga n +1a n=lg q (常数), ∴{b n }为等差数列.∴⎩⎪⎨⎪⎧ b 1+2d =18,b 1+5d =12,∴⎩⎪⎨⎪⎧d =-2,b 1=22.由b n =-2n +24≥0,得n ≤12,∴{b n }的前11项为正,第12项为零,从第13项起为负,∴S 11、S 12最大且S 11=S 12=132. 2. 数列a n =1nn +,其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n=0在y 轴上的截距为( ) A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n n +=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0. 令x =0,得y =-9,∴在y 轴上的截距为-9.3. 已知数列2 008,2 009,1,-2 008,-2 009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 013项之和S 2 013等于( ) A .1B .2 010C .4 018D .0答案 C解析 由已知得a n =a n -1+a n +1 (n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 013=6×335+3,∴S 2 013=S 3=4 018. 二、填空题(每小题5分,共15分)4. 等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.答案 13(4n-1)解析 当n =1时,a 1=S 1=1, 当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列. ∴a 21+a 22+…+a 2n =-4n1-4=13(4n-1). 5. 若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a 12+a 23+…+a nn +1=__________. 答案 2n 2+6n解析 令n =1得a 1=4,即a 1=16,当n ≥2时,a n =(n 2+3n )-[(n -1)2+3(n -1)]=2n +2,所以a n =4(n +1)2,当n =1时,也适合上式,所以a n =4(n +1)2(n ∈N *).于是a n n +1=4(n +1),故a 12+a 23+…+a nn +1=2n 2+6n .6. 已知数列{a n }中,a 1=-60,a n +1=a n +3,则这个数列前30项的绝对值的和是________.答案 765解析 由题意知{a n }是等差数列,a n =-60+3(n -1)=3n -63,令a n ≥0,解得n ≥21. ∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+(a 21+…+a 30) =S 30-2S 20=-60+90-63×302-(-60+60-63)×20=765.三、解答题7. (13分)(2012·四川)已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立.(1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2.② 由②-①,得a 2(a 2-a 1)=a 2.③ 若a 2=0,由①知a 1=0; 若a 2≠0,由③知a 2-a 1=1.④由①④解得a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0或a 1=2+1,a 2=2+2或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2. 当n ≥2时,有(2+2)a n =S 2+S n , (2+2)a n -1=S 2+S n -1.所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2). 所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列⎝ ⎛⎭⎪⎫公差为-12lg 2.从而b 1>b 2>…>b 7=lg 108>lg 1=0.当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0.故当n =7时,T n 取得最大值,且T n 的最大值为T 7=b 1+b 72=+1-2=7-212lg 2.。

高考数学一轮复习 第六章数列6.4数列的通项与求和教学案 理 新人教A版

高考数学一轮复习 第六章数列6.4数列的通项与求和教学案 理  新人教A版

6.4 数列的通项与求和考纲要求1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法.数列求和的常用方法 1.公式法(1)直接用等差、等比数列的求和公式. (2)掌握一些常见的数列的前n 项和. ①1+2+3+…+n =__________;②1+3+5+…+(2n -1)=__________; ③2+4+6+…+2n =__________; ④12+22+32+…+n 2=__________; ⑤13+23+33+…+n 3=__________=__________. 2.倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如__________数列的前n 项和公式即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如__________数列的前n 项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化法把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.11×4+14×7+17×10+…+13n -23n +1等于( ). A .n 3n +1 B .3n 3n +1C .1-1n +1D .3-13n +12.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( ).A .13B .10C .9D .63.数列{(-1)n(2n -1)}的前2 012项和S 2 012=( ). A .-2 012 B .2 012 C .-2 011 D .2 0114.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =__________.一、分组转化法求和【例1】已知函数f (x )=2x-3x -1,点(n ,a n )在f (x )的图象上,{a n }的前n 项和为S n . (1)求使a n <0的n 的最大值;(2)求S n . 方法提炼1.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.常见类型及方法(1)a n =kn +b ,利用等差数列前n 项和公式直接求解;(2)a n =a ·q n -1,利用等比数列前n 项和公式直接求解;(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和.请做演练巩固提升4二、裂项相消法求和【例2-1】等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.【例2-2】已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.方法提炼1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.将通项裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.2.一般情况如下,若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.此外根式在分母上时可考虑利用分母有理化相消求和.3.常见的拆项公式有:(1)1n n +1=1n -1n +1; (2)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (3)12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(4)1n n +1n +2=12⎣⎢⎡⎦⎥⎤1n n +1-1n +1n +2; (5)1n +n +k =1k(n +k -n ).请做演练巩固提升3三、错位相减法求和【例3-1】(2012浙江高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .【例3-2】已知在数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式;(2)若b n =a n ·3n,求数列{b n }的前n 项和T n . 方法提炼1.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.2.利用错位相减法求和时,转化为等比数列求和.若公比是个参数(字母),则应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和.提醒:利用裂项相消法求和时要注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.请做演练巩固提升5分类讨论思想在数列求和中的应用【典例】(13分)(2012湖北高考)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.规范解答:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.(4分)所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.(6分)(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不满足条件; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.(8分)记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4;(9分) 当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10,当n =2时,满足此式.(12分)综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.(13分)答题指导:分类讨论思想在数列求和时经常遇到,尤其是含绝对值的求和问题,与等比数列有关的问题,还有分奇偶项进行讨论的问题,此类问题讨论时要掌握不遗漏、不重复的原则.1.在各项均为正数的等比数列{a n }中,a 3a 5=4,则数列{log 2a n }的前7项和等于( ).A .7B .8C .27D .282.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( ).A .3116B .2C .3316D .16333.数列12×4,14×6,16×8,…,12n 2n +2,…的前n 项和为( ).A .n 2n +2B .n 4n +4C .2n n +1D .2n 2n +1 4.求下面数列的前n 项和.1+1,1a+4,1a 2+7,…,1an -1+3n -2,….5.已知数列{a n }是首项a 1=1的等比数列,且a n >0,{b n }是首项为1的等差数列,又a 5+b 3=21,a 3+b 5=13.(1)求数列{a n }和{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫b n 2a n 的前n 项和S n .参考答案基础梳理自测 知识梳理1.(2)①n (n +1)2 ②n 2③n (n +1) ④n (n +1)(2n +1)6 ⑤⎣⎢⎡⎦⎥⎤n (n +1)22n 2(n +1)24 2.等差 3.等比 基础自测1.A 解析:S n =13⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎦⎥⎤⎝ ⎛⎭⎪⎫13n -2-13n +1=13·⎝ ⎛⎭⎪⎫1-13n +1=n 3n +1. 故选A.2.D 解析:∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+ (12)=n -1+12n .而32164=5+164. ∴n -1+12n =5+164.∴n =6.3.B 解析:S 2 012=-1+3-5+7+…-(2×2 011-1)+(2×2 012-1)=1006222+++6447448L =2 012. 故选B.4.(n -1)·2n +1+2 解析:∵S n =2+2·22+3·23+…+n ·2n,①∴2S n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2. 考点探究突破【例1】解:(1)依题意a n =2n-3n -1,∴a n <0,即2n-3n -1<0.函数f (x )=2x-3x -1在[1,2]上为减函数,在[3,+∞)上为增函数.当n =3时,23-9-1=-2<0,当n =4时,24-12-1=3>0, ∴2n-3n -1<0中n 的最大值为3.(2)S n =a 1+a 2+...+a n =(2+22+ (2))-3(1+2+3+…+n )-n =2(1-2n)1-2-3·n (n +1)2-n =2n +1-n (3n +5)2-2.【例2-1】解:(1)设数列{a n }的公比为q .由a 32=9a 2a 6得a 32=9a 42,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n=-2n (n +1)=-2⎝ ⎛⎭⎪⎫1n -1n +1,1b 1+1b 2+…+1b n=-2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.【例2-2】解:(1)设公差为d .由已知得⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ), 联立解得d =1或d =0(舍去), ∴a 1=2,故a n =n +1.(2)1a n a n +1=1(n +1)(n +2)=1n +1-1n +2, ∴T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2(n +2).∵T n ≤λa n +1,∴n2(n +2)≤λ(n +2).∴λ≥n2(n +2)2.又n2(n +2)2=12⎝⎛⎭⎪⎫n +4n+4≤12(4+4)=116.∴λ的最小值为116.【例3-1】解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n b n =(4n -1)·2n -1,n ∈N *.所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,所以2T n -T n =(4n -1)2n -[3+4(2+22+…+2n -1)]=(4n -5)2n+5.故T n =(4n -5)2n +5,n ∈N *.【例3-2】解:(1)∵点(a n ,a n +1)在直线y =x +2上,∴a n +1=a n +2, 即a n +1-a n =2.∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1.(2)∵b n =a n ·3n ,∴b n =(2n +1)·3n.∴T n =3×3+5×32+7×33+…+(2n -1)·3n -1+(2n +1)·3n,①∴3T n =3×32+5×33+…+(2n -1)·3n +(2n +1)·3n +1.②①-②得-2T n =3×3+2(32+33+…+3n )-(2n +1)·3n +1=9+2×9(1-3n -1)1-3-(2n +1)·3n +1=-2n ·3n +1∴T n =n ·3n +1. 演练巩固提升1.A 解析:在各项均为正数的等比数列{a n }中,由a 3a 5=4,得a 42=4,a 4=2. 设b n =log 2a n ,则数列{b n }是等差数列,且b 4=log 2a 4=1.所以{b n }的前7项和S 7=7(b 1+b 7)2=7b 4=7.2.A 解析:设数列{a n }的公比为q ,则有4+q 2=2×2q ,解得q =2,所以a n =2n -1.1a n =12n -1,所以S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116. 故选A.3.B 解析:∵12n (2n +2)=12⎝ ⎛⎭⎪⎫12n -12n +2, ∴S n =12⎝ ⎛ 12-14+14-16+…+⎭⎪⎫12n -12n +2=12⎝ ⎛⎭⎪⎫12-12n +2 =12·2n 2(2n +2)=n 4n +4. 4.解:前n 项和为S n =(1+1)+⎝ ⎛⎭⎪⎫1a+4+⎝ ⎛⎭⎪⎫1a2+7+…+⎝ ⎛⎭⎪⎫1an -1+3n -2=⎝ ⎛⎭⎪⎫1+1a +1a 2+…+1a n-1+[1+4+7+…+(3n -2)], 设T 1=1+1a +1a 2+…+1an -1,当a =1时,T 1=n ;当a ≠1时,T 1=a n -1a n -an -1,T 2=1+4+7+…+(3n -2)=(3n -1)n2. ∴当a =1时,S n =T 1+T 2=n +(3n -1)n 2=(3n +1)n2;当a ≠1时,S n =T 1+T 2=a n -1a n -a n -1+(3n -1)n2.5.解:(1)设数列{a n }的公比为q ,{b n }的公差为d , 则由已知条件得: ⎩⎪⎨⎪⎧q 4+1+2d =21,q 2+1+4d =13, 解之得⎩⎪⎨⎪⎧d =2,q =2或q =-2(舍去).∴a n =2n -1,b n =1+(n -1)×2=2n -1.(2)由(1)知b n 2a n =2n -12n .∴S n =12+322+523+…+2n -32n -1+2n -12n .①∴12S n =122+323+…+2n -32n +2n -12n +1.② ①-②得,12S n =12+222+223+…+22n -2n -12n +1=12+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n -12n +1=12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-2n -12n +1 =12+1-⎝ ⎛⎭⎪⎫12n -1-2n -12n +1. ∴S n =3-2n +32n .。

2025年高考数学一轮复习-6.4-数列求和【课件】

2025年高考数学一轮复习-6.4-数列求和【课件】
+1
送分试题;(2)当递推公式为 an+1=f(n)an 时,把原递推公式先转化为 =f(n),再利用累乘法

(逐商相乘法)求解。第(2)问的实质是数列的求和问题,常用的方法为错位相减法和裂项
相消法。
【变式训练】
则数列
1
+ +1
2 - 2 = 2 - 2 (n≥2),
(1)已知各项都为正数的数列{an}中,a1=1,a2= 3,+1
②当 n≥2 时,Tn=2+2×2 +2×2 +…+2×2
2
3
n
1, = 1,
2, ≥ 2。
22 (1−2 −1 ) (1+2−1)
-[1+3+5+…+(2n-1)]=2+2×
=
2
1−2
2n+2-n2-6,又 T1=1 也满足 Tn=2n+2-n2-6,所以 Tn=2n+2-n2-6。
=
1−2
-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2。所
易错题
4.(不能准确分组致误)已知数列{an}的通项公式为 an=(-1)n(2n-2),则数列{an}的前 n 项和
1 − , 为奇数,
Sn=
, 为偶数

解析 Sn=2×[0+1-2+3-4+…+(-1) (n-1)]=
1

+…+f
−1

+f(1)(n
an=2(n+1)
则数列
的通项公式为

高考数学一轮总复习第六单元数列与算法课时4数列求和教案文含解析新人教A版

高考数学一轮总复习第六单元数列与算法课时4数列求和教案文含解析新人教A版

高考数学一轮总复习第六单元数列与算法课时4数列求和教案文含解析新人教A 版数列求和1.掌握数列求和的常用方法与思路.2.能选择适当的方法解决有关数列求和的问题.知识梳理 1.常用公式(1)等差数列求和公式:S n = n a 1+a n2=na 1+n n -12d ,推导方法是 倒序相加 .(2)等比数列求和公式:S n = ⎩⎪⎨⎪⎧na 1 q =1,a 11-q n 1-q=a 1-a n q1-q q ≠1,推导方法是 错位相减 .2.常用方法(1)分组求和法:将通项展开后分解成几组,其中每一组可转化为等差或等比数列或其他可求和的数列求和.(2)裂项求和法:将数列中的通项拆成两项之差求和,使之正负相消,剩下首尾若干项. (3)并项求和法:依次将数列中相邻两项并成一项,使之转化为等差或等比数列或其他可求和的数列求和.(4)倒序相加法:将一个数列倒过来排列(倒序)与原数列相加,叫倒序相加,主要用于倒序相加后对应项和有公因式可提的数列求和,如等差数列求和公式就是用倒序相加法推导出来的.(5)错位相减法:这是推导等比数列前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.1.常见数列的前n 项和(1)1+2+3+…+n =n n +12;(2)2+4+6+…+2n =n 2+n ; (3)1+3+5+…+(2n -1)=n 2; (4)12+22+…+n 2=n n +12n +16.2.常见的裂项公式(1)若{a n }各项都是不为0的等差数列,公差为d (d ≠0),则 1a n ·a n +1=1d (1a n -1a n +1);(2)1nn +k =1k (1n -1n +k ); (3)1n +n +1=n +1-n . 热身练习1.数列112,314,518,7116,…,(2n -1)+12n 的前n 项和是(B)A .1+n 2-(12)n -1B .1+n 2-(12)nC .1+n 2-(12)n +1D .1+n 2-2n112+314+518+7116+…+(2n -1)+12n =[1+3+5+7+…+(2n -1)] +(12+14+18+116+…+12n ) =n [1+2n -1]2+12[1-12n]1-12=n 2+1-(12)n .2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=(A) A .15 B .12 C .-12 D .-15因为a n =(-1)n(3n -2),则a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.3.求和S n =11×3+12×4+13×5+…+1n n +2= 12(32-1n +1-1n +2) .因为1nn +2=12(1n -1n +2), 所以原式=12[(1-13)+(12-14)+(13-15)+…+(1n -1n +2)]=12(1+12-1n +1-1n +2) =12(32-1n +1-1n +2). 4.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°= 892.设S =sin 21°+sin 22°+…+sin 288°+sin 289°,则S =sin 289°+sin 288°+…+sin 22°+sin 21° 上述两式相加得2S =1×89,所以S =892.5.化简和式:1×2+2×4+…+n ×2n = (n -1)2n +1+2 .令S n =1·2+2·22+3·23+…+n ·2n,①2S n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1,②①-②得:-S n =21+22+23+…+2n -n ·2n +1=21-2n 1-2-n ·2n +1=2n +1-2-n ·2n +1.所以S n =(n -1)2n +1+2.分组求和与并项求和(2016·北京卷)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.(1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27, 所以b n =3n -1(n ∈N *).设等差数列{a n }的公差为d .因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2. 所以a n =2n -1(n ∈N *). (2)由(1)知a n =2n -1,b n =3n -1,因此c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n1-3=n 2+3n-12.(1)数列求和,要注意通项的分析,根据通项的特点灵活选择方法.本题通项c n 可表示为a n +b n 的形式,其中{a n }是等差数列,{b n }是等差数列,故可采取拆项求和的方法.(2)“拆项”和“并项”方式不同,但目的都是为了转化,通过“拆”和“并”的手段,将不可直接求和的数列问题转化为可求和的数列来处理.1.若S n =-12+22-32+…+(-1)n n 2(n ∈N *),求S n .当n 为偶数时,S n =-12+22-32+…+[-(n -1)2]+n 2=(22-12)+(42-32)+…+[n 2-(n -1)2] =3+7+…+(2n -1) =3+2n -12·n 2=n n +12.当n 为奇数时,S n =S n -1+a n =n -1n2-n 2=-n n +12.综上,可知S n =(-1)nn n +12.裂项求和法(经典真题)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. (1)设{a n }的公差为d ,则S n =na 1+n n -1d2.由已知可得⎩⎪⎨⎪⎧3a 1+3d =0,5a 1+10d =-5,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=13-2n1-2n=12(12n -3-12n -1), 从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1) =n1-2n. (1)本题考查了等差数列的基本量及其关系,考查了裂项求和的基本方法. (2)利用裂项求和法时,应注意抵消后并不一定只剩下第一项和最后一项,要根据通项的特点来确定.2.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=22n +12n -1=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.错位相减法求和(经典真题)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和. (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d , 故d =12,从而a 1=32,所以{a n }的通项公式为a n =12n +1.(2)设⎩⎨⎧⎭⎬⎫a n 2n 的前n 项和为S n ,由(1)知a n 2n =n +22n +1,则S n =322+423+…+n +12n +n +22n +1,12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+(123+…+12n +1)-n +22n +2 =34+14(1-12n -1)-n +22n +2=1-n +42n +2. 所以S n =2-n +42n +1.(1)本题考查了等差数列的通项公式及错位相减法求和的基本方法,考查运算求解能力.(2)一般地,若{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和可采用错位相减法.3.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .(1)设{a n }的公比为q , 由题意知a 1(1+q )=6,a 21q =a 1q 2,又a n >0,由以上两式联立方程组解得a 1=2,q =2, 所以a n =2n. (2)由题意知S 2n +1=2n +1b 1+b 2n +12=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+(12+122+…+12n -1)-2n +12n +1 =32+1-12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n .1.数列求和的基本思想是“转化”,其一是转化为基本数列(如等差、等比数列)的求和或其他可求和的数列;其二是通过消项,把较复杂的数列求和转化为求不多的几项的和.到底如何进行转化,关键是在分析数列通项及其和式的构成规律,根据其特点转化为基本数列求和,或分解为基本数列求和.2.对于一般的数列求和无通法可循,能求和的是几类特殊的数列,其常用的方法有分组求和法、并项求和法、倒序相加法、错位相减法、裂项求和法等,要注意分析总结这几种方法的适用类型.3.对通项中含有(-1)n或奇数项、偶数项由等差(等比)数列构成的数列,求前n 项和时,注意根据n 的奇偶性进行讨论,转化为基本数列求和.。

2024版新教材高考数学全程一轮总复习第六章数列第四节数列求和课件

2024版新教材高考数学全程一轮总复习第六章数列第四节数列求和课件


1
n+1
.( √ )
(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即
可根据错位相减法求和.( × )
(4)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,
则数列
3n −1
an 的通项公式是an=
.( √
2
)
2.(教材改编)已知数列 an 的通项公式为an=2n+n,前n项和为Sn,
2n+1
1
= n + 1 − n.
n+ n+1

夯实双基
1.思考辨析(正确的打“√”,错误的打“×”)
(1) 若 数 列 an 为 等 比 数 列 , 且 公 比 不 等 于 1 , 则 其 前 n 项 和 Sn =
a1 −an+1
.( √ )
1−q
1
1
1
(2)当n≥2时, 2 =
n −1 2 n−1
180 dm2 .以此类推,则对折4次共可以得到不同规格图形的种数为
15 n+3
720- n−4
5
σnk=1 Sk =___________
________;如果对折n次,那么
2
dm2.
2.[2022·新高考Ⅰ卷]记Sn 为数列 an 的前n项和,已知a1 =1,
1
是公差为 的等差数列.
3
(1)求 an 的通项公式;
第四节
数列求和
必备知识·夯实双基
关键能力·题型突破
【课标标准】
掌握非等差、等比数列求和的几种常见方法.
必备知识·夯实双基
知识梳理
1.分组转化法:一个数列的通项公式是由若干个等差数列或等比数

(课标通用)高考数学一轮复习 第六章 数列 6.4 数列求和学案 理-人教版高三全册数学学案

(课标通用)高考数学一轮复习 第六章 数列 6.4 数列求和学案 理-人教版高三全册数学学案

§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 11-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9) D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x 1-x n1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x 1-x n1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×9-12×12=9+18=27. (2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =1091-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤2n -1+12n 的前n 项和S n =________________.答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n n +12,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +12=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n24+2n 2=n n +22;当n 为奇数时,T n =T n -1+(-b n )=n -1n +12-n (n +1)=-n +122.所以T n=⎩⎪⎨⎪⎧-n +122,n 为奇数,nn +22,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2015·山东卷]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2015·天津卷]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +1=1n -1n +1. ②1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2. ③12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2017·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -2a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1. (2)[证明] 由(1),得S n =na 1+n n -12d =n (n +2),∴b n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1.故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2017·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n +1+f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三 形如a n =n +1n 2n +22型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n .(2)[证明] 由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n 2-1n +22.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -12-1n +12+1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,a n +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2016·北京卷]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=6,d =-2,所以S 6=6a 1+12×6×5d=36+15×(-2)=6.2.[2015·新课标全国卷Ⅱ]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1, ∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴ 1S n=-1+(n -1)×(-1)=-n ,∴ S n =-1n.3.[2016·山东卷]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =a n +1n +1b n +2n,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1.(2)由(1)知,c n =6n +6n +13n +3n=3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+41-2n1-2-n +1×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2.4.[2015·新课标全国卷Ⅰ]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2. 又a 21+2a 1=4a 1+3, 解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知,b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.课外拓展阅读 数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立,故a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①所以2T n =2+2+32+…+n -12n -3+n2n -2,②②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.故T n =4-n +22n -1.方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数. 3.可以通过当n =1,2时的特殊情况对结果进行验证.。

高考数学一轮总复习 6.4 数列求和教案 理 新人教A版

高考数学一轮总复习 6.4 数列求和教案 理 新人教A版

6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:Sn =1a +2a2+3a3+…+n an. 【解析】(1)a =1时,Sn =1+2+3+…+n =n(n +1)2. (2)a≠1时,因为a≠0,Sn =1a +2a2+3a3+…+n an,① 1a Sn =1a2+2a3+…+n -1an +n an +1.② 由①-②得 (1-1a )Sn =1a +1a2+…+1an -n an +1=1a (1-1an )1-1a-n an +1, 所以Sn =a(an -1)-n(a -1)an(a -1)2. 综上所述,Sn =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n【点拨】(1)若数列{an}是等差数列,{bn}是等比数列,则求数列{an ·bn}的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将Sn 与qSn 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和Sn =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为ak =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以Sn =2[(1-12)+(1-122)+…+(1-12n)]=])111([2 个n +⋯++-(12+122+ (12))] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( )A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2【解析】an =1+2+22+…+2n -1=2n -1,Sn =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{an}满足a1=8,a4=2,且an +2-2an +1+an =0 (n ∈N*).(1)求数列{an}的通项公式;(2)设bn =1n(14-an)(n ∈N*),Tn =b1+b2+…+bn(n ∈N*),若对任意非零自然数n ,Tn >m 32恒成立,求m 的最大整数值. 【解析】(1)由an +2-2an +1+an =0,得an +2-an +1=an +1-an ,从而可知数列{an}为等差数列,设其公差为d ,则d =a4-a14-1=-2, 所以an =8+(n -1)×(-2)=10-2n.(2)bn =1n(14-an)=12n(n +2)=14(1n -1n +2), 所以Tn =b1+b2+…+bn =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N*恒成立.所以m <12-8n +1-8n +2对一切n ∈N*恒成立. 对n ∈N*,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{an}的通项能转化为f(n +1)-f(n)的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{an},{bn}的前n 项和为An ,Bn ,记cn =anBn +bnAn -anbn(n ∈N*),则数列{cn}的前10项和为( )A.A10+B10B.A10+B102C.A10B10D.A10B10【解析】n =1,c1=A1B1;n≥2,cn =AnBn -An -1Bn -1,即可推出{cn}的前10项和为A10B10,故选C.总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{Sn}的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.。

高三数学一轮复习精品学案1:6.4 数列求和

高三数学一轮复习精品学案1:6.4 数列求和

6.4 数列求和『导学目标』掌握等差数列、等比数列的前n 项和公式;并能用其解决简单的实际问题.掌握数列求和的常用方法:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等.掌握将某些一般数列问题转化为等差、等比数列问题的方法以及将某些实际问题转化为数列问题来解决的方法.『考点梳理』 数列求和方法公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n = ; ②2+4+6+…+2n = ; ③1+3+5+…+(2n -1)= ; ④12+22+32+…+n 2= ; ⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.分组求和:把一个数列分成几个可以直接求和的数列. 倒序相加:如等差数列前n 项和公式的推导方法.错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式 ①1n (n +1)= -1n +1;②1(2n -1)(2n +1)= ⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)= ⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b= (a -b ); ⑤n (n +1)!= -1(n +1)!;⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 数列应用题常见模型单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . 复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . 产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . 递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.『基础自测』通项公式a n =2n +1(n ∈N *)的数列{a n }的前10项和S 10=( ) A .60B .120C .210D .240设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2nB .2n -nC .2n +1-nD .2n +1-n -2已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101C.99100D.101100记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n ⎝⎛⎭⎫23n -1的前n 项和为T n ,则T n =________. 某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍.则需要的最少天数n (n ∈N *)等于________. 『典例解析』类型一 基本求和问题数列求和:求数列112,214,318,…,⎝⎛⎭⎫n +12n ,…的前n 项和S n ; 求和:1+11+2+11+2+3+…+11+2+…+n;设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12014+f ⎝⎛⎭⎫12013+…+f (1)+f (2)+…+f (2014); 求和:S n =1a +2a 2+3a 3+…+na n .求和:求数列9,99,999,…的前n 项和S n ; 求数列11×4,14×7,17×10,…的前n 项和;求sin 21°+sin 22°+sin 23°+…+sin 289°的值.类型二 可用数列模型解决的实际问题从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.设n 年内(本年度为第一年)总投入为A n 万元,旅游业总收入为B n 万元,写出A n 和B n的表达式;至少经过几年,旅游业的总收入才能超过总投入?(lg2≈0.301)某企业去年的纯利润为500万元,因设备老化的原因,企业的生产能力将逐年下降.若不能进行设备改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行设备改造,预测在未扣除设备改造资金的情况下,第n年(今年为第一年)的利润为500(1+12n)万元(n为正整数).设从今年起的后n年,若该企业不进行设备改造的累计纯利润为A n万元,进行设备改造后的累计纯利润为B n万元(须扣除设备改造资金),求A n,B n的表达式;依上述预测,问从今年起该企业经过4年是否能实现B n>A n的目标?『名师点津』数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和S n可视为数列{S n}的通项.通项及求和是数列中最基本也是最重要的问题之一.等差或等比数列的求和直接用公式计算,要注意求和的项数.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,q=1或q≠1)等.答案『考点梳理』1.(1)(Ⅱ)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(5)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x『基础自测』解:该数列为等差数列,a 1=3,a 10=21, ∴S 10=(a 1+a 10)×102=(3+21)×102=120.故选B .解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, ∴S n =(21-1)+(22-1)+…+(2n -1) =(21+22+…+2n )-n =2n +1-n -2.故选D .解:由a 5=5,S 5=15可得⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×42d =15,解得⎩⎪⎨⎪⎧a 1=1,d =1. ∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1.∴⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和T 100=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1100-1101=1-1101=100101.故选A .解:T n =1+2×23+3×⎝⎛⎭⎫232+…+n ⎝⎛⎭⎫23n -1, 23T n =23+2×⎝⎛⎭⎫232+…+(n -1)⎝⎛⎭⎫23n -1+n ⎝⎛⎭⎫23n ,两式相减得,13T n =1+23+⎝⎛⎭⎫232+…+⎝⎛⎭⎫23n -1-n ⎝⎛⎭⎫23n=3⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫23n -n ⎝⎛⎭⎫23n , 故T n =9⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫23n -3n ⎝⎛⎭⎫23n =9-(3+n )·2n 3n -1. 故填9-(3+n )·2n3n -1. 解:设每天植树的棵数组成的数列为{a n },由题意可知它是等比数列,且首项为2,公比为2,所以2+22+23+ (2)=2(1-2n )1-2=2n +1-2≥100,即2n ≥51,而25=32,26=64,n ∈N *.故n ≥6.故填6.解:(1)S n =⎝⎛⎭⎫1+12+⎝⎛⎭⎫2+14+⎝⎛⎭⎫3+18+…+(n +12n ) =(1+2+3+…+n )+⎝⎛⎭⎫12+14+18+…+12n =12n (n +1)+12⎝⎛⎭⎫1-12n 1-12=12n (n +1)+1-12n . (2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,∴S n =a 1+a 2+…+a n =2『⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1』=2⎝⎛⎭⎫1-1n +1=2n n +1. (3)∵f (x )=x 21+x 2,∴f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12014+f ⎝⎛⎭⎫12013+…+f (1)+f (2)+…+f (2014),① 则S =f (2014)+f (2013)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12013+f (12014),② ①+②得:2S =1×4027=4027,所以S =40272.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -na n +1 =1a ⎝⎛⎭⎫1-1a n 1-1a-n a n +1,∴S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n=⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n-1)-n (a -1)a n(a -1)2(a ≠1).『评析』数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.解:(1)S n =9+99+999+…+个n 999⋯=(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n =10(1-10n )1-10-n =10n +1-109-n .(2)a n =1(3n -2)(3n +1)=13⎝⎛⎭⎫13n -2-13n +1.∴S n =13⎝⎛⎭⎫11-14+13⎝⎛⎭⎫14-17+13⎝⎛⎭⎫17-110+…+13⎝⎛⎭⎫13n -2-13n +1=13⎝⎛⎭⎫1-13n +1=n 3n +1. 令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89. ∴S n =892.解:(1)第一年投入为800万元,第二年投入为800×⎝⎛⎭⎫1-15万元,…,第n 年的投入为800⎝⎛⎭⎫1-15n -1万元.所以n 年内的总投入为:A n =800+800×⎝⎛⎭⎫1-15+…+800⎝⎛⎭⎫1-15n -1=4000-4000×⎝⎛⎭⎫45n;第一年旅游业收入为400万元,第二年旅游业收入为400×⎝⎛⎭⎫1+14万元,…,第n 年旅游业收入为400⎝⎛⎭⎫1+14n -1万元.所以,n 年内的旅游业总收入为B n =400+400×⎝⎛⎭⎫1+14+…+400⎝⎛⎭⎫1+14n -1=1600⎝⎛⎭⎫54n-1600.设至少经过n 年旅游业的总收入才能超过总投入,因此B n -A n >0,即1600⎝⎛⎭⎫54n-1600-4000+4000⎝⎛⎭⎫45n>0,化简得2⎝⎛⎭⎫54n+5⎝⎛⎭⎫45n-7>0,设⎝⎛⎭⎫54n=x ,代入上式得,2x 2-7x +5>0, 解此不等式,得x >52,或x <1(舍去),即⎝⎛⎭⎫54n >52,两边取对数得n lg 54>lg 52,n >1-2lg21-3lg2≈4.103,由此得n ≥5.答:至少经过5年,旅游业的总收入能超过总投入.『评析』将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答;增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.解:(1)依题设,A n =(500-20)+(500-40)+…+(500-20n )=490n -10n 2,B n =500⎣⎡⎦⎤⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+122+…+⎝⎛⎭⎫1+12n -600 =500n -5002n -100.B n -A n =⎝⎛⎭⎫500n -5002n -100-(490n -10n 2) =10n 2+10n -5002n -100.易知该式随着n 的增大而增大,代入1,2,3,4,…验证知当n ≥4时,B n >A n .故经过4年,该企业进行设备改造后的累计纯利润能超过不进行设备改造的累计纯利润.。

高考数学一轮复习 第六章 数列 6.4 数列求和学案(文,含解析)新人教A版

高考数学一轮复习 第六章 数列 6.4 数列求和学案(文,含解析)新人教A版

学习资料6.4 数列求和必备知识预案自诊知识梳理1.基本数列求和方法 (1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d 。

(2)等比数列求和公式:S n ={na 1,q =1,a 1-a n q1-q=a 1(1-q n )1-q,q ≠1.(3)使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法.2.非基本数列求和常用方法(1)倒序相加法:如果一个数列{a n }的前n 项中与首末两端等“距离"的两项的和相等,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的。

(2)分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.如已知a n =2n +(2n —1),求S n 。

(3)并项求和法:若一个数列的前n 项和中两两结合后可求和,则可用并项求和法.如已知a n =(—1)n f (n ),求S n .(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用错位相减法来求,如等比数列的前n 项和公式就是用此法推导的.(5)裂项相消法:把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

常见的裂项公式: ①1n (n+k )=1k (1n -1n+k );②1(2n -1)(2n+1)=12(12n -1-12n+1);③1n(n+1)(n+2)=12[1n(n+1)-1(n+1)(n+2)];④√n+√n+k =1k(√n+k−√n)。

3.常用求和公式(1)12+22+32+…+n2=n(n+1)(2n+1)6;(2)13+23+33+…+n3=[n(n+1)2]2。

考点自诊1。

判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)当n≥2时,1n2-1=1n-1−1n+1.()(2)利用倒序相加法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44。

人教版高三数学一轮复习精品课件2:6.4 数列求和

人教版高三数学一轮复习精品课件2:6.4 数列求和

(2)由 an=2n-1 得 bn=2n-1+22n-1=2n-1+12·4n. 所以数列{bn}的前 n 项和 Sn=[1+3+5+…+(2n-1)]+(21+23+25+…+22n-1)=n2 +211--2222n=n2+22n+31-2.
2 点特别注意——数列求和中应注意的两个问题 (1)错位相减法中两式相减后,一定成等比数列的有 n-1 项,整 个式子共有 n+1 项. (2)裂项相消后,注意抵消后不一定只剩首尾两项,也可能前面剩 两项,后面也剩两项.
4 个必知公式——常见的拆项公式 (1)nn1+k=1k1n-n+1 k; (2)2n-112n+1=122n1-1-2n1+1;
(2)由 bn=2an+21an=2n+1+2n1+1=2n+21n+2 知, Sn=b1+b2+…+bn=2n+2·nn+ 2 1+12[11--1212n]=n2+3n+1 -21n.
分组转化求和通法 若一个数列能分解转化为几个能求和的新数列的和或差,可 借助求和公式求得原数列的和.求解时应通过对数列通项结构特 点进行分析研究,将数列的通项合理分解转化.
如等比数列的前 n 项和公式就是用此法推导的.
[填一填] (1)已知数列{an}的前 n 项和为 Sn,且 an=n·2n,
则 Sn= 2+(n-1)·2n+1 .
(2)12+12+38+…+2nn等于
2n+1-n-2 2n
.
02突破3个热点考向
考向一 分组转化法求和 例 1 [2013·安徽高考]设数列{an}满足 a1=2,a2+a4=8,且 对任意 n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx 满足 f′(2π)=0. (1)求数列{an}的通项公式; (2)若 bn=2(an+21an),求数列{bn}的前 n 项和 Sn.

高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 新人教版

高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 新人教版

第六章 数列 6.4 数列求和教师用书 理 新人教版1.等差数列的前n 项和公式S n =n a 1+a n 2=na 1+n n -2d .2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n n +2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n n +n +6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n n +=1n -1n +1; ②1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(2017·潍坊调研)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n4B.n 2+5n3C.2n 2+3n4D .n 2+n答案 A解析 设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0. ∵d ≠0,∴d =12.∴S n =na 1+n n -2d =n 24+74n .2.(教材改编)数列{a n }中,a n =1n n +,若{a n }的前n 项和S n =2 0172 018,则n 等于( )A .2 016B .2 017C .2 018D .2 019答案 B 解析 a n =1nn +=1n -1n +1, S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1. 令nn +1=2 0172 018,得n =2 017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =-2n1-2+n+2n -2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________.答案 1 008解析 因为数列a n =n cosn π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4. ∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π=1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)na n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n2-n -2+n -2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)nn .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究本例(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n+(-1)n·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+ (2))+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.∴T n=⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n . 解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3, 所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n -n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =a n +n +1b n +n,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n=3(n +1)·2n +1,又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2 =-3n ·2n +2,所以T n =3n ·2n +2.思维升华 错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n=19n +,b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.题型三 裂项相消法求和 命题点1 形如a n =1nn +k型 例3 (2015·课标全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, 可知a 2n +1+2a n +1=4S n +1+3.即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =n3(2n +3).命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2,可得4a=2,解得a =12,则f (x )=12x . ∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n n +k =1k (1n -1n +k ),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎪⎫S n -12,a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.四审结构定方案典例 (12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ――――――→S n 是关于n的二次函数n =k 时,S n 最大 ――――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n 求a n a n =92-n (2)9-2a n 2n=n 2n -1―――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解 当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分](2)证明 ∵9-2a n 2n =n2n -1,∴T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[7分]②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n 2n -1=4-n +22n -1.[11分]∴T n =4-n +22n -1.∴T n <4.[12分]1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.(2016·西安模拟)设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016等于( ) A .0 B .2 016 C .2 015 D .2 014答案 A解析 ∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比,即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2 016,∴S 2 016=(a 1+a 2)+(a 3+a 4)+…+(a 2 015+a 2 016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .82答案 B解析 由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n(2n-1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2当n 为奇数时,-n 2当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .100 C .-100 D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153 B .210 C .135 D .120答案 A解析 令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9++2=153.7.(2016·福州模拟)已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________. 答案 120 解析 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n ) =n +1-1.令n +1-1=10,得n =120.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________. 答案 60解析 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60.9.(2016·大连模拟)若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________. 答案 34-2n +3n +n +解析 由前四项知数列{a n }的通项公式为a n =1n 2+2n, 由1n 2+2n =12(1n -1n +2)知, S n =a 1+a 2+a 3+…+a n -1+a n=12[1-13+12-14+13-15+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)] =12[1+12-1n +1-1n +2] =34-2n +3n +n +.*10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案 9解析 ∵2S n =a 2n +a n ,① ∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0, 即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n , ∴b n =1n n +1+n +n=n +n -n n +1[n n +1+n +n n +n -n n +1]=n +n -n n +1n n +=1n-1n +1,∴T n =1-1n +1,∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n+1.(2)b n =na n =n ·2n+n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n)+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n, 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+ (2)-n ·2n +1=-2n1-2-n ·2n +1,∴T =2(1-2n)+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n n +2, ∴T n =(n -1)·2n +1+n 2+n +42.12.(2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q2,解得q =2或q =-1.又由S 6=a 1·1-q61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n)=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2nb 1+b 2n2=2n 2.*13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝ ⎛⎭⎪⎫14n -1=⎝ ⎛⎭⎪⎫122n +1.(2)证明 由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1), 1c n=1n +n -=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+12-⎝ ⎛⎭⎪⎫1n +1n +1 =34-12⎝ ⎛⎭⎪⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。

2022版新教材高考数学一轮复习第六章数列6.4数列求和学案新人教A版202105192169

2022版新教材高考数学一轮复习第六章数列6.4数列求和学案新人教A版202105192169

6.4数列求和必备知识预案自诊知识梳理1.根本数列求和方法 (1)等差数列求和公式:S n =n(a 1+a n )2=na 1+n(n -1)2d.(2)等比数列求和公式:S n ={na 1,q =1,a 1-a n q1-q=a 1(1-q n )1-q,q ≠1.(3)使用求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法.2.非根本数列求和常用方法(1)倒序相加法:如果一个数列{a n }的前n 项中与首末两端等“距离〞的两项的和相等,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)分组求和法:一个数列的通项公式是由假如干个等差数列或等比数列或可求和的数列组成,如此求和时可用分组求和法,分别求和后再相加减.如a n =2n +(2n-1),求S n .(3)并项求和法:假如一个数列的前n 项和中两两结合后可求和,如此可用并项求和法.如a n =(-1)n f (n ),求S n .(4)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用错位相减法来求,如等比数列的前n 项和公式就是用此法推导的.(5)裂项相消法:把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项公式:①1n(n+k)=1k (1n -1n+k ); ②1(2n -1)(2n+1)=12(12n -1-12n+1); ③1n(n+1)(n+2)=12[1n(n+1)-1(n+1)(n+2)]; ④√n+√n+k=1k (√n +k −√n ). 3.常用求和公式 (1)12+22+32+…+n 2=n(n+1)(2n+1)6;(2)13+23+33+…+n 3=[n(n+1)2]2.考点自诊1.判断如下结论是否正确,正确的画“√〞,错误的画“×〞.(1)当n ≥2时,1n 2-1=1n -1−1n+1. ()(2)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.()(3)假如S n =a+2a 2+3a 3+…+na n ,如此当a ≠0,且a ≠1时,S n 的值可用错位相减法求得. ()(4)如果数列{a n }是周期为k 的周期数列,那么S km =mS k (m ,k 为大于1的正整数). ()(5)等差数列{a n }的公差为d ,如此有1an a n+1=1d (1a n-1an+1). ()2.数列{a n}满足:当n≥2且n∈N*时,有a n+a n-1=(-1)n×3.如此数列{a n}的前200项的和为()A.300B.200C.100D.03.假如数列{a n}的通项公式为a n=2n+2n-1,如此数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-24.(多项选择)曲线C:y2=2x+a在点P n(n,√2n+a)(a>0,n∈N)处的切线l n的斜率为k n,直线l n交x轴、y轴分别于点A n(x n,0),B n(0,y n),且|x0|=|y0|.以下结论中,正确的结论有()A.a=1B.当n∈N*时,y n的最小值为2√33C.当n∈N*时,k n>√2sin√2n+1D.当n∈N*时,记数列{k n}的前n项和为S n,如此S n<√2(√n+1-1)5.(2020某某某某高三第三次模拟)等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4,如此数列{b n}的前50项和T50=.成等比数列.令b n=1a n a n+1关键能力学案突破考分点组求和【例1】{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.解题心得1.分组转化求和数列求和应从通项公式入手,假如无通项公式,如此先求通项公式,然后通过对通项公式变形,转化为等差数列或等比数列或可求前n项和的数列求和.2.分组转化法求和的常见类型对点训练1等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n,求数列{b n}的前n项和T n.考点错位相减求和【例2】(2020全国1,理17)设{a n}是公比不为1的等比数列,a1为a2,a3的等差中项.(1)求{a n}的公比;(2)假如a1=1,求数列{na n}的前n项和.解题心得错位相减法求和的根本步骤与须知事项(1)根本步骤(2)须知事项①在写出S n与qS n的表达式时,应特别注意将两式“错位对齐〞,以便下一步准确写出S n-qS n;②作差后,应注意减式中所剩各项的符号要变号.对点训练2(2020全国3,理17)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜测{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.考点裂项相消求和 (多考向探究)考向1形如a n =1n(n+k)【例3】(2020某某湘东六校联考)数列{a n }的前n 项和S n 满足√S n =√S n -1+1(n ≥2,n ∈N *),且a 1=1.(1)求数列{a n}的通项公式a n;(2)记b n=1,求数列{b n}的前n项和T n.a n·a n+1考向2形如a n=√(n+k)+√n【例4】函数f (x )=x α的图象过点(4,2),令a n =1f(n+1)+f(n),n ∈N *.记数列{a n }的前n 项和为S n ,如此S 2 020=()A.√2019-1B.√2020-1C.√2021-1D.√2021+1 考向3形如a n =ka n(a n -1)(a n+1-1)(a>0,a ≠1)【例5】数列{a n }满足a 1=3,a n+1=2a n -n+1,数列{b n }满足b 1=2,b n+1=b n +a n -n ,n ∈N *.(1)证明:{a n -n }为等比数列; (2)数列{}满足=a n -n(b n +1)(b n+1+1),求证数列{}的前n 项和T n <13.解题心得裂项法求和的根本步骤注意:在应用裂项相消法求和时,消项的规律具有对称性,即消项后前面剩多少项,后面就剩多少项.对点训练3(1)数列{a n}的前n项和为S n,a1=12,2S n=S n-1+1(n≥2,n∈N*).①求数列{a n}的通项公式;②记b n=lo g12a n(n∈N*),求1b n b n+1的前n项和T n.(2)数列{a n}满足a1+4a2+42a3+…+4n-1a n=n4(n∈N*).①求数列{a n}的通项公式;②设b n=4n a n2n+1,求数列{b n b n+1}的前n项和T n.6.4数列求和必备知识·预案自诊考点自诊1.(1)×(2)√(3)√(4)√(5)×2.A由题意,当n取偶数时,a n+a n-1=3,S200=a1+a2+a3+a4+…+a200=(a1+a2)+(a3+a4)+…+(a199+a200)=3×(1+1+…+1)=300,应当选A.3.C S n=2(1-2)1-2+n(1+2n-1)2=2n+1-2+n2.4.ABD由y2=2x+a,当x>0时,y=√2x+a,y'=√2x+a,如此k n=√2n+a ,切线方程为y-√2n+a=√2n+a(x-n),令x=0,如此y=√2n+a,令y=0,如此x=n-(2n+a)=-n-a,即有x n=-n-a,y n=√2n+a,由于|x0|=|y0|,如此|a|=|√a|,解得a=1,故A正确;由于y n=√2n+1,当n∈N*时,令√2n+1=t(t≥√3),如此y n=1+t 2-1 2t =12(t+1t)在(√3,+∞)上单调递增,如此当t=√3时取得最小值,且为1 2(√3√3)=2√33,故B正确;当n∈N*时,k n=√2n+1,令u=√2n+1(0<u≤√3), 如此设f(u)=√2sin u-u,f'(u )=√2cos u-1,由于0<u ≤1√3<π4,如此1√2<cos u<1,即有f'(u )>0,f (u )在0,1√3上单调递增,即有f (u )>0,即有k n <√2sin1√2n+1,故C 错误;当n ∈N *时,记数列{k n }的前n 项和为S n ,k n =√2n+1,由于(a+b 2)2≤a 2+b 22(当且仅当a=b 时,等号成立),如此a+b ≤√2(a 2+b 2),如此有√n +√n +1<√2·√n +n +1,如此有√2n+1<√2√n+√n+1=√2(√n +1−√n ),如此S n =√3√5+…+√2n+1<√2[(√2-1)+(√3−√2)+…+(√n +1−√n )]=√2(√n +1-1),故D 正确.应当选ABD .5.50101因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n-1,如此b n =1(2n -1)(2n+1)=1212n -1−12n+1,如此T 50=121-13+13−15+15−17+…+199−1101=12×1-1101=50101.关键能力·学案突破例1解(1)设等比数列{b n }的公比为q ,如此q=b 3b 2=93=3,所以b 1=b2q =1,b 4=b 3q=27,所以b n =3n -1(n ∈N *).设等差数列{a n }的公差为d.因为a 1=b 1=1,a 14=b 4=27,所以1+13d=27,即d=2.所以a n=2n-1(n∈N*).(2)由(1)知a n=2n-1,b n=3n-1(n∈N*).因此=a n+b n=2n-1+3n-1(n∈N*).设S n为数列{}的前n项和,从而数列{}的前n项和S n=1+3+…+(2n-1)+1+3+…+3n-1=n(1+2n-1)2+1-3n1-3=n2+3n-12(n∈N*).对点训练1解(1)设等差数列{a n}的公差为d,由S3+S4=S5可得a1+a2+a3=a5,即3a2=a5, ∴3(1+d)=1+4d,解得d=2.∴a n=1+(n-1)×2=2n-1.(2)由(1)可得b n=(-1)n-1·(2n-1).当n为偶数时,T n=1-3+5-7+…+(2n-3)-(2n-1)=-n.当n为奇数时,T n=T n-1+b n=-(n-1)+(-1)n-1(2n-1)=-(n-1)+(2n-1)=n.综上,T n=(-1)n+1n.例2解(1)设{a n}的公比为q,由题设得2a1=a2+a3,即2a1=a1q+a1q2.所以q2+q-2=0,解得q=1(舍去),q=-2.故{a n}的公比为-2.(2)记S n为{na n}的前n项和.由(1)与题设可得,a n=(-2)n-1.所以S n=1+2×(-2)+…+n×(-2)n-1,-2S n=-2+2×(-2)2+…+(n-1)×(-2)n-1+n×(-2)n.可得3S n=1+(-2)+(-2)2+…+(-2)n-1-n×(-2)n=1-(-2)n3-n×(-2)n.所以S n=19−(3n+1)(-2)n9.对点训练2解(1)a2=5,a3=7.猜测a n=2n+1.由可得a n+1-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-1)],……a2-5=3(a1-3).因为a1=3,所以a n=2n+1.(2)由(1)得2n a n=(2n+1)2n,所以S n=3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n=3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n=3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1.所以S n=(2n-1)2n+1+2.例3解(1)由得√S n−√S n-1=1(n≥2,n∈N*),∴数列{√S n}为等差数列,又√S1=√a1=1,∴√S n=n,即S n=n2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又a1=1也满足上式,∴a n=2n-1.(2)由(1)知,b n=1(2n-1)(2n+1)=1212n-1−12n+1,∴T n=121-13+13−15+…+12n-1−12n+1=1 21-12n+1=n2n+1.例4C由f(4)=2,可得4α=2,解得α=12,如此f(x)=√x.所以a n=1f(n+1)+f(n)=√n+1+√n=√n+1−√n,所以S2020=a1+a2+a3+…+a2020=(√2−√1)+(√3−√2)+(√4−√3)+…+(√2021−√2020)=√2021-1.例5证明(1)因为a n+1=2a n-n+1,所以a n+1-(n+1)=2(a n-n).又a1=3,所以a1-1=2,所以数列{a n-n}是以2为首项,2为公比的等比数列.(2)由(1)知,a n-n=2·2n-1=2n.所以b n+1=b n+a n-n=b n+2n,即b n+1-b n=2n.b2-b1=21,b 3-b 2=22, b 4-b 3=23,……b n -b n-1=2n-1.以上式子相加,得b n -b 1=21+22+…+2n-1,所以b n =2+2·(1-2n -1)1-2=2n (n ≥2).当n=1时,b 1=2,满足b n =2n ,所以b n =2n . 所以=a n -n(b n +1)(b n+1+1)=2n(2n +1)(2n+1+1)=12n +1−12n+1+1.所以T n =12+1−122+1+122+1−123+1+…+12n +1−12n+1+1=13−12n+1+1<13. 对点训练3(1)解①当n=2时,由2S n =S n-1+1,得2S 2=S 1+1,即2a 1+2a 2=a 1+1,又因为a 1=12,所以a 2=14.又由2S n =S n-1+1, 可知2S n+1=S n +1,两式相减得2a n+1=a n ,即a n+1=12a n (n ≥2).且当n=1时,a 2a 1=12适合上式,因此数列{a n }是首项为12,公比为12的等比数列,故a n =12n (n ∈N *). ②由①与b n =lo g 12a n (n ∈N *),可知b n =lo g 1212n =n ,所以1bn b n+1=1n(n+1)=1n −1n+1.故T n=1b1b2+1b2b3+…+1b n b n+1=1-12+12−13+…+1n−1n+1=1-1n+1=nn+1.(2)解①当n=1时,a1=14.因为a1+4a2+42a3+…+4n-2a n-1+4n-1a n=n4,所以a1+4a2+42a3+…+4n-2a n-1=n-14(n≥2,n∈N*),两式相减得4n-1a n=14(n≥2,n∈N*),所以a n=14n(n≥2,n∈N*).当n=1时也适合上式,故a n=14n(n∈N*).②由①得b n=4n a n2n+1=12n+1,所以b n b n+1=1(2n+1)(2n+3)=1212n+1−12n+3,故T n=1213−15+15−17+…+12n+1−12n+3=1213−12n+3=n6n+9.。

2021版高考数学一轮复习第六章数列第4讲数列求和教案文新人教A版

2021版高考数学一轮复习第六章数列第4讲数列求和教案文新人教A版

第4讲 数列求和一、知识梳理 1.基本数列求和方法 (1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2. (3)2+4+6+8+…+2n =n 2+n . 2.常用的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、习题改编1.(必修5P47B 组T4改编)在数列{a n }中,a n =1n (n +1),则数列{a n }的前n 项和S n= .解析:a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案:nn +12.(必修5P61A 组T4改编)已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为 .解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)当n ≥2时,1n 2-1=1n -1-1n +1.( ) (2)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )(3)若S n =a +2a 2+3a 3+…+na n,当a ≠0,且a ≠1时,求S n 的值可用错位相减法求得.( )答案:(1)× (2)√ (3)√ 二、易错纠偏常见误区(1)并项求和时不能准确分组;(2)用错位相减法求和时易出现符号错误,不能准确“错项对齐”. 1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( )A .9B .8C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n = . 解析:S n =1×2+2×22+3×23+…+n ×2n,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n)1-2-n ×2n +1,所以S n =(n -1)2n +1+2.答案:(n -1)2n +1+2分组转化法求和(师生共研)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)na n ,求数列{b n }的前2n 项和. 【解】 (1)当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)nn . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n , 则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.1.(2020·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C.由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.2.(2020·吉林长春质量监测(二))各项均为整数的等差数列{a n },其前n 项和为S n ,a 1=-1,a 2,a 3,S 4+1成等比数列.(1)求{a n }的通项公式;(2)求数列{(-1)n·a n }的前2n 项和T 2n . 解:(1)设等差数列{a n }的公差为d , 因为a 1=-1,a 2,a 3,S 4+1成等比数列, 所以a 23=a 2·(S 4+1),即(-1+2d )2=(-1+d )(-3+6d ),解得d =2⎝ ⎛⎭⎪⎫d =12舍去,所以数列{a n }的通项公式为a n =2n -3. (2)由(1)可知a n -a n -1=2(n ≥2),所以T 2n =(-a 1+a 2)+(-a 3+a 4)+…+(-a 2n -1+a 2n )=2n .错位相减法求和(师生共研)(2020·郑州市第二次质量预测)已知数列{a n }中,a 1=1,a n >0,前n 项和为S n ,若a n =S n +S n -1(n ∈N *,且n ≥2).(1)求数列{a n }的通项公式;(2)记c n =a n ·2a n ,求数列{c n }的前n 项和T n . 【解】 (1)在数列{a n }中,a n =S n -S n -1(n ≥2) ①,因为a n =S n +S n -1 ②,且a n >0,所以①÷②得S n -S n -1=1(n ≥2), 所以数列{S n }是以S 1=a 1=1为首项,公差为1的等差数列, 所以S n =1+(n -1)×1=n ,所以S n =n 2. 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 当n =1时,a 1=1,也满足上式, 所以数列{a n }的通项公式为a n =2n -1. (2)由(1)知,a n =2n -1,所以c n =(2n -1)×22n -1,则T n =1×2+3×23+5×25+…+(2n -1)×22n -1,4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1,两式相减得,-3T n =2+2(23+25+…+22n -1)-(2n -1)22n +1,=2+2×8(1-22n -2)1-4-(2n -1)22n +1=-103+⎝ ⎛⎭⎪⎫53-2n 22n +1,所以T n =(6n -5)22n +1+109.用错位相减法求和的策略和技巧(1)掌握解题“3步骤”(2)注意解题“3关键”①要善于识别题目类型,特别是等比数列公比为负数的情形.②在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.③在应用错位相减法求和时,若等比数列的公比为参数,应分公比q =1和q ≠1两种情况求解.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8.(1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n}的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,所以q =2.于是a 1=2,所以数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,所以T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,所以T n =1+12+122+…+12n -1-n2n=1-12n -1·121-12-n 2n=2-n +22n.裂项相消法求和(典例迁移)(2020·武汉部分学校调研)已知等差数列{a n }的前三项的和为-9,前三项的积为-15.(1)求等差数列{a n }的通项公式; (2)若{a n }为递减数列,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,依题意知a 2=-3,a 1=-3-d ,a 3=-3+d , 所以(-3-d )×(-3)×(-3+d )=-15,d 2=4,d =±2, 所以a n =-2n +1或a n =2n -7.(2)由题意得a n =-2n +1,所以1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 【迁移探究】 (变设问)在本例条件下,若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:由本例(1)知a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤32n -7,n ≥4,①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3,n 2-6n +18,n ≥4.裂项相消法求和的实质和解题关键裂项相消法求和的实质是先将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[注意] 利用裂项相消法求和时,既要注意检验通项公式裂项前后是否等价,又要注意求和时,正负项相消消去了哪些项,保留了哪些项,切不可漏写未被消去的项.1.(2020·湖北八校联考)已知等差数列{a n }的前n 项和为S n ,且a 9=12a 12+6,a 2=4,则数列⎩⎨⎧⎭⎬⎫1S n 的前10项和为( )A.1112 B.1011C.910D .89解析:选B.设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d =12,又a 2=4,所以a1=2,d=2,所以S n=n2+n,所以1S n =1n(n+1)=1n-1n+1,所以1S1+1S2+…+1S10=⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫110-111=1-111=1011.2.(2020·郑州市第一次质量测试)已知等差数列{a n}的前n项和为S n,且a2+a5=25,S5=55.(1)求数列{a n}的通项公式;(2)设a n b n=13n-1,求数列{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d,由题意⎩⎪⎨⎪⎧a2+a5=2a1+5d=25,S5=5a3=5a1+10d=55,解得⎩⎪⎨⎪⎧a1=5,d=3,所以数列{a n}的通项公式为a n=3n+2.(2)由a n b n=13n-1,得b n=1a n(3n-1)=1(3n-1)(3n+2)=13⎝⎛⎭⎪⎫13n-1-13n+2,T n=b1+b2+…+b n=13⎝⎛⎭⎪⎫12-15+15-18+…+13n-1-13n+2=13⎝⎛⎭⎪⎫12-13n+2=16-19n+6=n2(3n+2).[基础题组练]1.1-4+9-16+…+(-1)n+1n2等于( )A.n(n+1)2B.-n(n+1)2C.(-1)n+1n(n+1)2D.以上答案均不对解析:选C.当n为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1) =-n2(3+2n-1)2=-n(n+1)2;当n为奇数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-[2(n-1)-1]+n2=-n -12[3+2(n -1)-1]2+n 2=n (n +1)2,综上可得,原式=(-1)n +1n (n +1)2.2.在数列{a n }中,a n =2n-12n ,若{a n }的前n 项和S n =32164,则n =( )A .3B .4C .5D .6解析:选D.由a n =2n-12n =1-12n 得,S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -⎝ ⎛⎭⎪⎫1-12n ,则S n =32164=n -⎝ ⎛⎭⎪⎫1-12n ,将各选项中的值代入验证得n =6.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2,当n 为奇数时,-n 2,当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B.由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.4.(2020·江西省五校协作体试题)设S n 是数列{a n }的前n 项和,若a n +S n =2n,2b n =2a n +2-a n +1,则1b 1+12b 2+…+1100b 100=( )A.9798B.9899C.99100D .100101解析:选D.因为a n +S n =2n①,所以a n +1+S n +1=2n +1②,②-①得2a n +1-a n =2n,所以2a n +2-a n +1=2n +1,又2b n =2a n +2-a n +1=2n +1,所以b n =n +1,1nb n=1n (n +1)=1n -1n +1,则1b 1+12b 2+…+1100b 100=1-12+12-13+…+1100-1101=1-1101=100101,故选D.5.在数列{a n }中,若a n +1+(-1)na n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B.由已知a n +1+(-1)na n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.6.等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6= .解析:由a 1=27,a 9=1243知,1243=27·q 8,又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1361-13=3649. 答案:36497.(2020·九江联考)若{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前18项和为 .解析:因为a n b n =1,且a n =n 2+3n +2, 所以b n =1n 2+3n +2=1(n +2)(n +1)=1n +1-1n +2,所以{b n }的前18项和为12-13+13-14+14-15+…+119-120=12-120=10-120=920.答案:9208.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 018项的和等于 .解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 018项的和等于S 2 018=1 009×⎝ ⎛⎭⎪⎫1+12=3 0272.答案:3 02729.已知数列{a n }满足a 1=12,且a n +1=2a n2+a n .(1)求证:数列{1a n}是等差数列;(2)若b n =a n ·a n +1,求数列{b n }的前n 项和S n . 解:(1)证明:因为a n +1=2a n 2+a n ,所以1a n +1=2+a n2a n ,所以1a n +1-1a n =12, 所以数列{1a n }是首项为2,公差为12的等差数列.(2)由(1)知1a n =1a 1+(n -1)×12=n +32,所以a n =2n +3,所以b n =4(n +3)(n +4)=4×(1n +3-1n +4),S n =4×[(14-15)+(15-16)+…+(1n +3-1n +4)]=4×(14-1n +4)=nn +4.10.(2020·广州市综合检测(一))已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解:(1)因为lg a 1=0,lg a 4=1, 所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项. 所以a 2k =a 1a 6=16. 又a n =3n -2>0, 所以a k =4. 因为a k =3k -2, 所以3k -2=4,得k =2.所以等比数列{b n }的公式q =b 2b 1=a 2a 1=4. 所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n -1). [综合题组练]1.(2020·黑龙江牡丹江一中模拟)已知数列{a n }满足a 1=2,4a 3=a 6,⎩⎨⎧⎭⎬⎫a n n 是等差数列,则数列{(-1)na n }的前10项的和S 10是( )A .220B .110C .99D .55解析:选B.设等差数列⎩⎨⎧⎭⎬⎫a n n 的公差为d ,则a 66=a 1+5d ,a 66=a 33+3d ,将已知值和等量关系代入,计算得d =2,所以a nn=a 1+(n -1)d =2n ,a n =2n 2,所以S 10=-a 1+a 2-a 3+a 4-…+a 10=2(1+2+…+10)=110,故选B.2.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n -1= .解析:因为a 1=1,a n +a n +1=12n (n =1,2,3,…),所以S 2n -1=a 1+(a 2+a 3)+…+(a 2n-2+a 2n -1)=1+122+124+…+122n -2=43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n .答案:43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 3.(2019·高考天津卷)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).4.(2020·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,所以T n=-1+12n +1=-2n 2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数-2n +22n +1,n 为奇数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考数学一轮复习精品教学案6.4 数列求和(新课标人教版,
教师版)
【考纲解读】
1.掌握等差、等比数列求和的基本公式及注意事项. 2.理解并能运用数列求和的其他常见方法.
【考点预测】
高考对此部分内容考查的热点与命题趋势为: 1.数列是历年来高考重点内容之一, 在选择题、填空题与解答题中均有可能出现,一般考查一个大题一个小题,难度中低高都有,在解答题中,经常与不等式、函数等知识相结合,在考查数列知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力. 2.2013年的高考将会继续保持稳定,坚持考查数列与其他知识的结合,或在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】
数列求和的常用方法:
1.公式法:直接应用等差数列,等比数列的前n 项和公式,以及公式
222233332211
123(1)(21),123(1)64
n n n n n n n +++⋅⋅⋅+=+++++⋅⋅⋅+=+等.
2.倒序相加法:如果一个数列{}n a ,与首末两项等”距离”的两项之和等于首末 两项之和,可采用把这个和中的项颠倒顺序,然后将两式相加,从而求得.
3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应 项之积所构成,则此时可把其前n 项和的表示式两边同时乘以公比,然后两式相 减,从而求得.
4.裂项相消法:把数列的通项拆成两项(或多项)之差,在求和时一些正负项相互抵消,从而求得其和,
5.分组转化法(或并项法):把数列的每一项分成多个项或把数列的项重新组合, 使其转化为等差数列或等比数列,然后利用相关的求和公式求得. 【例题精析】
考点一 公式法与分组求数列的和 例1. 求11111,2,3,
,(),248
2
n n +
前n 项和.
【解析】设所求的前n 项和为n S ,则
n S =(1+2+3+
+n )+
11124
2n +++
=(1)1
122n
n n ++-.
1. (2012年高考重庆卷文科11)首项为1,公比为2的等比数列的前4项和4S =
考点二 裂项相消法求数列的和
例2.(2010年高考山东卷文科18)已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S .
(Ⅰ)求n a 及n S ;(Ⅱ)令2
1
1
n n b a =
-(n N +∈),求数列{}n b 的前n 项和n T .
2.计算
1111
1447710
(32)(31)
n n ++++
⨯⨯⨯-+= .
考点三 错位相减法求数列的和
例3.(2012年高考浙江卷文科19)已知数列{a n }的前n 项和为S n ,且S n =2
2n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡.
(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .
【变式训练】
3. (山东省济南市2012年2月高三定时练习)
已知数列{}n a 为等差数列,且11=a ,55=a ;设数列{}n b 的前n 项和为n S ,且2n n b S =-.
(Ⅰ)求数列{}n b 的通项公式;
(Ⅱ)若(1,2,3,),n n n n c a b n T =⋅=…为数列{}n c 的前n 项和,求.n T
【易错专区】
问题:错位相减法求数列的和
例. (2012年高考江西卷理科16)已知数列{a n }的前n 项和2
1()2
n S n kn k N *=-+∈,且S n 的最大值为8.
(1)确定常数k ,求a n ; (2)求数列92{
}2
n
n
a -的前n 项和T n 。

【名师点睛】本小题主要考查了平面向量的线性运算,熟练基本知识是解决本类问题的关键. 【课时作业】
1.(2012年高考重庆卷)在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25 【答案】B
【解析】
15242451,5551522a a a a
a a S ++==⇒=
⨯=⨯=.
2.(2012年高考全国卷)已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列
11n n a a +⎧⎫
⎨⎬⎩⎭
的前100项和为( ) A .
100101 B .99101 C .99100 D .101
100
3.(2009年高考湖南卷)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )
A .13
B .35
C .49
D . 63
4.(2011年高考重庆卷文科16)设{}n
a 是公比为正数的等比数列,12a =,324a a =+。

(Ⅰ)求{}n a 的通项公式;
(Ⅱ)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n s .
【解析】(I )设q 为等比数列{}n a 的公比,则由2
1322,4224a a a q q ==+=+得,
即2
20q q --=,解得21q q ==-或(舍去),因此 2.q =
5. (2011年高考全国新课标卷)等比数列
{}
n a 的各项均为正数,且
212326231,9.a a a a a +==
(1)求数列{}n a 的通项公式.
(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫

⎬⎩⎭
的前项和.
【考题回放】
1.(2012年高考辽宁卷)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) (A)58 (B)88 (C)143 (D)176 【答案】B
【解析】在等差数列中,111
1114811
11()
16,88
2
a a
a a a a s
⨯+
+=+=∴==,答案为B
2. (2011年高考天津卷)已知{}n a为等差数列,其公差为-2,且7a是3a与9a的等比中项,
n
S为{}n a的前n
项和, *
n N
∈,则
10
S的值为( )
A .-110 B.-90 C.90 D.
110
3.(2011年高考安徽卷文科7)若数列}
{
n
a的通项公式是()()
n
a n
=-13-2,则
a a a
1210
++=( )
(A) 15 (B) 12 (C ) -12 (D) -15
4. (2012年高考福建卷文科11)数列{a n}的通项公式,其前n项和为S n,则S2012等于( )
A.1006
B.2012
C.503
D.0
5.(2011年高考辽宁卷)已知等差数列{a n}满足a2=0,a6+a8= -10
(I)求数列{a n}的通项公式;
(II)求数列
1
2
n
n
a
-
⎧⎫
⎨⎬
⎩⎭
的前n项和.
【解析】(I)设等差数列{a n}的公差为d,由已知条件可得1
1
0,
21210,
a d
a d
+=


+=-

6. (
山东省济南市2012年2月高三定时练习)已知公差大于零的等差数列{}
n a ,
2349,a a a ++=且2341,3,8a a a +++为等比数列{}n b 的前三项.
(1)求{}{},n n a b 的通项公式; (2)设数列{}n a 的前n 项和为n S ,求
1231111......n
S S S S ++++.。

相关文档
最新文档