初一数学下寒假培优训练讲义--平行线

合集下载

七年级数学下期培优学案(6)平行的判定与性质

七年级数学下期培优学案(6)平行的判定与性质

A D七年级数学培优学案(6) ----平行的判定与性质一、平行线的判定这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角。

解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征。

上述类型题目大致可分为两大类。

一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。

其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。

另一类题目主要是“由角定线”,也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法。

例1.已知如图,指出下列推理中的错误,并加以改正。

(1)∵∠1和∠2是内错角,∴∠1=∠2,(2)∵AD//BC , ∴∠1=∠2(两直线平行,内错角相等) (3)∵∠1=∠2,∴AB//CD (两直线平行,内错角相等)例2.如图,∠1=∠2,∠3=∠4,试EF 是否与GH 平行?二、平行线性质和判定的混合例3.已知如图,∠1+∠2=180°,∠A=∠C ,AD 平分∠BDF ,求证:BC 平分∠DBE 。

例4:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

1.思考:在填写两个依据时要注意什么问题?2.推广:你有其他方法证明这个问题吗?你写出过程。

三、平行线识别中的新型题平行线的识别是初中阶段的基础性问题.学好它有助于后续知识的学习,因此,我们必须对平行线的条件能加以灵活运用.请看这一部分的新型题:(一)开放型例1. 如图1,已知:∠B=∠D ,要使BE∥DF,还需补充什么条件?请说明你的理由.(二)猜想型 例2 、如图2, CE 平分∠BCD,∠1=∠2=70°,∠3=40°,AB 和CD 平行吗?为什么?(三)操作型例3、某驾驶员驾驶汽车在公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )(A )第一次向左拐300,第二次向右拐30(B )第一次向右拐500,第二次向左拐1300(C )第一次向右拐500,第二次向右拐130(D )第一次向左拐500,第二次向左拐1300(四)探索型例4、 如图4,已知∠1=∠2,BD 平分∠ABC,可得到哪两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一作如何改变?四、做辅助线,一题多解题例5、已知如图,∠BED=∠B+∠D 。

七年级培优数学讲义平行线-教师-春季班

七年级培优数学讲义平行线-教师-春季班

学科教师辅导讲义学员学校: 年 级: 七年级 课时数: 学员姓名: 辅导科目: 数学 学科教师:课 题平行线考点及考试要求1.知道平行线的定义2.会画平行线3.掌握平行线的基本性质4.理解并掌握平行线的判定定理第四节 平行线的判定知识点1.平行线:在同一平面内,__________的两条直线叫做平行线。

2.在同一平面内,两条直线的位置关系只有两种:__________。

相交时,对顶角相等。

3.平行线的判定:(1)同位角__________,两直线平行。

(2)内错角相等,两直线__________。

(3)同旁内角__________,两直线平行。

(4)平行(或垂直)于同一直线的两直线__________。

热身练习1、平行线的判定方法① 文字表述: 几何语言:∵∴② 文字表述:几何语言:∵∴③ 文字表述: 几何语言:∵∴b ac 43212、 如图,(1) ∵∠1 = ∠D (已知)∴ ∥ ( ) (2) ∵∠B = (已知)∴AB ∥DC ( )3、 如图,∵∠1 = ∠4 (已知)∴ ∥ ( )∵∠2 = ∠3 (已知)∴ ∥ ( )∵AE ⊥BD ,CF ⊥BD (已知)∴ ∥ ( ) 4、 如图,∵∠1 = ∠B (已知)∴ ∥ ( ) ∵∠1 = ∠2 ( )∠1 + ∠E = 180°(已知)∴∠2 + ∠E = 180°( )∴ ∥ ( )答案:1、①同位角相等,两直线平行; ∠1=∠2; a ∥b 。

②内错角相等,两直线平行;∠2=∠3; a ∥b 。

③同位角相等,两直线平行;∠2=∠4; a ∥b 。

名题精解1EC BDA4321FE A B D C 12C BDE FA1.如图,已知∠ABC +∠BCD +∠EDC = 360°,求证:AB ∥ED2如图,已知∠AEB = ∠CFD ,求证:BE ∥DF3.如图,已知∠2 = ∠3 = 90°,∠1 +∠2 = 180°,求证:AB ∥GD证明:略第五节 平行线的性质知识点平行线的性质:(1)经过直线外一点,有且只有________条直线与这条直线平行。

初一数学下寒假培优训练讲义--平行线

初一数学下寒假培优训练讲义--平行线

初一数学寒假培优训练一(余角,补角以及三线八角,平行线的判定)一、考点讲解:1余角:如果两个角的和是直角,那么称这两个角互为余角.2. 补角:如果两个角的和是平角,那么称这两个角互为补角.3•对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4. 互为余角的有关性质:①/ 1 + Z 2=90 °,则/ 1. / 2互余.反过来,若/ 1,/ 2互余.则/ 1+Z 2=90②同角或等角的余角相等,如果/ I十/ 2=90°,/ 1 + Z 3= 90 °,则/ 2= Z 3 .5. 互为补角的有关性质:①若/ A + / B=180°则/ A. / B互补,反过来,若/ A. / B互补,则/ A+Z B= 180°.②同角或等角的补角相等•如果/ A + Z C=18 0°,Z A+Z B=18 0 °,则Z B=Z C.6. 对顶角的性质:对顶角相等.三、经典例题剖析:例1.如图所示,AOB是一条直线,AOC 90 , DOE 90,问图中互余的角有哪几对?哪些角是相等的?(例1)练习: 1.如图所示,AOE 是一条直线, AOB COD90,贝U(1) 如果 1 30 ,那么 2 _____________ , 3= ___________ 。

(2) _____________________________________ 和 1互为余角的角有 _ 和 1相等的角有 ___________________________________ 例2. / 1和/2互余,/ 2和/ 3互补,/ 仁63°,/ 3=___ 练习: 1. 如果一个角的补角是 150°,那么这个角的余角是 _____________ 2./ 1 和/ 2 互余,/ 2 和/3 互补,/ 3=153°,/ 1=_ ________例 3.若/ 1=2 / 2,且/ 1 + / 2=90°则/ 1=___, / 2=___. 练习: 1.一个角等于它的余角的 2倍,那么这个角等于它补角的()1A.2 倍B. 倍C.5倍2 52.已知一个角的余角比它的补角的还少4,求这个角。

(完整版)七年级数学培优-平行线四大模型

(完整版)七年级数学培优-平行线四大模型

平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。

(完整版)七年级数学下册培优辅导讲义人教版

(完整版)七年级数学下册培优辅导讲义人教版

第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线.⑵画出表示点B 到直线l 1的垂线段. 【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路AB C D EF AB C D EF PQ R A B CE F E A AC D O (第1题图) 1 4 3 2 (第2题图)l 2上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系. 03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4: ∠3和∠5: ∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对F B A OCD E C D B A EO B A CDO AB A E DC F E BA D 1 4 2 3 6 5 A BDCHG E FD .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内角,有“”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行. 【变式题组】 01.如图,推理填空.⑴∵∠A =∠ (已知)∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( ) ⑶∵∠A =∠ (已知)∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( )又∵∠1=∠2(已知)∴ ( ) ∴AB ∥DE ( )03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD .04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .7 1 5 6 8 4 1 2 乙丙 3 23 4 5 61 23 4甲1 A B C2 3 4 5 6 7 A BCDO A BEFCABC DEA BCD E F12A BC D E【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cm B.5cm C.小于4cm D.不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC = .l1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG= . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是()A.1,3 B.0,1,3 C.0,2,3 D.0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成()部分.A.60 B.55 C.50 D.4503.平面上有六个点,每两点都连成一条直线,问除了原来的ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBA BC DEF12AB CDEF第14题图6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有 __________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到? 09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90° D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点; ⑵总共有29个交点. 第13讲 平行线的性质及其应用考点·方法·破译 1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】 两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键. 【解】:∵AB ∥CD BC ∥AD∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38° 【变式题组】 01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为( ) A .155° B .50° C .45° D .25°a b A BC02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACBABC DOE FAEBC (第1题图)(第2题图)E AF GDC B BAMC DN P (第3题图)C DA BE F1 32 G3 C A 1 D 2 E (第1题图) A2 CF 3 E D1B(第2题图)DA2 E1 B C BF E AC D03.如图,两平面镜α、β的夹角θ,入射光线AO 平行于β入射到α上,经两次反射后的出射光线O′B 平行于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCDA D M CN E B 3 1 A B G DC E F ED 2 1 AB Cα β PB C D A∠P =α+β γ Dα B CAFEB A BC AA ′ lB ′C ′的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路【解】过点E 作EH ∥AB . 过点F 作FG ∥AB .1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD 直线平行)∴∠ψ+∠4=180°-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( ) A . ∠β=∠α+∠γ B .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /. 【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离.⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点.⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在/C /,C /A /就得到平移后的三角形A /B /C /.21cm ,作出平移后的图形.知三角形ABC 中,∠C =90°, BC =4,AC=4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积. B B / AA / C C /B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷西 B 30°A 北东南 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高 01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有( )①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动. A .1种 B .2种 C .3种 D .4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)150°120°DBCE湖4321ABEFC D4P231A BEFC D09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.DEAB CE DB CE D AB CED AB CEDA B CFEBACGD培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个 02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A1A 2B 2B 1[即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b 上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有FEBACGD 100°⑶ ⑷ CB 1A A 1C 1D 1BD . B. O . A与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲 实 数 考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =,其中a 的平方根为x 叫做a 的算术平方根. 若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q ≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】F E BAC O A B CD01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -++=∴24242a b a -++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____.02()230b -=,则ab的平方根是____. 03.(天津)若x 、y为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-2 04.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a、b都为有理效,且满足1a b -+=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m、n 2)m+(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a 为17−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】一个实数由小数部分与整数部分组成,17−2=整数部分+小数部分.整数部分估算可得2,则小数部分=17−2 −2=17−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数.11.对于任意不相等的两个数a、b,定义一种运算※如下:a※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____.12.(长沙中考题)已知a、b为两个连续整数,且a<7<b,则a+b=____.13.对实数a、b,定义运算“*”,如下a*b=()()22a b a bab a b⎧⎪⎨⎪⎩≥<,已知3*m=36,则实数m=____.14.设a是大于1的实数.若a,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A.2 B.-1 C.1 D.002.( ) A.0 B.1C.1 D.203−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+则a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足2009a a-=,则a− 20092=_______.m满足关系式试确定m的值.08.(全国联赛)若a、b满足5b=7,S=3b,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且123303030a a a⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a⎡⎤+++⎢⎥⎣⎦g g g2930a⎡⎤++⎢⎥⎣⎦18=,求[10a]的值[其中[x]表示不超过x的最大整数] .10.(北京竞赛试题)已知实数a、b、x、y满足y+21a=-,231x y b-=--,求22x y a b+++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2| ,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD=S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC。

七年级(下)数学 同步讲义 平行线判定及性质

七年级(下)数学 同步讲义 平行线判定及性质

初一数学春季班(学生版)平行线的性质定理知识结构模块一:平行线的性质定理知识精讲平行线的性质定理(1)两条平行线被第三条直线所截,同位角相等;简记为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等;简记为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补;简记为:两直线平行,同旁内角互补.3y°30°x【例1】 如图,AC //DB ,56DBC ∠=,则ACB ∠=__________.【例2】 (1)如图,已知DE //BC ,A C ∠=∠,则与AED ∠相等的角(不包含AED ∠)有______个;(2)如图,若AB //FD ,则B ∠=____________,若AC //ED ,则DFC ∠=__________.【例3】 如图,直线//a b ,则x y -的值等于( ) A .20B .80C .120D .180【例4】 如图,直线//a b ,点B 在直线b 上,且AB BC ⊥,155∠=,则2∠的度数是( ) A .35B .45C .55D .125【例5】 如图,直线//a b ,c d ⊥,则下列说法中正确的个数有()(1)2490∠+∠=;(2)1490∠+∠=;(3)13∠=∠;(4)3490∠+∠=. A .1个B .2个C .3个D .4个【例6】 如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角()例题解析4321a bcd21ABC c d321ABCDEAB CDEFABCD OA .相等或互补B .互补C .相等D .相等且互余【例7】 如图,已知//AB CD ,x ∠等于( )A .75B .80C .85D .95【例8】 如图,////AB CD MP AB MN ,,平分4030AMD A D ∠∠=∠=,,,则NMP ∠等于( ) A .10B .15C .5D .7.5【例9】 如图,//AB CD ,1(220)x ∠=+,2(840)x ∠=-,求1∠及2∠的度数.【例10】 如图,已知140∠=,2140∠=,340∠=,能推断出////AB CD EF 吗?为什么?【例11】 已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的2倍少30°,求∠A 与∠B 的度数.A BCDMNPx 25°120°ABCD21ABC DEFA B CDE F 321N M【例12】 已知:如图,123//B AC DE ∠=∠∠=∠,,,且B 、C 、D 在一条直线上. 试说明//AE BD .【例13】 已知:如图,E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,试说明:∠B =∠C .【例14】 如图,直线GC 截两条直线AB 、CD ,AE 是GAB ∠的平分线,CF 是ACD ∠的平分线,且//AE CF ,那么AB CD ∥吗?为什么?【例15】 如图12∠=∠,//DC OA ,//AB OD ,那么C B ∠=∠,为什么?【例16】 如图,已知AD 平分BAC ∠,12∠=∠,试说明1F ∠=∠的理由.21ABCDEF21AB CDOABC DEF G21ABCDEFGH 4321A BC DE【例17】 已知:如图,AGH B CGH BEF ∠=∠∠=∠,,EF ⊥AB 于F ,试说明CG ⊥AB .【例18】 已知,正方形ABCD 的边长为4cm ,求三角形EBC 的面积.【例19】 如图,AD //BC ,52BC AD =,求三角形ABC 与三角形ACD的面积之比.【例20】 如图,//AB GE ,//CD FG ,BE =EF =FC ,三角形AEG 的面积等于7,求四边形AEFD 的面积.【例21】 已知E 是平行四边形ABCD 边BC 上一点,DE 延长线交AB 延长线于F ,试说明ABE CEF S S ∆∆与相等的理由.【例22】 如图,已知AB ∥ED ,试说明:∥B +∥D =∥C .例题解析模块二:辅助线的添加ABCDEABCDEF A BCDE FGA B CDAB C DEA B CG EF H【例23】 如图所示,已知,++360A B C ︒∠∠∠=,试说明AE ∥CD .【例24】 如图,已知:AB //CD ,试说明:∠B +∠D +∠BED =360︒(至少用三种方法).【例25】 如图所示,在六边形ABCDEF 中,AF ∥CD ,∠A =∠D ,∠B=∠E ,试说明BC ∥EF 的理由.【例26】 如图已知,AB //CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,求∠E 和∠F 的关系.【例27】 如图,已知:AC //BD ,联结AB ,则AC 、BD 及线段AB 把平面分成①②③④四个部分,规定:线上各点不属于任何一个部分,当点P 落在某个部分时,联结P A 、PB ,构成∠P AC 、∠APB 、∠PBD 三个角(提示:有公共角断点的两条重合的射线所组成的角是0°角)(1) 当点P 落在第①部分时,试说明:∠P AC +∠PBD =∠APB ; (2) 当点P 落在第②部分时,试说明:∠P AC +∠PBD =∠APB 是否成立?(3)当点P 落在第③部分时,全面探究∠P AC 、∠APB 、∠PBD 之间的关系是__________,EC B DAABCD EFABCDEFADECB并写出动点P 的具体位置和相应的结论,选择其中一种加以证明.【习题1】 填空:(1) 如图(1),AB //CD ,CE 平分ACD ∠,120A ∠=,则ECD ∠________; (2) 如图(2),已知AB //CD ,100B ∠=,EF 平分BEC ∠,EG EF ⊥, 则DEG ∠=__________.【习题2】 填空:(1)如图,直线//a b ,三角形ABC 的面积是422cm ,AB =6cm ,则a 、b 间的距离 为_________;(2)如图,在三角形ABC 中,点D 是AB 的中点,则三角形ACD 和三角形ABC 的面 积之比为____________.随堂检测aCAbABC DBABCDEFGE ABCD图(1)图(2)【习题3】 如图,已知FC //AB //DE ,::2:3:4D B α∠∠∠=,则α∠、D ∠、B ∠的度数分别为______________.【习题4】 如果两个角的两边分别平行,其中一个角比另一个角的3倍多12°,则这两个角是().A .42°和138°B .都是10°C .42°和138°或都是10°D .以上都不对【习题5】 如图,已知QR 平分∥PQN ,NR 平分∥QNM ,∥1+∥2=90°,那么直线PQ 、MN 的位置关系.【习题6】 如图,已知:AB ∥CD ,EF 和AB 、CD 相交于G 、H 两点,MG 平分∥BGH ,NH平分∥DHF ,试说明:GM ∥NH .【习题7】 如图所示,在直角三角形ABC 中,∠C =90°,AC =3,BC =4,AB =5,三角形内一点O 到各边的距离相等,求这个距离是多少.ABCDEF21N M RQPFG21AB CDEMN H ABCO【习题8】 如图,已知AB ,CD 分别垂直EF 于B ,D ,且∠DCF =60°,∠1=30°.试说明://BM AF .【习题9】 如图,已知直线12//l l ;(1)若1(2)x y ∠=+,2x ∠=,4(30)y ∠=+ 求1∠,2∠,4∠的度数; (2)若2x ∠=,3y ∠=,[]42(2)x y ∠=-,求x 、y 的值.【习题10】 如图,∠ADC =∠ABC ,∠1+∠FDB =180°,AD 是∠FDB 的平分线,试说明BC 为∠DBE 的平分线.【习题11】 如图,已知∠ABC =∠ACB ,AE 是∠CAD 的平分线,问:△ABC 与△FBC 的面积是否相等?为什么?【作业1】 如图,AB //CD ,直线l 分别交AB 、CD 于E 、F ,EG 平分BEF ∠,若40EFG ∠=,则EGF ∠的度数是()A .60B .70C .80D .90课后作业21AB CD EFABCDEF1ABCDEFM4321l 1 l 2A B CDEFGl321F EDCB A【作业2】 如图,AB //CD ,下列等式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .231180∠+∠-∠=D .23190∠+∠-∠=【作业3】 若两直线被第三条直线所截,则下列说法中正确的个数有( )(1)一对同位角的角平分线互相平行,(2)一对内错角的角平分线互相平行, (3)一对同旁内角的角平分线互相平行,(4)一对同旁内角的角平分线互相垂直 A .3个 B .2个 C .1个 D .0个【作业4】 直线a c ∥,且直线a 到直线c 的距离是3;直线//b c ,直线b 到直线c 的距离为5,则直线a 到直线b 的距离为( ) A .2 B .3 C .8D .2或8【作业5】 已知:如图5,∠1=∠2=∠B ,EF ∥AB .试说明∠3=∠C .【作业6】 已知:∠1=60o ,∠2=60o , AB //CD .试说明:CD //EF.【作业7】 如图,已知∠4=∠B ,∠1=∠3,试说明:AC 平分∠BAD .【作业8】 如图,//AD BC ,BD 平分ABC ∠,且:2:1A ABC ∠∠=,求DBC ∠的度数.213ABCD21AB C DE Fl2431A BCD【作业9】 如图,把一个长方形纸片沿EF 折叠后,点D 、C分别落在D ′、C ′的位置. 若∠AED ′=65°,则C FB '∠的度数为___________.【作业10】 如图,已知AD //BC ,AB //EF ,DC //EG ,EH 平分FEG ∠,110A D ∠=∠=,试说明线段EH 的长是AD 、BC间的距离.【作业11】 如图,AB l ⊥,CD l ⊥(点B 、D 是垂足),直线EF 分别交AB 、CD 于点G 、H .如果EGB m ∠=,FGB n ∠=,且(3)EHD m n ∠=-,试求出EGB ∠、BGF ∠、EHD ∠的度数.【作业12】 如图,已知//AB CD ,EG 、FH 分别平分AEF ∠、DFN ∠,那么90GEF DFH ∠+∠=,试说明理由.【作业13】 如图,已知AB ∥EF ,∠B =45°,∠C =x °,∠D =y °,∠E =z °,试说明x 、y 、z之间的关系.EDBC′ F CD ′AABCDEFABC DE FGHlABCDEFG HNABCDEFGH AB CD。

七年级数学下册培优辅导讲义

七年级数学下册培优辅导讲义

-- 第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角. 【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线.⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ R ABCE F O E A ACD O (第1题图) 1 4 3 2 (第2题图)l 2-- 02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越 来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:∠1和∠2:∠1和∠3:∠1和∠6: ∠2和∠6: ∠2和∠4: ∠3和∠5: ∠3和∠4: 【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称. 【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角 【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• F B A OC D E C DBAEO B A C DO A B AE D CF EB A D1 423 6 5A BDC H G E F 7 1 5 6 8 4 1 2 乙丙3 23 4 5 6 12 3 4 甲1A B C2 3 456 7--⑴∠CBD =∠ADB ;⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内角,有“”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行. 【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知)∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( ) ⑶∵∠A =∠ (已知) ∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系.解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知)∴ ( )又∵∠1=∠2(已知)∴ ( )∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD .04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°. 【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a 1,a 2,…,a 2010,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5……那么a 1与a 2010的位置关系是 .03.已知n (n >2)个点P 1,P 2,P 3…Pn .在同一平面内没有任何三点在同一直线上,设S n 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S 2=1,S 3=3,S 4=6,∴S 5=10…则Sn = .ABC DOA BD E FCABCDEA BC E1 2 A B C D E F l 1l 2 l 3 l 4 l 5 l 6图⑴l 1l 2l 3l 4 l 5l 6 图⑵--演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°.下列说法正确的是( )A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( )A .∠AMFB .∠BMFC .∠ENCD .∠END 03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离 04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BDA .0B . 2C .4D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= . 07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知)∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A EBCF DA BCDF EMNα第1题图 第2题图A BDC第4题图 A CDEB A BCDEF12--培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或 3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到? 09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点;⑵总共有29个交点. 第13讲 平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用. 经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥38°,求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38° 【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为( ) A .155° B .50° C .45° D .25°AB C D E F第14题图a b ABC--02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( ) A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB 03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 ABCDOEFAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)C DA B E F 132G 3 C A 1 D 2 E (第1题图)A 2 CF 3 E D1 B(第2题图)--DA 2 E1 B C B F E A C D α β P B C D A∠P =α+β3 21 γ 4ψ D α βE B C AFH 于β入射到α上,经两次反射后的出射光线O′B 平行于α,则角θ等于_________.【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =(垂直定义)∴EG ∥AD ∵∠1=∠3 ∴∠3=∠BAD ∴AD 平分∠BAC (角平分线定义) 【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC . 02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .3.已知如图,AB ∥CD ,∠B =40°,CN 是∠BCE的平分线. CM ⊥CN ,求:∠BCM 的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360°【解法指导】从考虑360°这个特殊角入手展开联想,分析类比,联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行∴∠2+∠CFE =180°(两直线平行, ) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 】 AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 论:⑴____________________________ ⑵⑶____________________________ ⑷【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路.【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )BAP CA C CDA A P CB DPBPDBD⑴⑵⑶⑷A D M C N EB FE D 2 1 AB C--F γ Dα β E B CA FD EB C A西30°A A . ∠β=∠α+∠γ B .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =求∠BFD 的度数. 【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /. 【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /. 【变式题组】 01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形. 02ABC 中,∠C =90°, BC =4,AC =沿CB 方向平移到△A /B /C /的位置,3, 求△ABC 与△A /B /C /的重叠部分. 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)) 60° 60°.C .3个D .4个 03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( )A .第一次向左拐30°,第二次向右拐30°B .第一次向右拐50°,第二次向左拐130° C .第一次向左拐50°,第二次向右拐130° D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]--150°120°DBCE湖4321ABEFC D从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52°B.南偏东52°C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?DAB CEDB CED AB CED AB CEA B CP.P.P.P.⑴⑵⑶⑷--15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测 01.如图,等边△ABC △ABC 内能与△DEF 25个,那么在△ABC 内由△DEF 角形共有( )个02.如图,一足球运动员在球场上点A B 点沿着BO 以匀速直线奔跑前去拦截足球.平移方向及最快能截住足球的位置.03.如图,长方体的长AB =4cm ,宽高AA 1=2cm . 将AC 平移到A 1C 1时,平移的距离是___________,是___________. 04的边长均为a ,竖直方向的边长为b 段A 1A 2向右平移1个单位得到B 1B 封闭图形A 1A 2B 2B 1 [将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144° 06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b 上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .2006 07.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .⑶ ⑷F E B A CG D08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值. ⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA 10.平面上有5成的角中,至少有一个角不超过36°,11.如图,正方形ABCD 的边长为5,对角线作小正方形,这n 12.如图将面积为a 2的小正方形和面积为b 2何求出阴影部分面积?第06讲 实 数考点·方法·破译1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为x a 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q ≠0)的形式.3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析 【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .____. m m 的平方根是____.____. x 为64时,输出的y 是____.FEBACGD100°--【例2】(全国竞赛)已知非零实数a 、b满足24242a b a -++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -++=∴24242a b a -++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____.02()230b -=,则ab的平方根是____. 03.(天津)若x 、y为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( ) A .1 B .-1 C .2 D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a、b都为有理效,且满足1a b -+=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m、n 2)m+(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a −2的整数部分,b −1是9的平方根,且a b b a -=-,求a+b 的值.【解法指导】−2=整数部分+小--数部分.整数部分估算可得2,则小数部分=17−2 −2=17−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3 D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a b+,如3※2=3232+-=5.那么12.※4=____.12.(长沙中考题)已知a、b为两个连续整数,且a<7<b,则a+b=____.13.对实数a、b,定义运算“*”,如下a*b=()()22a b a bab a b⎧⎪⎨⎪⎩≥<,已知3*m=36,则实数m=____.14.设a是大于1的实数.若a,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A.2 B.-1 C.1 D.002.(黄冈竞赛)代数式x+1x-+2x-的最小值是( )A.0 B.1+2C.1 D.203.代数式53x+−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+b3=21−53,则a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足20092010a a a-+-=,则a− 20092=_______.m满足关系式3523199199x y m x y m x y x y+--++-=-+--,试确定m的值.08.(全国联赛)若a、b满足35a b+=7,S=23a b-,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且----123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲 平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系. 2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积. 经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A (2,1),B (1,2),C (-1,2),D (-2,-1),E (0,3),F (-3,0) 【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性. 【变式题组】 01.第三象限的点P (x ,y ),满足|x |=5,2x +|y |=1,则点P 得坐标是_____________. 02.在平面直角坐标系中,如果m.n >0,那么(m , |n |)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A (-3,0),B (-2,-13),C (2,12),D (0,3),E (π-3.14,3.14-π) 【例2】若点P (a ,b )在第四象限,则点Q (―a ,b ―1)在( )A .第一象限B .第二象限C .第三象限D .第四象限【解法指导】∵P (a ,b )在第四象限,∴a >0,b <0,∴-a <0, b -1<0,故选C .【变式题组】01.若点G (a ,2-a )是第二象限的点,则a 的取值范围是( )A .a <0B .a <2C .0<a <2 B .a <0或a >202.如果点P (3x -2,2-x )在第四象限,则x 的取值范围是____________. 03.若点P (x ,y )满足xy >0,则点P 在第______________象限.04.已知点P (2a -8,2-a )是第三象限的整点,则该点的坐标为___________.【例3】已知A 点与点B (-3,4)关于x 轴对称,求点A 关于y 轴对称的点的坐标.【解法指导】关于x 轴对称的点的坐标的特点:横坐标(x )相等,纵坐标(y )互为相反数,关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y )相等.【变式题组】01.P (-1,3)关于x 轴对称的点的坐标为____________. 02.P (3,-2)关于y 轴对称的点的坐标为____________. 03.P (a ,b )关于原点对称的点的坐标为____________.04.点A (-3,2m -1) 关于原点对称的点在第四象限,则m 的取值范围是____________.05.如果点M(a +b ,ab )在第二象限内,那么点N (a ,b ) 关于y 轴对称的点在第______象限.【例4】P (3,-4),则点P 到x 轴的距离是____________.【解法指导】P (x ,y )到x 轴的距离是| y |,到y 轴的距离是|x |.则P 到轴的距离是|-4|=4【变式题组】01.已知点P (3,5),Q (6,-5),则点P 、Q 到x 轴的距离分别是_________,__________.P 到y 轴的距离是点Q 到y 轴的距离的________倍. 02.若x 轴上的点P到y 轴的距离是3,则P 点的坐标是__________.03.如果点B (m +1,3m -5) 到x 轴的距离与它到y 轴的距离相等,求m 的值. 04.若点(5-a ,a -3)在一、三象限的角平分线上,求a 的值.05.已知两点A (-3,m ),B (n ,4),AB ∥x 轴,求m 的值,并确定n 的取值范围.【例5】如图,平面直角坐标系中有A 、B 两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD=S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC 的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.【例7】如图所示,在平面直角坐标系中,横、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有__________个.【解法指导】寻找规律,每个正方形四条边上的整点个数为S =8n,所以S10=8×10=80个.【变式题组】01.如图所示,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA3B3变换成△OA4B4,则A4的坐标是____________,B4的坐标是_____________;(2)若按(1)题找到的规律将△OAB进行n次变换,得到三角形△OA n B n,推测A n的坐标是_____________,B n的坐标是_____________.【解法指导】由AA1A2A3、BB1B2B3的坐标可知,每变换一次,顶点A的横坐标乘以2,--。

七年级下平行线的判定及性质讲义(1)

七年级下平行线的判定及性质讲义(1)

平行线与相交线的判定与性质讲义一.知识再现:平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

二.例题评析1.如图1-18,直线a∥b,直线AB交a与b于A,B,CA平分∠1,CB平分∠2,求证:∠C=90°.2.如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.3.如图1-25所示.若∠A 1+∠A 2+…+∠A n =∠B 1+∠B 2+…+∠B n-1,问AA 1与BA n 是否平行?4.如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .三.知识点专练知识点1:平行和角平分线、三角形1如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=o ,则2∠= .ABCDE F1 232如图,已知//,30,AD BC B DB ∠=o平分,ADE ∠则DEC ∠为( ).(A )30o (B )60o (C )90o (D )120oADBEC3如图,已知:AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,请说明:AE ⊥CF.ABDCE知识点2:方程与角1.一个角的余角等于这个角的补角的13,求这个角.2如图,直线AB,CD 相交于O 点,OM ⊥AB. (1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC 与∠MOD.MN1O A B D C2知识点3:平行中的模型1如图,AB//CD ,若∠ABE =130o ,∠CDE =152o ,则∠BED = .ACBDE2如图,已知AB //CD ,(1)你能找到∠B 、∠D 和∠BED 的关系吗? (2)如果∠B =46o ,∠D =58o ,则∠E 的度数是多少?ABCE知识点4:填写简单证明1如图,直线AB 、CD 被EF 所截,若已知AB //CD ,试完成下面填空.∵AB //CD (已知),∴1∠=∠ (两直线平行, )又∵23∠=∠,( )∴∠ =∠ .B DE 13A CF2四.中考直击1.(2008年安徽省)如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= ____。

著名机构数学讲义寒假06-七年级培优版-平行线-教师版

著名机构数学讲义寒假06-七年级培优版-平行线-教师版

教师姓名冯娜娜学生姓名年级初一上课时间单击此处输入日期。

学科数学课题名称平行线平行线知识模块Ⅰ:平行线的概念和性质1、平行线的概念:在同一平面内不相交的两条直线叫做平行线;“平行”用符号“∥”,直线a和直线b平行,记作“a∥b”,读作“a平行于b”注意:①“在同一平面内”是定义的首要前提条件,不可缺少,因为在空间里,还存在两条直线既不相交,也不平行的情况;②“不相交”是说两条直线向两个方向怎样延长都不会相交;③平常所说的两条射线或线段平行,实质上是指它们所在的直线平行;④在同一平面内,两条不重合的直线只有两种位置关系:平行与相交2、平行线的基本性质:(1)经过直线外一点,有且只有一条直线与已知直线平行;(2)在同一平面内垂直于同一条直线的两条直线平行.【例1】在同一平面内有三条直线,如果要使其中两条且仅有两条平行,那么它们()A、没有交点;B、只有一个交点;C、有两个交点;D、有三个交点;【答案】C【例2】垂直于同一条直线的两直线_______平行.(填写“一定”或“不一定”)【答案】不一定;【例3】平面内不重合的两条直线有______个交点.【答案】1或0【例4】下列说法错误的是()A、同位角相等;B、过直线外一点有且只有一条直线和已知直线平行;C、和已知直线平行的直线有无数条;D、垂直于同一条直线的两直线平行;【答案】A【例5】下列四个说法中,正确的个数是()①在同一平面内,两条直线不平行就相交;②过一点有且只有一条直线与已知直线平行;③说两条射线或线段平行是指它们所在的直线平行;④两条不相交的直线是平行线.A、1B、2C、3D、4【答案】A知识模块Ⅱ:平行线的判定定理平行线的三种判定方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说,同位角相等,两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说,内错角相等,两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说,同旁内角互补,两直线平行.【例6】如图1,CE平分∠ACD,∠1= ∠B,请说明AB∥CE的理由.【答案】根据角平分线的概念,结合已知条件,等量代换得到一组同位角相等,判定两直线平行;【例7】如图2,已知∠ 1=∠ 3,∠ 2+∠ 3=180︒,你可以判断哪几组直线平行?【答案】可以判断AB∥DE,BC∥EF∵∠ 1=∠ 3,∠ 2+∠ 3=180︒∴ ∠ 1+∠ 3=180︒∴ AB∥DE(同旁内角互补,两直线平行)同理BC∥EF【例8】如图,在四边形ABCD中,AE平分∠ BAD,CF平分∠ BCD,∠ BAD与∠ BCD互补,∠ DFC与∠ DCF互余,说明AE∥CF.【答案】∵AE平分∠ BAD∴∠ DAE =12BAD∠∵CF平分∠ BCD∴∠ DFC=12BCD∠∵∠ BAD与∠ BCD互补∴∠ DFC与∠ DAE互余∵∠ DFC与∠ DCF互余∴∠ DAE =∠ DFC ∴AE∥CF【例9】如图,已知∠1=120°,∠D=60°,∠2=∠A,说明AB∥DE的理由?【答案】因为∠1=120°(已知)21O DAEB因为∠1+∠2=180°(平角的意义) 所以∠2=180°-120°=60°(等式性质) 因为∠D =60°(已知) 所以∠2=∠D (等量代换) 因为∠2=∠A (已知) 所以∠A =∠D (等量代换)所以AB ∥DE (内错角相等,两直线平行)【例10】如图,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。

初一下数学培优辅导4(平行线与相交线1)

初一下数学培优辅导4(平行线与相交线1)

初一下数学培优辅导4平 行 线 与 相 交 线(1)知识积累:1.余角与补角的定义及性质.2.对顶角的定义与性质.3. 平行线的条件(判定).4.平行线的特征.例1:如图,∠1=∠2,∠C =∠D ,那么∠A =∠F ,为什么?例2:如图,AB ∥CD ,∠1=∠2,∠BEF 与 ∠EFC 相等吗?为什么?例3:如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠ AED 与∠C 的关系。

例4:如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC // ED ,CE 是∠ACB 的平分线, 求证:∠EDF = BDFA C BDF E 1432FE D C B A 15432F E D C B A12F ED C B A例5:已知,射线CB // OA,∠C = ∠OAB = 1000,E、F在CB上,且满足∠FOB = ∠AOB,OE平分∠COF(1)求∠EOB的度数。

(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变化,求出这个比值。

(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC = ∠OBA?若存在,求出其度数,若不存在,说明理由。

一、填空题:1、如图1,∠1和∠2是直线_______和直线________被直线_____所截得的同位角,∠2和∠3是直线_____和直线________被直线______所截得的__________角。

(1) (2) (3) (4)2、如图2,AC、BC分别平分∠DAB、∠ABE,且∠1与∠2互余,则______∥_______,理由是_________________________________________。

3、如图3所示,是同位角是的_________________,是内错角的是___________________,是同旁内角关系的是______________________________。

初一数学下寒假培优训练二平行线的性质

初一数学下寒假培优训练二平行线的性质

初一数学下寒假培优训练二(平行线的性质)一、知识点讲解:平行线的特征 两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角角互补。

例1:如图所示,AB ∥CD ,AC ∥BD 。

分别找出与∠1相等或互补的角。

例2:如图,AB ∥CD ,∠B=∠D ,,比较∠A 和∠C 的大小,你是怎样推论的?例3 如图,AB ∥CD ,求证:∠E =∠A +∠C .例4 如图,已知AB ∥CD ,∠BAE =40°,∠ECD =62°,EF 平分∠AEC .求∠AEF 的度数.例5 如下图,已知CB ⊥AB ,点E 在AB 上,且CE 平分∠BCD ,DE 平分∠ADC ,∠EDC +∠DCE =90°.求证:DA ⊥AB .例6 如图2—37,AB ∥CD ,直线EF 分别交AB 、CD 于正、F ,EG 平分∠BEF ,若∠1=72°,则∠2=___度.例7 已知:如图2—39,直线MN 的同侧有三个点A 、B 、C ,且AB ∥MN ,BC ∥MN . 求证:A 、B 、C 三点在同一直线上.例8 求证:三角形的内角和等于180°. 证明:如图2-43,C ABD1 A BCD点拨:(1)聪明的同学会问:过A点作EF∥BC,可达到证明的目的;那么过B点或C点作平行线是不是也可行?——均可行.这就是思维的灵活性;(2)让思维飞扬起来:本题可以推广吗?-—可以.三边形(即三角形)的内角之和为180°;四边形的内角和为2×180°(如图2-44);五边形的内角和为3×180°;……;n边形的内角和为(n-2)180°(n边形可以分为(n—2)个小三角形的内角和).二:巩固训练1.如图2—46,两条直线被第三条直线所截,则( )A.同位角必相等B.内错角必相等C。

同旁内角必互补D.同位角不一定相等2.下列说法正确的是()A.两条平行线被第三条直线所截,那么有3对内错角相等B.平行于同一直线的两直线平行C.垂直于同一直线的两直线垂直D.两直线被第三条直线所截,同位角相等3.如图2-47,DE∥BC,DF∥AC.在图中和∠C相等的角有()A.1个B.2个C。

著名机构初中数学培优讲义平行线.第02讲(A级).教师版

著名机构初中数学培优讲义平行线.第02讲(A级).教师版

内容 基本要求略高要求较高要求 平行线及其判定了解平行线的概念,理解同一平面内两条直线的位置关系,掌握平行公里及推论,会画平行线掌握平行公里及推论,掌握平行线的三种判定方法运用平行线的判定方法解决实际问题初步了解推理论证的方法,逐步培养逻辑推理能力平行线性质知道过直线外一点有且仅有一条直线平行于已知直线理解两条平行线之间距离的意义,会度量两条平行线之间的距离会用三角尺或直尺过已知直线外一点画这条直线的平行线 掌握平行线的性质,会判断两条直线是否平行平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。

平行线的性质:平行线之间的距离处处相等. 两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。

因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)注意:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)平行线的画法:平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为: 一“落”(三角板的一边落在已知直线上), 二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点), 四“画”(沿三角板过已知点的边画直线).平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定两直线平行的判定方法中考要求平行线方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 方法四 垂直于同一条直线的两条直线互相平行方法五 (平行线公理推论)如果两条直线都与第三条直线平行,那么这两条直线也互相平行 方法六 (平行线定义)在同一平面内,不相交的两条直线平行平行线的性质:性质一:两条平行线被第三条直线所截,同位角相等简称:两条直线平行,同位角相等性质二:两条平行线被第三条直线所截,内错角相等简称:两条直线平行,内错角相等性质三:两条平行线被第三条直线所截,同旁内角互补简称:两条直线平行,同旁内角互补两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这两 条平行线的距离。

七年级数学培优提高讲义:相交线与平行线(一)

七年级数学培优提高讲义:相交线与平行线(一)

七年级数学:相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。

4.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.5.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.6.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________.7.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ . 8.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学寒假培优训练一(余角,补角以及三线八角,平行线的判定)一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角. 2.补角:如果两个角的和是平角,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角. 4.互为余角的有关性质:① ∠1+∠ 2=90°,则∠1.∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○. ②同角或等角的余角相等,如果∠l 十∠2=90○,∠1+∠ 3= 90○,则∠ 2= ∠ 3. 5.互为补角的有关性质:①若∠A +∠B=180○则∠A.∠B 互补,反过来,若∠A.∠B 互补,则∠A+∠B =180○. ②同角或等角的补角相等.如果∠A + ∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C . 6.对顶角的性质:对顶角相等. 二、互为余角.互为补角.对顶角比较三、经典例题剖析:例1.如图所示,AOB 是一条直线,︒=∠︒=∠90,90DOE AOC ,问图中互余的角有哪几对?哪些角是相等的?(例1)ABEOCD12 3 4练习:1. 如图所示,AOE 是一条直线,︒=∠=∠90COD AOB ,则 (1)如果,301︒=∠那么=∠2 ,3∠= 。

(2)和1∠互为余角的角有 和1∠相等的角有例2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=_ _ (练习1) 练习:1. 如果一个角的补角是150○,那么这个角的余角是_________ 2. ∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_ 例3. 若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___. 练习:1. 一个角等于它的余角的2倍,那么这个角等于它补角的( )A.2倍B.21倍 C.5倍 D.51倍 2. 已知一个角的余角比它的补角的135还少︒4,求这个角。

四、巩固练习:1._______的余角相等,_______的补角相等. 2.一个角的余角( )A.一定是钝角B.一定是锐角C.可能是锐角,也可能是钝角D.以上答案都不对 3.下列说法中正确的是( )A .两个互补的角中必有一个是钝角B .一个角的补角一定比这个角大C .互补的两个角中至少有一个角大于或等于直角D .相等的角一定互余 5.若两个角互补,则( )A.这两个都是锐角B.这两个角都是钝角C.这两个角一个是锐角,一个是钝角D.以上结论都不对 6.一个角的余角比它的补角的九分之二多1°,求这个角的度数. 7.下列说法中正确的是( ) A.相等的角是对顶角B.不是对顶角的角不相等C.对顶角必相等D.有公共顶点的角是对顶角8.三条直线相交于一点,所成对顶角有( ) A.3对B.4对C.5对D.6对9.下列说法正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.两条直线相交所成的角是对顶角D.互补且有一条公共边的两个角是邻补角10.如图l -2-1,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠ 1=15○30’,则下列结论中不正确的是( )A .∠2 =45○B .∠1=∠3C .∠AOD 与∠1互为补角 D .∠1的余角等于75○30′ 11.为下面推理填写理由。

(1)βα∠∠, 互为余角(已知),︒=∠+∠∴90βα( ) (2)如图所示, AB.CD 相交于点O (已知),21∠=∠∴( ) (3)32,21∠=∠∠=∠ (已知),31∠=∠∴( )(4)︒=∠+∠90C A ,︒=∠+∠90C B (已知),∴∠A=∠B ( ) (11题) 五.关于同位角.内错角和同旁内角1.共同点:都是两条直线被第三条直线所截得到的不具有共公顶点的两个角之间的关系,这两个角有一条边在同一直线上。

2.不同点:同位角在两条直线的“同方”,第三条直线的“同侧”,(简称:位置相同的角,形状呈“F ”字形)。

内错角的两条直线“内侧”,第三条直线“两旁”(位置错开,形状呈“Z ”字形)。

同旁内角在两直线之间,第三条直线“同旁”(形状呈“C ”字形)。

另外注意:寻找“三线八角”关键是找准截线,截线是公共边所在的那条直线。

六.角位置的确定巩固练习:1.如图1所示,直线a ,b ,c 两两相交,共构成 对对顶角。

2.如图2,能与∠1构成同位角的角有( )A.2个 B.3个 C.4个 D.5个 3.如图2,能与∠1构成同旁内角的角有( )A.2个 B.3个 C.4个 D.5个 4.如图3所示,已知四条直线AB ,BC ,CD ,DE 。

问:①∠1=∠2是直线______和直线______被直线_____所截而成的____角.②∠1=∠3是直线_____和直线_____被直线_____所截而成的____角. ③∠4=∠5是直线______和直线______被直线_____所截而成的____角. ④∠2=∠5是直线______和直线______被直线_____所截而成的____角.5.如图4所示,下列各组判断错误的是( ).(A )∠2和∠3是同位角 (B )∠1和∠3是内错角 (C )∠2和∠4是同旁内角 (D )∠1和∠2是内错角七.直线平行的条件(又叫平行线的判定);1.同位角相等,两直线平行; 2.内错角相等,两直线平行;3.同旁内角互补,两直线平行; 4.同时平行于第三条直线的两条直线也互相平行。

O 1 2ACBD例1.如图所示,1∠和4∠是什么角?由哪两条直线被什么样的第三条直线所截?2∠和3∠呢?2∠和4∠呢?1∠和A ∠呢?A ∠和2∠呢?练习: (例1)1. 如图所示,根据下列条件:︒=∠+∠∠=∠∠=∠180,,B BED F ACB AOD A ,可以判定那两条直线平行,并说明判定的依据。

(练习1) (练习2)2.如图所示,AB.CD 两相交直线与EF.MN 两平行直线与EF.MN 两平行直线相交,试问一共可以得到同旁内角多少对?例 2.如图,已知∠B+∠C+∠D=360°,则AB ∥ED ,为什么? 练习: 1.已知:如图,∠B 1+∠B 2=∠A 1+∠A 2+∠A 3 (即向左凸出的角的和等于向右凸出的角的和),求证:AA 1∥BA 32.如图所示,已知︒=∠︒=∠︒=∠︒=∠10,30,45,25E CDE BCD B ,试说明,AB 与EF 有怎样的位置关系?并说说你判断的理由。

(练习2)ACE F NMDB ABCDE(例2)AA 1 A 2A 3B 1 B 2B (练习 1)ABCDEF例 3.如图所示,直线AB.CD 被直线EF 所截,如果∠1=∠2,∠CNF=∠BME ,那么AB ∥CD ,MP ∥NQ ,请说明理由。

练习:1.如图所示,直线b a ,被直线c 所截,1∠的3倍等于3,2∠∠是1∠的余角,求证:a ∥b .(练习1)2.已知:如图,AD ⊥BC ,EF ⊥BC ,∠1=∠2,求证:AB ∥GF例4.给下列证明过程填写理由:已知:如图所示,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2,求证:BE ∥CF .证明:∵AB ⊥BC 于B ,CD ⊥BC 于C,( )∴∠1+∠3=90°,∠2+∠4=90°( ) ∴∠1与∠3互余,∠2与∠4互余.( ) 又∵∠1=∠2,( ) ∴_______=_______.( )∴BE ∥CF .( )练习:已知:如图2-18,直线AB.CD.EF 交于点O ,AB ⊥CD ,∠1=27°.求:∠2,∠FOB 的度数. 解:∵AB ⊥CD ,(已知)∴∠COB=______( )∵∠1=27°(已知) ∴∠3=______,∵∠3______∠2( )∴∠2=______( ) ∵∠2+∠FOB=______( ) ∴∠FOB=______.A B E13CDF 24 (例4)1 23 b a c A BCDFEG 12(练习2)八.巩固练习1.下列说法正确的是( ) A.同位角相等B.同旁内角互补C.若︒=∠+∠+∠180321,则3,2,1∠∠∠互补D.对顶角相等 2.同一平面内有三条直线c b a ,,,若c b b a ⊥⊥,,则a 与c ( )A.平行B.垂直C.相交D.重合3.一个人从A 点出发向北偏东︒60方向走了4m 到B 点,两从B 点向南偏西︒15的方向走了3m 到C 点,那么ABC ∠等于( )A.︒45B.︒75C.︒105D.︒1354.如图2-11,直线AB.CD 相交于O 点,∠AOD 与∠BOD 叫做______角;∠AOD 与∠BOC 叫______角;若∠AOD=2∠BOD ,则∠BOD=______度,∠AOC=______度.5.如图2-14,直线AD.BC 被CE 所截,∠C 的同位角是______,同旁内角是______;∠1与∠2是_____.____被____所截得的_____角;AB.CD 被AD 所截,∠A 的内错角是______,∠A 和∠ADC 是______角;AB.CD 被BD 所截,_______和______是内错角.6.如图2-15,∵AO ⊥OC ,OB ⊥OD ∴∠1______∠2( )7.已知:如右图,FE ⊥AB ,CD ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。

8.已知:如图2-17,COD 是直线,且∠1=∠3,说明A.O.B 三点在一条直线的理由可以写成:∵COD 是一条直线( )∴∠1+∠2=______( ) ∵∠1=∠3( ) ∴ ∠______+∠3=______ ∴A,O,B 在一条直线上.初一数学寒假培优训练二 (平行线的性质)一.知识点讲解:平行线的特征 1.两直线平行,同位角相等。

2.两直线平行,内错角相等。

3.两直线平行,同旁内角角互补。

例1 如图所示,AB ∥CD ,AC ∥BD 。

分别找出与∠1相等或互补的角。

(例1) 练习:1.如图2—46,两条直线被第三条直线所截,则 ( )A.同位角必相等 B .内错角必相等 C.同旁内角必互补 D .同位角不一定相等 2.如图2—47,DE ∥BC ,DF ∥AC .在图中和∠C 相等的角有 ( )A .1个B .2个 C. 3个 D .4个例2 如图,AB ∥CD ,∠B=∠D ,,比较∠A 和∠C 的大小,你是怎样推论的?(例2)练习:1. 如图2—54,若AB ∥EF ,BC ∠DE ,则∠E+∠B=___________.2. 如图2—55,已知∠1=∠2,∠BAD=57°,则∠B=________.3. 如图2—56所示,CD 平分∠ACB ,DE ∥BC ,∠AED=70°,则∠EDC=______.C ABD1A BCD例3 如图,AB∥CD,求证:∠E=∠A+∠C.(例3)练习:1.如图2—58,AB∥CD,则∠1+∠A+∠B=______.2.完成下列推理:如图2—59,已知∠1=36°,∠C=74°,∠B=36°,求∠4的度数.∵∠1= ______ =36°,∴_______∥________ ( ).∴∠4=______=________( ).3. 如图2—43,求证:三角形的内角和等于180°.例4 如图,已知AB∥CD,∠BAE=40°,∠ECD=62°,EF平分∠AEC.求∠AEF的度数.(例4)练习:1.如图2—52所示,AB∥CD,∠1=50°,则∠2=___________.2.如图2—53,∠ABD=∠CBD,DF∥AB,DE∥BC,则∠1与∠2的大小关系是________.例5 如下图,已知CB⊥AB,点E在AB上,且CE平分∠BCD,DE平分∠ADC,∠EDC+∠DCE=90°.求证:DA⊥AB.(例5)练习:1.已知:如图2—60,∠1=∠2,∠C=∠D.求证:∠A=∠F.2.如图2—61所示,已知直线MN分别与直线AB.CD相交于E.F,AB∥CD,EG平分∠BEF,FH平分∠CFE.求证:EG∥FH.例6 如图2—37,AB∥CD,直线EF分别交AB.CD于正.F,EG平分∠BEF,若∠1=72°,则∠2=___度.练习:如图2—64所示,已知MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB.CD于G.Q,∠GQC=120°.求∠EGB和∠HGQ的度数.点拨:(1)聪明的同学会问:过A点作EF∥BC,可达到证明的目的;那么过B点或C点作平行线是不是也可行?——均可行.这就是思维的灵活性;(2)让思维飞扬起来:本题可以推广吗?——可以.三边形(即三角形)的内角之和为180°;四边形的内角和为2×180°(如图2—44);五边形的内角和为3×180°;……;n边形的内角和为(n-2)180°(n边形可以分为(n-2)个小三角形的内角和).二:巩固训练1.下列说法正确的是( )A.两条平行线被第三条直线所截,那么有3对内错角相等B.平行于同一直线的两直线平行C.垂直于同一直线的两直线垂直D.两直线被第三条直线所截,同位角相等2.两条平行线被第三条直线所截,其同位角的平分线可以组成( )A.2条平行线,2个直角B. 2条平行线,4个直角C.2组平行线,4个直角D.2组平行线,16个直角3.如图2—48,AB⊥FF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有( )A.1个B.2个 C. 3个D.4个4.如果两个角的两条边分别平行,而其中一个角比另一个角的3倍少20°,那么这个角的度数是( ) A.50°或130° B.60°或120°C.65°或115° D.以上都不是5.如图2—49所示,如果AD∥BC,则:①∠1=∠2;②∠3=∠4;③∠1+∠3=∠2+∠4.上述结论中一定正确的是( )A.只有①B.只有②C.①和②D.①.②.③6.如图2—50,直线a与b相交,直线c与d平行,图中内错角共有( )A.48对B.24对C.16对D.8对7.如图2-51所示,AB∥CD,AC∥BD,下面推理不正确的是( )A.∵AB∥CD(已知),∴∠5=∠A(两直线平行,同位角相等)B.∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等)C.∵AB∥CD(已知),∴∠1=∠2(两直线平行,内错角相等)D.∵AC∥BD(已知),∴∠3=∠4(两直线平行,内错角相等)8.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A.相等B.互补C相等或互补D.相等且互补9.若两条平行线被第三条直线所截,则同旁内角的平分线相交所成的角的度数是________.10.若一个角的两边分别平行于另一个角的两边,则这两个角______.11.如图2—57,DH∥EG∥BC,DC∥EF,则与∠1相等的角有_______个.12.已知:如图2—62,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.【综合能力训练】13.若两条平行线被第三条直线所截,则一对同位角的平分线的位置关系是()A.相交B.平行C.垂直D.不能确定14.若两条平行线与第三条直线相交,那么一组内错角的平分线互相()A.平行B.相交C.垂直D.重合15.如下图,DH∥EG∥BC,且DC∥EF,那么图中与∠BFE相等的角(不包括∠BFE本身)的个数应是()A.2个B.4个C.5个D.6个(15题)(16题)16.如上图,已知AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,则∠CDO=_________.17.如下图,已知CD平分∠ACB,DE∥BC,∠AED=50°,求∠EDC的度数.(17题)18.如下图,已知AB∥DF.DE∥BC,∠B=65°,求∠BOE.∠D的度数.(18题)初一数学寒假培优训练三(平行线性质及几何推理语言专题训练)一.平行线的性质 【性质定理】1.平行线的性质一: 。

相关文档
最新文档