四川省南充市2020年中考数学一模试卷及参考答案
2020年四川省南充市中考数学一诊试卷解析版
2020年四川省南充市中考数学一诊试卷一、选择题:本大题共10个小题,每小题4分,共40分.每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、涂错或多涂记0分.1.下列各数中,属于无理数的是()A.3.14B.0.2020…C.D.2.下列计算,错误的是()A.m2•m3•m=m6B.(﹣2a2)2=4a4C.当x≠0时,(x2)﹣3=D.当x≠0时,x0=03.针对所给图形,如果不区分颜色,说法正确的是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,又是中心对称图形D.非轴对称图形,也非中心对称图形4.下列说法正确的是()A.可能性很大的事件,在一次试验中一定发生B.可能性很小的事件,在一次试验中可能发生C.必然事件,在一次试验中有可能不会发生D.不可能事件,在一次试验中也可能发生5.若△ABC的一边为4,另两边分别是方程x2﹣6x+k=0的两个根,则△ABC的周长()A.为10B.为11C.为12D.不确定6.将抛物线y=x(x+2)向左平移1个单位后的解析式为()A.y=x(x+1)B.y=x(x+3)C.y=(x﹣1)(x+1)D.y=(x+1)(x+3)7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15B.﹣16C.﹣17D.﹣189.如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.1510.如图,正方形ABCD中,点E是BC边的中点.将△ABE沿AE对折至△AFE,延长EF 交CD边于点G,连接AG,CF.下列结论:①AE∥FC;②△ADG≌△AFG;③CG=2DG;④S△CEF=S正方形ABCD.其中正确的有()A.①②B.①③④C.②③④D.①②③④二、填空:本大题共6个小题,每小题4分,共24分.请将答案填在答题卡对应题号的横线上.11.若a﹣=,则a2+的值是.12.以方程组的解为坐标的点(x,y)在第象限.13.下个月学校将为片区学校展示“音乐、体育、美术”兴趣活动观摩.小明、小丽随机从三个场所选择一个担任志愿者服务,两人恰好选择同一场所的概率是.14.如图,AC与BD交于O,AB=CD,要使△ABC≌△DCB,可以补充一个边或角的条件是.15.如图,BD是△ABC的高,AB=,BC=2,tan A=1,则CD=.16.如图,抛物线y=x2+ax+2经过点P(﹣2,2),Q(m,n).若点Q到y轴的距离小于2,则n的取值范围是.三、解答题:本大题共9个小题,共86分.解答题应写出必要的文字说明或推演步骤.17.(8分)计算:1﹣.18.(8分)如图,BD是△ABC的角平分线,在BC上截取BE=BA.若∠A=100°,∠C =30°,试求∠BDE的度数.19.(8分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?20.(10分)a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.21.(10分)如图,直线AB与x轴交于点A(﹣,0),与y轴交于点B(0,2),将线段AB绕点A逆时针旋转90°得到线段AC,双曲线y=经过点C.(1)求直线AB和双曲线y=的解析式.(2)平移直线AB,使它与双曲线y=(x<0)有唯一公共点P时,求点P的坐标.22.(10分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD =AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O 于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.(10分)某商店经营一款新电动玩具,进货单价是30元.在1个月的试销阶段,售价是40元,销售量是400件.根据市场调查,销售单价若每再涨1元,1个月就会少售出10件.(1)若商店在1个月获得了6000元销售利润,求这款玩具销售单价是定为多少元的,并考虑了顾客更容易接受.(2)若玩具生产厂家规定销售单价不低于43元,且商店每月要完成不少于350件的销售任务,求商店销售这款玩具1个月能获得的最大利润.24.(10分)如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB 到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.25.(12分)如图,抛物线y=ax2+c与x轴交于点A,B,与y轴交于点C,直线BC为y =x﹣2.(1)求抛物线的解析式.(2)过点A作直线AD与抛物线在第一象限的交点为D.当S△ABD=3S△ABC时,确定直线AD与BC的位置关系.(3)在第二象限抛物线上求一点P,使∠PCA=15°.2020年四川省南充市中考数学一诊试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题4分,共40分.每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、涂错或多涂记0分.1.下列各数中,属于无理数的是()A.3.14B.0.2020…C.D.【分析】根据无理数的定义求解即可.【解答】解:=﹣4,3.14,0.2020…,是有理数,是无理数,故选:C.2.下列计算,错误的是()A.m2•m3•m=m6B.(﹣2a2)2=4a4C.当x≠0时,(x2)﹣3=D.当x≠0时,x0=0【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、负整数指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:A、m2•m3•m=m6,正确,故本选项不符合题意;B、(﹣2a2)2=4a4,正确,故本选项不符合题意;C、当x≠0时,(x2)﹣3=,正确,故本选项不符合题意;D、当x≠0时,x0=1,原式计算错误,故本选项符合题意;故选:D.3.针对所给图形,如果不区分颜色,说法正确的是()A.是轴对称图形B.是中心对称图形C.既是轴对称图形,又是中心对称图形D.非轴对称图形,也非中心对称图形【分析】根据中心对称图形的定义进行解答即可.【解答】解:此图形是不是轴对称图形,是中心对称图形,故选:B.4.下列说法正确的是()A.可能性很大的事件,在一次试验中一定发生B.可能性很小的事件,在一次试验中可能发生C.必然事件,在一次试验中有可能不会发生D.不可能事件,在一次试验中也可能发生【分析】根据必然事件、不可能事件、随机事件的意义和发生可能性的大小,逐项进行判断即可.【解答】解:可能性很大的事件,在一次试验中也不一定发生,只是发生的可能性很大,因此选项A不正确;可能性很小的事件,在一次试验中也可能发生,只是发生的可能性很小,因此选项B正确;必然事件,一定会发生的事件,即发生的可能性为100%,因此在一次试验中有可能不会发生是错误的,选项C不正确;不可能事件,一定不会发生的事件,即发生的可能性为0,在一次试验中更不可能发生,因此选项D不正确;故选:B.5.若△ABC的一边为4,另两边分别是方程x2﹣6x+k=0的两个根,则△ABC的周长()A.为10B.为11C.为12D.不确定【分析】设x2﹣6x+k=0的两个根分别为x1、x2,由根与系数的关系可得出x1+x2=6,分两种情形分别求解即可.【解答】解:设x2﹣6x+k=0的两个根分别为x1、x2,则有x1+x2=﹣=﹣=6,当两边不同时,周长为4+4+2=10,当两边相同时.周长为4+3+3=10,故选:A.6.将抛物线y=x(x+2)向左平移1个单位后的解析式为()A.y=x(x+1)B.y=x(x+3)C.y=(x﹣1)(x+1)D.y=(x+1)(x+3)【分析】先利用二次函数的性质得到抛物线y=x(x+2)的顶点坐标为(﹣1,﹣1),再利用点平移的规律得到点(﹣1,﹣1)平移后对应点的坐标为(﹣2,﹣1),然后根据顶点式写出平移后抛物线的解析式,然后整理即可.【解答】解:∵y=x(x+2)=x2+2x=(x+1)2﹣1,∴抛物线y=x(x+2)的顶点坐标为(﹣1,﹣1),点(﹣1,﹣1)向左平移1个单位后对应点的坐标为(﹣2,﹣1),所以平移后抛物线的解析式为y=(x+2)2﹣1,即y=(x+1)(x+3).故选:D.7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°【分析】根据方向角的定义求出∠EBC,再根据平行线的性质求出∠ABE即可得出答案.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b之值为何?()A.﹣15B.﹣16C.﹣17D.﹣18【分析】根据不等式20<5﹣2(2+2x)<50可以求得x的取值范围,从而可以得到a、b 的值,进而求得a+b的值.【解答】解:∵20<5﹣2(2+2x)<50,解得,,∵不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,∴a=﹣5,b=﹣12,∴a+b=(﹣5)+(﹣12)=﹣17,故选:C.9.如图,A、B、C是⊙O上顺次3点,若AC、AB、BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A.9B.10C.12D.15【分析】如图,连接OA,OC,OB.想办法求出中心角∠BOC即可解决问题.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意30°=,∴n=12,故选:C.10.如图,正方形ABCD中,点E是BC边的中点.将△ABE沿AE对折至△AFE,延长EF 交CD边于点G,连接AG,CF.下列结论:①AE∥FC;②△ADG≌△AFG;③CG=2DG;④S△CEF=S正方形ABCD.其中正确的有()A.①②B.①③④C.②③④D.①②③④【分析】①由中点定义和折叠性质得CE=EF,进而得∠ECF=∠EFC,再由三角形的外角性质得∠AEB=∠ECF,最后由平行线的判定方法得AE∥CF,便可判断①的正误;②由“HL”可证Rt△ADG≌Rt△AFG,便可判断②的正误;③设正方形ABCD的边长为a,CG=x,则EC=BE=EF=a,GF=DG=a﹣x,由勾股定理可求CG=a,可求DG=a,便可判断③的正误;④求出S△CEF的值,即可判断④的正误.【解答】解:①∵E是BC边的中点,∴BE=CE,由折叠知,∠AEB=∠AEF,BE=EF,AB=AF,∴CE=EF,∴∠ECF=∠EFC,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,故①正确;②在Rt△ADG和Rt△AFG中,,∴Rt△ADG≌Rt△AFG(HL),故②正确;③设正方形ABCD的边长为a,CG=x,则EC=BE=EF=a,GF=DG=a﹣x,在△CEG中,由勾股定理得,EG2=GC2+EC2,∴(a+a﹣x)2=(a)2+x2,解得,x=a,∴CG=a,∴DG=a,∴CG=2DG,故③正确;④∵S△CEG=EC•CG=×a×a=a2,又∵EF:FG=a:a=3:2,∴S△CEF=×a2=a2,∴S△CEF=S正方形ABCD,故④正确,故选:D.二、填空:本大题共6个小题,每小题4分,共24分.请将答案填在答题卡对应题号的横线上.11.若a﹣=,则a2+的值是4.【分析】将已知等式两边平方可得a2﹣2+=2,据此可得答案.【解答】解:∵a﹣=,∴(a﹣)2=2,即a2﹣2+=2,∴a2+=4,故答案为:4.12.以方程组的解为坐标的点(x,y)在第四象限.【分析】求出方程组的解确定出点坐标,即可做出判断.【解答】解:,①﹣②得:3y=﹣6,即y=﹣2,将y=﹣2代入②得:x=,∴所求坐标为(,﹣2),则此点在第四象限.故答案为:四.13.下个月学校将为片区学校展示“音乐、体育、美术”兴趣活动观摩.小明、小丽随机从三个场所选择一个担任志愿者服务,两人恰好选择同一场所的概率是.【分析】画树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,所以两人恰好选择同一场所的概率==.14.如图,AC与BD交于O,AB=CD,要使△ABC≌△DCB,可以补充一个边或角的条件是AC=BD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可可以为AC=BD或∠ABC=∠DCB等.【解答】解:添加的条件是:AC=BD,理由是:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS),故答案为:AC=BD.15.如图,BD是△ABC的高,AB=,BC=2,tan A=1,则CD=1.【分析】首先证明△ABD是等腰直角三角形,求出BD,再利用勾股定理即可解决问题.【解答】解:∵tan A=1,∴∠A=45°,∵BD⊥AD,∴∠D=90°,∴AD=BD,∵AB=,∴AD=BD=,∴CD===1,故答案为1.16.如图,抛物线y=x2+ax+2经过点P(﹣2,2),Q(m,n).若点Q到y轴的距离小于2,则n的取值范围是1≤n<10.【分析】把点P(﹣2,2)代入y=x2+ax+2中,即可求出a,得到解析式,进而得到顶点坐标,由点Q到y轴的距离小于2,可得﹣2<m<2,在此范围内求n即可.【解答】解:把点P(﹣2,2)代入y=x2+ax+2中,∴a=2,∴y=x2+2x+2,∴顶点坐标为(﹣1,1),∵点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴1≤n<10,故答案为:1≤n<10.三、解答题:本大题共9个小题,共86分.解答题应写出必要的文字说明或推演步骤.17.(8分)计算:1﹣.【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=1﹣•=1﹣=﹣=.18.(8分)如图,BD是△ABC的角平分线,在BC上截取BE=BA.若∠A=100°,∠C =30°,试求∠BDE的度数.【分析】由“SAS”可证△ABD≌△EBD,可得∠ADB=∠BDE,∠A=∠BED=100°,由三角形的外角性质可求解.【解答】解:∵BD平分∠ABC,∴∠ABD=∠DBC,又∵AB=BE,BD=BD,∴△ABD≌△EBD(SAS),∴∠ADB=∠BDE,∠A=∠BED=100°,∴∠DEC=80°,∴∠ADE=∠C+∠DEC=110°,∴∠BDE=55°.19.(8分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)请根据图中信息,解答下列问题:(1)本次调查一共抽取了50名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?【分析】(1)根据总数=个体数量之和计算即可;(2)根据平均数、总数、中位数的定义计算即可;(3)利用样本估计总体的思想解决问题即可;【解答】解:(1)共抽取:4+10+15+11+10=50(人),故答案为50;(2)平均数=(4×6+10×7+15×8+11×9+10×10)=8.26;众数:得到8分的人最多,故众数为8.中位数:由小到大排列,知第25,26平均分为8分,故中位数为8分;(3)得到10分占10÷50=20%,500人时,需要一等奖奖品500×20%=100(份).故需准备100份“一等奖”奖品.20.(10分)a为实数,关于x的方程(x﹣a)2+2(x+1)=a有两个实数根x1,x2.(1)求a的取值范围.(2)若(x1﹣x2)2+x1x2=12.试求a的值.【分析】(1)把方程化为一般式得到x2﹣2(a﹣1)x+a2﹣a+2=0,再根据判别式的意义得到△=4a﹣4≥0,然后解不等式即可求解;(2)利用根与系数的关系得到x1+x2=2(a﹣1),x1x2=a2﹣a+2,再利用(x1﹣x2)2+x1x2=12得到a2﹣5a﹣14=0,然后解关于a的方程后利用a的范围确定满足条件的a的值.【解答】解:(1)(x﹣a)2+2(x+1)=a,变形为x2﹣2(a﹣1)x+a2﹣a+2=0.根据题意得△=4(a﹣1)2﹣4(a2﹣a+2)=4a2﹣8a+4﹣4a2+4a﹣8=﹣4a﹣4≥0,解得a≤﹣1.即a的取值范围是a≤﹣1;(2)由根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a+2,∵(x1﹣x2)2+x1x2=12,∴(x1+x2)2﹣3x1x2=12,∴[2(a﹣1)]2﹣3(a2﹣a+2)=12,即a2﹣5a﹣14=0,解得a1=﹣2,a2=7,∵a≤﹣1,∴a的值为﹣2.21.(10分)如图,直线AB与x轴交于点A(﹣,0),与y轴交于点B(0,2),将线段AB绕点A逆时针旋转90°得到线段AC,双曲线y=经过点C.(1)求直线AB和双曲线y=的解析式.(2)平移直线AB,使它与双曲线y=(x<0)有唯一公共点P时,求点P的坐标.【分析】(1)用待定系数法求出一次函数表达式;证明△ACH≌△BAO(AAS),则AH =OB=2,CH=AO=,则点C(﹣3,),求出反比例函数表达式;(2)设平移后AB的表达式为:y=2x+n,则2x+n=﹣,即2x2+nx+18=0,由△=n2﹣4×2×18=0,解得:n=12,进而求解.【解答】解:(1)∵点B的坐标为(0,2),则设直线AB的表达式为:y=mx+2,将点A的坐标代入上式并解得:m=2,故直线AB的表达式为:y=2x+2,过点C作CH⊥x轴于点H,则∠1+∠2=90°,∵∠BAC=90°,∴∠2+∠3=90°,∴∠1=∠3,∵AB=AC,∴△ACH≌△BAO(AAS),∴AH=OB=2,CH=AO=,故点C(﹣3,),∴k=﹣3×=﹣18,故反比例函数表达式为:y=﹣;(2)设平移后AB的表达式为:y=2x+n,则2x+n=﹣,即2x2+nx+18=0,∵△=n2﹣4×2×18=0,解得:n=12(舍去负值),此时,x1=x2=﹣=﹣3,故y=﹣=6,故点P的坐标为(﹣3,6).22.(10分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD =AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O 于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.23.(10分)某商店经营一款新电动玩具,进货单价是30元.在1个月的试销阶段,售价是40元,销售量是400件.根据市场调查,销售单价若每再涨1元,1个月就会少售出10件.(1)若商店在1个月获得了6000元销售利润,求这款玩具销售单价是定为多少元的,并考虑了顾客更容易接受.(2)若玩具生产厂家规定销售单价不低于43元,且商店每月要完成不少于350件的销售任务,求商店销售这款玩具1个月能获得的最大利润.【分析】(1)根据题意,可以列出相应的一元二次方程,再根据考虑顾客更容易接受的价格,即可得到这款玩具的销售单价;(2)根据题意可以得到利润与销售单价的函数关系,再根据玩具生产厂家规定销售单价不低于43元,且商店每月要完成不少于350件的销售任务,可以得到单价的取值范围,再根据二次函数的性质,即可得到商店销售这款玩具1个月能获得的最大利润.【解答】解:(1)设销售单价为x元,(x﹣30)[400﹣10(x﹣40)]=6000,解得,x1=50,x2=60,∴销售单价定为50元时,顾客更容易接受;(2)设利润为w元,单价为x元,w=(x﹣30)[400﹣10(x﹣40)]=﹣10(x﹣55)2+6250,∵玩具生产厂家规定销售单价不低于43元,且商店每月要完成不少于350件的销售任务,∴,解得,43≤x≤45,∵当x<55时,w随x的增大而增大,∴当x=45时,w取得最大值,此时w=5250,答:商店销售这款玩具1个月能获得的最大利润是5250元.24.(10分)如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB 到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.【分析】(1)证四边形AFED是平行四边形,∠DEF=90°,即可得出结论.(2)求出CE=BF=5,则FC=FE+CE=12,证出△ABF是等腰直角三角形,得出AF =FB=5,在Rt△AFC中,由勾股定理求出AC=13,由平行四边形的性质得出OA=OC,再由直角三角形斜边上的中线性质即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BF=CE,∴FE=BC,∴四边形AFED是平行四边形,∵DE⊥BC,∴∠DEF=90°,∴四边形AFED是矩形.(2)解:由(1)得:∠AFE=90°,FE=AD,∵AD=7,BE=2,∴FE=7,∴FB=FE﹣BE=5,∴CE=BF=5,∴FC=FE+CE=7+5=12,∵∠ABF=45°,∴△ABF是等腰直角三角形,∴AF=FB=5,在Rt△AFC中,由勾股定理得:AC===13,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.25.(12分)如图,抛物线y=ax2+c与x轴交于点A,B,与y轴交于点C,直线BC为y =x﹣2.(1)求抛物线的解析式.(2)过点A作直线AD与抛物线在第一象限的交点为D.当S△ABD=3S△ABC时,确定直线AD与BC的位置关系.(3)在第二象限抛物线上求一点P,使∠PCA=15°.【分析】(1)用待定系数法即可求解;(2)求出直线AD的表达式,即可求解;(3)tan∠ACO===,则∠HCO=∠ACO﹣∠PCA=60°﹣15°=45°,求出直线CP的表达式,进而求解.【解答】解:(1)对于y=x﹣2,令y=x﹣2=0,解得x=2,令x=0,则y =﹣2,故点B、C的坐标分别为(2,0)、(0,﹣2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=x2﹣2①;(2)令y=x2﹣2=0,解得x=±2,故点A、B的坐标分为(﹣2,0)、(2,0),∵S△ABD=3S△ABC,∴y D=3CO=6=x2﹣2,解得x=﹣4(舍去)或4,故点D的坐标为(4,6),设直线AD的表达式为y=kx+b,则,解得,故直线AD的表达式为y=x+2,∵直线AD表达式中的k值和直线BC表达式中的k值相同,故AD∥BC;(3)设直线PC交x轴于点H,则tan∠ACO===,故∠ACO=60°,∴∠HCO=∠ACO﹣∠PCA=60°﹣15°=45°,故设直线CP的表达式为y=﹣x+t,将点C的坐标代入上式并解得t=﹣2,故直线CP的表达式为y=﹣x﹣2②,联立①②并解得(不合题意的值已舍去),故点P的坐标为(﹣6,4).。
四川省南充市2020年中考数学试题(含答案与解析)
A.4B. C. D.﹣4
【答案】C
【解析】
【分析】
根据解分式方程即可求得x的值.
【详解】解: ,去分母得 ,
∴ ,
经检验, 是原方程的解
故选:C.
【点睛】本题考查分式方程,熟练掌握分式方程的解法是解题的关键.
2.2020年南充市各级各类学校学生人数约为1 150 000人,将1 150 000用科学计数法表示为()
A.1.15×106B.1.15×107C.11.5×105D.0.115×107
【答案】A
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
A. B. C. D.
10.关于二次函数 的三个结论:①对任意实数m,都有 与 对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则 或 ;③若抛物线与x轴交于不同两点A,B,且AB≤6,则 或 .其中正确的结论是()
A.①②B.①③C.②③D.①②③
二、填空题(本大题共6个小题,每小题4分,共24分)
故选:B.
【点睛】本题考查了菱形的性质及面积的求法、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
8.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()
A. B. C. D.
【答案】B
【解析】
【分析】
作BD⊥AC于D,根据勾股定理求出AB、AC,利用三角形的面积求出BD,最后在直角△ABD中根据三角函数的意义求解.
四川省南充市2019-2020学年中考一诊数学试题含解析
四川省南充市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.162.若,则的值为()A.﹣6 B.6 C.18 D.303.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为24.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.5.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤6.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上7.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)8.81的算术平方根是()A.9 B.±9 C.±3 D.39.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③10.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④11.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.18B.16C.14D.1212.下列运算正确的是()A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2C .x+y=xyD .x 6÷x 2=x 3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x 2﹣5x+2=0的一个根是a ,则6a 2﹣10a+2=_____.14.如图,ABCDE 是正五边形,已知AG=1,则FG+JH+CD=_____.15.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____. 16.在数轴上与表示的点距离最近的整数点所表示的数为_____. 17.如图,在正六边形ABCDEF 中,AC 于FB 相交于点G ,则AG GC值为_____.18.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是3,则另一组新数据x 1+1,x 2+2,x 3+3,x 4+4,x 5+5的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(x ﹣2﹣52x +)÷2(3)2x x ++,其中x=3. 20.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S21.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本 等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D 8090X <≤171 2 ②根据上表绘制扇形统计图22.(8分)已知x 1﹣1x ﹣1=1.求代数式(x ﹣1)1+x (x ﹣4)+(x ﹣1)(x+1)的值.23.(8分)如图,在平面直角坐标系中,四边形OABC 为矩形,直线y=kx+b 交BC 于点E (1,m ),交AB 于点F (4,12),反比例函数y=n x (x >0)的图象经过点E ,F . (1)求反比例函数及一次函数解析式;(2)点P 是线段EF 上一点,连接PO 、PA ,若△POA 的面积等于△EBF 的面积,求点P 的坐标.24.(10分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x 的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)25.(10分)如图,在Rt △ABC 中,∠C=90°,AC=3,BC=1.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是多少?26.(12分)已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC . (1)求证:四边形ABCD 是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD 的长.27.(12分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=0参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可.【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.2.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.3.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.4.B【解析】【分析】【详解】设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.5.B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线6.C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A【解析】【分析】直接利用平移的性质结合轴对称变换得出对应点位置.【详解】如图所示:顶点A2的坐标是(4,-3).故选A.【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.8.D【解析】【分析】根据算术平方根的定义求解.【详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.9.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.10.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,故选C考点:实数与数轴的关系11.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.12.B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;B. (12)﹣1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6÷x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.【详解】解:∵方程3x1-5x+1=0的一个根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.14【解析】【详解】根据对称性可知:GJ∥BH,GB∥JH,∴四边形JHBG是平行四边形,∴JH=BG,同理可证:四边形CDFB是平行四边形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,设FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG•BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=12(负根已经舍弃),∴BF=512-+1=512+,∴FG+JH+CD=5+1.故答案为5+1.15.-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243xx+⎧⎨-≥⎩>①②.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.16.3【解析】≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,且0.683>0.317,∴距离整数点3最近.17.12.【解析】【分析】由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴AG GC =12; 故答案为:12. 【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.18.1【解析】【分析】根据平均数的性质知,要求x 1+1,x 2+2,x 3+3,x 4+4、x 5+5的平均数,只要把数x 1、x 2、x 3、x 4、x 5的和表示出即可.【详解】∵数据x 1,x 2,x 3,x 4,x 5的平均数是3,∴x 1+x 2+x 3+x 4+x 5=15, 则新数据的平均数为1234512345151555x x x x x ++++++++++==1, 故答案为:1.【点睛】本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.192【解析】【分析】根据分式的运算法则即可求出答案.【详解】 原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+.当x ==2= 【点睛】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.20.(1)证明见解析;(2)253 2.【解析】【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=53,进而得到菱形AEDF的面积S.【详解】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,3,∴菱形AEDF的面积S=12EF•AD=12×5×3253.【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(1)6;8;B;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人),2030%62043211 m n=⨯==---=,,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)2120020⨯=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.22.2.【解析】【分析】将原式化简整理,整体代入即可解题.【详解】解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)=x1﹣1x+1+x1﹣4x+x1﹣4=3x1﹣2x﹣3,∵x1﹣1x﹣1=1∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.23.(1)2yx=;1522y x=-+;(2)点P坐标为(114,98).【解析】【分析】(1)将F(4,12)代入0ny xx=(>),即可求出反比例函数的解析式2yx=;再根据2yx=求出E点坐标,将E、F两点坐标代入y kx b=+,即可求出一次函数解析式;(2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标.【详解】 解:(1)∵反比例函数0n y x x =(>)经过点142F (,),∴n=2, 反比例函数解析式为2y x =. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2). ∵直线y kx b =+ 过点12E (,),点142F (,), ∴2142k b k b +=⎧⎪⎨+=⎪⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数解析式为1522y x =+﹣; (2)∵点E 坐标为(1,2),点F 坐标为142(,),∴点B 坐标为(4,2),∴BE=3,BF=32, ∴1139•32224EBF S BE BF ∆==⨯⨯=, ∴94POA EBF S S ∆∆== . 点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣), ∴115942224x ⨯-+=(), 解得114x =, ∴点P 坐标为11948(,). 【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.24.(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y =700x ,当10<x≤1时,y =﹣5x 2+750x ,当x >1时,y =300x ;(3)公司应将最低销售单价调整为2875元.【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>1时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.【点睛】本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25.R=或R=【解析】【分析】【详解】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.26.(1)证明见解析;(2)CD的长为23【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF 中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC是解(1)的关键,作EF⊥CD于F,构造直角三角形是解(2)的关键.27.(1)-1;(2)x1=,x2=2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1﹣﹣=﹣1;(2)x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x﹣2=∴x1=,x2=2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.。
四川省南充市2019-2020学年中考数学一模考试卷含解析
四川省南充市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将抛物线y=12x 2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( ) A .y=12(x ﹣8)2+5 B .y=12(x ﹣4)2+5 C .y=12(x ﹣8)2+3 D .y=12(x ﹣4)2+32.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )A .8B .10C .21D .223.下列计算正确的是( ) A .B .C .D .4.已知点A (0,﹣4),B (8,0)和C (a ,﹣a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值是( ) A .22B .2C .3D .25.若不等式组236x mx x <⎧⎨-<-⎩无解,那么m 的取值范围是( )A .m≤2B .m≥2C .m <2D .m >26.如图,在扇形CAB 中,CA=4,∠CAB=120°,D 为CA 的中点,P 为弧BC 上一动点(不与C ,B 重合),则2PD+PB 的最小值为( )A .B .C .10D .7.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°8.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .9.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =10.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差 B .极差 C .中位数 D .平均数11.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .1912.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D'处,则点C 的对应点C'的坐标为_____.14.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______. 15.计算:()()a a b b a b +-+=_____________. 16.分解因式:x 2y ﹣4xy+4y =_____.17.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.18.有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; ②如果方程M 有两根符号相同,那么方程N 的两根符号也相同; ③如果方程M 和方程N 有一个相同的根,那么这个根必是x=1; ④如果5是方程M 的一个根,那么15是方程N 的一个根. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,两座建筑物的水平距离BC 为60m .从C 点测得A 点的仰角α为53° ,从A 点测得D 点的俯角β为37° ,求两座建筑物的高度(参考数据:3433437,37 37, 534 53?35)55453sin cos tan sin cos tan ≈≈≈≈≈≈oo o o o o ,,,20.(6分)(1)解方程:11122x x --+=0; (2)解不等式组32193(1)x x x ->⎧⎨+<+⎩,并把所得解集表示在数轴上. 21.(6分)如图,在△ABC 中,AB=AC ,点D ,E 在BC 边上,AD AE =.求证:BD CE =.22.(8分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)∠EDB=_____︒(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转1802α︒-,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 23.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.24.(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.25.(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.(1)A,B两种型号的自行车的单价分别是多少?(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.26.(12分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D 等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.27.(12分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
四川省南充市2020年中考数学试题(解析版)
故能构成三角形的概率是 .
故答案为: .
【点睛】注意分析任取三条的总情况,再分析构成三角形的情况,从而求出构成三角形的概率.用到的知识点为:概率=所求情况数与总情况数之比.
14.笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多可以购买钢笔_______支.
根据等腰三角形的性质和判定得出BD=BC=AD,进而解答即可.
【详解】解:∵在等腰△ABC中,BD为∠ABC的平分线,∠A=36°,
∴∠ABC=∠C=2∠ABD=72°,
∴∠ABD=36°=∠A,
∴BD=AD,
∴∠BDC=∠A+∠ABD=72°=∠C,
∴BD=BC,
∵AB=AC=a,BC=b,
∴CD=AC-AD=a-b,
【详解】解:原式
当 时,原式 .
【点睛】本题考查的是分式的化简求值和二次根式的化简,熟知分式混合运算的法则是解答此题的关键.
18.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE,求证:AB=CD.
【答案】详见解析
【解析】
分析】
根据AB BD,DE BD,AC CE,可以得到 , , ,从而有 ,可以验证 和 全等,从而得到AB=CD.
【答案】
【解析】
【分析】
过C作CH⊥AE于H点,由旋转性质可得 ,根据三角函数可求得AC,BC长度,进而通过解直角三角形即可求得AB长度.
【详解】解:过C作CH⊥AE于H点,
∵AB为⊙O的直径,
∴ ,
由旋转可得 ,
∴ ,
∴ ,
∴tanD=tan∠AEC=CH∶EH=3,AE=2,
2020-2020年南充市中考数学考试模拟试卷附答案
2020-2020年四川省南充市初中毕业暨高中阶段招生考试数学模拟试卷(满分:150分;考试时间:120分钟)友情提示:请把所有答案填写(涂)到答题卡上!请不错位、越界答题!!姓名________________准考证号___________________注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,后必须用黑色签字笔.....重描确认,否则无效.一、选择题(共10小题,每小题3分,满分30分,每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.8-的相反数是( )A . 8B . 8-C .18 D . 18- 2.在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是( ) A .甲B .乙C .丙D .丁3.如图,为一个多面体的表面展开图,每个面内都标注了数字. 若数字为6的面是底面,则朝上一面所标注的数字为( ) A.5B.4C.3D.24.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是( ) A .①②③B .①②C .①③D .②③5.不等式组1024x x ->⎧⎨<⎩的解是( )A .x >1B .x <2C .1<x <2D .无解6.如图,BD AC ,是⊙O 直径,且BD AC ⊥,动点P 从圆心O 出发,沿O D C O →→→ 路线作匀速运动,设运动时间为t (秒),y APB =∠(度),则下列图象中表示y 与t 之间的函数关系最恰当的是( )7.矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )第2题图(第6题图)ABC DOP B . D .A . C .A .B .C .D . 8.如图,要使ABCD Y成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=° D .12∠=∠9.分式方程211x x=+的解是( ) A .1 B .1- C .13 D .13-10.如图,OAB △绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则∠α的度数是( )A .30°B .40°C .50°D .60°二、填空题(共6小题,每小题4分,满分24分,请将答案填入答题卡...的相应位置) 11.若分式12x -无意义,则实数x 的值是____________. 12.如图,直线12l l ∥,1120∠=°,则2∠=_______________度. 13.若221m m -=,则2242007m m -+的值是_______________.14.已知一次函数21y x =+,则y 随x 的增大而_______________(填“增大”或“减小”).15.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是____________枚.16.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.三、解答题(10大题共96分,请将答案填入答题卡...的相应位置) 17.(8分)计算:421200910--⎪⎭⎫ ⎝⎛+-18.(8分)先化简下面代数式,再求值:B(第10题)12l 2l 1(第12题)E F D B C A (第16题)60 50 40 30 20 10 0中国 美国 俄罗斯英国 德国 澳大利亚 国家 金牌数(枚) (2008年8月24日统计) 奥运金牌榜前六名国家(第15题))3()2)(2(x x x x -+-+,其中12+=x .19.(满分8分)如图,在等腰梯形ABCD 中,E 为底BC 的中点,连结AE 、DE .求证:ABE DCE △≌△.20.(满分8分)漳浦县是“中国剪纸之乡”.漳浦剪纸以构图丰满匀称、细腻雅致著称.下面两幅剪纸都是该县民间作品(注:中间网格部分未创作完成). (1)请从“吉祥如意”中选一字填在图1网格中,使整幅..作品成为轴对称图形; (2)请在图2网格中设计一个四边形图案,使整幅..作品既是轴对称图形,又是中心对称图形. 21.(满分8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°,(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求»BC 的长.(结果保留π)A DC B E(第19题) AO B DC (第21题)图1 图2 (第20题)22.(满分8分)阅读材料,解答问题.例 用图象法解一元二次不等式:2230x x -->. 解:设223y x x =--,则y 是x 的二次函数.10a =>∴Q ,抛物线开口向上.又Q 当0y =时,2230x x --=,解得1213x x =-=,.∴由此得抛物线223y x x =--的大致图象如图所示.观察函数图象可知:当1x <-或3x >时,0y >.∴2230x x -->的解集是:1x <-或3x >.(1)观察图象,直接写出一元二次不等式:2230x x --<的解集是____________; (2)仿照上例,用图象法解一元二次不等式:210x ->.(大致图象画在答题卡...上) 23.(满分10分)为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶? 24.(满分11分)小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币. (1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你(第22题)帮他们再修改游戏规则,使游戏规则公平(不必说明理由). 25.(满分13分) 几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小.方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小(不必证明). 模型应用:(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________;(2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值.26.(满分14分)如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC . (1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪⎝⎭]A BA 'PlOAB PRQ 图3OAB C 图2AB E CP 图1(第25题)P2020-2020年四川省南充市初中毕业暨高中阶段招生考试数学模拟试卷数学参考答案及评分标准11.2 12.120 13.2009 14.增大 15.21 16.4三、解答题(10大题,满分共96分) 17.解:原式=213+- ··················································································· 6分 =0. ············································································································ 8分 18.解:情况一:2211214122x x x x +-+++ ····················································· 2分 =26x x + ······································································································ 5分 =(6)x x +. ·································································································· 8分 情况二:221121222x x x x +-+- ····································································· 2分 =21x - ········································································································· 5分 =(1)(1)x x +-. ···························································································· 8分 情况三:221141222x x x x +++- ····································································· 2分 =221x x ++ ·································································································· 5分 =2(1)x +. ··································································································· 8分19.证明:Q 四边形ABCD 是等腰梯形,AB DC B C ∴=∠=∠,. ································· 4分 E Q 为BC 的中点,A DC B E(第19题)BE EC ∴=. ·················································· 6分 ABE DCE ∴△≌△. ······································· 8分 20.(1)吉.(符合要求就给分) ······································································· 3分(2)有多种画法,只要符合要求就给分. ·····················21.(1)证明:连结OC , ································· 1分30AC CD D =∠=Q ,°, 30A D ∴∠=∠=° ············································ 2分 OA OC =Q , 230A ∴∠=∠=°, ··········································3分 160∴∠=°,90OCD ∴∠=°. ·························································································· 4分 CD ∴是O ⊙的切线. ····················································································· 5分 (2)160∠=Q °,»BC∴的长=π60π3π180180n R ⨯⨯==.··································································· 7分 答:»BC 的长为π. ························································································ 8分22.(1)13x -<<. ········································ 2分(2)解:设21y x =-,则y 是x 的二次函数.10a =>∴Q ,抛物线开口向上.··························· 3分 又Q 当0y =时,210x -=,解得1211x x =-=,. 4分 ∴由此得抛物线21y x =-的大致图象如图所示. ···· 6分观察函数图象可知:当1x <-或1x >时,0y >. ··············································· 7分210x ∴->的解集是:1x <-或1x >. ···························································· 8分23.(1)解法一:设甲种消毒液购买x 瓶,则乙种消毒液购买(100)x -瓶. ·············· 1分 依题意,得69(100)780x x +-=.解得:40x =. ····························································································· 3分 ∴1001004060x -=-=(瓶). ····································································· 4分 答:甲种消毒液购买40瓶,乙种消毒液购买60瓶. ············································· 5分 解法二:设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶. ······································· 1分 依题意,得10069780x y x y +=⎧⎨+=⎩,. ············································································· 3分解得:4060x y =⎧⎨=⎩,.····························································································· 4分答:甲种消毒液购买40瓶,乙种消毒液购买60瓶. ············································· 5分(第21题) 1-(第22题)(2)设再次购买甲种消毒液y 瓶,刚购买乙种消毒液2y 瓶. ································· 6分 依题意,得6921200y y +⨯≤. ······································································ 8分 解得:50y ≤. ···························································································· 9分 答:甲种消毒液最多再购买50瓶. ·································································· 10分 26.(1)B (4,0),(02)C -,. ····································································· 2分 213222y x x =--. ······················································································· 4分 (2)ABC △是直角三角形. ··········································································· 5分证明:令0y =,则2132022x x --=.1214x x ∴=-=,.(10)A ∴-,. ································································································· 6分解法一:5AB AC BC ∴===, ······················································ 7分22252025AC BC AB ∴+=+==.ABC ∴△是直角三角形. ················································································ 8分 解法二:11242CO AO AO CO BO BO OC ===∴==Q ,,,90AOC COB ∠=∠=Q °,AOC COB ∴△∽△. ···················································································· 7分 ACO CBO ∴∠=∠.90CBO BCO ∠+∠=Q °,90ACO BCO ∴∠+∠=°.即90ACB ∠=°.ABC ∴△是直角三角形. ················································································ 8分 (3)能.①当矩形两个顶点在AB 上时,如图1,CO 交GF 于H .GF AB Q ∥,CGF CAB ∴△∽△. GF CH AB CO∴=. ················································ 9分 解法一:设GF x =,则DE x =,25CH x =,225DG OH OC CH x ==-=-.2222255DEFG S x x x x ⎛⎫∴=-=-+ ⎪⎝⎭矩形·图1=2255522x ⎛⎫--+ ⎪⎝⎭. ····················································································· 10分当52x =时,S 最大. 512DE DG ∴==,.ADG AOC Q △∽△, 11222AD DG AD OD OE AO OC ∴=∴=∴==,,,. 102D ⎛⎫∴- ⎪⎝⎭,,(20)E ,. ··············································································· 11分 解法二:设DG x =,则1052xDE GF -==. 221055555(1)2222DEFG x S x x x x -∴==-+=--+矩形·. ···································· 10分 ∴当1x =时,S 最大.512DG DE ∴==,.ADG AOC Q △∽△, 11222AD DG AD OD OE AO OC ∴=∴=∴==,,,. 102D ⎛⎫∴- ⎪⎝⎭,,(20)E ,. ··············································································· 11分 ②当矩形一个顶点在AB 上时,F 与C 重合,如图2,DG BC Q ∥,AGD ACB ∴△∽△. GD AGBC AF∴=. 解法一:设GD x =,AC BC ∴==2xGF AC AG ∴=-=.∴2122DEFG x S x x ⎫==-⎪⎭矩形·=(21522x -+.···················································································· 12分当x =S 最大.图2。
2023年3月四川省南充市2020级2023届初中毕业班第一次诊断性检测(南充一诊)数学答案解析
“一诊”数学答案第1页(共6页)2020级初中毕业班第一次诊断性检测参考答案及评分意见说明:(1)阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.(2)全卷满分150分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.(3)参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.(4)要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.一、选择题:共40分.1.B ;2.A ;3.C ;4.B ;5.D ;6.A ;7.B ;8.C ;9.D ;10.D .二、填空题:共24分.11.1;12.(2,-1);13.251;14.2.5;15.3;16.8三、本大题共9小题,共86分.17.解:原式=2×22+2-1-2-1……(4分)=2+2-4……(6分)=22-4……(8分)18.证明:∵∠BCD =∠EFA ,点A 、F 、C 、D 共线∴∠BCA =∠EFD ……(2分)∵AF =DC∴AF +FC =DC +FC∴AC =DF……(4分)在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=DF AC EFD BCA EF BC ……(5分)∴△ABC ≌△DEF (SAS )……(7分)∴∠A =∠D……(8分)19.解:(1)将x =2,y =1-代入解析式得2k +1=5,即k =2.……(2分)。
2020年四川省南充市中考数学试卷(后附答案及详尽解析)
2020年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分. 1.(4分)若1x =−4,则x 的值是( )A .4B .14C .−14D .﹣42.(4分)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为( ) A .1.15×106B .1.15×107C .11.5×105D .0.115×1073.(4分)如图,四个三角形拼成一个风车图形,若AB =2,当风车转动90°,点B 运动路径的长度为( )A .πB .2πC .3πD .4π4.(4分)下列运算正确的是( ) A .3a +2b =5ab B .3a •2a =6a 2 C .a 3+a 4=a 7D .(a ﹣b )2=a 2﹣b 25.(4分)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是( ) A .该组成绩的众数是6环 B .该组成绩的中位数是6环 C .该组成绩的平均数是6环 D .该组成绩数据的方差是106.(4分)如图,在等腰△ABC 中,BD 为∠ABC 的平分线,∠A =36°,AB =AC =a ,BC =b ,则CD =( )A .a+b 2B .a−b 2C .a ﹣bD .b ﹣a7.(4分)如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S8.(4分)如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC =( )A .√26B .√2626C .√2613D .√13139.(4分)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax 2的图象与正方形有公共点,则实数a 的取值范围是( )A .19≤a ≤3B .19≤a ≤1C .13≤a ≤3D .13≤a ≤110.(4分)关于二次函数y =ax 2﹣4ax ﹣5(a ≠0)的三个结论:①对任意实数m ,都有x 1=2+m与x2=2﹣m对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则−4 3<a≤﹣1或1≤a<43;③若抛物线与x轴交于不同两点A,B,且AB≤6,则a<−54或a≥1.其中正确的结论是()A.①②B.①③C.②③D.①②③二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)计算:|1−√2|+20=.12.(4分)如图,两直线交于点O,若∠1+∠2=76°,则∠1=度.13.(4分)从长分别为1,2,3,4的四条线段中,任意选取三条线段,能组成三角形的概率是.14.(4分)笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多购买钢笔支.15.(4分)若x2+3x=﹣1,则x−1x+1=.16.(4分)△ABC内接于⊙O,AB为⊙O的直径,将△ABC绕点C旋转到△EDC,点E在⊙O上,已知AE=2,tan D=3,则AB=.三、解答题(本大题共9个小题,其86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1x+1−1)÷x2−xx+1,其中x=√2+1.18.(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.19.(8分)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助.某批次派出20人组成的专家组,分别赴A、B、C、D四个国家开展援助工作,其人员分布情况如统计图(不完整)所示:(1)计算赴B国女专家和D国男专家人数,并将条形统计图补充完整.(2)根据需要,从赴A国的专家中,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.20.(10分)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.21.(10分)如图,反比例函数y=kx(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.(1)求反比例函数的解析式.(2)求四边形OCDB的面积.22.(10分)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC的延长线于点E,延长ED交AB的延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=4√2,求tan∠EAD的值.23.(10分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)24.(10分)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为110,请直接写出AK长.25.(12分)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ= 53,求点K的坐标.2020年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分. 1.(4分)若1x =−4,则x 的值是( )A .4B .14C .−14D .﹣4【解答】解:∵1x=−4, ∴x =−14, 故选:C .2.(4分)2020年南充市各级各类学校在校学生人数约为1150000人,将1150000用科学记数法表示为( ) A .1.15×106B .1.15×107C .11.5×105D .0.115×107【解答】解:1150000=1.15×106, 故选:A .3.(4分)如图,四个三角形拼成一个风车图形,若AB =2,当风车转动90°,点B 运动路径的长度为( )A .πB .2πC .3πD .4π【解答】解:由题意可得:点B 运动路径的长度为=90×π×2180=π, 故选:A .4.(4分)下列运算正确的是( ) A .3a +2b =5ab B .3a •2a =6a 2 C .a 3+a 4=a 7D .(a ﹣b )2=a 2﹣b 2【解答】解:A 、原式不能合并,不符合题意;B 、原式=6a 2,符合题意;C 、原式不能合并,不符合题意;D 、原式=a 2﹣2ab +b 2,不符合题意. 故选:B .5.(4分)八年级某学生在一次户外活动中进行射击比赛,七次射击成绩依次为(单位:环):4,5,6,6,6,7,8.则下列说法错误的是( ) A .该组成绩的众数是6环 B .该组成绩的中位数是6环 C .该组成绩的平均数是6环 D .该组成绩数据的方差是10【解答】解:A 、∵6出现了3次,出现的次数最多,∴该组成绩的众数是6环,故本选项正确;B 、该组成绩的中位数是6环,故本选项正确;C 、该组成绩的平均数是:17(4+5+6+6+6+7+8)=6(环),故本选项正确;D 、该组成绩数据的方差是17[(4﹣6)2+(5﹣6)2+3×(6﹣6)2+(7﹣6)2+(8﹣6)2]=107,故本选项错误;故选:D .6.(4分)如图,在等腰△ABC 中,BD 为∠ABC 的平分线,∠A =36°,AB =AC =a ,BC =b ,则CD =( )A .a+b 2B .a−b 2C .a ﹣bD .b ﹣a【解答】解:∵在等腰△ABC 中,BD 为∠ABC 的平分线,∠A =36°, ∴∠ABC =∠C =2∠ABD =72°, ∴∠ABD =36°=∠A ,∴BD =AD ,∴∠BDC =∠A +∠ABD =72°=∠C , ∴BD =BC ,∵AB =AC =a ,BC =b , ∴CD =AC ﹣AD =a ﹣b , 故选:C .7.(4分)如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 作EF ⊥BD 于F ,EG ⊥AC 于G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S【解答】解:∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD ,S =12AC ×BD , ∵EF ⊥BD 于F ,EG ⊥AC 于G ,∴四边形EFOG 是矩形,EF ∥OC ,EG ∥OB , ∵点E 是线段BC 的中点, ∴EF 、EG 都是△OBC 的中位线, ∴EF =12OC =14AC ,EG =12OB =14BD ,∴矩形EFOG 的面积=EF ×EG =14AC ×14BD =18S ; 故选:B .8.(4分)如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC =( )A .√26B .√2626C .√2613D .√1313【解答】解:如图,作BD ⊥AC 于D ,由勾股定理得,AB =√32+22=√13,AC =√32+32=3√2, ∵S △ABC =12AC •BD =12×3√2•BD =12×1×3, ∴BD =√22,∴sin ∠BAC =BDAB =√2213=√2626.故选:B .9.(4分)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax 2的图象与正方形有公共点,则实数a 的取值范围是( )A .19≤a ≤3B .19≤a ≤1C .13≤a ≤3D .13≤a ≤1【解答】解:当抛物线经过(1,3)时,a =3, 当抛物线经过(3,1)时,a =19, 观察图象可知19≤a ≤3,故选:A .10.(4分)关于二次函数y =ax 2﹣4ax ﹣5(a ≠0)的三个结论:①对任意实数m ,都有x 1=2+m 与x 2=2﹣m 对应的函数值相等;②若3≤x ≤4,对应的y 的整数值有4个,则−43<a ≤﹣1或1≤a <43;③若抛物线与x 轴交于不同两点A ,B ,且AB ≤6,则a <−54或a ≥1.其中正确的结论是( ) A .①②B .①③C .②③D .①②③【解答】解:∵二次函数y =ax 2﹣4ax ﹣5的对称轴为直线x =−4a 2a=2, ∴x 1=2+m 与x 2=2﹣m 关于直线x =2对称, ∴对任意实数m ,都有x 1=2+m 与x 2=2﹣m 对应的函数值相等;故①正确;当x =3时,y =﹣3a ﹣5,当x =4时,y =﹣5,若a >0时,当3≤x ≤4时,﹣3a ﹣5<y ≤﹣5,∵当3≤x ≤4时,对应的y 的整数值有4个,∴1≤a <43,若a <0时,当3≤x ≤4时,﹣5≤y <﹣3a ﹣5,∵当3≤x ≤4时,对应的y 的整数值有4个,∴−43<a ≤﹣1,故②正确;若a >0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6,∴△>0,25a ﹣20a ﹣5≥0,∴{16a2+20a >05a −5≥0, ∴a ≥1,若a <0,抛物线与x 轴交于不同两点A ,B ,且AB ≤6,∴△>0,25a ﹣20a ﹣5≤0,∴{16a 2+20a >05a −5≤0, ∴a <−54,综上所述:当a <−54或a ≥1时,抛物线与x 轴交于不同两点A ,B ,且AB ≤6.故选:D .二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11.(4分)计算:|1−√2|+20= √2 .【解答】解:原式=√2−1+1=√2.故答案为:√2.12.(4分)如图,两直线交于点O ,若∠1+∠2=76°,则∠1= 38 度.【解答】解:∵两直线交于点O ,∴∠1=∠2,∵∠1+∠2=76°,∴∠1=38°.故答案为:38.13.(4分)从长分别为1,2,3,4的四条线段中,任意选取三条线段,能组成三角形的概率是 14 .【解答】解:画树状图如图:共有24个等可能的结果,能组成三角形的结果有6个,∴能组成三角形的概率为624=14; 故答案为:14. 14.(4分)笔记本5元/本,钢笔7元/支,某同学购买笔记本和钢笔恰好用去100元,那么最多购买钢笔 10 支.【解答】解:设某同学买了x 支钢笔,则买了y 本笔记本,由题意得:7x +5y =100,∵x 与y 为整数,∴x 的最大值为10,故答案为:10.15.(4分)若x 2+3x =﹣1,则x −1x+1= ﹣2 .【解答】解:x −1x+1=x(x+1)−1x+1 =x 2+x−1x+1,∵x 2+3x =﹣1,∴x 2=﹣1﹣3x ,∴原式=−1−3x+x−1x+1=−2x−2x+1=−2(x+1)x+1=−2, 故答案为:﹣2.16.(4分)△ABC 内接于⊙O ,AB 为⊙O 的直径,将△ABC 绕点C 旋转到△EDC ,点E 在⊙O 上,已知AE =2,tan D =3,则AB = 103 .【解答】解:∵AB 为⊙O 的直径,∴∠AEB =∠ACB =90°,∵将△ABC 绕点C 旋转到△EDC ,∴AC =CE ,BC =CD ,∠ACE =∠BCD ,∠ECD =∠ACB =90°,∵tan D =CE CD =3,∴设CE =3x ,CD =x ,∴DE =√10x ,∵∠ACE =∠BCD ,∠D =∠ABC =∠AEC ,∴△ACE ∽△DCB ,∴AC BC =CE CD =AE BD =3,∵AE =2,∴BD =23∴BE =DE ﹣BD =√10x −23,∵AE 2+BE 2=AB 2,∴22+(√10x −23)2=(√10x )2,∴x =√103,∴AB =DE =103,故答案为:103.三、解答题(本大题共9个小题,其86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1x+1−1)÷x 2−x x+1,其中x =√2+1. 【解答】解:(1x+1−1)÷x 2−x x+1 =1−(x+1)x+1⋅x+1x(x−1) =1−x−1x(x−1) =−x x(x−1)=11−x, 当x =√2+1时,原式=1−2−1=−√22. 18.(8分)如图,点C 在线段BD 上,且AB ⊥BD ,DE ⊥BD ,AC ⊥CE ,BC =DE .求证:AB =CD .【解答】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,∴∠ACE =∠ABC =∠CDE =90°,∴∠ACB +∠ECD =90°,∠ECD +∠CED =90°,∴∠ACB =∠CED .在△ABC 和△CDE 中,{∠ACB =∠CEDBC =DE ∠ABC =∠CDE,∴△ABC ≌△CDE (ASA ),∴AB =CD .19.(8分)今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助.某批次派出20人组成的专家组,分别赴A 、B 、C 、D 四个国家开展援助工作,其人员分布情况如统计图(不完整)所示:(1)计算赴B 国女专家和D 国男专家人数,并将条形统计图补充完整.(2)根据需要,从赴A 国的专家中,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.【解答】解:(1)(2+3)÷25%=20(人),所以调查的总人数为20人,赴B 国女专家人数为20×40%﹣5=3(人)赴D 国男专家人数为20×(1﹣20%﹣40%﹣25%)﹣2=1(人)条形统计图补充为:(2)画树状图为:共有20种等可能的结果数,其中所抽取的两名专家恰好是一男一女的结果数为12, 所以所抽取的两名专家恰好是一男一女的概率=1220=35. 20.(10分)已知x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根.(1)求k 的取值范围.(2)是否存在实数k ,使得等式1x 1+1x 2=k ﹣2成立?如果存在,请求出k 的值;如果不存在,请说明理由.【解答】解:(1)∵一元二次方程x 2﹣2x +k +2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k +2)≥0,解得:k ≤﹣1.(2)∵x 1,x 2是一元二次方程x 2﹣2x +k +2=0的两个实数根,∴x 1+x 2=2,x 1x 2=k +2.∵1x 1+1x 2=k ﹣2, ∴x 1+x 2x 1x 2=2k+2=k ﹣2,∴k 2﹣6=0,解得:k 1=−√6,k 2=√6.又∵k ≤﹣1,∴k =−√6.∴存在这样的k值,使得等式1x1+1x2=k﹣2成立,k值为−√6.21.(10分)如图,反比例函数y=kx(k≠0,x>0)的图象与y=2x的图象相交于点C,过直线上点A(a,8)作AB⊥y轴交于点B,交反比例函数图象于点D,且AB=4BD.(1)求反比例函数的解析式.(2)求四边形OCDB的面积.【解答】解:(1)∵点A(a,8)在直线y=2x上,∴a=4,A(4,8),∵AB⊥y轴于D,AB=4BD,∴BD=1,即D(1,8),∵点D在y=kx上,∴k=8.∴反比例函数的解析式为y=8 x.(2)由{y=2xy=8x,解得{x=2y=4或{x=−2y=−4(舍弃),∴C(2,4),∴S四边形OBDC=S△AOB﹣S△ADC=12×4×8−12×4×3=10.22.(10分)如图,点A ,B ,C 是半径为2的⊙O 上三个点,AB 为直径,∠BAC 的平分线交圆于点D ,过点D 作AC 的垂线交AC 的延长线于点E ,延长ED 交AB 的延长线于点F .(1)判断直线EF 与⊙O 的位置关系,并证明.(2)若DF =4√2,求tan ∠EAD 的值.【解答】(1)证明:连接OD ,如图所示:∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠EAF ,∴∠DAE =∠DAO ,∴∠DAE =∠ADO ,∴OD ∥AE ,∵AE ⊥EF ,∴OD ⊥EF ,∴EF 是⊙O 的切线;(2)解:在Rt △ODF 中,OD =2,DF =4√2,∴OF =2+DF 2=6,∵OD ∥AE ,∴OD AE =OF AF =DF EF ,∴2AE =68=√2ED+4√2,∴AE=83,ED=4√23,∴tan∠EAD=DEAE=√22.23.(10分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)【解答】解:(1)由图可知,当0<x≤12时,z=16,当12<x≤20时,z是关于x的一次函数,设z=kx+b,则{12k+b=16,20k+b=14,解得:{k=−14,b=19,∴z=−14x+19,∴z关于x的函数解析式为z={16,(0<x≤12)z=−14x+19,(12<x≤20).(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);②当12<x≤20时,w=(−14x+19﹣10)(5x+40)=−54x2+35x+360=−54(x﹣14)2+605,∴当x=14时,w最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.24.(10分)如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN的形状,并说明理由.(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为110,请直接写出AK长.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABM+∠CBM=90°,∵AM⊥BM,CN⊥BN,∴∠AMB=∠BNC=90°,∴∠MAB+∠MBA=90°,∴∠MAB=∠CBM,∴△ABM≌△BCN(AAS),∴AM=BN;(2)△OMN是等腰直角三角形,理由如下:如图,连接OB,∵点O是正方形ABCD的中心,∴OA=OB,∠OBA=∠OAB=45°=∠OBC,AO⊥BO,∵∠MAB=∠CBM,∴∠MAB﹣∠OAB=∠CBM﹣∠OBC,∴∠MAO=∠NBO,又∵AM=BN,OA=OB,∴△AOM≌△BON(SAS),∴MO=NO,∠AOM=∠BON,∵∠AON+∠BON=90°,∴∠AON+∠AOM=90°,∴∠MON=90°,∴△MON是等腰直角三角形;(3)在Rt△ABK中,BK=√AK2+AB2=√x2+1,∵S△ABK=12×AK×AB=12×BK×AM,∴AM=AK⋅ABBK=x2+1,∴BN=AM=x√x2+1,∵cos∠ABK=BMAB=ABBK,∴BM=AB⋅ABBK=1√x2+1,∴MN=BM﹣BN=1−x x2+1∵S△OMN=14MN2=(1−x)24x2+4,∴y =x 2−2x+14x 2+4(0<x <1); 当点K 在线段AD 上时,则110=x 2−2x+14x 2+4, 解得:x 1=3(不合题意舍去),x 2=13,当点K 在线段AD 的延长线时,同理可求y =x 2−2x+14x 2+4(x >1), ∴110=x 2−2x+14x 2+4, 解得:x 1=3,x 2=13(不合题意舍去),综上所述:AK 的值为3或13时,△OMN 的面积为110.25.(12分)已知二次函数图象过点A (﹣2,0),B (4,0),C (0,4).(1)求二次函数的解析式.(2)如图,当点P 为AC 的中点时,在线段PB 上是否存在点M ,使得∠BMC =90°?若存在,求出点M 的坐标;若不存在,请说明理由.(3)点K 在抛物线上,点D 为AB 的中点,直线KD 与直线BC 的夹角为锐角θ,且tan θ=53,求点K 的坐标.【解答】解:(1)∵二次函数图象过点B (4,0),点A (﹣2,0),∴设二次函数的解析式为y =a (x +2)(x ﹣4),∵二次函数图象过点C (0,4),∴4=a (0+2)(0﹣4),∴a =−12,∴二次函数的解析式为y =−12(x +2)(x ﹣4)=−12x 2+x +4;(2)存在,理由如下:如图1,取BC 中点Q ,连接MQ ,∵点A (﹣2,0),B (4,0),C (0,4),点P 是AC 中点,点Q 是BC 中点, ∴P (﹣1,2),点Q (2,2),BC =√(4−0)2+(0−4)2=4√2,设直线BP 解析式为:y =kx +b ,由题意可得:{2=−k +b 0=4k +b, 解得:{k =−25b =85 ∴直线BP 的解析式为:y =−25x +85,∵∠BMC =90°∴点M 在以BC 为直径的圆上,∴设点M (c ,−25c +85),∵点Q 是Rt △BCM 的中点,∴MQ =12BC =2√2,∴MQ 2=8,∴(c ﹣2)2+(−25c +85−2)2=8,∴c =4或−2429,当c =4时,点B ,点M 重合,即c =4,不合题意舍去,∴c =−2429,则点M 坐标(−2429,5629),故线段PB 上存在点M (−2429,5629),使得∠BMC =90°; (3)如图2,过点D 作DE ⊥BC 于点E ,设直线DK 与BC 交于点N ,∵点A (﹣2,0),B (4,0),C (0,4),点D 是AB 中点, ∴点D (1,0),OB =OC =4,AB =6,BD =3,∴∠OBC =45°,∵DE ⊥BC ,∴∠EDB =∠EBD =45°,∴DE =BE =2=3√22, ∵点B (4,0),C (0,4),∴直线BC 解析式为:y =﹣x +4,设点E (n ,﹣n +4),∴﹣n +4=32,∴n =52,∴点E (52,32), 在Rt △DNE 中,NE =DE tanθ=3√2253=9√210, ①若DK 与射线EC 交于点N (m ,4﹣m ),∵NE =BN ﹣BE , ∴9√210=√2(4﹣m )−3√22, ∴m =85,∴点N (85,125),∴直线DK 解析式为:y =4x ﹣4,联立方程组可得:{y =4x −4y =−12x 2+x +4, 解得:{x 1=2y 1=4或{x 2=−8y 2=−36, ∴点K 坐标为(2,4)或(﹣8,﹣36);②若DK 与射线EB 交于N (m ,4﹣m ),∵NE =BE ﹣BN ,∴9√210=3√22−√2(4﹣m ), ∴m =175,∴点N (175,35), ∴直线DK 解析式为:y =14x −14,联立方程组可得:{y =14x −14y =−12x 2+x +4, 解得:{x3=3+√1454y 3=−1+√14516或{x 4=3−√1454y 4=−1−√14516, ∴点K 坐标为(3+√1454,−1+√14516)或(3−√1454,−1−√14516), 综上所述:点K 的坐标为(2,4)或(﹣8,﹣36)或(3+√1454,−1+√14516)或(3−√1454,−1−√14516).。
2020年南充市数学中考模拟试卷及答案
2020年南充市数学中考模拟试卷及答案一、选择题1.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1062.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯3.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+94.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.25.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是26.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)7.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A .110°B .125°C .135°D .140°8.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解9.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .8 10.估6的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x 套,则x 应满足的方程为( )A .96096054848x -=+ B .96096054848x +=+ C .960960548x-= D .96096054848x-=+ 12.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.16.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.17.若一个数的平方等于5,则这个数等于_____.18.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.若ab=2,则222a ba ab--的值为________.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?23.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.24.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.25.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.4.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22=22.OA OB故选C.5.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.6.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
四川省南充市2020版数学中考一模试卷(II)卷
四川省南充市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·高淳期末) 的倒数是()A . -2B . 2C .D .2. (2分) (2019八上·襄汾月考) 已知,则的值是()A . -2B . 0C . 2D . 43. (2分) (2018九上·云南期末) 某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A . 48°B . 40°C . 30°D . 24°4. (2分)(2020·温州模拟) 将两个长方体如图放置,则所构成的几何体的主视图可能是()A .B .C .D .5. (2分)如图,反比例函数的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是()A . y>1B . 0<y<1C . y>2D . 0< y<26. (2分)(2020·乌鲁木齐模拟) 一元二次方程的根的情况是A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判断7. (2分)(2019·湖州模拟) 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A . ﹣=4B . ﹣=4C . ﹣=4D . ﹣=48. (2分) (2018八上·番禺期末) 已知等腰三角形的一边长为4,另一边长为8,则它的周长是().A .B .C .D . 或二、填空题 (共10题;共12分)9. (2分)代数式在实数范围内有意义,则x的取值范围是________10. (1分) (2020七下·顺义期末) 分解因式:mn2﹣4mn+4m=________.11. (1分) (2017七上·秀洲期中) 用四舍五入法将下列各数取近似值:(1) 0.03495(精确到百分位)≈________;(2) 8.0504(精确到0.1)≈________;(3)51965000(精确到十万位)≈________.12. (1分) (2017八下·海安期中) 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是________13. (1分)(2019·广西模拟) 某商品按标价八折出售仍能获利b元,若此商品的进价为a元,则该商品的标价为________元·(用含ab的代数式表示)14. (1分)一次函数y=﹣3x+12中x________ 时,y<0.15. (1分)(2018·鄂州) 若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为________.16. (1分) (2020九上·平房期末) 已知中,,,,则的长为________.17. (1分)从﹣3,﹣2,﹣1,0,1,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为________18. (2分) (2018九上·海淀月考) 如图,在直角坐标系中,的圆心A的坐标为,半径为1,点P为直线上的动点,过点P作的切线,切点为Q,则切线长PQ的最小值是________.三、解答题 (共10题;共67分)19. (10分)(2019·新会模拟) 计算:﹣﹣()﹣1+4cos30°20. (5分)(2019·昆明模拟) 先化简,再求值:,其中x=﹣1.21. (5分)设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为多少.22. (2分)(2020·遵化模拟) 如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求平行四边形ABCD的面积.23. (10分)(2020·吉林模拟) 如图,在△ 中,高=3,∠ =45°,=,动点从点出发,沿方向以每秒1个单位长度的速速向终点运动,当点与点、不重合时,过点作、的平行线,与分别交于点、,将△ 绕的中点旋转180°得△ ,设点的运动时间为秒,△ 与△ 重叠部分面积为.(1)当=________秒时,点落在边上.(2)求与的函数关系式.(3)当直线将△ 分为面积比为1:3的两部分时,直接写出的值.24. (5分)如图,一桥梁建设工地上有一架吊车,底座高AB=1.5米,吊臂长BC=18米,它与地面保持成30°角,现要将一个底面圆直径为8米,高为2米的圆柱体的钢筋混凝土框架,安装到离地面高度为6米的桥基上,问这架吊车能否完成这安装任务?请说明理由.(说明:图中钢索CO吊在长方体框架的上底面的中心处)25. (6分)已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8).(1)直接写出点C的坐标为:C(________,________);(2)已知直线AC与双曲线在第一象限内有一交点Q为(5,n);①求m及n的值;②若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式,并求当t取何值时S=10.26. (2分) (2019八下·江津期中) 若与成正比例,且当时, .(1)求与的函数关系式(2)如果点在该函数图象上,求的值.27. (7分) (2019八下·潜江期末) 在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是________,CE与AD的位置关系是________.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2 ,BE=2 ,求AP的长.28. (15分)(2019·东湖模拟) 矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共12分)9-1、10-1、11-1、11-2、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共67分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、25-1、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
四川省南充市2020年中考数学一模试卷B卷(新版)
四川省南充市2020年中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·郑州期中) -3的倒数是()A . 3B . -3C .D .2. (2分) (2019七下·昭平期中) 已知,a,b,c的大小关系是()A . a>b>cB . b>a>cC . c>a>bD . c>b>a3. (2分) (2017八下·东城期中) 在函数中,自变量x的取值范围是()A .B .C .D .4. (2分)(2018·苏州模拟) 如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A . 70°B . 75°C . 80°D . 85°5. (2分)(2018·和平模拟) 如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A . 2对B . 3对C . 4对D . 5对6. (2分)数据0,1,1,3,3,4的中位数和平均数分别是()A . 2和2B . 2和2.4C . 1和2D . 3和27. (2分) (2019九上·海陵期末) 在平面直角坐标系中,将二次函数y=2(x-2017)(x-2019)-2018的图象平移后,所得函数的图象与x轴的两个交点之间的距离为2个单位,则平移方式为()A . 向上平移2018个单位B . 向下平移2018个单位C . 向上平移1009个单位D . 向下平移1009个单位8. (2分)(2019·上饶模拟) 我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三梭柱称为“堑堵”,已知“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的体积为()A .B .C .D . 169. (2分)如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A .B .C .D .10. (2分)如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A . 2.5B . 5C . 2.4D . 不确定二、填空题 (共5题;共5分)11. (1分)已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是________ 米.12. (1分)(2019·中山模拟) 关于x的一元二次方程(m+3)x2+4x+m2﹣9=0有一个解为0,则m=________.13. (1分) (2019八下·武侯期末) 关于t的分式方程 =1的解为负数,则m的取值范围是________.14. (1分) (2020八下·玄武期末) 如图,菱形纸片ABCD,AB=4,∠B=60°,将该菱形纸片折叠,使点B 恰好落在CD边的中点B′处,折痕与边BC、BA分别交于点M、N.则BM的长为________.15. (1分) (2016九上·柳江期中) 若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为________.三、解答题 (共7题;共68分)16. (5分)(2012·南京) 化简代数式,并判断当x满足不等式组时该代数式的符号.17. (10分)(2016·兴化模拟) 如图1,一条细绳系着一个小球在平面内摆动,已知细绳从悬挂点O到球心的长度为50厘米,小球在带你B位置时达到最低点,当小球在左侧点A时与最低点B时细绳相应所成的角度∠AOB=37°.(取sin37°=0.6,cos37°=0.8,tan37°=0.75)(1)求点A与点B的高度差BC的值.(2)如图2,若在点O的正下方有一个阻碍物P,当小球从左往右落到最低处后,运动轨迹改变,变为以P 为圆心,PB为半径继续向右摆动,当摆动至与点A在同一水平高度的点D时,满足PD部分细绳与水平线的夹角∠DPQ=30°,求OP的长度.18. (8分)(2017·襄城模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是________;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是________;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为________;(3)请补全频数分布直方图.19. (10分) (2019八上·中山期末) 已知等腰Rt△ABC,∠BAC=90°,AB=AC,点D为△ABC内部一点,连接AD、BD、CD,点H为BD中点,连接AH,且∠BAH=∠ACD.(1)如图1,若∠ADB=90°,求证:∠DAH=45°;(2)如图2,若∠ADB<90°,(1)问中的结论是否成立,若成立,请证明;若不成立,请说明理由.20. (15分) (2020九上·丹东月考) 如图,正方形ABCD,点P在射线CB上运动(不包含点B、C),连接DP,交AB于点M,作BE⊥DP于点E,连接AE,作∠FAD=∠EAB,FA交DP于点F.(1)如图a,当点P在CB的延长线上时,①求证:DF=BE;②请判断DE、BE、AE之间的数量关系并证明;(2)如图b,当点P在线段BC上时,DE、BE、AE之间有怎样的数量关系?请直接写出答案,不必证明;(3)如果将已知中的正方形ABCD换成矩形ABCD,且AD:AB= :1,其他条件不变,当点P在射线CB上时,DE、BE、AE之间又有怎样的数量关系?请直接写出答案,不必证明.21. (10分) (2020九上·三明期末) 某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.22. (10分) (2019八下·乐清月考) 如图,等腰直角△ABC中,∠ACB=90°,AC=BC=7,正方形DEFG的顶点D在AC上,E,F在边AB上,正方形MNPQ的顶点M,Q分别在边AC,BC上,N,P在DG上,设MC=x.(1)用含x的代数式表示MD与AD的长;(2)若正方形DEFG的面积比正方形AMNPQ的面积的2倍多4,求x的值。
南充市2020年中考数学一模试卷(II)卷
南充市2020年中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)两个有理数的和为零,则这两个数一定是()A . 都是零B . 至少有一个是零C . 一个是正数,一个是负数D . 互为相反数2. (2分)在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形,并且只有两条对称轴的有()个A . 1B . 2C . 3D . 4.3. (2分)已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A . 方程有两个相等的实数根B . 方程有两个不相等的实数根C . 没有实数根D . 无法确定4. (2分) (2018七上·临颍期末) 地球上海洋的面积约为361 000 000平方千米,用科学记数法表示为()平方千米.A . 361×106B . 36.1×107C . 3.61×108D . 3.61×1095. (2分) (2017九上·镇雄期末) 函数y=ax2+1与函数y= (a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .6. (2分)一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球(不放回)其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于的方程 x2+Px+q=0 有实数根的概率是()A .B .C .D .7. (2分)如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)()A . 40×40×70B . 70×70×80C . 80×80×80D . 40×70×808. (2分)下列图形不一定相似的是()A . 有一个角是120°的两个等腰三角形B . 有一个角是60°的两个等腰三角形C . 两个等腰直角三角形D . 有一个角是45°的两个等腰三角形9. (2分)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是()A . 10cmB . 30cmC . 60cmD . 50cm10. (2分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A . 4B . 3C . 2D . 1二、填空题 (共5题;共5分)11. (1分)关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是________.12. (1分)⊙O为△ABC的内切圆,⊙O与AB相切于D,△ABC周长为12,BC=4,则AD=________13. (1分)(2012·南京) 已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x﹣3的图象的有________(填写所有正确选项的序号).14. (1分)(2017·梁子湖模拟) 如图,在扇形OAB中,∠AOB=90°,半径OA=2 ,将扇形OAB沿过点B 的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则阴影部分的面积是________.15. (1分)(2020·江夏模拟) 如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.三、解答题 (共7题;共70分)16. (5分)(2017·杨浦模拟) 解方程组:.17. (10分)已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1 , B1的坐标.18. (10分) (2020八下·黄石期中) 大小两种货车运送360台机械设备,有三种运输方案.方案一:设备的用大货车运送,其余用小货车运送,需要货车27辆.方案二:设备的用大货车运送,其余用小货车运送,需要货车28辆.方案三:设备的用大货车运送,其余用小货车运送,需要货车26辆.(1)每辆大、小货车各可运送多少台机械设备?(2)如果大货车运费比小货车高m%(m>0),请你从中选择一种方案,使得运费最低,并说明理由.19. (10分)(2018·遵义模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?20. (5分)如图,将一个∠B= 的直角三角形板的斜边放在轴上,直角顶点在反比例函数的图象上,,求点的坐标.21. (15分)(2017·浙江模拟) 如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.22. (15分)(2020·高新模拟) 如图1,在中,,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,,两点同时出发,当某一点运动到点时,两点同时停止运动.设运动时间为,的面积为,关于的函数图象由,两段组成,如图2所示.(1)求的值;(2)求图2中图象段的函数表达式;(3)当点运动到线段上某一段时的面积,大于当点在线段上任意一点时的面积,求的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共70分)16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、。
2020年四川省南充市中考数学模拟试题(解析版)
2020年四川省南充市中考数学模拟试题(解析版)一.选择题1.下列各组数中互为倒数的是()A.和﹣2 B.﹣3和C.0.125和﹣8 D.﹣5和﹣2.下列运算正确的是()A.x2+x3=x5B.(﹣a2)3=﹣a6C.x2•x3=x6D.x6÷x2=x33.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A.B.C.D.4.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB 型的人数为()A.100 B.50 C.20 D.85.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,且△ACE的周长为30,则BE的长是()A.5 B.10 C.12 D.136.解是x=2的一元一次方程是()A.x2+2=6 B.+10=C.+1=x D.2x+4=07.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π8.不等式>x的最大整数解为()A.x=﹣1 B.x=0 C.x=1 D.x=29.在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:(1)△ABG≌△AFG;(2)∠EAG=45°;(3)AG∥CF;(4)S=2,其中正确的有()个.△EFCA.1 B.2 C.3 D.410.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,抛物线的对称轴是直线x=1,与x轴的一个交点坐标为(4,0).下列结论中:①c>a;②2a﹣b=0;③方程ax2+bx+c=1(a≠0)有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(﹣1,0);⑤若点A(m,n)在该抛物线上,则am2+bm≤a+b.其中正确的有()A.①③④B.②③④C.①③⑤D.①④⑤二.填空题11.家鸡的市场价格为15元/kg,买akg家鸡需要元.12.如图,在正方形ABCD中,画一个最大的正六边形EFGHlJ,则∠BGF的度数是.13.计算的结果是.14.某班9名学生的体重指数分别是20.2,20.4,17.3,18.9,20.1,19.4,24.2,28.3,22.4,这组数据的中位数是,体重状况属于正常(体重指数在18.5﹣23.9之间为正常)的频数为.15.一次函数y=kx+1的图象经过点(1,2),反比例函数y=的图象经过点(m,),则m.16.如图,在矩形ABCD中,AB=2cm,BC=3cm,现有一根长为2cm的棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所经过的路径长度为cm.三.解答题17.计算题:(1)(2).18.如图,BE,AD是△ABC的高且相交于点P,点Q是BE延长线上的一点.(1)试说明:∠1=∠2;(2)若AP=BC,BQ=AC,线段CP与CQ会相等吗?请说明理由.19.一个不透明的口袋里装着分别标有数字﹣3,﹣1,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为x,然后把小球放回;再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在直线y=﹣x﹣1上的概率.20.已知关于x的方程3x2﹣mx+2=0(1)若方程有两相等实数根,求m的取值;(2)若方程其中一根为,求其另一根及m的值.21.如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).(1)求一次函数和反比例函数的表达式;(2)求点E的坐标并求△EOF的面积;(3)结合该图象写出满足不等式﹣ax≤的解集.22.如图,在⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.中考体育加试中跳绳为易得分项目,某文具店看准商机购进甲、乙两种跳绳.已知甲、乙两种跳绳进价之和为36元;甲种跳绳每根获利4元,乙种跳绳每根获利5元;第一批店主购买甲种跳绳30根、乙种跳绳40根一共花费1280元.(1)甲、乙两种跳绳的单价各是多少元?(2)若该文具店预备第二批购进甲、乙两种跳绳共60根,在费用不超过1120元的情况下,如何进货才能保证利润W最大?(3)由于质量上乘,前两批跳绳很快售器,店主第三批购进甲、乙两种跳绳若干,当甲、乙保持原有利润时,甲、乙两种跳绳每天别可以卖出120根和105根,后来店主决定和甲、乙两种跳绳同时提高相同的售价,已知甲、乙两种跳绳每提高1元均少卖出5根,为了每天获取更多利润,请问店主将两种跳绳同时提高多少元时,才能使日销售利润达到最大?24.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.25.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF 周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择1.解:A、和﹣2,两数之积为﹣1,不是互为倒数,故此选项错误;B、﹣3和,两数之积为﹣1,不是互为倒数,故此选项错误;C、0.125和﹣8,两数之积为﹣1,不是互为倒数,故此选项错误;D、﹣5和﹣,两数之积为1,是互为倒数,故此选项正确;故选:D.2.解:A.x2与x3不是同类项,所以不能合并,故本选项不合题意;B.(﹣a2)3=﹣a6,正确;C.x2•x3=x5,故本选项不合题意;D.x6÷x2=x4,故本选项不合题意.故选:B.3.解:三个图形相邻,而选项B,D与此不符,所以错误;再观察3个图案所在的位置,而选项A不符,正确的是C.故选:C.4.解:∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1﹣(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.5.解:∵CE=5,AC=12,且△ACE的周长为30,∴AE=13.∵AB的垂直平分线交AB于D,交BC于E,∴BE=AE=13,故选:D.6.解:因为x2+2=6不是一元一次方程,故A不合题意;当x=2时,+10=10≠,+1=1+1=2,2x+4=8≠0.故x=2不是选项B、D的解,是选项C的解.7.解:∵在▱ABCD中,∠A=2∠B,∠A+∠B=180°,∴∠A=120°,∵∠C=∠A=120°,⊙C的半径为3,∴图中阴影部分的面积是:=3π,故选:C.8.解:>x,4﹣x>3x,﹣x﹣3x>﹣4,x<1,∴不等式>x的最大整数解是0.故选:B.9.解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵△ADE沿AE折叠得到△AFE,∴△DAE≌△FAE.∴∠DAE=∠FAE.∵△ABG≌△AFG,∴∠BAG=∠FAG.∵∠BAD=90°,∴∠EAG=∠EAF+∠GAF=×90°=45°.∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∵△CEF和△CEG中,分别把EF和GE看作底边,则这两个三角形的高相同.∴S△EFC :S△ECG=EF:EG=2:5,∴S△EFC=××3×4=∴④错误;正确的结论有3个,故选:C.10.解:∵抛物线开口向下,交y轴于正半轴,∴a<0,c>0,∴c>a,故①正确;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②错误;观察图象可知,抛物线与直线y=1有两个交点,∴方程ax2+bx+c=1有两个不相等的实数根,故③正确;∵抛物线的对称轴x=1,与x轴交于(4,0),∴另一个交点坐标(﹣2,0),故④错误;∵x=1时,函数有最大值,∴点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,∴am2+bm≤a+b,故⑤正确.故选:C.二.填空11.解:由题意得:买akg家鸡需要15a元,故答案为:15a.12.解:连接AC,BD交于O,连接OG.则点O是正方形和正六边形的中心,F,I在BD上.∴∠OBG=45°,∠OFG=60°,∠OGF=60°.∴∠BGO=75°.∴∠BGF=15°.13.解:原式=﹣===﹣1,故答案为:﹣1.14.解:将这组数据从小到大的顺序排列:17.3,18.9,19.4,20.1,20.2,20.4,22.4,24.2,28.3,处于中间位置的那个数是20.2,由中位数的定义可知,这组数据的中位数是20.2,体重状况属于正常(体重指数在18.5﹣23.9之间为正常)的频数为6.故答案为:20.2,6.15.解:∵一次函数y=kx+1经过点(1,2),∴2=k+1,解得k=1,∴反比例函数的解析式为y=,把点(m,)代入得=,∴m=2,故答案为:=2.16.解:连接BP,如图所示:∵P是EF的中点,∴BP=EF=×2=1,如图所示,点P的运动轨迹是4段弧长+2段线段的长度,即4×+2×1=2π+2.故答案为:2π+2.三.解答17.解:(1)原式=4+2﹣﹣2﹣3=2﹣2;(2)原式=××(﹣)=﹣.18.证明:(1)∵BE,AD是△ABC的高∴∠1+∠BCA=90°,∠2+BCA=90°,∴∠1=∠2,(2)∵AP=BC,∠1=∠2,BQ=AC,∴△APC≌△BCQ(SAS)∴CP=CQ.19.解:(1)∵共有4个数字,分别是﹣3,﹣1,0,2,其中是负数的有﹣3,﹣1,∴所抽取的数字恰好为负数的概率是=;(2)根据题意列表如下:﹣3 ﹣1 0 2 ﹣3 (﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)(0,0)(2,0)2 (﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情况有16种,其中点(x,y)在直线y=﹣x﹣1上的情况有4种,则点(x,y)在直线y=﹣x﹣1上的概率是=.20.解:(1)依题意得:△=b2﹣4ac=(﹣m)2﹣4×3×2=m2﹣24=0,解得:m=±2.故m的取值为±2.(2)设方程的另一根为x2,由根与系数的关系得:,解得:.故另一根为1,m 的值为5.21.解:(1)把A (﹣3,0)代入一次函数解析式得:0=﹣3a +, 解得:a =,即一次函数解析式为y =x +, 把F (3,t )代入一次函数解析式得:t =3, 则反比例解析式为y =;(2)联立得:,解得:或,∴点E (﹣6,﹣),则S △EOF =S △AOE +S △AOB +S △BOF =×3×+××3+××3=;(3)根据图象得:不等式﹣ax ≤的解集为﹣6≤x <0或x ≥3. 22.(1)证明:如图,连接OA , ∵=,∴CA =CB , 又∵∠ACB =120°, ∴∠B =30°, ∴∠O =2∠B =60°, ∵∠D =∠B =30°,∴∠OAD =180°﹣(∠O +∠D )=90°, ∴AD 与⊙O 相切;(2)∵∠O =60°,OA =OC , ∴△OAC 是等边三角形, ∴∠ACO =60°, ∵∠ACB =120°,∴∠ACB =2∠ACO ,AC =BC , ∴OC ⊥AB ,AB =2BE , ∵CE =4,∠B =30°,∴BC=2CE=8,∴BE===4,∴AB=2BE=8,∴弦AB的长为8.23.解:(1)设甲、乙两种跳绳的单价各是x元和y元,根据题意得,,解得:,答:甲、乙两种跳绳的单价各是16元和20元;(2)设第二批购进甲种跳绳a根,乙种跳绳(60﹣a)根,由题意得,W=4a+5(60﹣a)=﹣a+300,∵﹣1<0,∴W随a的增大而减小,∵费用不超过1120元,∴16a+20(60﹣a)≤1120,解得:a≥20,∴当购进甲种跳绳20根,购进乙种跳绳40根,利润W最大;(3)设店主将两种跳绳同时提高m元时,才能使日销售利润y达到最大,由题意得,y=(4+m)(120﹣5m)+(5+m)(105﹣5m)=﹣10m2+180m+1005=﹣10(m﹣9)2+1815,∴当店主将两种跳绳同时提高9元时,才能使日销售利润达到最大.24.解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.25.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N' ∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN,∴C=MN+NG+GF+FM=MN+N'G+GF+FM'四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小∴C=MN+M'N'==2+10=12四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点M,∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3,设点P坐标为(t,t2﹣4t)(0<t<8),则点M(t,﹣3t),①如图2,当0<t<2时,点P在点D左侧,∴PM=y M﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t,∴S△ODP =S△OPM+S△DPM=PM•x P+PM•(x D﹣x P)=PE(x P+x D﹣x P)=PM•x D=PM=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h,∴﹣t2+t=×2×,方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,﹣6)连接AC ,交KL 于点H∵S △ACD =S 四边形ADLK =S 矩形ABCD ∴S △AHK =S △CHL ∵AK ∥LC ∴△AHK ∽△CHL ∴∴AH =CH ,即点H 为AC 中点 ∴H (4,﹣3)也是KL 中点 ∴∴m =3∴抛物线平移的距离为3个单位长度.。
四川省南充市2020年数学中考一模试卷B卷
四川省南充市2020年数学中考一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2019七上·通州期中) 如果一个有理数的绝对值比它的相反数大,那么这个数是()A . 正数B . 负数C . 负数和零D . 正数和零2. (2分)下面的计算正确的是()A . (﹣2ab2)3=﹣8a3b5B . (8a2b2c)÷(4ab)=2abC . 3a2÷(4a2+1)=+3a2D . (a2﹣2a)•a﹣1=a﹣23. (2分)用科学记数法方法表示0.0000907得()A .B .C .D .4. (2分) (2020七上·椒江期末) 有理数,在数轴上对应的位置如图所示,则()A .B .C .D .5. (2分)下列结论正确的是()A . 数轴上表示6的点与表示4的点相距10B . 数轴上表示+6的点与表示-4的点相距10C . 数轴上表示-4的点与表示4的点相距10D . 数轴上表示-6的点与表示-4的点相距106. (2分)下列图形:正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形、圆,其中既是中心对称图形,又是轴对称图形的共有()A . 3个B . 4个C . 5个D . 6个7. (2分) (2018九上·湖州期中) 若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A . (-3,-6)B . (-3,0)C . (-3,-5)D . (-3,-1)8. (2分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A .B .C .D . 19. (2分)(2017·衡阳模拟) 如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A . 57°B . 60°C . 63°D . 123°10. (2分)下列函数中,当x>0时,y值随x值增大而减小的是()A . y=x2B . y=x﹣1C .D . y=二、填空题: (共6题;共7分)11. (1分)在函数y=中,自变量x的取值范围是________ .12. (2分)分解因式:-x4+8=________ ;(a2+1)2﹣4a2=________ .13. (1分) (2016九上·本溪期末) 如图,△ABC的顶点是正方形网格的格点,则tanA的值为________.14. (1分)已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC 是 ________ 三角形.15. (1分)(2017·孝感模拟) 已知函数y= ,其图象如图中的实线部分,图象上两个最高点分别是A,B,连接AB,则图中曲四边形ABCO(阴影部分)的面积是________.16. (1分) (2017九下·丹阳期中) 一个扇形的圆心角为120°,面积为12 cm2 ,则此扇形的半径为________cm三、解答题: (共6题;共56分)17. (20分)(2018七上·郑州期中) 计算:(1)(2)(3)(4)18. (5分)(2014·深圳) 先化简,再求值:(﹣)÷ ,在﹣2,0,1,2四个数中选一个合适的代入求值.19. (10分)在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ,若∠B=60°,在不添加任何辅助线的情况下,请直接写出图中所有余弦值为的角.20. (6分)(2018·苏州) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).21. (10分) (2018·平南模拟) 某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同,求每次下降的百分率;(2)这种水果进价为每千克40元,若在销售等各个过程中每千克损耗或开支2.5元,经一次降价销售后商场不亏本,求一次下降的百分率的最大值.22. (5分)(2019·白云模拟) 如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)四、解答题: (共3题;共35分)23. (10分) (2020九下·中卫月考) 如图,在矩形ABCD中,E是BC边上的点,,垂足为F.(1)求证:;(2)如果,求的余切值.24. (15分) (2019九上·揭西期末) 直线与反比例函数(>0)的图象分别交于点 A (,4)和点B(8,),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当时,直接写出的解集;(3)若点P是轴上一动点,当△COD与△ADP相似时,求点P的坐标.25. (10分) (2016九上·仙游期末) 在⊙O中,AB为⊙O的直径,AC是弦,,.(1)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;(2)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动一周,当时,求半径OM所扫过的扇形的面积.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题: (共6题;共56分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、四、解答题: (共3题;共35分) 23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
四川省南充市2020版中考数学一模试卷D卷
四川省南充市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·黔南期末) 由冯小刚执导,严歌苓编剧的电影《芳华》于2017年12月15日在全国及北美地区上映,电影首周票房超过29400000元,数据29400000用科学计数法表示为()A . 0.294x109B . 2.94x107C . 29.4x107D . 294x1062. (2分) (2017八下·鄂托克旗期末) 下列命题中,错误的是().A . 平行四边形的对角线互相平分B . 菱形的对角线互相垂直平分C . 矩形的对角线相等且互相垂直平分D . 角平分线上的点到角两边的距离相等3. (2分)(2018·新乡模拟) 下列计算正确的是()A . a2•a3=a6B . (a2)4=a6C . (2a2b)3=8a6b3D . 4a3b6÷2ab2=2a2b34. (2分) (2019九上·萧山月考) 某校举行以“我为词霸”为主题的英语单词比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲.乙同学获得前两名的概率是()A .B .C .D .5. (2分)如图所示的几何体是由若干大小相同的小立方块搭成,则这个几何体的左视图是()A .B .C .D .6. (2分)已知2+ 的整数部分是a,小数部分是b,则a2+b2=()A . 13﹣2B . 9+2C . 11+D . 7+47. (2分) (2019八下·大名期中) 小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min 报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A .B .C .D .8. (2分)(2018·广水模拟) 关于二次函数y=2x2﹣mx+m﹣2,以下结论:①抛物线交x轴有交点;②不论m取何值,抛物线总经过点(1,0);③若m>6,抛物线交x轴于A,B两点,则AB>1;④抛物线的顶点在y=﹣2(x﹣1)2图象上.其中正确的序号是()A . ①②③④B . ①②③C . ①②④D . ②③④二、填空题 (共6题;共6分)9. (1分) (2019八上·南岗期末) 计算: =________.10. (1分) (2016七下·绵阳期中) 如图,已知A(﹣2,3)、B(6,﹣1),AB交x轴于点C,交y轴于点D.点D的坐标为________.11. (1分)(2019·泸西模拟) 2018年国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了30户家庭的月上网费用,结果如表月网费(元)50100150户数(人)15123则关于这30户家庭的月上网费用,中位数是________.12. (1分) (2019九上·辽阳期末) 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1 , M2 ,M3 ,…Mn分别为边B1B2 , B2B3 , B3B4 ,…,BnBn+1的中点,△B1C1M1的面积为S1 ,△B2C2M2的面积为S2 ,…△Bn∁nMn的面积为Sn ,则Sn=________.(用含n的式子表示)13. (1分)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是________14. (1分) (2019八下·嵊州期末) 在矩形ABCD中,AB=3,对角线AC,BD相交于点O,将矩形折叠,使得对角线的两个端点B,D重合,折痕所在直线分别交直线AB,直线CD于点E,F.若△OCF是等腰角形,则BC的长度为________ 。
南充市2020版中考数学一模试卷B卷
南充市2020版中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019九上·黔南期末) 抛物线y=(x-3)2+4的顶点坐标是()A . (-1,2)B . (-1,-2)C . (1,-2)D . (3,4)2. (2分)(2012·丹东) 如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2018·乐山) 如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A . EG=4GCB . EG=3GCC . EG= GCD . EG=2GC4. (2分)若两圆的半径是方程的两个不等实数根,圆心距为5,则两圆的位置关系为()A . 外切B . 内含C . 相交D . 外离5. (2分)(2020·青浦模拟) 如图,点G是△ABC的重心,联结AG并延长交BC边于点D.设,,那么向量用向量、表示为()A .B .C .D .6. (2分)(2016·深圳模拟) 如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A . 6B . 5C . 4D . 3二、填空题 (共12题;共12分)7. (1分)已知线段a、b满足2a=3b,则=________8. (1分) (2019九上·普陀期中) 如果点、是二次函数的图像上两点,那么 ________ .(填“>”、“=”或“<”)9. (1分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x﹣100.52y﹣12 3.752下列结论中正确的有________ 个.(1)ac<0;(2)当x>1时,y的值随x值的增大而减小;(3)x=2是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<2时,ax2+(b﹣1)x+c>0.10. (1分)已知二次函数y=x2+bx+c的图象过点A(1,0)且关于直线x=2对称,则这个二次函数关系式是________.11. (1分)△ABC中,∠C=90°,,则sinA+cosA=________.12. (1分)二次函数y=3x2的图象向下平移3个单位,得到的新的图象的解析式是________.13. (1分) (2019九上·德清期末) 如图,在网格(每个小正方形的边长均为1)中选取7个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为________.14. (1分) (2019八下·蔡甸月考) 在Rt△ABC中,∠C=90°,AB=5,BC=3,点D、E分别在BC、AC上,且BD=CE,设点C关于DE的对称点为F,若DF∥AB,则BD的长为________.15. (1分)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,则旗杆CD的高度约为________米.(结果精确到0.1米.参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62)16. (1分)半径为15cm和13cm的两圆相交,其公共弦长为24cm,则圆心距为________.17. (1分)如图,等边三角形ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60,则CD的长为________ .18. (1分)(2017·本溪模拟) 如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为________.三、解答题 (共7题;共76分)19. (5分)(2020·甘肃模拟) 计算:20. (10分)(2019·合肥模拟) 如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD 于点E.(1)求证:△CDE∽△FAE.(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.21. (10分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若CD=2,BA=8,求半径的长.22. (11分)(2012·大连) 如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.(1)∠BEF=________(用含α的代数式表示);(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求的值(用含m,n的代数式表示)23. (15分)(2017·东平模拟) 如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.24. (10分)(2020·新北模拟) 如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B,交AC 的延长线于点D(点D在线段BG上),AC = 8,tan∠BDC =(1)求⊙O的直径;(2)当DG= 时,过G作,交BA的延长线于点E,说明EG与⊙O相切.25. (15分) (2019九上·义乌月考) 如图,在平面直角坐标系中,抛物线与轴交于A、B两点,与轴交于C点,B点与C点是直线与轴、轴的交点。
南充市2020版中考数学一模试卷(II)卷
南充市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·赤峰) 的倒数是()A . ﹣B .C . 2016D . ﹣20162. (2分) (2019九下·鞍山月考) 下列运算中,正确的是()A .B .C .D .3. (2分)已知如图是一个轴对称图形.若将图中某些黑色的图形去掉,得到一些新的图形,则其中轴对称的新图形共有()个。
A . 9B . 8C . 7D . 64. (2分)(2016·温州) 如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A . 主视图改变,左视图改变B . 俯视图改变,左视图不变C . 俯视图改变,左试图改变D . 主视图不改变,左视图不改变5. (2分)反比例函数y=图象的每条曲线上y都随x增大而增大,则k的取值范围是()A . k>1B . k>0C . k<1D . k<06. (2分)已知二次函数y=a(x﹣1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()A .B .C .D .7. (2分)(2017·深圳模拟) 如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A . 1小时B . 小时C . 2小时D . 小时8. (2分) (2020七下·太原月考) 如图,李大爷用24米长的篱笆靠墙围成一个矩形(ABCD)菜园,若菜园靠墙的一边(AD)长为x(米),那么菜园的面积y(平方米)与x的关系式为()A .B . y=x(12-x)C .D . y=x(24-x)9. (2分)(2018·江苏模拟) 如图,□ABCD的周长为36,对角线AC、BD相交于点O.点E是CD的中点,BD=14,则△DOE的周长为()A . 50B . 32C . 16D . 910. (2分)从A到B地的一条公路,先是一段平路,然后是一段上坡路,小明骑自行车从A地出发,到达B 地后立即按原路返回A地,返回途中休息了一段时间,假设小明骑车在平路、上坡路、下坡路时分别保持匀速前进.已知小明骑自行车在上坡路的速度比平路上的速度每小时少5千米.下坡路的速度比在平路上的速度每小时多5千米,小明在去B地和返回A地两次经过C地的时间间隔为0.15小时,小明离A地的路程S(单位:千米)和出发的时间t(单位:小时)之间的函数关系式如图所示.下列说法中正确的个数为()①小明骑自行车在上坡路的速度为10千米/时;②小明从A地到B地共用了0.4小时;③小明在返回途中休息了0.1小时;④C地与B地的距离为1千米.A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共13分)11. (1分)(2018·灌云模拟) 钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为________.12. (1分)在函数y=中,自变量x的取值范围是________ .13. (1分) (2017八上·高州月考) 对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2= .那么12※4=________.14. (1分)(2019·黄石) 分解因式: ________15. (4分)(2017·和平模拟) 解不等式组:请结合题意填空,完成本题的解答:(i)解不等式(1),得________;(ii)解不等式(2),得________;(iii)把不等式(1)和(2)的解集在数轴上表示出来:________(iv)原不等式的解集为:________.16. (1分) (2019七下·吉林期末) △ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,则至少旋转________度后能与原来图形重合.17. (1分)(2017·邗江模拟) 如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为________.18. (1分)一个不透明的袋子中有3个分别标有数字3,1,﹣2的球,这些球除所标的数字不同外其它都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是________19. (1分)(2017·玉环模拟) 以A为圆心,半径为9的四分之一圆,与以C为圆心,半径为4的四分之一圆如图所示放置,且∠ABC=90°,则图中阴影部分的面积为________.20. (1分) (2019八下·澧县期中) 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________三、解答题 (共7题;共71分)21. (5分)(2016·赤峰) 计算:(﹣)﹣1+3tan30°﹣ +(﹣1)2016 .22. (15分) (2016七下·虞城期中) 按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.23. (6分) (2015八上·龙岗期末) 每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74________________104二组________________________72(2)从本次统计数据来看,________组比较稳定.24. (10分) (2017八下·东莞期中) 如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC 至点F,使CF= BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.25. (10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26. (10分) (2017九上·宣化期末) 问题提出平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时.如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是________.如图②,若点D在⊙O内,此时有∠ACB________∠ADB;如图③,若点D在⊙O外,此时有∠ACB________∠ADB(填“=”、“>”、“<”)由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:________.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:________.拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB作法:①连接CA、CB②在CB上任取异于B、C的一点D,连接DA,DB;③DA与CB相交于E点,延长AC、BD,交于F点;④连接F、E并延长,交直径AB与M;⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)27. (15分)(2017·广州模拟) 如图1,菱形ABCD中,AB=10,连接BD,tan∠ABD= ,若P是射线BC上的一个动点(点P不与点B重合),连接AP,与对角线相交于点E,连接EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,S△EPC=y,求y关于x的函数解析式,并写出x的取值范围;(3)当点P在线段BC的延长线上时,若△EPC是直角三角形,求线段BP的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共71分) 21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、。
四川省南充市2020年中考数学一模试卷B卷
四川省南充市2020年中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·西湖模拟) 下列实数中,无理数是()A . πB . ﹣C .D . |﹣4|2. (2分) (2019七下·融安期中) 如图,直线I1∥I2 ,则a=()A . 160°B . 150°C . 140°D . 130°3. (2分)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A .B .C .D .4. (2分) (2017七下·乌海期末) 下列说法不正确的是()A . 的平方根是B . -9是81的一个平方根C . 0.2的算术平方根是0.04D . -27的立方根是-35. (2分)(2016·巴彦) 小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校公用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的个数是()A . 4个B . 3个C . 2个D . 1个6. (2分) (2017八下·宾县期末) 已知四边形ABCD是平行四边形,下列结论中不正确的是()A . 当∠A=60°时,它是菱形B . 当AC⊥BD时,它是菱形C . 当AC=BD时,它是矩形D . 当AB=BC,AC=BD时,它是正方形7. (2分) (2020九上·港南期末) 如图,中,,若,,则边的长是()A . 2B . 4C . 6D . 88. (2分) (2020七下·林州月考) 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A . (2018,0)B . (2018,2)C . (2019,2)D . (2019,0)9. (2分)(2019·合肥模拟) 若点A(x1 , 2)、B(x2 , 5)都在反比例函数y=的图象上,则一定正确是()A . x1<x2<0B . x1<0<x2C . x2<x1<0D . x2<0<x110. (2分)如图,⊙O的半径为5,弦AB的长为8,将沿直线AB折叠,折叠后如右图,则⊙O到所作的圆的切线OC的长为()A .B . 5C . 3D .二、填空题 (共6题;共6分)11. (1分) (2018七上·海口期中) 用科学记数法表示13040000,应记作________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 若玩具生产厂家规定销售单价不低于43元,且商店每月要完成不少于350件的销售任务,求商店销售这款玩具1
个月能获得的最大利润.
24. 如图,
的对角线 , 交于点O,过点D作
于E,延长 到点F,使
,连接
,.
(1) 求证:四边形
是矩形;
(2) 若
,
,
,试求 的长.
25. 如图,抛物线
与 轴交于点A,B,与y轴交于点C,直线 为
二、填空题
11. 若
,则
的值是________.
12. 以方程组的
,解为坐标的点
在第________象限.
13. 下个月学校将为片区学校展示“音乐、体育、美术”兴趣活动观摩,小明、小丽随机从三个场所选择一个担任志愿者
服务,两人恰好选择同一场所的概率是________.
14. 如图, 与 交于O,
,要使
,可以补充一个边或角的条件是________.
15. 如图, 是
的高,
,
,
,则
________.
16. 如图,抛物线
经过点
,
.若点Q到y轴的距离小于2,则n的取值范围是________.
三、解答题
17. 计算:
.
18. 如图, 是
的角平分线,在 上截取
.若
,
,试求
的度数.
19. 为了解社区居民公共卫生意识情况,社区网格员随机抽查了若干居民开展“抗击疫情相关规定”有奖问答活动,并用 得到的数据绘制了条形统计图.
四川省南充市2020年中考数学一模试卷
一、单选题
1. 下列各数中,属于无理数的是( )
A . 3.14 B . 0.2020... C . D .
2. 下列计算,错误的是( )
A.
B.
C.当
时,
D.当
时,
3. 针对所给图形,如果不区分颜色,说法正确的是( )
A . 是轴对称图形 B . 是中心对称图形 C . 既是轴对称图形,又是中心对称图形 D . 非轴对称图形,也非中心对称图形
,
CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1) 求证:BD是⊙O的切线;
(2) 当OB=2时,求BH的长.
23. 某商店经营一款新电动玩具,进货单价是30元。在1个月的试销阶段,售价是40元,销售量是400件.根据市场调查
,销售单价若每再涨1元,1个月就会少售出10件.
(1) 若商店在1个月获得了6000元销售利润,求这款玩具销售单价是定为多少元的,并考虑了顾客更容易接受.
6. 将抛物线
向左平移1个单位后的解析式为( )
A.
B.
C.
D.
7. 如图,小王从A处出发沿北偏东 方向行走至B处,又从B处沿南偏东 方向行走至C处,则
等于( )
A. B. C. D.
8. 不等式组
的最大整数解为a,最小整数解为b,则
()
A . -14 B . -15 C . -16 D . -17
4. 下列说法正确的是( )
A . 可能性很大的事件,在一次试验中一定发生 B . 可能性很小的事件,在一次试验中可能发生 C . 必然事件,在一次试验中有
可能不会发生 D . 不可能事件,在一次试验中也可能发生
5. 若
的一边为4,另两边同时满足方程
,则
的周长( )
A . 为10 B . 为11 C . 为12 D . 不确定
9. 如图A,B,C是 上顺次3点,若 , , 分别是 内接正三角形、正方形、正n边形的一边,则
()
A . 9 B . 10 C . 12 D . 15 10. 如图,正方形 , .下列结论:①
中,点E是
;②
边的中点.将
;③
沿 对折至 ;④
,延长 交 边于点G,连接 C . ②③④ D . ①②③④
.
(1) 求抛物线的解析式.
(2) 过点A作直线 与抛物线在第一象限的交点为 .当
(3) 在第二象限抛物线上求一点P,使
.
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
时,确定直线 与 的位置关系.
15. 16. 17. 18.
19.
20.
21.
22.
23.
24. 25.
请根据图中信息,解答下列问题:
(1) 本次抽查的居民人数;
(2) 本次抽查获取的样本数据的平均数、众数和中位数;
(3) 社区决定对本区500户居民开展这项有奖间答活动(每户抽1人),得10分者设为“一等奖”.请你根据调查结果,
帮社区工作人员估计需准备多少份“一等奖”奖品?
20. a为实数,关于x的方程
有两个实数根 , .
(1) 求a的取值范围. (2) 若
,试求a的值.
21. 如图,直线 与x轴交于点
,与 轴交于点
,将线段 绕点A逆时针旋转 得到线段
,双曲线
经过点C.
(1) 求直线 和双曲线
的解析式.
(2) 平移直线 ,使它与双曲线
有唯一公共点P时,求点P的坐标.
22. 如图,AB是⊙O的直径,点C是 的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且