短波通信盲区及其解决方法

合集下载

超短波通信系统干扰问题分析及其应对策略

超短波通信系统干扰问题分析及其应对策略

超短波通信系统干扰问题分析及其应对策略超短波通信系统作为一种传输速度快、信号传输稳定可靠的通信系统,被广泛应用于各个领域,如公共安全、铁路、气象、军事等。

然而,随着通信设备的增多,超短波通信系统面临着越来越严峻的干扰问题。

本文将分析超短波通信系统干扰问题及应对策略。

一、超短波通信系统干扰问题1.电磁干扰由于超短波通信系统的频率在300MHz-3GHz之间,这个频段被许多电子设备使用,如电视、微波炉、雷达、商业广播等,它们发出的电磁波会对超短波通信系统产生不同程度的干扰影响,影响通信效果。

2.天气干扰超短波通信系统的天线必须直接对准接收位置,如果有天气干扰就会影响信号的传输。

在雷暴、大雨、雾、雪等恶劣天气下,电离层中的天空波会受到天气条件的不同而发生改变,从而影响信号的传输。

3.建筑物遮挡超短波通信系统需要采用室外设备,如天线、转发器等,但这些设备往往会被建筑物、山、树等遮挡,导致信号衰减或者完全丧失,从而影响通信质量。

二、超短波通信系统应对策略1.调整工作频率超短波通信系统可以通过调整频率的方式避免或减少电磁干扰,但这需要进行其他联络系统,因为在使用频率带时必须遵循特定规定和协议。

2.选择合适的天线应该选择最适合工作环境的合适天线。

在建筑物中,可以采用高分辨率天线,而在山区或多树林的地区,可以采用大方向天线,以避免遮挡。

3.加强通信安全加强通信系统安全是应对干扰问题的一种重要策略。

可以采用加密技术、访问密码、密钥管理等安全措施,防止外部入侵和非法盗窃信息。

4.增强设备防护加强设备的防护工作可有效减少天气因素对通信设备的影响。

可以采用防水工艺和耐用的防水材料,对设备进行外壳加固和防雨处理,以提高设备的可靠性和耐用性。

5.有效维护设备保持设备干净、整洁、工作正常是有效应对干扰问题的另一项重要措施。

可以定期对设备进行维护和保养,及时修复设备故障,以保证通信系统设备的正常工作状态。

综上所述,随着超短波通信系统的不断应用,干扰问题日益突出。

短波通信盲区产生的原因及解决方案介绍

短波通信盲区产生的原因及解决方案介绍

短波通信盲区产生的原因及解决方案介绍
在模拟系统的设备跟踪研制过程中,短波通信因其具有机动性强、抗毁能力强和跨地平线超视距通信的能力,受到亲睐。

然而,短波通信有一个明显的缺点,即在20 ~ 100 km 范围内,通常存在通信盲区的问题,给网络的连续通信带来了严重影响。

因此,解决通信盲区的问题,成为保证实现模拟系统短波连续通信的关键。

文中结合短波通信的特点和工程应用实际,从两种途径讨论了有效克服通信盲区的方法,并分析了技术实现的可行性,最后提出了一种采用较低频率和高仰角天线的通信技术,有效地解决了某型模拟系统短波通信的盲区问题。

1 盲区的形成原因
短波通信使用的无线电频率为3 ~ 30 MHz.短波的传播方式主要分为地波传播和天波传播两种形式,如图1 所示。

图1 短波传播方式
1. 1 地波传播
沿大地与空气的分界面传播的电波,叫地面波或表面波,简称地波。

其传播途径主要取决于地面的电特性。

地波在传播过程中,由于部分能量被大地吸收,很快减弱,波长越短,减弱越快,因而传播距离不远。

1. 2 天波传播
天波是指由天线向高空辐射的电磁波受到天空电离层反射或折射后返回地面的无线电波。

天波是短波的主要传播途径。

短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远,而且不受地面障碍物阻挡。

但电离层对一定频率的电波反射只能在一定距离以外才能收到。

1. 3 通信盲区
由于天波不能到达跳距以内的区域,地波则随距离的增加场强会急剧衰减,因此,在跳距以内存在着地面波和天波均不能到达的区域,这个区域成为盲区。

改善短波通信盲区的方法。

改善短波通信盲区的方法。

改善短波通信盲区的方法。

改善短波通信盲区的方法
一、提高天线高度:提高发射站和接收站天线的高度可以有效改善短波信号的传输距离,同时也可以增加信号的强度和清晰度。

另外,提高天线的高度也能够减少信号受环境因素的影响,如地形,气候等。

二、改善发射站:在改善传输盲区时,应首先考虑提高发射站的发射功率,优化发射频率和采用正确的极化方向,这是改善短波通信盲区的最有效的方法。

三、提高接收站的敏感度:若接收站收到的信号强度较低,则可以考虑使用更高的天线高度和更加灵敏的接收装置,从而提高接收站的敏感度,从而使接收站能够接收到更弱的信号。

四、改善环境因素:短波信号传播受到地形,气候等环境因素的影响,因此,改善短波通信盲区也可以通过改善环境因素,如减少地形障碍,改善气候条件等。

五、使用多个发射站或接收站:使用多个发射站或接收站可以有效改善短波通信的传播距离,提高信号的强度和清晰度,同时还可以使短波信号更容易地传播到盲区的一些边缘地区。

六、使用转换器:转换器可以将低频信号转换成高频信号,从而使信号变得更强,更易于传播。

总之,要有效改善短波通信盲区,应当从提高发射站和接收站的天线高度,改善发射站,提高接收站的敏感度,改善环境因素,使用多个发射站或接收站以及使用转换器等多种方面来全面解决短波通
信盲区问题。

短波盲区的原理及消除

短波盲区的原理及消除
增加车载电台的发射功率也是加强地波场强的有效方法。现在常见的峰值125W电台,平均功率只有80W左右。如果换用平均功率150W的电台(如美国SGC的SG2000PT),发射功率增加近一倍,地波传播距离将明显延长。
三、根本的解决办法—采用高仰角天线
业内专家都承认高仰角天线是消除盲区的最好方法,问题在于什么天线是高仰角天线。
有些鞭天线产品被宣传成高仰角天线,这是对用户的误导。无论何家生产任何一种鞭天线,尺寸和调谐方式有何不同,都不产生高仰角辐射,只能产生中低仰角辐射。鞭天线安装位置得体时,能够借助车体反射产生少量高仰角分量,但强度极为有限。
目前世界上高仰角车载天线很少。在高仰角天线中,能效最高的是半环天线(典型产品:科麦克ML-90),之所以称为半环天线,是因其物理形态不是一个完整的环,如果按照原理特性也可以叫电磁环天线。这种天线的特殊结构使其形成“喷泉状”对天辐射,辐射区集中在90°~40°高仰角至中仰角方向,因此经电离层反射回到地面后完全覆盖了半径500公里之内的区域,盲区当然就不存在了。
使用ML-90半环天线还有四个独特的优点:一是不需要电台功率大,50W和150W通信效果差不多。二是由于天线与车体绝缘,隔绝了车体的点火和摩擦等噪声源,通信背景更干净。三是天线表面积大,接收效果更好。最重要的是第四点,半环天线的实时可通频段达到3~4MHz,而且因为辐射角高,受电离层高度变化的影响不大,日频和夜频差不多,选择频点很容易。根据经验,ML-90半环天线昼夜可用频率都在6~10MHz范围内,在这一可通频段内,各个频点略有差别,但都可通。而鞭天线和其它车载天线的实时可通频段只有0.5~1MHz,且可通频段在一天中每个时段都在变化,选择通信频点比较困难。尤其是早晨和黄昏,因电离层高度不稳,寻找频点更为困难。ML-90半环天线可通频段宽且稳定的特点还附带了另一个好处:不需要使用ALE自适应选频系统,不仅避免了ALE的选频耗时,加快了建链速度,并且节省了购买ALE系统的昂贵费用。

去掉短波干扰的方法

去掉短波干扰的方法

去掉短波干扰的方法
要去除短波干扰,可以尝试以下方法:
1. 使用短波滤波器:安装短波滤波器可以帮助阻止特定频率范围内的干扰信号进入设备。

2. 增加外部天线:更换或增加更高质量的天线,可以改善接收质量并减少干扰。

3. 调整天线位置和方向:尝试不同的天线位置和方向,以寻找最佳的接收信号方向,并减少干扰。

4. 使用短波降噪器:短波降噪器可以帮助消除干扰信号,并提高接收信号的质量。

5. 避开干扰源:尽量将接收设备远离潜在的干扰源,例如电视、电脑和电源线等。

6. 使用屏蔽线缆:使用屏蔽线缆可以减少干扰信号的干扰。

7. 定期检查设备和天线的连接:确保连接牢固,无损耗和良好的接地,并检查是否存在任何松动或断开的连接。

尝试以上方法可能会帮助减少短波干扰,但干扰的严重程度和类型可能因设备和环境而异,因此可能需要根据具体情况进行调整。

短波近距离无盲区通信的解决方案

短波近距离无盲区通信的解决方案

解 决短波盲 区通信 主要有 两个 方法 : 一是 加大 电台功率
和 提 升 天 线 高 度 以延 长 地 波 传 播 距 离 ; 是 常 用 的 有 效 方 法 二 就 是 选 用 高 仰 角 天 线 。仰 角 是 指 天 线 辐 射 波 瓣 与 地 面 之 间 的 夹 角 。 仰 角 越 高 , 电 波 第 一 跳 落 地 的 距 离 越 短 .盲 区 越 少 .
1 短波 通信 特点
1 .短 波 信 号 传 输 方式 理 论 上 讲 短 波 信 号 经 天 线 辐 射 产 生 直 射 波 、地 波 和 天 波 三 种 形 式 。 其 中 直 射 波 为 视 距 传 输 有 效 距 离 受 天 线 高 度 和 地 形 影 响 很 大 通 信 中 尽 量 避 免 使 用 。地 波 信 号 沿 地 面 传 输 . 信 号 衰 减 很 快 . 传 输 距 离 受 地 表 介 质 和 地 形 影 响 比 较 大 ,一 般 在 几 十 公 里 范 围 内 ,仅 可 应 用 在 发 射 端 和 接 收 端 距 离 非 常 近 的情 况 .其 传 输 效 果 和 经 济 性 都 很 差 ,实 际应 用价 值 较 低 。
关键词 : 波 短
通 信 亩 区
NI V S
远 若 以较 大 角 度 发 射 信 号 ,那 么 射 入 电 离 层 角 度 较 大 .覆
盖 距 离 近 。 对 给 定 的 频 率 和现 有 电 离 层 情 况 而 言 .都 有 一 个
0 引言
自上 世 纪 2 O年 代 短 波 被 发 现 可 实 现 远 距 离 通信 以来 ,短 波通 信 迅 速 发 展 成 为 了世 界 各 国 中 、 远 程 通 信 的 主 要 手 段 , 被 广 泛 用 于 政 府 、军 事 、外 交 、气 象 、 商 地 面 .发 射 点 距 短 波 信 号 第 一 次 反 射 回到 地 面 的 距 离 往 往 在 几 百 公 里 以 上 , 可 避 免 地 存 在 覆 盖 盲 区 ,也 就 是 地 波 不 传 输 的终 点 与 天波 最 近 落地 点 之 间 的 一 段 难 以通 信 的 区域 。 本 文 主 要 探 讨 的 是 短 波 近 距 离 通 信 的 解 决 方 法 ,在 0至 5 0公 里 的 范 围 内建 立 具 有 双 工 工作 功 能 的 可 靠 通 信 。 0

车载短波通信盲区浅析

车载短波通信盲区浅析

有 金 属 顶 盖 的 车 顶平 面 上 . 或 者 切 割 成 形 的完 整 金 属 板 上 。 该
金属顶面不仅起着支撑和安装天线的作用 , 还 是 天 线 回 路 的 重 要组 成 部分 , 参 与天 线方 向图 的形成 。 在金 属板 材 料 中 , 铜 板效 果 较好 , 铝板、 铁板 、 钢板 也 可 以 , 不 推荐 使 用不 锈钢 板 , 如图 3  ̄ 4 。
盲 区而 设 计 的 。其 半 圆 形 的结 构 实 现 NVI S传 播 ( Ne a r Ve r t i c a l
的 电磁 波 是 全 方 向 的 ,并 且 主 要 以地 波 的形 式 向 四周 传 播 , 故 称 全 向地 波 天 线 , 常 用 于 近 距 离 通信 。 鞭 天 线 的极 化 为 垂 直 极
信盲区。
1 短波通信 盲区 由来
短 波 通 信 盲 区 主 要 是 针 对 装 车 使 用 的 鞭 天 线 而 言 存 在 盲
区 。鞭 天 线 是 常 用 的一 种 短 波 车 载 通 信 天 线 。 这类 天线 发 射 出
对 于 短 波通 信 盲 区有 效 的 解 决 方式 是 采 用 半 环 天 线 。半 环 天 线作 为一 款新 型短 波 天 线 , 是 专 门为 解 决 车 载 短 波 天 线 通 信
透 电 离 层 进 入 外 太 空 而 无 法 返 回 ,所 以 其 工 作 频 段 通 常 在
3 MHz  ̄ 1 3 MHz 之间。 半 环 天 线 的特 殊 结 构 决 定 了其 特 殊 的安 装 方 式 , 需 在 车 顶 上 占据 较 大 的 空 间 。而且 必须 安装 在金 属顶 的 车 顶 平 面 上 , 或
l 1 信息化研究

短波通信中_盲区_问题研究

短波通信中_盲区_问题研究

短波通信中“盲区”问题研究孙明亮 雷 坤(驻海南地区军代室 海南 海口 570206)摘 要: 分析短波通信中“盲区”问题的形成原因,阐述NVIS 通信技术及其特点,论述运用NVIS 技术研制的车载短波天线,解决长期困扰我军通信中的“盲区通”、“山地通”、“动中通”等难题。

关键词: 短波通信;“盲区”;NVIS 技术;车载短波天线中图分类号:TN92 文献标识码:A 文章编号:1671-7597(2011)0110169-021 短波通信“盲区”问题分析短波频段电磁波的常见传播方式,基本上可以分为地波、天波两种。

其传统的电磁波传播方式如图1所示:图1 短波电磁波传播方式示意图从图1可以看出来,天线辐射出来的电磁波,在地波和天波传输距离之间,存在着一个通信盲区(skipzone )。

在这个区域内由于地波传播到达尽头,而天波第一跳却已跳过而几乎没有信号。

因此,在该区域内很难进行短波通信。

这也就是平常所说短波通信盲区(寂静区)的形成机理。

对于短波通信而言,不同的天线和辐射特性(包括天线辐射仰角、增益、设备功率等)所形成的盲区是不相同的。

有的在20~60公里之间,有的在30~80公里之间。

总之,在传统的短波电磁波传播方式下,基本上都存在着通信的盲区。

其范围大多在20~30公里与几百公里之间,只是出现的距离和范围不同而已。

从上面的情况来看,要尽量缩小短波通信的“盲区”范围,实现无盲区通信有两种方法:一种是尽量延长短波地波的传播距离;另一种是尽量缩短短波天波第一跳折回地面的距离。

由于地波传播损耗是很大的,因此想要延长短波地波通信的距离,就只有是增大电台发射功率,或者是采用定向高增益的短波天线。

这两种方式在实际使用中都有其局限性。

那么,如果有一种手段,能够使短波天波第一跳的距离接近为0,这种传播方式就可以实现短波的无盲区通信。

这个终极的解决方案正是“NVIS ”,一种能缩短短波天波第一跳距离的天波传播方式和通信技术,它可以很好地解决短波通信中的“盲区”通信问题。

改善短波通信盲区的方法

改善短波通信盲区的方法

改善短波通信盲区的方法
短波通信是一种重要的国际通信手段,但在过去存在着许多通信盲区,导致通信效果不佳。

为了改善这种现象,我们可以采用以下方法:
1.建立新的短波通信基站。

在短波通信盲区周围建立新的短波通信基站,可以提高通信信号的传输质量,从而改善通信盲区的情况。

2.增加短波通信发射功率。

增加短波通信发射功率可以有效地提高信号的传输距离和质量,从而解决通信盲区的问题。

3.优化天线设备。

天线是短波通信的重要组成部分,优化天线设备可以提高信号的传输效率和穿透力,从而改善通信盲区。

4.采用数字化技术。

数字化技术可以提高短波通信的压缩率和抗干扰能力,从而提高通信质量和穿透力,改善通信盲区。

总之,改善短波通信盲区需要我们采取多种措施,包括建立新的短波通信基站、增加短波通信发射功率、优化天线设备和采用数字化技术等。

这些措施可以提高信号的传输效率和穿透力,从而解决通信盲区的问题,为短波通信提供更加高效、稳定的通信手段。

- 1 -。

短波通信中“盲区”问题研究

短波通信中“盲区”问题研究

短波通信中“盲区”问题研究作者:孙明亮雷坤来源:《硅谷》2011年第01期摘要:分析短波通信中“盲区”问题的形成原因,阐述NVIS通信技术及其特点,论述运用NVIS技术研制的车载短波天线,解决长期困扰我军通信中的“盲区通”、“山地通”、“动中通”等难题。

关键词:短波通信;“盲区”;NVIS技术;车载短波天线中图分类号:TN92文献标识码:A文章编号:1671-7597(2011)0110169-021 短波通信“盲区”问题分析短波频段电磁波的常见传播方式,基本上可以分为地波、天波两种。

其传统的电磁波传播方式如图1所示:图1短波电磁波传播方式示意图从图1可以看出来,天线辐射出来的电磁波,在地波和天波传输距离之间,存在着一个通信盲区(skipzone)。

在这个区域内由于地波传播到达尽头,而天波第一跳却已跳过而几乎没有信号。

因此,在该区域内很难进行短波通信。

这也就是平常所说短波通信盲区(寂静区)的形成机理。

对于短波通信而言,不同的天线和辐射特性(包括天线辐射仰角、增益、设备功率等)所形成的盲区是不相同的。

有的在20~60公里之间,有的在30~80公里之间。

总之,在传统的短波电磁波传播方式下,基本上都存在着通信的盲区。

其范围大多在20~30公里与几百公里之间,只是出现的距离和范围不同而已。

从上面的情况来看,要尽量缩小短波通信的“盲区”范围,实现无盲区通信有两种方法:一种是尽量延长短波地波的传播距离;另一种是尽量缩短短波天波第一跳折回地面的距离。

由于地波传播损耗是很大的,因此想要延长短波地波通信的距离,就只有是增大电台发射功率,或者是采用定向高增益的短波天线。

这两种方式在实际使用中都有其局限性。

那么,如果有一种手段,能够使短波天波第一跳的距离接近为0,这种传播方式就可以实现短波的无盲区通信。

这个终极的解决方案正是“NVIS”,一种能缩短短波天波第一跳距离的天波传播方式和通信技术,它可以很好地解决短波通信中的“盲区”通信问题。

通信盲区弱场强区域信号增强解决方案

通信盲区弱场强区域信号增强解决方案

通信盲区/弱场强区域信号增强解决方案市场挑战无论何种先进的无线通信系统,都无法做到在复杂的地理环境下实现真正的无缝覆盖,诸如大型建筑物、地下商场、隧道、地铁、机场等地域。

通常这些信号盲区范围一般不大,但对通信的需求依然存在,甚至必须保证良好的通信覆盖,例如:大型宾馆或会展中心内在举行重大商务活动时,因为室内信号太差导致安保工作无法高效执行,影响活动的正常进行;隧道内如果不能达到信号无缝覆盖会给交警在执勤或处理交通事故时带来极大的困难;同时铁路沿线的无线信号强度如果不能满足通信需求,就无法保障运输安全和生产效率;安保人员在地铁、机场内等重要巡逻区域会由于这些建筑物的钢结构对无线信号的屏蔽作用而不能与指挥中心进行顺畅的无线通信,一旦发生突发事件,势必对该区域的公众安全产生极大的隐患。

解决方案结合弱场强区域的地理特点,海能达制定了通信盲区/弱场强区域信号增强解决方案。

方案建设采用以下原则:(1) 要求比建设集群基站更快速,更经济;(2) 不增加频率资源,扩大原有基站覆盖范围;(3) 不干扰原有基站,无需对原系统和基站参数进行调整。

该方案采用基站信号增强器传输,信号增强器既可以应用于室外,有效补充基站覆盖范围,解决信号盲区问题;也可以作为信号源应用于室内分布系统,解决室内信号弱的问题,该设备采用近,远端机分体式设计,可选择射频电缆和光纤链路等多种信号传输方式,组网方式灵活,满足不同条件区域的补盲需求。

方案特点:(1) 软件选信道技术采用SDR数字技术选择多个工作信道进行放大,有效屏蔽无用信号,保证转发区域内频谱的纯净度,确保输出功率的稳定。

同时具有极佳的兼容性,可以广泛应用于常规通信系统、MPT-1327模拟集群通信系统、TETRA、PDT、DMR等数字集群通信系统。

(2) 上行噪声通道开关,话音清晰,重叠覆盖区无干扰设计有通道开关,在覆盖区下没有对讲机呼叫时,多信道选择模块上的通道自动关闭,以尽可能的减少对基站的影响,与原有基站的重叠区域无干扰,在任何信号覆盖区域均能够保证高质量的语音通信。

短波通信盲区现象解决方法介绍

短波通信盲区现象解决方法介绍

短波通信盲区现象解决方法介绍张 会1 刘志华1 郭新海2(1.河南济源88信箱,济源454650;2.河南洛阳061信箱,洛阳471003)摘 要 短波无线电通信在200公里范围内通常存在着盲区,这一点制约了其在近距机动通信中的应用,因此实现无盲区通信是战术通信研究的主题之一。

针对盲区形成原理给出了缩小盲区范围的两个途径,其中近垂直入射天波的传播模式具有优良的短波盲区消除性能。

关键词 短波通信 盲区 NVIS 天线The Method of H ow to Solve the Q uestion of Silence Zonein HF CommunicationZhang Hui1 Liu Zhihua1 G uo X inhai2(11P.O.Box88,Jiyuan454650,Henan,China;21P.O.Box061,Luoyang471003,Henan,China)Abstract:There will be a silence zone in HF communication at a range of200kilometers,this re2 stricts the application of HF communication in maneuvering communication,s o the research subject of tactics communication is how to establish non2silence communication.According to the forming theory of silence zone,tw o ways to decrease the silence zone range are advanced in this paper.And NVIS communication can excellently s olve the problem of silence zone.K eyw ords:HF communication;silence zone;NVIS;antenna1 短波通信的盲区现象在频率为2~30MH z的短波频段,其电波传播方式主要是地波传播和天波传播两种。

短波通信盲区及解决方法

短波通信盲区及解决方法

短波通信盲区及解决方法卫星、网络通讯快速发展的今天,短波通信不仅没有被淘汰,还在快速发展。

其原因是:短波通信距离远、抗毁能力和自主通信能力强、运行成本低。

短波通信技术发展状况近年来,短波通信技术在世界范围内获得了长足进步,出现了很多新电台、新装备和新技术。

其主要特点是:1、短波电台短波单边带电台体积越来越小,功能越来越多,性能越来越好,兼容性越来越强。

数字化是短波电台的必然发展趋势。

2、短波天线短波天线主要是向宽带、全向、无“盲区”、高增益方向发展。

体积越来越小,效率越来越高。

现推出了多款新型基站天线和车载天线。

3、频率选择在频率选择方面,除已广泛使用的ASAPS测频系统和ALE自适应选频方法外,又推出了短波全频段实时自适应选频系统和频率管理系统。

4、噪声消除在抗噪声方面推出了多种静噪、消噪方式,尤其是美国SGC公司最近推出的ADSP2单端消噪器,可以串接在任何无线电台的收信音频放大电路中或做成消噪扬声器,消除信道中的背境噪声,使短波电台的收听质量,达到或接近超短波电台的收听水平。

5、组网通信在组网通信方面,除自适应(ALE)功能中的选呼组网方式外,国外己推出了CCIR493数字选呼系,该系使每一部电台分得一个不重复的ID码(4~6位),通过它可组成万台级的大网,现在澳大利亚生产的短波电台,欧、美生产的部份短波电台,己作为常规功能,固化于整机中。

CCIR493数字选呼系统可实现单呼、组呼、群呼,收发短信息,传送GPS定位信号,传送警报信号,实现短波/市话网双向自动拨号等功能。

短波通信盲区及解决方法一、短波传播方式无线电广播、无线电通信、电视、雷达等都要靠无线电波的传播来实现。

电波在各种媒介质及媒介质分界面上传播的过程,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。

为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:地波(表面波)传播,直射波(视距)传播,天波传播,散射传播。

高仰角天线

高仰角天线
增加车载电台的发射功率也是加强地波场强的有效方法。现在常见的峰值125W电台,平均功率只有80W左右。如果换用平均功率150W的电台(如美国SGC的SG2000PT),发射功率增加近一倍,地波传播距离将明显延长。
三、根本的解决办法—采用高仰角天线
业内专家都承认高仰角天线是消除盲区的最好方法,问题在于什么天线是高仰角天线。
ML半环无盲区短波车载天线
工作频段 3.6~13MHz,承载功率 ML-91 125W、ML-90 50W,通频带 3.6MHz时40KHz、13MHz时280KHz,宽度1250mm,高 度环立起高850mm、环放平高240mm,长度短型:1500mm、标准型:1800mm,结构材料高强度铝合金,重量 27公斤。不存在近距较大:①目前国内外使用最广的感容匹配式自动天调,安装在鞭的底部,调速快,能记忆多个频点,缺点是效率偏低。②底部调感式天线,由于抵消了天线鞭的部分容抗,电流分布有所改善,等效于增加了“电长度”,辐射效率略高于底部感容匹配式自动调谐天线,其缺点是调速较低,不能记忆。(典型产品:柯顿9350)。③所有鞭天线中辐射效率最高的是中部调感式鞭天线(典型产品:月光AT230)。中部调感加强了天线下半部的高频电流,等效“电长度”比底部调感式更长,地波明显延长,其缺点也是调速较低,不能记忆。
在实际工作交流中,我们发现不少用户对短波盲区的形成原理、解决途径以及怎样选用设备还不很清楚,有时产品选用不当,及至购买后才发现在盲区内通信效果不好。本文主要谈一些这方面的问题。
一、从盲区的形成原理,明确消除盲区的途径
盲区的形成原理并不深奥。我们知道短波是通过地波和天波两个途径传播的。内陆地区地面电导率低,对电波吸收很强,所以在我国北方,地波传播不到20公里就衰耗殆尽了(南方水网地区略远一些)。而天波传播,因为天线有辐射角(主波瓣中轴线对地面的夹角),因此经电离层反射回到地面时必然拉开一段距离。对于车载鞭天线和多数其他车载天线,从发射点到天波最近落地点的距离约为80~120公里。在20~120公里这个区间内,地波和天波都覆盖不到,就形成了盲区。由此可以看出解决盲区只能通过两个途径:

短波传播特性及盲区通信策略分析

短波传播特性及盲区通信策略分析

E(d,t)=竽 cos(%(t-¥))
(2_1)
由于:M•波由空中直达波和地面反射波组成,则宜射 波在少观电场强度为叫
E(d,t)二氐+E尸聲 cosK (t 一 鲁))
(2 2)
ቤተ መጻሕፍቲ ባይዱ
+匚畧5_cos@ (t -令))
式(2-2)中,兔,为空间直达波在接收点的电场强 度,氐为空间直达波到接收点的路径长度,比为地面反射 波在接收点的电场强度,d力地面反射波到达接收点的路 径长度。F为地面反射系数,对于视距通信来说,电波入 射地面的仰角△很小(通常小于1°),在地面导电率为有 限值时,有r=-io故当d》山时,则接收点d处电场强 度、接收功率可近似为13 :
議的有效性,其中扩大地波传播距离能在一定程度上减小通信盲区,而近垂直入射天波(NVIS)技术,具有实现短波无盲区 通信的良好性能。
关键词:短波通信;电波传播;通信盲区;NVIS技术
中图分类号:TN935. 21
文献标识码:A
文章编号:1672-0164 (2019 ) 06-0048-07
1引言
信息通信技术的快速发展,不断催生通信方式、通信 手段的更新迭代与应用变革,尽管现代新型无线电通信系 统不断涌现,但是短波这一古老而传统的通信方式,以其 设备简单、站点开设快捷、抗毁能力强以及不需要中继即 可实现远距离通信蹴势,始终是应急行动和极限环境下 重要的"保底通信”手段,在应急通信保障中具有不可替 代的地位和作用。
按照国际无线电咨询委员会(CCIR)的划分,短波 是指波长在lOOrnMm,频率为3-30MEE的电磁波,其具有 地波和天波两个基本传播途径,但在地波和天波传输距离 之间,存在一个两者均难以到达的盲区。短波通信是利用 1.5-30MHZ短波频率进行的无线电通信,解决短波通信盲 区问题,一直是短波通信应用研究的热点。

解决大功率短波广播节目覆盖盲区的方案

解决大功率短波广播节目覆盖盲区的方案

Wireless Coverage I无线覆盖【本文献信息】韩鹏.解决大功率短波广播节目覆盖盲区的方案[J].广播与电视技术,2019,Vol.46(10).覆盖盲区的方案韩鹏(青海省广播电视局五六六台,青海810000)【摘要】在地广人稀的青藏高原,大功率短波广播是对广袤牧区进行广播覆盖最经济、最有效、最便捷的途径。

而主要通过天波传输的大功率短波发射台因为静区效应,导致台站在离天波最近的落地点有近70〜130km的短波广播覆盖盲区,这种情况无法满足广大牧区对广播节目全覆盖的要求。

本文分析短波广播覆盖盲区形成的原因,提出了减缩覆盖盲区范围的方案,采用具有良好表现的近垂直入射天波成功解决了我省短波广播覆盖盲区的问题。

【关键词】短波广播,覆盖盲区,静区效应,近垂直入射天波【中图分类号】TN93【文献标识码】B【DOI编码】10.16171/ki.rtbe.201900010015A Solution of High Power HF Radio Program Coverage Against Blind AreaHan Peng(566Station of Qinghai Provincial Radio and Television Bureau,Qinghai810000,China)Abstract In the vast and sparsely populated Qinghai-Tibet Plateau,high power HF radio is the most economical,effective and convenient way to broadcast in vast pastoral areas.The HF radio mainly transmits through sky wave.Because of the effect of silence zone,there is nearly70-130 kilometers of HF radio blind coverage around the nearest landing site of the station.This is difficult to meet the requirements of the vast pastoral coverage of radio programs.This paper analyses the causes of HF broadcasting blind coverage.A solution of high power HF radio program coverage against blind area is proposed.The NVIS with good performance has successfully solved the problem of HF broadcasting blind coverage in Qinghai province.Keywords HF radio,Covering blind-area,Effect of silence zone,NVIS0引言青海省作为一个经济发展落后的西部多民族省份,广播覆盖在全省广大牧区中有着极为重要的地位。

短波无盲区通信技术及其应用

短波无盲区通信技术及其应用

短波无盲区通信技术及其应用崔宇明;韦勇;唐光亮【摘要】分析了短波通信盲区由于短波地波传播距离有限,而短波天波一跳传播距离较远的形成机理,针对盲区形成机理分析了解决短波通信盲区的方法即扩大地波传播距离与缩短天波一跳传播距离。

介绍了一种解决短波通信盲区的近垂直入射天波( NVIS )技术,并通过对NVIS通信的覆盖距离、通信频段、传播损耗的计算分析,总结了NVIS通信距离覆盖范围有限、通信频段低、信号覆盖均匀的特点。

在此基础上,通过作者参与的实际项目试验验证了短波NVIS通信的可靠性及通信质量,最后分析了短波NVIS通信在“山中通”、“动中通”和“大区域组网”方面应用的可行性。

【期刊名称】《通信技术》【年(卷),期】2014(000)010【总页数】4页(P1135-1138)【关键词】短波;无盲区;近垂直入射天波【作者】崔宇明;韦勇;唐光亮【作者单位】中国人民解放军78605部队,四川成都610031;中国人民解放军78605部队,四川成都610031;中国电子科技集团公司第三十研究所,四川成都610041【正文语种】中文【中图分类】工业技术doi:10.3969 / j.issn.1002-0802.2014.10.006短波无盲区通信技术及其应用*崔宇明1,韦摇勇1,唐光亮2(1.中国人民解放军 78605 部队,四川成都 610031;2.中国电子科技集团公司第三十研究所,四川成都 610041)摘摇要:分析了短波通信盲区由于短波地波传播距离有限,而短波天波一跳传播距离较远的形成机理,针对盲区形成机理分析了解决短波通信盲区的方法即扩大地波传播距离与缩短天波一跳传播距离。

介绍了一种解决短波通信盲区的近垂直入射天波(NVIS) 技术,并通过对 NVIS 通信的覆盖距离、通信频段、传播损耗的计算分析,总结了 NVIS 通信距离覆盖范围有限、通信频段低、信号覆盖均匀的特点。

在此基础上,通过作者参与的实际项目试验验证了短波 NVIS 通信的可靠性及通信质量,最后分析了短波 NVIS 通信在“山中通冶、“动中通冶和“大区域组网冶方面应用的可行性。

优化短波通信的方法

优化短波通信的方法

优化短波通信的方法1、改善短波信号质量的三大要素由于短波传输存在固有弱点,短波信号的质量不如超短波。

不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。

改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。

1.1 正确选用工作频率短波频率和超短波频率的使用性质完全不同。

超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。

用同一套电台和天线,选用不同频率,通信效果可能差异很大。

对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。

一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。

另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。

如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:(1)接近日出时,若夜频通信效果不好,可改用较高的频率;(2)接近日落时,若日频通信效果不好,可改用较低的频率;(3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率;(4)工作中如信号逐渐衰弱,以致消失,可提高工作频率;(5)遇到磁暴时,可选用比平常低一些的频率。

计算机测频利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。

计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。

美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。

其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。

1.2 正确选择和架设天线地线天线和地线是很多短波用户容易忽视的问题。

短波通信干扰技术的运用及具体措施研究

短波通信干扰技术的运用及具体措施研究

短波通信干扰技术的运用及具体措施研究短波通信干扰技术是指在无线电通信中,利用各种手段对短波通信信号进行干扰,以达到阻止短波通信正常进行的目的。

在实际的应用中,短波通信干扰技术常常被用于战争、恐怖主义和情报活动等领域。

短波通信干扰技术不同于其他干扰技术,它的特点是可以从远处进行干扰,具有灵活性高、便于隐蔽等特点。

短波通信干扰技术的形式多种多样,包括电磁干扰、电子战干扰、伪装干扰以及预警干扰等。

这些干扰技术的共同特点是可以迅速、有效地打击敌方的通信系统,破坏敌方的通讯联络,从而干扰敌方的作战指挥和信息传递,进而打乱敌方的方略和部署。

针对短波通信干扰技术的应对措施主要包括以下几个方面:1.抗干扰能力提升:在短波通信系统的设计方案中,必须考虑到系统的抗干扰能力,进行针对性的优化和改进建设。

这样可以大大提升系统的稳定性和可靠性,增强系统对短波通信干扰技术的抵抗能力。

2.技术调整:为了应对敌方的短波通信干扰技术,可以采取技术调整的方法,对通信系统的调制、解调、压缩、扩频等技术参数进行调整和优化,从而提高其对干扰的抵抗能力。

3.多路传输:使用多路传输技术,对数据进行分流和分段传输,可以避免因单一通道受到干扰而导致的通讯中断。

同时,多路传输还可以分散干扰者的攻击目标,提高系统的安全性。

4.加密技术:通过采用加密技术,可以有效地防范敌方的窃听和干扰行为,保证通信信息的安全有效性。

加密技术的应用可以有效地提高系统的抗干扰能力,同时也可以为其他对手提供优化的通信解决方案。

总之,面对敌方短波通信干扰技术的挑战,必须采取一系列的应对措施,提高短波通信系统的抗干扰能力,从而确保通信系统的正常运转和信息传递的安全有效性。

在进行干扰的情况下,必须遵守相关法律法规和人道主义原则,保护所有包括平民在内的人员的安全和权益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

短波通信盲区及其解决方法文章出处:发布时间: 2009/10/19 | 707 次阅读 | 0次推荐 | 0条留言Samtec连接器完整的信号来源 molex精选商品劲爆折扣价每天新产品时刻新体验 ARM Cortex-M3内核微控制器下单既有机会获取IPAD2 来自全球领先品牌的最新产品目录最新电子元器件资料免费下载完整的15A开关模式电源首款面向小型化定向照明应用代替尽管当前新型无线通信系统通信系统通信系统是为把用户非电形式的消息传送到远方,现代通信技术在发送端以用户终端设备将作为信源的消息转换成电信号,并令其经信道传送到远方的接收端,接收端用户终端设备再从所接收信号中还原出受信消息(信宿)。

不断涌现,短波这一最古老和传统的通信方式仍然受到全世界的普遍重视,在卫星通信卫星通信在两个或多个卫星地面站之间利用人造地球卫星转发或反射信号的无线电通信方式。

和移动通信快速发展的今天,短波通信不仅没有被淘汰,还在快速发展。

其原因是:短波通信距离远、抗毁能力和自主通信能力强、运行成本低。

短波通信技术发展状况近年来,短波通信技术在世界范围内获得了长足进步,出现了很多新电台、新装备和新技术。

其主要特点是:1、短波电台短波单边带电台体积越来越小,功能越来越多,性能越来越好,兼容性越来越强。

数字化是短波电台的必然发展趋势。

2、短波天线天线天线的基本功能是辐射和接收无线电波。

发射时,把高频电流转换为电磁波;接收时,把电磁波转换为高频电流。

天线的一般原理是:当导体上通以高频电流时,在其周围空间会产生电场与磁场。

按电磁场在空间的分布特性,可分为近区、中间区、远区。

设R为空间一点到导体的距离,是高频电流信号的波长,在R<λ/2π时的区域称近区,在该区内的电磁场与导体中电流、电压有紧密的联系;在R>A/2π的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流、电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。

[全文]短波天线天线天线的基本功能是辐射和接收无线电波。

发射时,把高频电流转换为电磁波;接收时,把电磁波转换为高频电流。

天线的一般原理是:当导体上通以高频电流时,在其周围空间会产生电场与磁场。

按电磁场在空间的分布特性,可分为近区、中间区、远区。

设R为空间一点到导体的距离,是高频电流信号的波长,在R<λ/2π时的区域称近区,在该区内的电磁场与导体中电流、电压有紧密的联系;在R>A/2π的区域称为远区,在该区域内电磁场能离开导体向空间传播,它的变化相对于导体上的电流、电压就要滞后一段时间,此时传播出去的电磁波已不与导线上的电流、电压有直接的联系了,这区域的电磁场称为辐射场。

主要是向宽带、全向、无“盲区”、高增益方向发展。

体积越来越小,效率越来越高。

现推出了多款新型基站基站基站子系统(BSS)是移动通信系统中与无线蜂窝网络关系最直接的基本组成部分。

在整个移动网络中基站主要起中继作用。

基站与基站之间采用无线信道连接,负责无线发送、接收和无线资源管理。

而主基站与移动交换中心(MSC)之间常采用有线信道连接,实现移动用户之间或移动用户与固定用户之间的通信连接。

天线和车载天线。

3、频率选择在频率选择方面,除已广泛使用的ASAPS测频系统和ALE自适应选频方法外,又推出了短波全频段实时自适应选频系统和频率管理系统。

4、噪声消除在抗噪声方面推出了多种静噪、消噪方式,尤其是美国SGC公司最近推出的ADSPDSPdsp是digital signal processor的简称,即数字信号处理器。

它是用来完成实时信号处理的硬件平台,能够接受模拟信号将其转换成二进制的数字信号,并能进行一定形式的编辑,还具有可编程性。

由于强大的数据处理能力和快捷的运行速度,dsp在信息科学领域发挥着越来越大的作用。

[全文]2单端消噪器,可以串接在任何无线电台的收信音频放大电路中或做成消噪扬声器扬声器扬声器是一种把电信号转换成声音信号的电声器件。

确切地说,扬声器的工作实际上是把一定范围内的音频电功率信号通过换能方式转变为失真小并具有足够声压级的可听声音。

扬声器在音响设备中是一个最薄弱的器件,而对于音响效果而言,它又是一个最重要的部件。

扬声器的种类繁多,而且价格相差很大。

音频电能通过电磁,压电或静电效应,使其纸盆或膜片振动并与周围的空气产生共振(共鸣)而发出声音,扬声器分为内置扬声器和外置扬声器,而外置扬声器即一般所指的音箱。

内置扬声器是指MP4播放器具有内置的喇叭,这样用户不仅可以通过耳机插孔还可以通过内置扬声器来收听MP4播放器发出的声音。

[全文],消除信道中的背境噪声,使短波电台的收听质量,达到或接近超短波电台的收听水平。

5、组网通信在组网通信方面,除自适应(ALE)功能中的选呼组网方式外,国外己推出了CCIR493数字选呼系,该系使每一部电台分得一个不重复的ID码(4~6位),通过它可组成万台级的大网,现在澳大利亚生产的短波电台,欧、美生产的部份短波电台,己作为常规功能,固化于整机中。

CCIR493数字选呼系统可实现单呼、组呼、群呼,收发短信息,传送GPS定位信号,传送警报信号,实现短波/市话网双向自动拨号等功能。

短波通信盲区及解决方法一、短波传播方式无线电广播、无线电通信、电视、雷达等都要靠无线电波的传播来实现。

电波在各种媒介质及媒介质分界面上传播的过程,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。

为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。

常见的传播方式有:地波(表面波)传播,直射波(视距)传播,天波传播,散射传播。

超短波适用直射波传播方式进通信。

短波的基本传播途径有两种:A、地波(表面波)传播。

B、天波传播。

天波传播是短波通信的主要传输方式。

1、地波传播沿大地与空气的分界面传播的电波,叫地面波或表面波,简称地波。

地波的传播途径如图1-1 所示。

其传播途径主要取决于地面的电特性。

地波在传播过程中,由于部份能量被大地吸收,很快减弱,波长越短,减弱越快,因而传播距离不远。

但地波不受气候影响,可靠性高。

通常,超长波、长波、中波无线电通信,利用地波传播。

2、天波传播天波是指由天线向高空辐射的电磁波受到天空电离层反射或折射后返回地面的无线电波。

传播途径如图 1-2所示。

天波是短波的主要传播途径。

短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以多次反射,因而传播距离很远(可上万公里),而且不受地面障碍物阻挡。

但天波传播的最大弱点是信号很不稳定的,处理不好会影响通信效果。

随着无线电通信新技术的不断涌现,天波传播弱点对短波通信的影响,正在逐步被克服。

3、通信盲区上面已介绍了地波和天波两种传播方式。

一般来说,地波的传播距离可达20~30公里,而天波从电离层第一次反射落地(第一跳)的最短距离约为80~100公里,可见20至100公里之间这一段,地波和天波都够不到,形成了短波通信的“寂静区”,也称为盲区,如图 1-3 所示。

盲区内的通信大多是比较困难的。

车载台由于天线的限制,均存在通信盲区问题。

二、解决通信盲区的方法1、常用方法:一是加大电台功率以延长地波传播距离;二是常用的有效方法就是选用高仰角天线,也称“高射天线”或“喷泉天线”,缩短天波第一跳落地的距离。

仰角是指天线辐射波瓣与地面之间的夹角。

仰角越高,电波第一跳落地的距离越短,盲区越少,当仰角接近90°时,盲区基本上就不存在了。

在新式天线未出现之前,我们常用低架双极天线来解决近距离通信盲区问题,效果也不错。

2、三线式天线是目前效果较好的短波基站无盲区天线澳大利亚月光公司生产的FD-230系列三线式宽带短波天线,已在我国推广使用较长时间,据我们反复测试测试二极管,电磁阀和用户实际使用情况反映,该天线不用接天调,增益高,架设方便,通信效果好。

水平架设使用,兼顾远、中、近距离通信(我们的用户最远的通1万3千公里);倒V架设使用,实现中、近距离无盲区通信。

该天线目前正在武警系统、陆海空三军及二炮、公安系统、人防系统、林业部门、交通部门等单位大量推广使用。

国内已有不少三线宽带天线仿制品,但关键部件的质量和性能与国外产品还有不少差距。

3、ML-90天线是目前国内最好的车载无盲区短波天线长期以来,近距离通信盲区一直困扰着短波车载通信。

人们尝试了各种天线,虽有不同程度的改善,但无法从根本上解决问题。

现在由澳大利亚科麦克公司发明的ML-90车载电磁环磁环磁环是电子电路中常用的抗干扰元件,有一定的阻抗特性,对于高频噪声有很好的抑制作用,并有防辐射功能。

一般使用铁氧体材料(Mn-Zn)制成。

[全文]天线完全解决了近距离通信盲区问题。

ML-90天线采用单电磁环磁环磁环是电子电路中常用的抗干扰元件,有一定的阻抗特性,对于高频噪声有很好的抑制作用,并有防辐射功能。

一般使用铁氧体材料(Mn-Zn)制成。

振子配合新式自动天调,其特殊结构和特殊调谐原理,使天线产生强力的垂直幅射分量,天波信号以喷泉方式向空中幅射,大大缩短了经电离层第一次反射落地(第一跳)电波的最短距离,使天波传播的最近距离与地波传播的最远距离衔接,从而完全消除了近距离通信盲区。

ML-90天线在100公里范围内没有通信盲区,信号等级可达3~5分;600公里范围内信号等级可达2~4分;1000公里范围内信号等级可达1~3分。

4、7006宽带软天线是便携式电台理想的无盲区天线7006天线结构轻巧,便于携带,能快速架设和收集。

不需天调,2~30MHZ范围内均能良好配谐。

适合个人携带电台、车载台、野外临时基站使用。

它的全向通信半径可达1000公里,在600公里范围内能进行可靠通信。

相关文档
最新文档