备战2019年高考数学大一轮复习热点聚焦与扩展专题52几何关系巧解圆锥曲线问题
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题56 利用点的坐标处理圆锥曲线问题
专题56 利用点的坐标处理圆锥曲线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题. 本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理.然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与12121212,,,x x x x y y y y ++相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐.所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段.2、利用点坐标解决问题的优劣:(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受12121212,,,x x x x y y y y ++形式的约束(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点的坐标也变得复杂导致运算繁琐.那么此类问题则要考虑看能否有机会进行整体的代入 3、求点坐标的几种类型:(1)在联立方程消元后,如果发现交点的坐标并不复杂(不是求根公式的形式),则可考虑把点的坐标解出来(用核心变量进行表示)(2)直线与曲线相交,若其中一个交点的坐标已知,则另一交点必然可求(可用韦达定理或因式分解求解) 4、在利用点的坐标处理问题时也要注意运算的技巧,要将运算的式子与条件紧密联系,若能够整体代入,也要考虑整体代入以简化运算.(整体代入是解析几何运算简化的精髓).有时利用‘点差法’,确定坐标关系,效果也好,需灵活处理.【经典例题】例1.【2019年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.例2.【2019年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为,即.设所求圆的圆心坐标为(x 0,y 0),则解得或因此所求圆的方程为或.例3.【2019年理数天津卷】设椭圆(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为,点A 的坐标为,且. (I )求椭圆的方程; (II )设直线l :与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若(O为原点) ,求k 的值. 【答案】(Ⅰ);(Ⅱ)或详解:(Ⅰ)设椭圆的焦距为2c ,由已知知,又由a 2=b 2+c 2,可得2a =3b .由已知可得,,,由,可得ab =6,从而a =3,b =2.所以,椭圆的方程为.(Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故.又因为,而∠OAB =,故.由,可得5y 1=9y 2.由方程组消去x ,可得.易知直线AB 的方程为x +y –2=0,由方程组消去x ,可得.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得,解得,或.所以,k 的值为或例4.已知椭圆()2222:10x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点,A B 分别是椭圆C 的左右顶点 (1)求圆O 和椭圆C 的方程(2)已知,P Q 分别是椭圆和圆上的动点(,P Q 位于y 轴的两侧),且直线PQ 与x 轴平行,直线,AP BP 分别与y 轴交于点,M N ,求证:MQN ∠为定值【答案】(1)椭圆方程为22142x y +=,圆方程为222x y +=;(2)见解析. QM QN ⋅u u u u r u u u r,考虑利用条件设出,AP BP 方程,进而,M N 坐标可用核心变量00,x y 表示,再进行数量积的坐标运算可得0QM QN ⋅=u u u u r u u u r ,从而2MQN π∠=,即为定值解:设()00,P x y Q PQ 与x 轴平行,∴设()10,Q x y ,由,P Q 所在椭圆和圆方程可得:22220000222210104214222x y x y x y x y ⎧⎧=-+=⎪⎪⇒⎨⎨=-⎪⎪⎩+=⎩ 由椭圆可知:()()2,0,2,0A B - 002AP y k x ∴=+ ()00:22y AP y x x ∴=++令0x =,可得:0020,2y M x ⎛⎫⎪+⎝⎭QM QN ∴⊥,即2MQN π∠=为定值思路二:本题还可以以,AP BP 其中一条直线为入手点(例如AP ),以斜率k 作为核心变量,直线AP 与椭圆交于,A P 两点,已知A 点坐标利用韦达定理可解出P 点坐标(用k 表示),从而可进一步将涉及的点的坐标都用k 来进行表示,再计算0QM QN ⋅=u u u u r u u u r也可以,计算步骤如下:解:设()00,P x y ,由椭圆方程可得:()()2,0,2,0A B - 所以设直线():2AP y k x =+,联立方程:()()2222221218840422x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩22002284422121A k k x x x k k --∴=⇒=-++,代入到直线方程可得:02421k y k =+222424,2121k k P k k ⎛⎫-∴- ⎪++⎝⎭2224121422221BP kk k k k k +∴==----+ ()1:22BP y x k∴=--,由():2AP y k x =+,令0x =可得:()10,2,0,M k N k ⎛⎫⎪⎝⎭QM QN ∴⊥,即2MQN π∠=为定值 .例5.【2019届江苏省南京市三模】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且.(1)求的值; (2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.【答案】(1);(2).【解析】分析:(1)利用抛物线的定义求p 的值.(2)先求出a 的值,再联立直线的方程和抛物线的方程得到韦达定理,再求|(y 1+2) (y 2+2)|的值.详解:(1)因为点A (1,a ) (a >0)是抛物线C 上一点,且AF =2, 所以+1=2,所以p =2.(2)由(1)得抛物线方程为y 2=4x .因为点A (1,a ) (a >0)是抛物线C 上一点,所以a =2.点睛:(1)本题主要考查抛物线的定义及简单几何性质,考查学生对这些基础知识的掌握能力及分析推理计算能力. (2)本题的关键是看到d1d2=|(y1+2) (y2+2)|要联想到韦达定理,再利用韦达定理解答.例6.【2019年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.例7. 【2019年新课标I卷文】设抛物线,点,,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.【答案】(1) y=或.(2)见解析.(2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为,M(x1,y1),N(x2,y2),则x1>0,x2>0.由得ky2–2y–4k=0,可知y1+y2=,y1y2=–4.直线BM,BN的斜率之和为.①将,及y1+y2,y1y2的表达式代入①式分子,可得.所以k BM+k BN=0,可知BM,BN的倾斜角互补,所以∠ABM+∠ABN.综上,∠ABM=∠ABN.例8.【河南省洛阳市2019届三模】已知抛物线,点,在抛物线上,且横坐标分别为,,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.【答案】(1);(2).【解析】分析:(1)设,得出关于的函数,根据的范围得出的范围;(2)根据,的方程得出点坐标,根据距离公式计算,,得出关于的函数,再根据函数单调性得出最大值.详解:(1)由题可知,,设,,所以,故直线斜率的取值范围是.,则,当时,当时,故在上单调递增,在上单调递减.故,即的最大值为.例9.【2019届安徽省合肥市第一中学冲刺高考最后1卷】如图所示,在平面直角坐标系中,已知椭圆的离心率为,短轴长为.(1)求椭圆的标准方程;(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线交轴于点,点在轴上,且,设直线交椭圆于另一点,求的面积的最大值.【答案】(1)(2)【解析】分析:(1)根据离心率为,短轴长为,结合性质,列出关于、、的方程组,求出、、,即可求得椭圆的标准方程;(2)联立消解得或,则,同理可得,的面积.详解:(1)由题意得,解得,所以椭圆的标准方程为.(2)由题可设直线的方程为,则,又且,所以,所以直线的方程为,则,联立消去并整理得点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.例10.【2019届福建省三明市5月测试】在平面直角坐标系中,已知,若直线⊥于点,点是直线上的一动点,是线段的中点,且,点的轨迹为曲线.(1)求曲线的方程;(2)过点作直线交于点,交轴于点,过作直线,交于点.试判断是否为定值?若是,求出其定值;若不是,请说明理由.【答案】(1);(2)2【解析】分析:(1)设,由题意得,由,得到曲线的方程;(2)由题意可知直线的斜率存在,设直线的方程为,因为,所以的方程为,联立方程分别求出,,即可作出判断.详解:(1)设,由题意得,所以,所以,化简得,由解得,所以,,,所以=2.【精选精练】1.【2019年四川省成都市高考模拟一】设双曲线的左、右焦点分别为,过点且斜率为的直线与双曲线的两渐近线分别交于点,并且,则双曲线的离心率为( )A. B. C. 2 D.【答案】A【解析】分析:由题意,双曲线的左焦点和渐近线方程为,求得过焦点且斜率为的直线方程为,联立方程组,解得的坐标,根据,所以,即,求解的关系式,即可求解双曲线的离心率. ‘所以点的坐标为,又因为,所以,则,所以,可得,整理得,所以双曲线的离心率为,故选A.2.【2019届辽宁省大连市二模】设椭圆的左焦点为,直线与椭圆交于两点,则周长的取值范围是()A. B. C. D.【答案】C3.【2019届安徽省江南十校二模】已知双曲线:的左右焦点为、,过焦点且与渐近线平行的直线与双曲线相交于点,则的面积为__________.【答案】【解析】分析:先求出渐近线方程,然后求出过一个焦点且与渐近线平行的直线方程,代入双曲线方程求得交点M的坐标,从而可得三角形面积.详解:双曲线的焦点为,渐近线方程为,过与一条渐近线平行的直线方程为,由得,即,∴.故答案为.4.【2019届安徽省宿州市第三次检测】抛物线的焦点为,过点的直线交抛物线于,两点,交抛物线的准线于点,若,,则__________.【答案】1或3结合可得:,直线的方程为:,与抛物线方程整理可得:,则:,结合可得:,则;当点B位于点A下方时,由几何关系可知:,代入抛物线方程可得:,综上可得,p的值为1或3.5.【2019届河南省商丘市夏邑县第一高级中学二轮调研】已知抛物线的焦点为,为坐标原点,点,,射线,分别交抛物线于异于点的点,,若,,三点共线,则__________.【答案】【解析】分析:求出所在的直线方程,与抛物线的方程联立,分别求出的坐标,再由,6.【2019届河南省新乡市三模】已知抛物线的焦点为为坐标原点,点,射线分别交抛物线于异于点的点,若三点共线,则的值为__________.【答案】2【解析】分析:由题意联立直线方程与抛物线方程可得A,B两点的坐标,然后利用斜率相等得到关于p的又,所以,,因为A,B,F三点共线,所以k AB=k BF,即,解得p=2.7.【2019届江苏省扬州树人学校模拟(四)】在平面直角坐标系中,椭圆:()的短轴长为,离心率为.(1)求椭圆的方程;(2)已知为椭圆的上顶点,点为轴正半轴上一点,过点作的垂线与椭圆交于另一点,若,求点的坐标.【答案】(1) .(2) .详解:(1)因为椭圆的短轴长为,离心率为,所以解得所以椭圆的方程为.(2)因为为椭圆的上顶点,所以.设(),则.又,所以,所以,解得.所以点的坐标为.8.【2019届河南省洛阳市第三次统一考试】已知抛物线,点,在抛物线上,且横坐标分别为,,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.【答案】(1);(2).【解析】分析:(1)设,得出关于的函数,根据的范围得出的范围;(2)根据,的方程得出点坐标,根据距离公式计算,,得出关于的函数,再根据函数单调性得出最大值.详解:(1)由题可知,,设,,所以,故直线斜率的取值范围是.(2)直线,直线,联立直线,方程可知点的横坐标为故,即的最大值为.9.【2019届湖南省湘潭市四模】已知点是抛物线:上一点,且到的焦点的距离为.(1)求抛物线的方程;(2)若是上一动点,且不在直线:上,交于,两点,过作直线垂直于轴且交于点,过作的垂线,垂足为.证明:.【答案】(1);(2)证明见解析.【解析】分析:(1)利用已知条件,布列关于与的方程组,从而得到A的坐标以及P,即可得到抛物线方程;(2)由(1)知,联立得4x2﹣16x﹣9=0,求出E,F坐标,设出P的坐标,然后转化求∴.设(,且),则的横坐标为,易知在上,则.由题可知:,与联立可得,所以,则,故.10.【2019届山东省烟台市高考适应性练习(二)】已知椭圆,点在椭圆上,过的焦点且与长轴垂直的弦的长度为.(1)求椭圆的标准方程;(2)过点作两条相交直线,与椭圆交于两点(点在点的上方),与椭圆交于两点(点在点的上方),若直线的斜率为,,求直线的斜率. 【答案】(1) .(2) .详解:(1)由已知得:,解得,.故椭圆的方程为.(2)由题设可知:的直线方程为.联立方程组,整理得:..∴.∵,∴,即.∴.∴.解得,∴.故直线的斜率为.点睛:本题主要考查了直线和椭圆的位置关系,将三角形的面积比转化为线段比,线段比转化为坐标比,进而利用设而不求的思想,利用直线和椭圆联立,借助韦达定理处理即可.11.【2019届安徽省合肥市三模】已知抛物线()的焦点为,以抛物线上一动点为圆心的圆经过点F.若圆的面积最小值为.(Ⅰ)求的值;(Ⅱ)当点的横坐标为1且位于第一象限时,过作抛物线的两条弦,且满足.若直线AB恰好与圆相切,求直线AB的方程.【答案】(1);(2).【解析】分析:(Ⅰ)由抛物线的性质知,当圆心位于抛物线的顶点时,圆的面积最小,由可得的值;(Ⅱ)依横坐标相等可得,轴,,设(),则直线的方程为,代入抛物线的方程得,利用韦达定理求出的坐标,同理求出的坐标,求出的斜率为定值,设直线的方程为,由圆心到直线的距离等于半径,列方程解得,从设(),则直线的方程为,∴,代入抛物线的方程得,,∴,∴.将换成,得,∴.设直线的方程为,即.由直线与圆相切得,,解得.经检验不符合要求,故舍去.∴所求直线的方程为.点睛:本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.12.【2019届江苏省苏锡常镇四市调研(二)】如图,椭圆的离心率为,焦点到相应准线的距离为1,点,,分别为椭圆的左顶点、右顶点和上顶点,过点的直线交椭圆于点,交轴于点,直线与直线交于点.(1)求椭圆的标准方程;(2)若,求直线的方程;(3)求证:为定值.【答案】(1) .(2) 或.(3)见解析.【解析】分析: (1) 由椭圆的离心率为,焦点到对应准线的距离为1,列方程组解方程组即得椭圆的标准方程.(2)先求出点D的坐标,再根据点C,D的坐标求直线l的斜率,即得直线l的方程. (3) 设D坐标为(x3,y3),先求出直线BD和AC的方程,再联立两个方程化简即得=2为定值.代入椭圆方程得或,所以或,所以或.所以的方程为:或.(3)设D坐标为(x3,y3),由,M(x1,0)可得直线的方程,联立椭圆方程得:解得,.由,得直线BD的方程:,。
2019届高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质
a2 xA 4 1 3 c
例 3、动圆 M 与圆 C1:(x+1) 2+y2=36 内切 ,与圆 C2:(x-1) 2+y切时的“图形特征” :两个圆心与切点这三点共线(如图中的 A 、M 、C 共线,
B 、 D、 M 共线)。列式的主要途径是动圆的“半径等于半径” (如图中的 MC MD )。
在椭圆上,同样 C 在椭圆上, D 在准线上,可见直接求解较繁,将这些线段“投影”到
x 轴上,立即可得
防
6
f (m) ( xB x A ) 2 ( xD xC ) 2 2 (xB xA ) ( xD X C )
2 ( xB xC ) (x A xD ) 2 ( xB X C )
此时问题已明朗化,只需用韦达定理即可。
舍去)
2 ),它为直线 AF 与抛物线的另一交点,
( 2)( 1 ,1) 4
过 Q 作 QR⊥l 交于 R,当 B、Q、R 三点共线时, BQ QF BQ QR 最小, 此时 Q 点的纵坐标为 1,
3
代入
y
2
=4x
得 x=
1
,∴ Q(
1 ,1)
4
4
点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
1
题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是 弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称
为“设而不求法” 。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用
如“ 2x+y ”,令 2x+y=b,则 b 表示斜率为 -2 的直线在 y 轴上的截距;如“ x 2+y2” , 令 x 2 y 2 d ,
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题04 函数的定义域、值域的求法
专题04 函数的定义域、值域的求法【热点聚焦与扩展】函数的定义域作为函数的要素之一,是研究函数的基础,也是高考的热点.函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。
所以在掌握定义域求法的基础上,掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决.(一)函数的定义域1。
求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.2。
①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.3。
对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解。
4.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决.(二)函数的值域1.利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值。
2。
利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围。
3。
利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-。
备战高考数学大一轮复习热点聚焦与扩展专题01利用数轴解决集合运算问题
专题01 利用数轴解决集合运算问题【热点聚焦与扩展】数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题.在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本专题以一些题目为例,来介绍如何使用数轴快速的进行集合的交集、并集及补集等运算. 1、集合运算在数轴中的体现::A B 在数轴上表示为,A B 表示区域的公共部分. :AB 在数轴上表示为,A B 表示区域的总和.:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到).2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系.(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域.(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域.交集即为公共部分,而并集为覆盖的所有区域.(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可. 3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察.(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意.【经典例题】例1【2017课标1,理1】已知集合A={x|x<1},B={x|31x<},则( )A .{|0}AB x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A 【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以,结合数轴得{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.例2【2018届河北省衡水中学高三上学期七调】 设集合{|2}A x x =<, {}B x x a =,全集U R =,若U A B ⊆ð,则有( )A. 0a =B. 2a ≤C. 2a ≥D. 2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,结合数轴得2a ≤,故选C.例3【2018届河北省武邑中学高三下学期开学】设常数a R ∈,集合()(){}|120A x x x =--≥, {}|B x x a =≥,若A B R ⋃=,则a 的取值范围为( )A. (),1-∞B. (],1-∞C. ()2,+∞D. [)2,+∞ 【答案】B【解析】由题得{|21}A x x x =≥≤或,因为A B R ⋃=,所以通过画数轴分析得到1a ≤,(注意一定要取等),故选B.【名师点睛】:(1)含有参数的问题时,可考虑参数所起到的作用,在本题中参数决定区间的端点; (2)含有参数的问题作图时可先考虑做出常系数集合的图象,再按要求放置含参的集合; (3)注意考虑端点处是否可以重合.例4【2018届河北省衡水中学高三上学期九模】已知集合{}A x x a =<, {}2320B x x x =-+<,若A B B ⋂=,则实数a 的取值范围是( )A. 1a <B. 1a ≤C. 2a >D. 2a ≥【答案】D例5.已知函数()221,02()1,,20xx g x ax f x x x ⎧-≤≤⎪=+=⎨--≤<⎪⎩,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()12g x f x =成立,则实数a 的取值范围是__________ 【答案】【解析】思路:任取[]12,2x ∈-,则()1g x 取到()g x 值域中的每一个元素,依题意,存在2x 使得()()12g x f x =,意味着()g x 值域中的每一个元素都在()f x 的值域中,即()g x 的值域为()f x 的值域的子集,分别求出两个函数值域,再利用子集关系求出a 的范围解:[]20,2x ∈时,()[]20,3f x ∈ [)22,0x ∈-时,()[)24,0f x ∈-()[]24,3f x ∴∈-[)1,0a ∴∈-综上所述:[]1,1a ∈- 答案:[]1,1a ∈-.例6.已知集合{}{}|21,|A x x x B x a x b =><-=≤≤或,若(],2,4A B R A B ==,则ba=________ 【答案】4-【解析】本题主要考察如何根据所给条件,在数轴上标好集合B 的范围.从而确定出,a b 的值, 1,4a b =-=,所以4ba=-. 例7. 已知集合{}{}0)12(,31122<+++-=≤++-=m m x m x x B x x x A ,若A B ≠∅,则实数m 的取值范围为 【答案】53(,)22-【解析】先解出,A B 的解集,A B ⋂≠∅意味着,A B 有公共部分,利用数轴可标注集合B 两端点的位置,进而求出m 的范围22(21)0x m x m m -+++<()()()10x m x m ∴-+-< 1m x m ∴<<+AB ≠∅312m ∴+>-且32m < 53,22m ⎛⎫∴∈- ⎪⎝⎭.例8:在R 上定义运算:2xx y y⊗⊗=-,若关于x 的不等式(1)0x x a ⊗+->的解集是{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是( )A .22a -≤≤B .12a -≤≤C .31a -≤<-或11a -<≤D .31a -≤≤ 【答案】D【解析】首先将(1)0x x a ⊗+->变为传统不等式:()()1001xx x a x a ⊗+->⇒<-+,不等式含有参数a ,考虑根据条件对a 进行分类讨论。
2019年高考数学大一轮复习 热点聚焦与扩展 专题54 圆锥曲线的定点、定值、定直线问题
专题54 圆锥曲线的定点、定值、定直线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用代数方法求解最值、范围问题.(一)所谓定值问题,是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.1、常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.2、定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)处理定点问题的思路:(1)确定题目中的核心变量(此处设为)(2)利用条件找到与过定点的曲线的联系,得到有关与的等式(3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立.此时要将关于与的等式进行变形,直至易于找到.常见的变形方向如下:①若等式的形式为整式,则考虑将含的项归在一组,变形为“”的形式,从而只需要先让括号内的部分为零即可②若等式为含的分式,的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)2、一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线,就应该能够意识到,进而直线绕定点旋转.(三)定直线问题是证明动点在定直线上,其实质是求动点的轨迹方程,所以所用的方法即为求轨迹方程的方法,如定义法、消参法、交轨法等.【经典例题】例1. 【2018年理北京卷】已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1)(2)证明过程见解析所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.所以.所以为定值.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.例2.【2018届安徽省淮南市二模】已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求该抛物线的方程;(2)已知抛物线上一点,过点作抛物线的两条弦和,且,判断直线是否过定点,并说明理由.【答案】(1);(2)过定点【解析】分析:(1)根据抛物线性质求出p,得出抛物线方程;(2)设MD斜率为k,联立方程组,求出D,E的坐标,得出直线DE的方程,从而得出结论.详解:(1)由题意设抛物线方程为,其准线方程为,设,则,同理可得 ,所以直线的方程为化简的 .直线过定点.点睛:(1)本题主要考查了抛物线的性质,考查了直线和抛物线的位置关系和直线的定点问题.(2) 定点问题:对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,证明直线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数,结合已知条件求出直线或曲线的方程,分离参数得到等式,(一般地,为关于的二元一次关系式)由上述原理可得方程组,从而求得该定点.例3.如图,已知椭圆的左右焦点为,其上顶点为,已知是边长为2的正三角形(1)求椭圆的方程(2)过点任作一动直线交椭圆于两点,记,若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线;若不在请说明理由【答案】(1)(2)定直线上.【解析】解:(1)由椭圆方程可得为边长是2的三角形(2)设设,由可得:代入到①可得:22222022264123224243434341243283434k kk k kxkkk---⋅+⋅+++===--+++在定直线上例4.【【衡水金卷】四省2018届高三第三次大联考】如图,在平面直角坐标系中,已知点,过直线:左侧的动点作于点,的角平分线交轴于点,且,记动点的轨迹为曲线.(1)求曲线的方程;(2)过点作直线交曲线于两点,点在上,且轴,试问:直线是否恒过定点?请说明理由.【答案】(1);(2)答案见解析.【解析】分析:(1)设,由题意结合距离公式计算可得轨迹方程为;(2)由已知可得直线的斜率不为0,设直线的方程为,与椭圆方程联立可得,记,则,则直线的方程为,集合韦达定理化简可得直线的方程为,则直线过定点.∴可设直线的方程为,联立方程组消去得,恒成立,记,则,则,∴直线的斜率为,直线的方程为,即,又,∴直线的方程为,∴直线过定点.例5.如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点,当直线的斜率为时,(1)求椭圆的标准方程(2)试问以为直径的圆是否过定点(与的斜率无关)?请证明你的结论【答案】(1);(2)以为直径的圆恒过.【解析】解:(1)由可得:由对称性可知:由可得椭圆方程为代入,可得:从而22222244012121822422121AQ k k k k k k k k k k ⎛⎫-- ⎪+⎝⎭+∴===--⎛⎫---- ⎪++⎝⎭,因为是直线与轴的交点以为直径的圆的圆心为,半径圆方程为:,整理可得:222222222221212121222k k k k x y y x y y k k k k ⎛⎫⎛⎫--+-+-+=⇒+-= ⎪ ⎪⎝⎭⎝⎭所以令,解得以为直径的圆恒过例6.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切,过点且不垂直轴的直线与椭圆相交于两点(1)求椭圆的方程(2)若点关于轴的对称点是,求证:直线与轴相交于定点【答案】(1);(2)定点.联立方程可得:,消去可得:考虑直线直线的方程为:令可得:,而,代入可得:()()()()()1221121212124424448x k x x k x x x x x x k x k x x x -+--+==-+-+-,代入 可得:2222222264123224244343431243284343k k k k k x k k k --⋅-⋅+++===--++ 与轴交于定点例7.【2018届宁夏回族自治区银川一中考前适应性训练】已知动圆过定点且与圆:相切,记动圆圆心的轨迹为曲线.(1)求C 的方程;(2)设,B ,P 为C 上一点,P 不在坐标轴上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:为定值.【答案】(1).(2)证明见解析.【解析】分析:(1)利用待定系数法求C 的方程.(2)先计算得到,,再计算4.详解:(1)圆的圆心为,半径为4,在圆内,故圆与圆相内切.设圆的半径为,则,,从而.因为,故的轨迹是以,为焦点,4为长轴的椭圆,其方程为..综上,为定值4.点睛:(1)本题主要考查轨迹方程的求法和椭圆中的定值问题,考查直线和椭圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2)解答本题的关键是计算,得到后,主要是化简.例8.【2018届陕西省咸阳市5月信息专递】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆的右顶点,过点作两条直线分别与椭圆交于另一点,若直线的斜率之积为,求证:直线恒过一个定点,并求出这个定点的坐标.【答案】(Ⅰ )(Ⅱ)直线恒过点【解析】分析: (Ⅰ)由题意布列关于a,b的方程组,解之即可;(Ⅱ)设直线,与椭圆方程联立可得,利用根与系数的关系表示直线的斜率之积为,可得设,而,则由得,,即,整理得,解得或(舍去)直线,知直线恒过点.例9.【2018届安徽省江南十校二模】已知椭圆:,点、、都在椭圆上,为坐标原点,为中点,且. (1)若点的坐标为,求直线的方程;(2)求证:面积为定值.【答案】(1)(2)见解析【解析】分析:(1)先利用求出,再利用点差法进行求解;(2)先讨论直线不存在斜率时的情况,再设出直线的方程,联立直线和椭圆的方程,得到关于的一元二次方程,利用根与系数的关∴直线的方程为;(2)证明:设,∴,①当直线的斜率不存在时,,由题意可得,,或,,,此时;②当直线的斜率存在时,,由(1),∴:,即直线:,即,,.∴为定值.例10.【2018届安徽省芜湖市5月模拟】已知椭圆的左右焦点分别为,,点是椭圆上一点,若,,的面积为.(1)求椭圆的方程;(2)若,分别为椭圆上的两点,且,求证:为定值,并求出该定值.【答案】(1);(2)定值【解析】分析:(1)由题意布列关于a,b 的方程组,从而得到椭圆的方程;(2)(i)当,是椭圆顶点时,,(ii)当,不是椭圆顶点时,设,,分别与椭圆方程联立,求出,从而得到为定值.详解:(1)由已知,又,∴,,,∴椭圆的方程为:.(2)(i)当,是椭圆顶点时,,(ii)当,不是椭圆顶点时,设,,①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【精选精练】1.【2018届新疆维吾尔自治区乌鲁木齐地区5月训练】已知椭圆()的焦距为2,离心率为,右顶点为.(I)求该椭圆的方程;(II)过点作直线交椭圆于两个不同点,求证:直线,的斜率之和为定值.【答案】(I).(II)见解析.又,∴,∴,∴椭圆方程为.(II)由题意得,当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,即.由消去y整理得,∵直线与椭圆交于两点,∴,解得.设,,则,,又,∴. 即直线,的斜率之和为定值.2.已知椭圆的右焦点与抛物线的焦点重合,原点到过点的直线距离是(1)求椭圆的方程(2)设动直线与椭圆有且只有一个公共点,过作的垂线与直线交于点,求证:点在定直线上,并求出定直线的方程【答案】(1);(2)在这条定直线上.(2)因为直线与椭圆相切联立直线与椭圆方程:()222224384120143y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩()()2222644412430k m m k ∴∆=--+= ()2222226464192481440k m k m k m ∴--+-=即 切点坐标 即 的方程为 联立方程:()()()4134433k m x kx m kx mx k m kx m ∴+-=+⇒+--=+解得在这条定直线上3.【2018届湖北省宜昌市4月调研】已知倾斜角为的直线经过抛物线:的焦点,与抛物线相交于、两点,且.(Ⅰ)求抛物线的方程;(Ⅱ)过点的两条直线、分别交抛物线于点、和、,线段和的中点分别为、.如果直线与的斜率之积等于1,求证:直线经过一定点.【答案】(Ⅰ);(Ⅱ)证明见解析.可得,据此可得,同理可得:,直线的方程为,即,直线经过定点.详解:(Ⅰ)由题意可设直线的方程为,令,.联立得,∴,则,∴,同理将换成得:,∴ .则直线的方程为,即,显然当,.所以直线经过定点.4.【2018届江苏省南京市三模】如图,在平面直角坐标系中,椭圆经过点,离心率为. 已知过点的直线与椭圆交于两点.(1)求椭圆的方程;(2)试问轴上是否存在定点,使得为定值.若存在,求出点的坐标;若不存在,请说明理由. 【答案】(1);(2).【解析】分析:(1)先根据已知得到三个方程解方程组即得椭圆C的方程. (2) 设N(n,0),先讨论l斜率不存在的情况得到n=4,再证明当N为(4,0)时,对斜率为k的直线l:y=k(x-),恒有=12.详解:(1)离心率e=,所以c=a,b==a,则=(-n)2-y2=(-n)2-=n2-n-,当l经过左、右顶点时,=(-2-n)(2-n)=n2-4.令n2-n-=n2-4,得n=4.下面证明当N为(4,0)时,对斜率为k的直线l:y=k(x-),恒有=12.设A(x1,y1),B(x2,y2),由消去y,得(4k2+1)x2-k2x+k2-4=0,=+16=12.所以在x轴上存在定点N(4,0),使得为定值.点睛:(1)本题主要考查椭圆的方程和直线和椭圆的位置关系,考查向量的数量积,意在考查学生对这些基础知识的掌握能力和分析推理能力基本计算能力. (2)对于定点定值问题,可以通过特殊情况先探究,再进行一般性的证明.本题就是这样探究的.先通过讨论l斜率不存在的情况得到n=4,=12,再证明斜率存在时,对斜率为k的直线l:y=k(x-),恒有=12.5.【2018届华大新高考联盟4月检测】已知抛物线的焦点为,的三个顶点都在抛物线上,且. (1)证明:两点的纵坐标之积为定值;(2)设,求的取值范围.【答案】(1)见解析;(2).【解析】分析:(1)设,,由题,∴,故,以下同方法一. 详解:(1)设,,∵,∴∴,∴.(2)方法一,,,6.【2018届江西省上饶市三模】已知椭圆:()的离心率,左、右焦点分别为、,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)当直线与椭圆相切,交于点,,当时,求的直线方程.【答案】(1);(2)【解析】分析:1)利用椭圆离心率可知利用抛物线定义求出点的轨迹的方程;(2)显然当AB斜率不存在时,不符合条件.当AB斜率存在时,设AB:y=kx+m,联立直线与椭圆方程,设A(x1,y1),B(x2,y2)通过韦达定理结合OA⊥OB,转化求解即可.详解:(1)由,得,,故,,∵与相切,∴,得,①又由消得,设,,则,,且有得,,∵,∴,得,联立①,得,故方程为.7.【2018届广东省湛江市二模】已知椭圆的左、右焦点分别为和,点在椭圆上,且的面积为. (1)求该椭圆的标准方程;(2)过该椭圆的左顶点作两条相互垂直的直线分别与椭圆相交于不同于点的两点、,证明:动直线恒过轴上一定点.【答案】(1);(2)见解析,则,据此可得或,则直线恒过点.详解:(1)∵点在椭圆上,且的面积为,∴,即.∴两个焦点坐标分别为、.∴,即:.∴.∴所求方程为.(2)假设结论成立,定点坐标设为,显然.代入并化简得:,设、,∴,.又,∴∴,解之得或,即直线恒过点.综上所述,直线恒过定点.8.【2018届重庆市三诊】已知椭圆的离心率为,且右焦点与抛物线的焦点重合.(1)求椭圆的的方程;(2)设点为圆上任意一点,过作圆的切线与椭圆交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标.【答案】(1)(2)见解析(2)由对称性,猜测该定点为,设该切线方程为,则有,联立方程有:,,所以,即原点以在为直径的圆上.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.9.【2018届四川省冲刺演练(一)】已知直线经过抛物线的焦点且与此抛物线交于,两点,,直线与抛物线交于,两点,且,两点在轴的两侧.(1)证明:为定值;(2)求直线的斜率的取值范围;(3)若(为坐标原点),求直线的方程.【答案】(1)见解析;(2);(3).(3)设,,则,,利用根与系数关系表示,即可得到直线的方程.详解:(1)证明:由题意可得,直线的斜率存在,故可设的方程为,联立,得,则为定值.(2)解:由(1)知,,,则,即.,解得或,又,∴,故直线的方程为.10.【2018届天津市部分区调查(二)】已知椭圆:的离心率为,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆的方程;(2)已知直线与椭圆交于两点,且与轴,轴交于两点.(i)若,求的值;(ii)若点的坐标为,求证:为定值.【答案】(1) (2) (i)(ii)见解析【解析】分析:(1)根据椭圆的离心率和三角形的面积即可求出a2=4,b2=2,则椭圆方程可得,(2)(i)根据根与系数的关系以及向量的数量积的运算即可求出,(ii)根据根与系数的关系以及向量的数量积的运算即可求出.详解:(1)因为满足,由离心率为,所以,即,代入得.,设,则又,由得解得,由得(ii)由(i)知,所以,,,为定值所以为定值.11.【2018届江西省南昌市三模】已知动圆过点,并与直线相切.(1)求动圆圆心的轨迹方程;(2)已知点,过点的直线交曲线于点,设直线的斜率分别为,求证:为定值,并求出此定值. 【答案】(1);(2)当斜率不为时,设方程:,即设由,得,且恒成立∴∴(定值)12.【2018届福建省百校临考冲刺】已知直线经过抛物线的焦点且与此抛物线交于两点,,直线与抛物线交于两点,且两点在轴的两侧.(1)证明:为定值;(2)求直线的斜率的取值范围;(3)已知函数在处取得最小值,求线段的中点到点的距离的最小值(用表示)【答案】(1)见解析(2)(3)详解:(1)证明:由题意可得,直线的斜率存在,故可设的方程为,联立,得,则为定值;(2)由(1)知,,则,即.联立得:,两点在轴的两侧,,,而,在处取得最小值,.。
专题02 充分条件与必要条件-备战2019年高考数学之高三复习大一轮热点聚焦与扩展(原卷版)
专题02 充分条件与必要条件【热点聚焦与扩展】高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有三个:一是以函数、方程、三角函数、数列、不等式、立体几何线面关系、平面解析几何等为背景的充分条件和必要条件的判定与探求;二是考查等价转化与化归思想;三是由充分条件和必要条件探求参数的取值范围. 1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q ⇒, (2)充分条件与必要条件:如果条件,p q 满足p q ⇒,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件 (2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q ⇔,则称p 是q 的充要条件,也称,p q 等价 (4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件 4、如何判断两个条件的充分必要关系(1)定义法:若 ,p q q p ⇒≠> ,则p 是q 的充分而不必要条件;若,p q q p ≠>⇒ ,则p 是q 的必要而不充分条件;若,p q q p ⇒⇒,则p 是q 的充要条件; 若,p q q p ≠>≠> ,则p 是q 的既不充分也不必要条件。
(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件. 4、充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.5、对于充要条件的证明问题,可用直接证法,即分别证明充分性与必要性.此时应注意分清楚哪是条件,哪是结论,充分性即由条件证明结论;而必要性则是由结论成立来证明条件也成立,千万不要张冠李戴;也可用等价法,即进行等价转化,此时应注意的是所得出的必须是前后能互相推出,而不仅仅是“推出”一方面(即由前者可推出后者,但后者不能推出前者).【经典例题】例1【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 例2【2018届山东省天成大联考高三第二次考试】已知,,,,则是( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例3【2018届江西省高三监测】已知命题p : 2230x x +->;命题q : 01x ax a ->--,且q ⌝的一个必要不充分条件是p ⌝,则a 的取值范围是( ) A. []3,0- B. ][(),30,-∞-⋃+∞ C. ()3,0- D. ()(),30,-∞-⋃+∞ 例4【2018届东北三省三校高三第二次模拟】设,则使成立的必要不充分条件是( )A.B.C.D.例5【2018届河北省保定市高三第一次模拟】已知非向量()(),2,,2a x x b x ==-,则0x <或4x >是向量a 与b 夹角为锐角的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例6. “b ≤y x b =+与圆221x y +=有公共点”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件例7【2018届天津市十二重点中学高三联考一】设条件p :函数()()23log 2f x x x =-在(),a +∞上单调递增,条件q :存在x R ∈使得不等式2121x x a ++-≤成立,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例8【2018届四川省棠湖中学高三3月月考】“1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”是“22log log a b >”的A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 例9【2018届北京市西城区156中学高三上学期期中】设,,是两个不同的平面,则“”是“”的( ).A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件例10.已知{{}2|5,|A x x B x x ax x a =-≥=-≤-,当“x A ∈”是“x B ∈”的充分不必要条件,则a 的取值范围是__________【精选精练】1.【2018届河南省濮阳市高三二模】对于实数,,“”是“方程对应的曲线是椭圆”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件2.【2018届河北省衡水中学高三十五模】已知等差数列{}n a 的前n 项和为n S ,“1009a , 1010a 是方程43220x x -⋅+=的两根”是“20181009S =”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.【2018届上海市黄浦区高三4月模拟(二模)】在空间中,“直线 平面”是“直线与平面内无穷多条直线都垂直 ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件4.【2018届上海市杨浦区高三二模】已知22110a b +≠, 22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要5.【2018届重庆市高三4月二诊】“1cos22α=”是“()6k k Z παπ=+∈”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.【2018届吉林省四平市高三质量检测】"1"a =是“函数22cos sin y ax ax =-的最小正周期为π”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件7.【2018届北京东城五中2017-2018学年高三上期中】已知向量a 、b 为非零向量,则“0a b ⋅>”是“a 、b 的夹角为锐角”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.【2018届江西省上饶市高三下学期二模】“3a =-”是“直线()1:110l ax a y -++=与直线2:210l x ay --=垂直”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 9.【2018届山东省聊城市高三一模】设等比数列{}n a 的各项均为正数,其n 前项和为n S ,则“1921202S S S +>”是“数列{}n a 是递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件10.【2018届河南省八市学评高三下学期第一次】设等差数列{}n a 的首项1a 大于0,公差为d ,则“0d <”是“{}14na a 为递减数列”的( )A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件11.设命题:p 实数m 使曲线222426120x y x y m m +---++=表示一个圆;命题:q 实数m 使曲线221x y m m a-=-表示双曲线.若p 是q 的充分不必要条件,求正实数a 的取值范围. 12.已知命题p : {11}A x a x a =-<<+,命题q : {}2430B x x x =-+≥.(1)若,A B A B R ⋂=∅⋃=,求实数a 的值; (2)若p 是q 的充分条件,求实数a 的取值范围.。
【新】2019年高考数学大一轮复习热点聚焦与扩展专题56利用点的坐标处理圆锥曲线问题
专题56 利用点的坐标处理圆锥曲线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题. 本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理.然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与12121212,,,x x x x y y y y ++相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐.所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段.2、利用点坐标解决问题的优劣:(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受12121212,,,x x x x y y y y ++形式的约束(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点的坐标也变得复杂导致运算繁琐.那么此类问题则要考虑看能否有机会进行整体的代入 3、求点坐标的几种类型:(1)在联立方程消元后,如果发现交点的坐标并不复杂(不是求根公式的形式),则可考虑把点的坐标解出来(用核心变量进行表示)(2)直线与曲线相交,若其中一个交点的坐标已知,则另一交点必然可求(可用韦达定理或因式分解求解)4、在利用点的坐标处理问题时也要注意运算的技巧,要将运算的式子与条件紧密联系,若能够整体代入,也要考虑整体代入以简化运算.(整体代入是解析几何运算简化的精髓).有时利用‘点差法’,确定坐标关系,效果也好,需灵活处理.【经典例题】例1.【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.例2.【2018年理数全国卷II】设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.例3.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.【答案】(Ⅰ);(Ⅱ)或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y 1=9y 2.由方程组消去x ,可得.易知直线AB 的方程为x +y –2=0,由方程组消去x ,可得.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得,解得,或.所以,k 的值为或例4.已知椭圆()2222:10x y C a b a b+=>>上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O 经过这两个焦点,点,A B 分别是椭圆C 的左右顶点 (1)求圆O 和椭圆C 的方程(2)已知,P Q 分别是椭圆和圆上的动点(,P Q 位于y 轴的两侧),且直线PQ 与x 轴平行,直线,AP BP 分别与y 轴交于点,M N ,求证:MQN ∠为定值【答案】(1)椭圆方程为22142x y +=,圆方程为222x y +=;(2)见解析.QM QN ⋅,考虑利用条件设出,AP BP 方程,进而,M N 坐标可用核心变量00,x y 表示,再进行数量积的坐标运算可得0QM QN ⋅=,从而2MQN π∠=,即为定值解:设()00,P x yPQ 与x 轴平行,∴设()10,Q x y ,由,P Q 所在椭圆和圆方程可得:22220000222210104214222x y x y x y x y ⎧⎧=-+=⎪⎪⇒⎨⎨=-⎪⎪⎩+=⎩ 由椭圆可知:()()2,0,2,0A B - 002AP y k x ∴=+ ()00:22y AP y x x ∴=++ 令0x =,可得:0020,2y M x ⎛⎫⎪+⎝⎭QM QN ∴⊥,即2MQN π∠=为定值思路二:本题还可以以,AP BP 其中一条直线为入手点(例如AP ),以斜率k 作为核心变量,直线AP 与椭圆交于,A P 两点,已知A 点坐标利用韦达定理可解出P 点坐标(用k 表示),从而可进一步将涉及的点的坐标都用k 来进行表示,再计算0QM QN ⋅=也可以,计算步骤如下:解:设()00,P x y ,由椭圆方程可得:()()2,0,2,0A B - 所以设直线():2AP y k x =+,联立方程:()()2222221218840422x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩22002284422121A k k x x x k k --∴=⇒=-++,代入到直线方程可得:02421k y k =+222424,2121k k P k k ⎛⎫-∴- ⎪++⎝⎭2224121422221BP k k k k k k +∴==----+ ()1:22BP y x k∴=--,由():2AP y k x =+,令0x =可得:()10,2,0,M k N k ⎛⎫⎪⎝⎭QM QN ∴⊥,即2MQN π∠=为定值 .例5.【2018届江苏省南京市三模】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且.(1)求的值; (2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.【答案】(1);(2).【解析】分析:(1)利用抛物线的定义求p的值.(2)先求出a的值,再联立直线的方程和抛物线的方程得到韦达定理,再求|(y1+2) (y2+2)|的值.详解:(1)因为点A(1,a) (a>0)是抛物线C上一点,且AF=2,所以+1=2,所以p=2.(2)由(1)得抛物线方程为y2=4x.因为点A(1,a) (a>0)是抛物线C上一点,所以a=2.点睛:(1)本题主要考查抛物线的定义及简单几何性质,考查学生对这些基础知识的掌握能力及分析推理计算能力. (2)本题的关键是看到d1d2=|(y1+2) (y2+2)|要联想到韦达定理,再利用韦达定理解答.例6.【2018年江苏卷】如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C 的方程为.点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.例7. 【2018年新课标I卷文】设抛物线,点,,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.【答案】(1) y=或. (2)见解析.(2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为,M(x1,y1),N(x2, y2),则x1>0,x2>0.由得ky2–2y–4k=0,可知y1+y2=,y1y2=–4.直线BM,BN的斜率之和为.①将,及y1+y2,y1y2的表达式代入①式分子,可得.所以k BM+k BN=0,可知BM,BN的倾斜角互补,所以∠ABM+∠ABN.综上,∠ABM=∠ABN.例8.【河南省洛阳市2018届三模】已知抛物线,点,在抛物线上,且横坐标分别为,,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.【答案】(1);(2).【解析】分析:(1)设,得出关于的函数,根据的范围得出的范围;(2)根据,的方程得出点坐标,根据距离公式计算,,得出关于的函数,再根据函数单调性得出最大值.详解:(1)由题可知,,设,,所以,故直线斜率的取值范围是.,则,当时,当时,故在上单调递增,在上单调递减.故,即的最大值为.例9.【2018届安徽省合肥市第一中学冲刺高考最后1卷】如图所示,在平面直角坐标系中,已知椭圆的离心率为,短轴长为.(1)求椭圆的标准方程;(2)设为椭圆的左顶点,为椭圆上位于轴上方的点,直线交轴于点,点在轴上,且,设直线交椭圆于另一点,求的面积的最大值.【答案】(1)(2)【解析】分析:(1)根据离心率为,短轴长为,结合性质,列出关于、、的方程组,求出、、,即可求得椭圆的标准方程;(2)联立消解得或,则,同理可得,的面积.详解:(1)由题意得,解得,所以椭圆的标准方程为. (2)由题可设直线的方程为,则,又且,所以,所以直线的方程为,则,联立消去并整理得点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.例10.【2018届福建省三明市5月测试】在平面直角坐标系中,已知,若直线⊥于点,点是直线上的一动点,是线段的中点,且,点的轨迹为曲线.(1)求曲线的方程;(2)过点作直线交于点,交轴于点,过作直线,交于点.试判断是否为定值?若是,求出其定值;若不是,请说明理由.【答案】(1);(2)2【解析】分析:(1)设,由题意得,由,得到曲线的方程;(2)由题意可知直线的斜率存在,设直线的方程为,因为,所以的方程为,联立方程分别求出,,即可作出判断.详解:(1)设,由题意得,所以,所以,化简得,由解得,所以,,,所以=2.【精选精练】1.【2018年四川省成都市高考模拟一】设双曲线的左、右焦点分别为,过点且斜率为的直线与双曲线的两渐近线分别交于点,并且,则双曲线的离心率为( )A. B. C. 2 D.【答案】A【解析】分析:由题意,双曲线的左焦点和渐近线方程为,求得过焦点且斜率为的直线方程为,联立方程组,解得的坐标,根据,所以,即,求解的关系式,即可求解双曲线的离心率. ‘所以点的坐标为,又因为,所以,则,所以,可得,整理得,所以双曲线的离心率为,故选A.2.【2018届辽宁省大连市二模】设椭圆的左焦点为,直线与椭圆交于两点,则周长的取值范围是()A. B. C. D.【答案】C3.【2018届安徽省江南十校二模】已知双曲线:的左右焦点为、,过焦点且与渐近线平行的直线与双曲线相交于点,则的面积为__________.【答案】【解析】分析:先求出渐近线方程,然后求出过一个焦点且与渐近线平行的直线方程,代入双曲线方程求得交点M的坐标,从而可得三角形面积.详解:双曲线的焦点为,渐近线方程为,过与一条渐近线平行的直线方程为,由得,即,∴.故答案为.4.【2018届安徽省宿州市第三次检测】抛物线的焦点为,过点的直线交抛物线于,两点,交抛物线的准线于点,若,,则__________.【答案】1或3结合可得:,直线的方程为:,与抛物线方程整理可得:,则:,结合可得:,则;当点B位于点A下方时,由几何关系可知:,代入抛物线方程可得:,综上可得,p的值为1或3.5.【2018届河南省商丘市夏邑县第一高级中学二轮调研】已知抛物线的焦点为,为坐标原点,点,,射线,分别交抛物线于异于点的点,,若,,三点共线,则__________.【答案】【解析】分析:求出所在的直线方程,与抛物线的方程联立,分别求出的坐标,再由,6.【2018届河南省新乡市三模】已知抛物线的焦点为为坐标原点,点,射线分别交抛物线于异于点的点,若三点共线,则的值为__________.【答案】2【解析】分析:由题意联立直线方程与抛物线方程可得A,B两点的坐标,然后利用斜率相等得到关于p的又,所以,,因为A,B,F三点共线,所以k AB=k BF,即,解得p=2.7.【2018届江苏省扬州树人学校模拟(四)】在平面直角坐标系中,椭圆:()的短轴长为,离心率为.(1)求椭圆的方程;(2)已知为椭圆的上顶点,点为轴正半轴上一点,过点作的垂线与椭圆交于另一点,若,求点的坐标.【答案】(1) .(2) .详解:(1)因为椭圆的短轴长为,离心率为,所以解得所以椭圆的方程为.(2)因为为椭圆的上顶点,所以.设(),则.又,所以,所以,解得.所以点的坐标为.8.【2018届河南省洛阳市第三次统一考试】已知抛物线,点,在抛物线上,且横坐标分别为,,抛物线上的点在,之间(不包括点,点),过点作直线的垂线,垂足为.(1)求直线斜率的取值范围;(2)求的最大值.【答案】(1);(2).【解析】分析:(1)设,得出关于的函数,根据的范围得出的范围;(2)根据,的方程得出点坐标,根据距离公式计算,,得出关于的函数,再根据函数单调性得出最大值.详解:(1)由题可知,,设,,所以,故直线斜率的取值范围是.(2)直线,直线,联立直线,方程可知点的横坐标为故,即的最大值为.9.【2018届湖南省湘潭市四模】已知点是抛物线:上一点,且到的焦点的距离为.(1)求抛物线的方程;(2)若是上一动点,且不在直线:上,交于,两点,过作直线垂直于轴且交于点,过作的垂线,垂足为.证明:.【答案】(1);(2)证明见解析.【解析】分析:(1)利用已知条件,布列关于与的方程组,从而得到A的坐标以及P,即可得到抛物线方程;(2)由(1)知,联立得4x2﹣16x﹣9=0,求出E,F坐标,设出P的坐标,然后转化求∴.设(,且),则的横坐标为,易知在上,则.由题可知:,与联立可得,所以,则,故.10.【2018届山东省烟台市高考适应性练习(二)】已知椭圆,点在椭圆上,过的焦点且与长轴垂直的弦的长度为.(1)求椭圆的标准方程;(2)过点作两条相交直线,与椭圆交于两点(点在点的上方),与椭圆交于两点(点在点的上方),若直线的斜率为,,求直线的斜率. 【答案】(1) .(2) .详解:(1)由已知得:,解得,.故椭圆的方程为.(2)由题设可知:的直线方程为.联立方程组,整理得:..∴.∵,∴,即.∴.∴.解得,∴.故直线的斜率为.点睛:本题主要考查了直线和椭圆的位置关系,将三角形的面积比转化为线段比,线段比转化为坐标比,进而利用设而不求的思想,利用直线和椭圆联立,借助韦达定理处理即可. 11.【2018届安徽省合肥市三模】已知抛物线()的焦点为,以抛物线上一动点为圆心的圆经过点F.若圆的面积最小值为.(Ⅰ)求的值;(Ⅱ)当点的横坐标为1且位于第一象限时,过作抛物线的两条弦,且满足.若直线AB恰好与圆相切,求直线AB的方程.【答案】(1);(2).【解析】分析:(Ⅰ)由抛物线的性质知,当圆心位于抛物线的顶点时,圆的面积最小,由可得的值;(Ⅱ)依横坐标相等可得,轴,,设(),则直线的方程为,代入抛物线的方程得,利用韦达定理求出的坐标,同理求出的坐标,求出的斜率为定值,设直线的方程为,由圆心到直线的距离等于半径,列方程解得,从设(),则直线的方程为,∴,代入抛物线的方程得,,∴,∴.将换成,得,∴.设直线的方程为,即.由直线与圆相切得,,解得.经检验不符合要求,故舍去.∴所求直线的方程为.点睛:本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.12.【2018届江苏省苏锡常镇四市调研(二)】如图,椭圆的离心率为,焦点到相应准线的距离为1,点,,分别为椭圆的左顶点、右顶点和上顶点,过点的直线交椭圆于点,交轴于点,直线与直线交于点.(1)求椭圆的标准方程;(2)若,求直线的方程;(3)求证:为定值.【答案】(1) .(2) 或.(3)见解析.【解析】分析: (1) 由椭圆的离心率为,焦点到对应准线的距离为1,列方程组解方程组即得椭圆的标准方程.(2)先求出点D的坐标,再根据点C,D的坐标求直线l的斜率,即得直线l的方程. (3) 设D坐标为(x3,y3),先求出直线BD和AC的方程,再联立两个方程化简即得=2为定值.代入椭圆方程得或,所以或,所以或.所以的方程为:或.(3)设D坐标为(x3,y3),由,M(x1,0)可得直线的方程,联立椭圆方程得:解得,.由,得直线BD的方程:,。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题32 均值不等式常见应用
学 习 资 料 专 题专题32 均值不等式常见应用【热点聚焦与扩展】高考命题中对基本不等式的考查比较灵活,可以说无处不在,重点考查应用基本不等式确定最大值和最小值问题、证明不等式成立、解答恒成立问题,命题形式以选择、填空为主,有时以应用题的形式出现.有时与三角函数、数列、解析几何等相结合,考查考生应用数学知识的灵活性.本专题重点说明应用基本不等式解题的常见类型. 1、基本不等式的几个变形:(1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈2、利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量. (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突) ② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.3、常见求最值的题目类型 (1)构造乘积与和为定值的情况 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解.(3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得24x y +≥-,即()min 24x y += 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈ 4、高中阶段涉及的几个平均数:设()01,2,,i a i n >=(1)调和平均数:12111n nnH a a a =+++(2)几何平均数:n G =(3)代数平均数:12nn a a a A n+++=(4)平方平均数:n Q =5、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===特别的,当2n=时,22G A ≤⇒2a b+≤即基本不等式 【经典例题】例1.【2019届辽宁省辽南协作校高三一模】若lg lg 0a b +=且a b ≠,则21a b+的取值范围为( )A. )⎡+∞⎣B. ()+∞ C. )()3,⎡⋃+∞⎣D. )()3,⎡⋃+∞⎣【答案】A【解析】∵lg lg 0a b +=且a b ≠ ∴lg 0ab =,即1ab =.∴212ab b a a b ⎛⎫+⋅=+≥= ⎪⎝⎭2a b ==.∴21a b+的取值范围为)⎡+∞⎣ 故选A.例2.【2019届云南省曲靖市第一中学4月监测卷(七)】若直线平分圆,则的最小值为( )A.B. 2C.D.【答案】C则(当且仅当,即时取等号).故选C .例3.【2019届北京师范大学附中二模】已知,,并且,,成等差数列,则的最小值为( )A. 16B. 9C. 5D. 4 【答案】A【解析】∵,,成等差数列, ∴.∴,当且仅当且,即时等号成立.选A.例4.【2017天津,理12】若,a b ∈R , 0ab >,则4441a b ab++的最小值为___________.【答案】4【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b R a b ab ∈+≥ ,当且仅当a b =时取等号;(2),a b R +∈ ,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值. 例5.已知非零向量,,满足,,则的最大值为_______.【答案】【解析】分析:详解:因为,所以的最大值为.例6.【2019届广东省模拟(二)】已知,,展开式的常数项为,则的最小值为__________. 【答案】【解析】分析:由题意在二项展开式的通项公式中,令的幂指数等于零,求得的值,可得展开式的常数项,再根据展开式的常数项为,确定出,再利用基本不等式求得的最小值. 详解:展开式的通项公式为,令,得,从而求的,整理得,而,故答案是.例7.【2019届百校联盟高三TOP20四月联考】已知的内角的对边分别为,若,则的最小值为__________.【答案】,即所以,所以,所以,当且仅当,即时等号成立,所以的最小值为故答案为:例8.【2019届北京市北京19中十月月考】已知正数,x y 满足22,x y +=则18y x+的最小值为_________. 【答案】9【点睛】本题考查基本不等式的应用.利用基本不等式求带有限制条件的不等式的最值问题时,要合理配凑,如本题中将18y x+等价变形为182482x y x yy x y x+++=+,再利用基本不等式的条件(一正、二定、三相等)进行求解.例9.【2019届四川省成都市石室中学二诊】已知四面体ABCD的所有棱长都为,O是该四面体内一点,且点O到平面ABC、平面ACD、平面ABD、平面BCD的距离分别为,x,和y,则+的最小值是___.【答案】;【解析】该几何体为正四面体,体积为.各个面的面积为,所以四面体的体积又可以表示为,化简得,故.【点睛】本小题主要考查正四面体体积的计算,考查利用分割法求几何体的体积,考查了方程的思想,考查了利用基本不等式求解和的最小值的方法.首先根据题目的已知条件判断出四面体为正四面体,由于正四面体的棱长给出,所以可以计算出正四面体的体积,根据等体积法求得的一个等式,再利用基本不等式求得最小值.例10.【2019届湖南省株洲市统一检测二】已知数列的前项和为,且满足,数列满足,则数列中第__________项最小.【答案】4【解析】分析:由题可得到数列为等差数列,首项为1,公差为1.可得数列满足利用累加求和方法即可得出.可得,利用不等式的性质即可得出.时也成立.则数列中第4项最小.即答案为4.【精选精练】1.已知二次函数的值域为,则的最小值为( )A. 1B. 3C. 4D. 5【答案】B故选:B.2.【2019届陕西省咸阳市三模】已知圆的半径为1,,,,为该圆上四个点,且,则面积的最大值为()A. 1B.C.D.【答案】A【解析】分析:利用向量关系,判断四边形的形状,然后求解三角形的面积的最大值即可.详解:如图所示,由知,ABDC为平行四边形,又A,B,C,D 四点共圆,∴ABDC 为矩形,即BC 为圆的直径,所以当AD是圆的直径时,面积的最大.∴当AB=AC 时,△ABC 的面积取得最大值为.故答案为:A点睛:本题主要考查向量的平行四边形法则和基本不等式等基础知识.看到,联想到平行四边形法则,是解题的一个关键.平面向量里高考的高频考点有向量的加法法则、减法法则、平行四边形法则、基底法和坐标法等,要做到心中有数.3.设A、B分别为双曲线(a>0,b>0)的左、右顶点,P是双曲线上不同于A、B的一点,直线AP、BP的斜率分别为m、n,则当取最小值时,双曲线的离心率为()A. B. C. D.【答案】D点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2019届河北省衡水金卷一模】已知点分别在正方形的边上运动,且,设,,若,则的最大值为()A. 2B. 4C.D.【答案】C【解析】,又因为,,当且仅当x=y 时取等号,,即的最大值为,故选C.5.【2019届贵州省贵阳第一中学月考卷(七)】实数,,满足且,则下列关系式成立的是( ) A. B.C.D.【答案】A 【解析】∵∴由∴∴综上,可得.故选A .6.【2019届浙江省嘉兴市4月模拟】已知(),则的最小值为( )A.B. 9C.D.【答案】B7.【2019届山东省天成大联考第二次】若,且,则的最小值为( )A. 2B.C. 4D. 【答案】B 【解析】,当且仅当时等号成立,又,即,当且仅当时等号成立,的最小值为,故选B.8.在ABC 中,,a b c 分别是角,,A B C 的对边,且2a c b +=,则角B 的取值范围是A. π0,6⎛⎤ ⎥⎝⎦ B. ππ,32⎡⎤⎢⎥⎣⎦ C. ππ,62⎡⎤⎢⎥⎣⎦D. π0,3⎛⎤ ⎥⎝⎦【答案】D点睛:本题考查了余弦定理和基本不等式的性质、三角函数的图象与性质等知识点的综合应用,解答中利用题设条件和余弦定理、基本不等式求得1cos 2B ≥,再利用三角函数的单调性求解是解答的关键,着重考查了推理与计算能力.9.【2019届山西省一模】若点为圆上的一个动点,点,为两个定点,则的最大值为( ) A. B. C. D.【答案】B【解析】∵∠APB=90°,∴由不等式可得∴故选:B10.【2019届安徽省宣城市第二次调研】已知函数()2sin f x x x =-,若正实数,a b 满足()()210f a f b +-=,则14a b+的最小值是__________.【答案】9+【解析】因为()()()2cos 0,2sin f x x f x x x f x =->-=-+=-',所以函数()f x 为单调递增奇函数,因此由()()210f a f b +-=,得()()()211212,21,f a f b f b a b a b =--=-∴=-+=因此14a b + ()14242999b a a b a b a b ⎛⎫=++=++≥+=+ ⎪⎝⎭,当且仅当b =时取等号. 11.已知直线恒过定点A ,则A 点的坐标为_______;若点A 在直线(,)上,则的最小值为_______.【答案】 (2,1)12.【2019年天津市十二校二模】已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为__________. 【答案】 【解析】分析:对于一切实数恒成立,可得;再由,使成立,可得,所以可得,可化为,平方后换元,利用基本不等式可得结果.令,则(当时,等号成立),所以,的最小值为,故的最小值为,故答案为.。
【新】2019年高考数学大一轮复习热点聚焦与扩展专题53圆锥曲线的取值范围问题
专题53 圆锥曲线的取值范围问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用代数方法求解最值、范围问题.1、解不等式:通过题目条件建立关于参数的不等式,从而通过解不等式进行求解。
常见的不等关系如下:(1)圆锥曲线上的点坐标的取值范围① 椭圆(以()222210x y a b a b +=>>为例),则[],x a a ∈-,[],y b b ∈-② 双曲线:(以()22221,0x y a b a b-=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支)y R ∈③ 抛物线:(以()220y px p =>为例,则[)0,x ∈+∞(2)直线与圆锥曲线位置关系:若直线与圆锥曲线有两个公共点,则联立消元后的一元二次方程0∆>(3)点与椭圆(以()222210x y a b a b+=>>为例)位置关系:若点()00,x y 在椭圆内,则2200221x y a b+< (4)题目条件中的不等关系,有时是解决参数取值范围的关键条件2、利用函数关系求得值域:题目中除了所求变量,还存在一个(或两个)辅助变量,通过条件可建立起变量间的等式,进而可将等式变形为所求变量关于辅助变量的函数,确定辅助变量的范围后,则可求解函数的值域,即为参数取值范围(1)一元函数:建立所求变量与某个辅助变量的函数关系,进而将问题转化为求一元函数的值域,常见的函数有:① 二次函数;②“对勾函数”()0ay x a x=+>;③ 反比例函数;④ 分式函数。
【新】2019年高考数学大一轮复习热点聚焦与扩展专题48圆锥曲线的几何性质
专题48 圆锥曲线的几何性质【热点聚焦与扩展】纵观近几年的高考试题,高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等. 高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强.命题以小题为主,多为选择题或填空题. 高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多.本文在分析研究近几年高考题及各地模拟题的基础上,重点说明圆锥曲线的几何性质有关问题的解法与技巧,离心率问题在下一专题讲述. (一)椭圆: 1、定义和标准方程:(1)平面上到两个定点12,F F 的距离和为定值(定值大于12F F )的点的轨迹称为椭圆,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距(2)标准方程:①焦点在x 轴上的椭圆:设椭圆上一点(),P x y ,()()12,0,,0F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221x y a b+=,其中()2220,a b b a c >>=-②焦点在y 轴上的椭圆:设椭圆上一点(),P x y ,()()120,,0,F c F c -,设距离和122PF PF a +=,则椭圆的标准方程为:22221y x a b+=,其中()2220,a b b a c >>=-焦点在哪个轴上,则标准方程中哪个字母的分母更大2、椭圆的性质:以焦点在x 轴的椭圆为例:()222210x y a b a b+=>>(1)a :与长轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为长轴长 b :与短轴的顶点有关:()()120,,0,B b B b -,122B B b =称为短轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:椭圆关于x 轴,y 轴对称,且关于原点中心对称 (3)椭圆上点的坐标范围:设()00,P x y ,则00,a x a b y b -≤≤-≤≤ (4)通径:焦点弦长的最小值 ① 焦点弦:椭圆中过焦点的弦② 过焦点且与长轴垂直的弦22b PQ a=说明:假设PQ 过()1,0F c -,且与长轴垂直,则()()00,,,P c y Q c y ---,所以2242002221c y b y a b a +=⇒=,可得20b y a =.则22b PQ a = (5)离心率:ce a=,因为c a <,所以()0,1e ∈ (6)焦半径公式:称P 到焦点的距离为椭圆的焦半径① 设椭圆上一点()00,P x y ,则1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 焦半径的最值:由焦半径公式可得:焦半径的最大值为a c +,最小值为a c - (7)焦点三角形面积:122tan2PF F S b θ=(其中12PF F θ=∠)证明:1212121sin 2PF F S PF PF F PF =⋅ 且222121212122cos F F PF PF PF PF F PF =+-()()212121221cos PF PF PF PF F PF =+-+()2212124421cos c a PF PF FPF ∴=-+ 2221212122221cos 1cos a c b PF PF F PF F PF -∴==++12212121212112sin sin 221cos PF F b SPF PF F PF F PF PF F =⋅=⋅+ 22121212sin tan 1cos 2F PF F PFb b F PF =⋅=+因为1200122PF F Sc y c y =⋅⋅=⋅,所以2120tan 2F PFb c y =⋅,由此得到的推论: ① 12F PF ∠的大小与0y 之间可相互求出 ② 12F PF ∠的最大值:12F PF 最大⇔12PF F S 最大⇔0y 最大⇔P 为短轴顶点(二)双曲线:1、定义:平面上到两个定点12,F F 距离差的绝对值为一个常数(小于12F F )的点的轨迹称为双曲线,其中12,F F 称为椭圆的焦点,12F F 称为椭圆的焦距;如果只是到两个定点12,F F 距离差为一个常数,则轨迹为双曲线的一支2、标准方程:① 焦点在x 轴:设双曲线上一点(),P x y ,()()12,0,,0F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221x y a b-=,其中()2220,0,a b b c a >>=-② 焦点在y 轴:设双曲线上一点(),P x y ,()()120,,0,F c F c -,设距离差的绝对值122PF PF a -=,则双曲线标准方程为:22221y x a b-=,其中()2220,0,a b b c a >>=-焦点在哪个轴上,则对应字母作为被减数2、双曲线的性质:以焦点在x 轴的双曲线为例:()222210,0x y a b a b-=>>(1)a :与实轴的顶点有关:()()12,0,,0A a A a -,122A A a =称为实轴长 b :与虚轴的顶点有关:()()120,,0,B b B b -,122B B b =称为虚轴长 c :与焦点有关:()()12,0,,0F c F c -,122F F c =称为焦距 (2)对称性:双曲线关于x 轴,y 轴对称,且关于原点中心对称(3)双曲线上点坐标的范围:设()00,P x y ,则有0x a ≤-或0x a ≥,0y R ∈(4)离心率:ce a=,因为c a > ,所以()1,e ∈+∞ (5)渐近线:当x →+∞或x →-∞时,双曲线在向两方无限延伸时,会向某条直线无限靠近,但不相交,则称这条直线为曲线的渐近线.① 双曲线渐近线的求法:无论双曲线的焦点位于哪条轴上,只需让右侧的1变为0,再解出y关于x 的直线即可.例如在()222210,0x y a b a b -=>>中,求渐近线即解:22220x y a b-=,变形为b y x a =±,所以by x a=±即为双曲线的渐近线 ② 渐近线的几何特点:直线,,,x a x a y b y b ==-==-所围成的矩形,其对角线即为双曲线的渐近线③ 渐近线的作用:一是可以辅助作出双曲线的图像;二是渐近线的斜率也能体现,,a b c 的关系. (6)通径:① 内弦:双曲线同一支上的两点连成的线段 外弦:双曲线两支上各取一点连成的线段②通径:过双曲线焦点的内弦中长度的最小值,此时弦PQ x ⊥轴,22b PQ a=(7)焦半径公式:设双曲线上一点()00,P x y ,左右焦点分别为12,F F ,则 ① 1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 由焦半径公式可得:双曲线上距离焦点最近的点为双曲线的顶点,距离为c a - (8)焦点三角形面积:设双曲线上一点()00,P x y ,则122cot 2PF F S b θ=(其中12PF F θ=∠)(三)抛物线:1、定义:平面内到一定点的距离等于到一条定直线(定点不在定直线上)的距离的点的轨迹为抛物线2、抛物线的标准方程及焦点位置:(1)焦点在x 轴正半轴:()220y px p =>,焦点坐标,02p ⎛⎫⎪⎝⎭ (2)焦点在x 轴负半轴:()220y px p =->,焦点坐标,02p ⎛⎫-⎪⎝⎭(3)焦点在y 轴正半轴:()220x py p =>,焦点坐标0,2p ⎛⎫ ⎪⎝⎭ (4)焦点在y 轴负半轴:()220x py p =->,焦点坐标0,2p ⎛⎫-⎪⎝⎭小结:通过方程即可判断出焦点的位置与坐标:那个字母是一次项,则焦点在哪条轴上;其坐标为一次项系数除以4,例如:24x y =,则焦点在y 轴上,且坐标为()0,1 3、焦半径公式:设抛物线()220y px p =>的焦点为F ,(),A x y ,则2p AF x =+4、焦点弦长:设过抛物线()220y px p =>焦点的直线与抛物线交于()()1122,,,A x y B x y ,则12AB x x p =++(AB AF BF =+,再由焦半径公式即可得到)【经典例题】例1.【2017课标3,理5】已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B 【解析】则双曲线C 的方程为2145x y 2-= .故选B.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()2220x y a b λλ2-=≠,再由条件求出λ的值即可. 例2.【2017山东,理14】在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】y x =点睛:1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.例3.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )3 D. 5 【答案】A【解析】先从常系数方程入手,抛物线212y x =的焦点为()3,0,即双曲线中的3c =,所以2225b c a =-=,从而双曲线方程为:22145x y -=,其渐近线方程:2y x =±,由对称性可得焦点到两渐近线的距离相等,不妨选择:20l y -=,右焦点()23,0F ,所以2F l d -==答案:A点睛:(1)一道题含多个圆锥曲线方程,往往以某些特殊点(焦点,顶点)为桥梁联接这些方程,在处理时通常以其中一个曲线方程(不含参)为入手点,确定特殊点的坐标,进而解出其他圆锥曲线的要素.例4.【2018届湖南省湘潭市四模】已知是椭圆:的左焦点,为上一点,,则的最小值为( )A.B.C. D.【答案】D所以例5.【2018届重庆市第三次抽测】直线过抛物线的焦点F 且与抛物线交于A,B两点,则A. B. C. D.【答案】B【解析】分析:是焦半径,故可用焦半径公式把转化为,联立直线方程和抛物线方程后再利用韦达定理可求此值.点睛:圆锥曲线中的定值问题,需要把目标代数式转化为关于(或)的代数式(为直线与圆锥曲线的两个交点),通过联立方程组消元后利用韦达定理求定值.例6.【2018届天津市部分区质量调查(二)】设分别是双曲线的左、右焦点,为坐标原点,过左焦点作直线与圆切于点,与双曲线右支交于点,且满足,,则双曲线的方程为()A. B. C. D.【答案】D【解析】分析:根据圆的半径得出,根据中位线定理和勾股定理计算,从而得出,即可得出双曲线的方程.详解:∵为圆上的点,例7.【2018届河南省郑州市第三次预测】已知为椭圆上一个动点,过点作圆的两条切线,切点分别是,则的取值范围为()A. B. C. D.【答案】C【解析】分析:由题意设PA与PB的夹角为,通过解直角三角形求出PA,PB的长,由向量的数量积公式表示出,利用三角函数的二倍角公式化简,然后换元后利用基本不等式求出最值.详解:如图,由题意设,则,∴,故选C.例8.【2018届河北省唐山市三模】已知是抛物线上任意一点,是圆上任意一点,则的最小值为()A. B. 3 C. D.【答案】D【解析】分析:可设点的坐标为,由圆方程得圆心坐标,求出的最小值,根据圆的几何性质即可得到的最小值.详解:设点的坐标为,由圆的方程可得圆心坐标,,,是圆上任意一点,的最小值为,故选D.例9.已知抛物线的焦点为,点为抛物线上任意一点,若点,则的最小值为___________.【答案】5点睛:该题考查的是抛物线上的动点到抛物线内一个定点到焦点的距离和的最小值问题,在解题的过程中,利用抛物线的定义,将抛物线上的点到焦点的距离转化为到其准线的距离,结合图形,可以断定当三点共线时满足条件,最小值为定点到准线的距离,利用公式求得结果.例10.【2018届山东省威海市二模】抛物线的焦点为,是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.【答案】【解析】分析:设|PF|=2a,|QF|=2b,.由抛物线定义得|PQ|=a+b,由余弦定理可得(a+b)2=4a2+4b2﹣8abcosθ,进而根据基本不等式,求得的θ取值范围,从而得到本题答案.∴cosθ=,当且仅当a=b时取等号,∴θ≤,故答案为:点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系和基本不等式等,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键有二,其一是要联想到抛物线的定义解题,从而比较简洁地求出MN和PQ,其二是得到后要会利用基本不等式求最值.【精选精练】1.【2018届山西省大同市与阳泉市第二次监测】已知椭圆的左焦点为,过点作倾斜角为的直线与圆相交的弦长为,则椭圆的标准方程为()A. B. C. D.【答案】B由直线与圆相交的弦长为,可得,解得,则椭圆方程为,故选B.点睛:本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和数量积公式,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.2.【2018届江西省南昌市二模】已知双曲线的两焦点分别是,双曲线在第一象限部分有一点,满足,若圆与三边都相切,则圆的标准方程为()A. B.C. D.【答案】A3.【2018届河南省洛阳市三统】已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A. B. 3 C. 5 D.【答案】A【解析】分析:首先求出抛物线的焦点坐标,之后利用双曲线的右焦点与抛物线的焦点重合,,先求出,再求出双曲线的焦点坐标和渐近线方程,之后应用点到直线的距离公式求得结果.详解:因为抛物线的焦点坐标为,依题意,,所以,所以双曲线的方程为,所以其渐近线方程为,所以双曲线的一个焦点到渐近线的距离为,故选A.4.【2018届山西省大同市与阳泉市第二次监测】已知双曲线的离心率为,其一条渐近线被圆截得的弦长为,则实数的值为()A. 3 B. 1 C. D. 2【答案】D【解析】分析:由离心率公式,可得a=b,求得渐近线方程,以及圆的圆心和半径,求得圆心到直线的距离,由弦长公式,解方程可得所求值.详解:由题可得:c=,即有a=b,渐近线方程为y=±x,圆(x-m)2+y2=4(m>0)的圆心为(m,0),半径为2,可得圆心到直线的距离为d=,则直线被圆截得的弦长为,解得m=2(-2舍去),故选:D.5.【2018届重庆市三诊】已知抛物线的焦点为,以为圆心的圆与抛物线交于两点,与抛物线的准线交于两点,若四边形为矩形,则矩形的面积是()A. B. C. D. 3【答案】A所以,从而求得四边形的面积为.点睛:该题考查的是有关抛物线及圆的有关性质以及矩形的面积公式,在解题的过程中,MN 和PQ关于圆心对称是最关键的一步,此时可以求得点M的横坐标,借助于抛物线的方程,求得其纵坐标,从而求得对应的边长,利用面积公式,求得结果.6.【2018届重庆市巴蜀中学月考九】已知抛物线,直线与抛物线交于两点,若中点的坐标为,则原点到直线的距离为()A. B. C. D.【答案】D,故选D.7.【2018届四川省冲刺演练(一)】为椭圆:上一动点,,分别为左、右焦点,延长至点,使得,记动点的轨迹为,设点为椭圆短轴上一顶点,直线与交于,两点,则_______.【答案】【解析】分析:利用椭圆的定义以及已知条件转化求解即可详解:∵|PF1|+|PF2|=2a=2,|PQ|=|PF2|,所以|PF1|+|PQ|=|QF1|=2.动点Q的轨迹为Ω,为以F1为圆心半径为的圆,∵|BF1|=|BF2|=.|F1F2|=2,∴BF1⊥BF2,则|MN|=2=2.故答案为:2.8.如图,抛物线和圆,其中,直线经过的焦点,依次交于四点,则的值为______.【答案】【解析】分析:设抛物线的焦点为F,易得:|AB|=|AF|﹣|BF=x1+﹣=x1,同理可知|CD|=x2,从而求出•.同理|CD|=x2,∴•=||•||•cos<>=x1x2=.故答案为:.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点的坐标.2.若为抛物线上一点,由定义易得;若过焦点的弦的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.9.设抛物线的焦点为,准线为,为抛物线上一点,过作,为垂足,如果直线的斜率为,那么________________【答案】.由可得A点坐标为∵PA⊥l,A为垂足,∴P点纵坐标为,代入抛物线方程,得P点坐标为(6,),∴.故答案为8.10.【2018届山东省烟台市高三高考适应性练习(一)】已知抛物线的焦点为是抛物线上一点,若的延长线交轴的正半轴于点,交抛物线的准线于点,且,则=__________.【答案】3【解析】分析:画出图形后结合抛物线的定义和三角形的相似求解即可.详解:画出图形如下图所示.由题意得抛物线的焦点,准线为.设抛物线的准线与y轴的交点为,过M作准线的垂线,垂足为,交x轴于点.即,解得.11.【2018届湖南省长郡中学一模】已知直线过抛物线的焦点,且与的对称轴垂直,与交于、两点,,为的准线上一点,则的面积为__________.【答案】36【解析】分析:可由得出,从而可得抛物线方程,抛物线的准线方程,因此的边上的高易得.详解:不妨设抛物线方程为,,,∴准线方程为,到直线的距离为6,∴.故答案为36.点睛:过抛物线的焦点与对称轴垂直的弦是抛物线的通径,通径长为.12.【2018届广东省湛江市二模】平面直角坐标系中,椭圆()的离心率,,分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则__________.【答案】【解析】分析:由题意首先设出椭圆方程,结合几何关系确定直线的斜率,然后由弦长公式求得弦长,最后求解的值即可.详解:如图所示,设,即,由弦长公式可得:,在中,,故.小中高 精品 教案 试卷 制作不易 推荐下载21。
【新】2019年高考数学大一轮复习热点聚焦与扩展专题52几何关系巧解圆锥曲线问题
专题52 几何关系巧解圆锥曲线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等. 高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强.命题以小题为主,多为选择题或填空题. 高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多.解决圆锥曲线中的范围、最值问题一般有三种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解;三是通过建立不等式、解不等式求解.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用几何关系解答圆锥曲线的综合问题,特别是最值(范围)问题的常见解法.1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到.因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值.所以只有共线时才有可能达到最值.要注意动点与定点相对位置关系.一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上.(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值位置(4)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置. 2、常见的线段转移: (1)利用对称轴转移线段(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移.(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化.(4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径 (5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲线的哪一支上) 3、与圆相关的最值问题:(1)已知圆C 及圆外一定点P ,设圆C 的半径为r 则圆上点到P 点距离的最小值为PM PC r =-,最大值为PN PC r =+(即连结PC 并延长,M 为PC 与圆的交点,N为PC 延长线与圆的交点(2)已知圆C 及圆内一定点P ,则过P 点的所有弦中最长的为直径,最短的为与该直径垂直的弦MN解:,弦长的最大值为直径,而最小值考虑弦长公式为AB =AB 最小,则d 要取最大,在圆中CP 为定值,在弦绕P 旋转的过程中, d CP ≤,所以d CP =时,AB 最小N(3)已知圆C 和圆外的一条直线l ,则圆上点到直线距离的最小值为C l PM d r -=-,距离的最大值为C l PN d r -=+(过圆心C 作l 的垂线,垂足为P ,CP 与圆C 交于M ,其反向延长线交圆C 于N(4)已知圆C 和圆外的一条直线l ,则过直线l 上的点作圆的切线,切线长的最小值为PM解:PM =PM 最小,则只需CP 最小即可,所以P 点为过C 作l 垂线的垂足时,CP 最小∴过P 作圆的切线,则切线长PM 最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为()222210x y a b a b+=>>① 焦半径:焦半径的最大值为a c +,最小值为a c -② 焦点弦:焦点弦长的最小值称为通径,为22b a ,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为()222210,0x y a b a b-=>>① 焦半径:焦半径的最小值为a c -,无最大值② 焦点弦:焦点弦长的最小值称为通径,为22b a,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为22y px =① 焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即2p ② 焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为2p【经典例题】例1.已知点3,12P ⎛⎫- ⎪⎝⎭在抛物线()2:20E x py p =>的准线上,过点P 作抛物线的切线,若切点A 在第一象限,F 是抛物线的焦点,点M 在直线AF 上,点N 在圆()()22:221C x y +++=上,则MN 的最小值为( )A.15 B. 65C. 2D. 1 【答案】A611155C l MN d r -≥-=-=-= 例 2.【2018届湖南省长沙市长郡中学模拟二】已知椭圆:的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点与直线的距离不小于,则椭圆的离心率的取值范围是( ) A.B.C.D.【答案】B【解析】分析:设为椭圆的左焦点,连接,由椭圆的对称性,结合椭圆的定义可得,利用点与直线的距离不小于列不等式求解即可. 详解:可设为椭圆的左焦点,连接,解得,椭圆的离心率的取值范围是,故选B.点睛:本题主要考查利用椭圆的简单性质求双曲线的离心率,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.例3.【2018届四川省成都市第七中学三诊】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和距离之和的最小值为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:由双曲线的右顶点到渐近线的距离求出,从而可确定双曲线的方程和焦点坐标,进而得到抛物线的方程和焦点,然后根据抛物线的定义将点M到直线的距离转化为到焦点的距离,最后结合图形根据“垂线段最短”求解.详解:由双曲线方程可得,双曲线的右顶点为,渐近线方程为,即.∴,∴抛物线的方程为,焦点坐标为.如图,设点M到直线的距离为,到直线的距离为,则,∴.结合图形可得当三点共线时,最小,且最小值为点F到直线的距离.故选B.点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.例4.【2018届安徽省芜湖市5月模拟】已知椭圆的右焦点为.圆上所有点都在椭圆的内部,过椭圆上任一点作圆的两条切线,为切点,若,则椭圆C的离心率为()A. B. C. D.【答案】B同理,当点为椭圆的右顶点时,最大,可得解得,离心率,故选B.点睛:本题的关键是能够分析出当取得最大值及最小值时,点的位置,再结合平面几何知识列出方程,联立而后求出的值.例5.【2018届天津市部分区质量调查(二)】设分别是双曲线的左、右焦点,为坐标原点,过左焦点作直线与圆切于点,与双曲线右支交于点,且满足,,则双曲线的方程为()A. B. C. D.【答案】D【解析】分析:根据圆的半径得出,根据中位线定理和勾股定理计算,从而得出,即可得出双曲线的方程.详解:∵为圆上的点,∴是的中点,又是的中点,且,又是圆的切线,又∴双曲线方程为.故选D.例6.【2018届浙江省绍兴市5月调测】点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则与面所成角的正切值的最小值是A. B. C. D.【答案】C,其中为定值,则满足题意时,有最大值即可,设圆的半径为,则,,即:,则,中,由勾股定理可得,中,由勾股定理可得,为的中位线,则,,则,综上可得,与面所成角的正切值的最小值是:.本题选择C 选项.例7.已知点()4,0A 和()2,2B ,M 是椭圆221259x y +=上一动点,则MA MB +的最大值为_________【答案】10+例8.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】 2双曲线N的渐近线方程为,由题意得双曲线N的一条渐近线的倾斜角为,例9.【2018届江西省重点中学协作体第二次联考】设是过抛物线焦点的弦,其垂直平分线交轴于点,设,则的值是________【答案】【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,作准线于点,准线于点,准线于点,由抛物线的定义可知:,则,轴,,则:,据此可知四边形EHFG是平行四边形,则,从而:.例10.【2018届江西省景德镇市第一中学等盟校第二次联考】已知椭圆的离心率为,左、右焦点分别为,,过的直线交椭圆于两点,以为直径的动圆内切于圆.(1)求椭圆的方程;(2)延长交椭圆于点,求面积的最大值.【答案】(1) .(2)3.详解:(1)设的中点为M,在三角形中,由中位线得:,当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即∴,即,又∴∴椭圆方程为:(2)由已知可设直线,令,原式=,当时,∴.【精选精练】1.已知抛物线的焦点为,准线为,抛物线的对称轴与准线交于点,为抛物线上的动点,,当最小时,点恰好在以,为焦点的椭圆上,则椭圆的长轴长为()A. B. C. D.【答案】D【解析】分析:求出,过点作垂直与准线,则,记,则,当最小时,由最小值,设,利用定义,即可求解答案.x^kw点睛:本题主要考查了直线与抛物线的位置关系的应用,以及椭圆的定义域标准方程的应用,其中解答中得出当最小时,由最小值,此时直线与抛物线相切于点是解答的关键,着重考查了分析问题和解答问题的能力.2.【河北省衡水中学2018年高考押题三】已知抛物线的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若,则()A. B. C. D.【答案】B【解析】分析:画出如图所示的示意图,根据点在抛物线上,可得,由椭圆的性质,分别表示出,根据直线被截得的弦长,可得线段之间的关系,从而得到,之后将两式联立,求出的值,代入到相应的式子求得结果.详解:如图所示:由题意:在抛物线上,则,则,(1)点睛:该题考查的是有关椭圆和抛物线的定义和性质的问题,在解题的过程中,首先利用点在抛物线上得到,结合椭圆的性质以及线段之间的关系,得到,联立求得,代入求得结果.3.【2018届河北省衡水中学三轮复习七】已知双曲线,、是实轴顶点,是右焦点,是虚轴端点,若在线段上(不含端点)存在不同的两点,使得构成以为斜边的直角三角形,则双曲线离心率的取值范围是()A. B. C. D.【答案】B在线段上(不含端点)存在不同的两点,使得构成以线段为斜边的直角三角形,所以以为直径的圆与直线有两个交点,,,,,,故选B.点睛:求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.4.【2018届江西师大附中三模】已知椭圆的左焦点为,点为椭圆上一动点,过点向以为圆心,为半径的圆作切线,其中切点为,则四边形面积的最大值为()A. B. C. D.【答案】A【解析】分析:由切线的性质可得S四边形PMFN==|PM|.因此要使四边形PMFN面积取得最大值,|PM|必须取得最大值,因此|PF|必须取得最大值,当P点为椭圆的右顶点时,|PF|取得最大值a+c.详解:如图所示,当P点为椭圆的右顶点时,|PF|取得最大值a+c=4+1=5.∴|PM|=2,∴四边形PMFN面积最大值为=2××|PM|×|MF|=2.故选:A.5.【2018届湖南省湘潭市四模】已知是椭圆:的左焦点,为上一点,,则的最小值为()A. B. C. D.【答案】D所以6.【2018届山东省济南市二模】设椭圆的左、右焦点分别为,点.已知动点在椭圆上,且点不共线,若的周长的最小值为,则椭圆的离心率为()A. B. C. D.【答案】A【解析】分析:利用椭圆定义的周长为,结合三点共线时,的最小值为,再利用对称性,可得椭圆的离心率.详解:的周长为,∴故选:A7.【2018届四川省冲刺演练(一)】已知圆:经过椭圆:的一个焦点,圆与椭圆的公共点为,,点为圆上一动点,则到直线的距离的最大值为()A. B. C. D.【答案】A∴或∴或∵当时,圆与椭圆无交点∴联立,得.∵∴,即线段所在的直线方程为∵圆与椭圆的公共点为,,点为圆上一动点∴到直线的距离的最大值为故选A.8.【2018届浙江省教育绿色评价联盟5月测试】已知是双曲线的左,右焦点,是双曲线上一点,且,若△的内切圆半径为,则该双曲线的离心率为A. B. C. D.【答案】C可得,因为△的内切圆半径为,所以由三角形的面积公式可得,化为,即,两边平方可得,可得,解得,故选C.9.【2018届四川省成都市模拟一】过点的直线交椭圆于两点,为椭圆的右焦点,当的周长最大时,的面积为__________.【答案】【解析】分析:根据椭圆的定义和性质可得右焦点,当且仅当共线时周长最长,再根据两点式求出直线的方程,进而求解面积.则,所以,所以此时的面积为.10.【2018届山东省潍坊市三模】设抛物线的焦点为,为抛物线上第一象限内一点,满足,已知为抛物线准线上任一点,当取得最小值时,的外接圆半径为______.【答案】【解析】分析:根据抛物线的定义可知,解得,得,作抛物线的焦点,关于抛物线准线的对称点得,连接交抛物线的准线于点,使得取得最小值,此时点的坐标为,在中,分别应用正、余弦定理,即可求解结果.此时点的坐标为,在中,,由余弦定理得,则,由正弦定理得,所以,即三角形外接圆的半径为.11.【2018届山东省烟台市高三高考适应性练习(一)】已知抛物线的焦点为是抛物线上一点,若的延长线交轴的正半轴于点,交抛物线的准线于点,且,则=__________.【答案】3【解析】分析:画出图形后结合抛物线的定义和三角形的相似求解即可.详解:画出图形如下图所示.由题意得抛物线的焦点,准线为.∴.又,即,解得.12.【2018届山东省威海市二模】抛物线的焦点为,是抛物线上的两个动点,线段的中点为,过作抛物线准线的垂线,垂足为,若,则的最大值为______.【答案】【解析】分析:设|PF|=2a,|QF|=2b,.由抛物线定义得|PQ|=a+b,由余弦定理可得(a+b)2=4a2+4b2﹣8abcosθ,进而根据基本不等式,求得的θ取值范围,从而得到本题答案.∴cosθ=,当且仅当a=b时取等号,∴θ≤,故答案为:点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系和基本不等式等,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键有二,其一是要联想到抛物线的定义解题,从而比较简洁地求出MN和PQ,其二是得到后要会利用基本不等式求最值.。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题52 几何关系巧解圆锥曲线问题
专题52 几何关系巧解圆锥曲线问题【热点聚焦与扩展】纵观近几年的高考试题,高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等. 高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强.命题以小题为主,多为选择题或填空题. 高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多.解决圆锥曲线中的范围、最值问题一般有三种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解;三是通过建立不等式、解不等式求解.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利用几何关系解答圆锥曲线的综合问题,特别是最值(范围)问题的常见解法.1、利用几何关系求最值的一般思路:(1)抓住图形中的定点与定长,通常与求最值相关(2)遇到线段和差的最值,经常在动点与定点共线的时候取到.因为当动点与定点不共线时,便可围成三角形,从而由三角形性质可知两边之和大于第三边,两边之差小于第三边,无法取得最值.所以只有共线时才有可能达到最值.要注意动点与定点相对位置关系.一般的,寻找线段和的最小值,则动点应在定点连成的线段上;若寻找线段差的最小值,则动点应在定点连成的线段延长线上.(3)若所求线段无法找到最值关系,则可考虑利用几何关系进行线段转移,将其中某些线段用其它线段进行表示,进而找到最值位置(4)处理多个动点问题时,可考虑先只让一个动点运动,其他动点不动,观察此动点运动时最值选取的规律,再根据规律让其他点动起来,寻找最值位置.2、常见的线段转移: (1)利用对称轴转移线段(2)在圆中,可利用与半径相关的直角三角形(例如半弦,圆心到弦的垂线,半径;或是切线,半径,点与圆心的连线)通过勾股定理进行线段转移.(3)在抛物线中,可利用“点到准线的距离等于该点到焦点的距离”的特点进行两个距离的相互转化. (4)在椭圆中,利用两条焦半径的和为常数,可将一条焦半径转移至另一条焦半径(5)在双曲线中,利用两条焦半径的差为常数,也可将一条焦半径转移至另一条焦半径(注意点在双曲线的哪一支上)3、与圆相关的最值问题:(1)已知圆C 及圆外一定点P ,设圆C 的半径为r 则圆上点到P 点距离的最小值为PM PC r =-,最大值为PN PC r =+(即连结PC 并延长,M 为PC 与圆的交点,N 为PC 延长线与圆的交点(2)已知圆C 及圆内一定点P ,则过P点的所有弦中最长的为直径,最短的为与该直径垂直的弦MN 解:,弦长的最大值为直径,而最小值考虑弦长公式为AB =AB 最小,则d 要取最大,在圆中CP 为定值,在弦绕P 旋转的过程中, d CP ≤,所以d CP =时,AB 最小N(3)已知圆C 和圆外的一条直线l ,则圆上点到直线距离的最小值为C l PM d r -=-,距离的最大值为C l PN d r -=+(过圆心C 作l 的垂线,垂足为P ,CP 与圆C 交于M ,其反向延长线交圆C 于N3(4)已知圆C 和圆外的一条直线l ,则过直线l 上的点作圆的切线,切线长的最小值为PM 解:PM =PM 最小,则只需CP 最小即可,所以P 点为过C 作l 垂线的垂足时,CP 最小∴过P 作圆的切线,则切线长PM 最短4、与圆锥曲线相关的最值关系:(1)椭圆:设椭圆方程为()222210x y a b a b+=>>① 焦半径:焦半径的最大值为a c +,最小值为a c -② 焦点弦:焦点弦长的最小值称为通径,为22b a ,此时焦点弦与焦点所在的坐标轴垂直(2)双曲线:设双曲线方程为()222210,0x y a b a b-=>>① 焦半径:焦半径的最小值为a c -,无最大值② 焦点弦:焦点弦长的最小值称为通径,为22b a,此时焦点弦与焦点所在的坐标轴垂直(3)抛物线:设抛物线方程为22y px =① 焦半径:由抛物线的焦半径公式可知:焦半径的最小值为原点到焦点的距离,即2p ② 焦点弦:当焦点弦与焦点所在坐标轴垂直时,弦长最小,为2p【经典例题】例1.已知点3,12P ⎛⎫- ⎪⎝⎭在抛物线()2:20E x py p =>的准线上,过点P 作抛物线的切线,若切点A 在第一象限,F 是抛物线的焦点,点M 在直线AF 上,点N 在圆()()22:221C x y +++=上,则MN 的最小值为( ) A.15 B. 65C. 2D. 1 【答案】A611155C l MN d r -≥-=-=-= 例2.【2018与直线)C.【答案】B【解析】分析:由椭圆的对称性,利用点. 详解:,B.点睛:本题主要考查利用椭圆的简单性质求双曲线的离心率,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将的不等式,从而求出.例3.【2018)A. 1B. 2C. 3D. 4【答案】B5得到抛物线的方程和焦点,然后根据抛物线的定义将点M到直线最后结合图形根据“垂线段最短”求解.设点M的距离为F的距离故选B.点睛:与抛物线有关的最值问题一般情况下都与抛物线的定义有关,根据定义实现由点到点的距离与点到直线的距离的转化,具体有以下两种情形:(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.例4.【2018届安徽省芜湖市5上所有点都在椭圆的内部,过椭圆上任一点作圆的两条切线,C的离心率为()C.【答案】B离心率,故选B.7取得最大值及最小值时,点.例5.【2018届天津市部分区质量调查(二)的左、右焦点,,与双曲线右支交于点,且满足,则双曲线的方程为()C.【答案】D程.详解:上的点,,又故选D.例6.【2018届浙江省绍兴市5月调测】2的内切球C. D.【答案】C则满足题意时,的半径为中,由勾股定理可得,9本题选择C 选项.例7.已知点()4,0A 和()2,2B ,M 是椭圆221259x y +=上一动点,则MA MB +的最大值为_________【答案】10+例8.【2018,双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】双曲线N 的渐近线方程为N例9.【2018届江西省重点中学协作体第二次联考】________【解析】分析:首先画出题中所给的条件的示意图,然后结合抛物线的定义整理计算即可求得最终结果.详解:如图所示,设AB中点为E,则11据此可知四边形EHFG例10.【2018届江西省景德镇市第一中学等盟校第二次联考】为直径的动圆内切于圆(1)求椭圆的方程;(2.【答案】(2)3.详解:(1的中点为M 中,由中位线得:当两个圆相内切时又(2)由已知【精选精练】1,准线为)13【答案】Dx^kw点睛:本题主要考查了直线与抛物线的位置关系的应用,以及椭圆的定义域标准方程的应用,其中解答中最小时,问题的能力.2.【河北省衡水中学2018,点相交于点()C.【答案】B在抛物线上,可得.详解:如图所示:(1)点睛:该题考查的是有关椭圆和抛物线的定义和性质的问题,在解题的过程中,首先利用点在抛物线上得果.3.【2018上(不含端点)存在不同的两点为斜边的直角三角形,则双曲线离心率)D.15【答案】B,B.点睛:求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将.4.【2018届江西师大附中三模】,其中切点为,则四边形)【答案】A【解析】分析:由切线的性质可得S四边形PMFN.因此要使四边形PMFN面积取得最大值,|PM|必须取得最大值,因此|PF|必须取得最大值,当P点为椭圆的右顶点时,|PF|取得最大值a+c.详解:如图所示,当P点为椭圆的右顶点时,|PF|取得最大值a+c=4+1=5.∴四边形PMFN面积最大值为=2×|PM|×|MF|=2故选:A.5.【2018届湖南省湘潭市四模】:的左焦点,上一点,的最小值为()【答案】D176.【2018届山东省济南市二模】,不共线,若的周长的最小值为)B.【答案】A的周长为,结合三点共线时,.详解:的周长为故选:A7.【2018届四川省冲刺演练(一):经过椭圆:的一个焦点,圆到直线的距离的最大值为()C.【答案】A时,圆故选A.8.【2018届浙江省教育绿色评价联盟5月测试】是双曲线右焦点,19C.【答案】C两边平方可得C.9.【2018的周长最大时,__________.【解析】分析:根据椭圆的定义和性质可得右焦点,当且仅当求出直线的方程,进而求解面积.2110.【2018届山东省潍坊市三模】设抛物线的焦点为,取得最小值时,______.的对称点得,连接交抛物线的准线.11.【2018届山东省烟台市高三高考适应性练习(一)】是抛物线,交抛物线的准线.【答案】3【解析】分析:画出图形后结合抛物线的定义和三角形的相似求解即可.,准线为2312.【2018届山东省威海市二模】,作抛物线准线的垂线,垂足为______.【解析】分析:设|PF|=2a ,|QF|=2b ,.由抛物线定义得|PQ|=a+b ,由余弦定理可得(a+b )2=4a 2+4b 2﹣8abcos θ,进而根据基本不等式,求得的θ取值范围,从而得到本题答案.∴cosθa=b时取等号,∴θ点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系和基本不等式等,意在考查学生对这些基础知识的掌握能力和分析推理能力. (2)解答本题的关键有二,其一是要联想到抛物线的定义解题,从而比较简洁地求出MN和PQ,.。
备战高考数学大一轮复习热点聚焦与扩展专题48圆锥曲线的几何性质(2021年整理)
备战2019年高考数学大一轮复习热点聚焦与扩展专题48 圆锥曲线的几何性质编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(备战2019年高考数学大一轮复习热点聚焦与扩展专题48 圆锥曲线的几何性质)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为备战2019年高考数学大一轮复习热点聚焦与扩展专题48 圆锥曲线的几何性质的全部内容。
专题48 圆锥曲线的几何性质【热点聚焦与扩展】纵观近几年的高考试题,高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等。
高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强。
命题以小题为主,多为选择题或填空题. 高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等,其中,过焦点的直线较多。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题55 圆锥曲线的探索性、存在性问题
——————————新学期新成绩新目标新方向——————————专题55 圆锥曲线的探索性、存在性问题【热点聚焦与扩展】纵观近几年的高考试题,高考对圆锥曲线的考查,一般设置一大一小两道题目,主要考查以下几个方面:一是考查椭圆、双曲线、抛物线的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查圆锥曲线的标准方程,结合基本量之间的关系,利用待定系数法求解;三是考查圆锥曲线的几何性质,小题较多地考查椭圆、双曲线的几何性质;四是考查直线与椭圆、抛物线的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式、范围、最值、定值、定点、定直线、存在性和探索性问题等.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明利探索性、存在性问题的解法.1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示.再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在2、存在性问题常见要素的代数形式:未知要素用字母代替,x y(1)点:坐标()00(2)直线:斜截式或点斜式(通常以斜率为未知量)(3)曲线:含有未知参数的曲线标准方程3、解决存在性问题的一些技巧:(1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立.(2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去.(3)核心变量的求法:①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解.4.探索性问题命题背景宽,涉及知识点多,综合性强,探究平分面积的线、平分线段的线,或探究等式成立的参数值,探索定点、定值的存在性等.常与距离、倾斜角、斜率及方程恒成立问题综合,形成知识的交汇.化解探索性问题的方法:首先假设所探求的问题结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题做出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.在这个解题思路指导下解决探索性问题与解决具有明确结论的问题没有什么差别.【经典例题】例1.【2019届江苏省南京师大附中考前模拟】如图,已知椭圆C: (a>b>0)的左、右焦点分别为F1、F2,若椭圆C经过点(0,),离心率为,直线l过点F2与椭圆C交于A、B两点.(1)求椭圆C的方程;(2)若点N为△F1AF2的内心(三角形三条内角平分线的交点),求△F1NF2与△F1AF2面积的比值;(3)设点A,F2,B在直线x=4上的射影依次为点D,G, E.连结AE,BD,试问当直线l的倾斜角变化时,直线AE与BD是否相交于定点T?若是,请求出定点T的坐标;若不是,请说明理由.【答案】(1)(2)(3)见解析(2)因为点N为△F1AF2的内心,所以点N为△F1AF2的内切圆的圆心,设该圆的半径为r.则====.(3)若直线l的斜率不存在时,四边形ABED是矩形,此时AE与BD交于F2G的中点(,0),下面证明:当直线l的倾斜角变化时,直线AE与BD相交于定点T(,0).设直线l的方程为y=k(x-1),化简得(3+4k2)x2-8k2x+4k2-12=0,因为直线l经过椭圆C内的点(1,0),所以△>0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.====0,所以点T(,0)在直线AE上,同理可证,点T(,0)在直线BD上.所以当直线l的倾斜角变化时,直线AE与BD相交于定点T(,0).例2.【2019届浙江省金华市浦江县高考适应性考试】设椭圆左右焦点为上顶点为,离心率为且.(Ⅰ)求椭圆的方程;(Ⅱ)设是轴正半轴上的一点,过点任作直线与相交于两点,如果,是定值,试确定点的位置,并求的最大值.【答案】(1) .(2) ,.(Ⅱ)设的方程为 x*/k/w它满足这时这时.例3.【2019届广东省东莞市考前冲刺】在直角坐标系中,已知抛物线的焦点为,若椭圆:经过点,抛物线和椭圆有公共点,且.(1)求抛物线和椭圆的方程;(2)是否存在正数,对于经过点且与抛物线有两个交点的任意一条直线,都有焦点在以为直径的圆内?若存在,求出的取值范围;若不存在,请说明理由.【答案】(1),(2)所以,解得,所以抛物线,焦点,由题意知解得所以椭圆:故抛物线的方程为,椭圆的方程为.(2)假设存在正数适合题意,由题意知直线的斜率一定存在,设直线的方程为由消去,整理得由题意知恒成立,所以恒成立因为,所以,解得又因为,所以故存在正数适合题意,此时 d 取值范围为.例4.【2019届山东省日照市校际联考】已知椭圆:的焦距为,以椭圆的右顶点为圆心的圆与直线相交于,两点,且,.(1)求椭圆的标准方程和圆的方程;(2)不过原点的直线与椭圆交于,两点,已知直线,,的斜率,,成等比数列,记以线段,线段为直径的圆的面积分别为,,的值是否为定值?若是,求出此值;若不是,说明理由.【答案】(1)椭圆的方程为,圆的方程为;(2)为定值,定值为.【解析】分析:(1)设为的中点,连接,则,所以,又,所以,由已知得,所以椭圆的方程为,,所以,所以,所以,所以圆的方程为.则故为定值,该定值为.例5.【2019届江西省重点中学协作体第二次联考】已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由.【答案】(1).(2)答案见解析.【解析】分析:(1)由题意结合平面向量数量积的坐标运算可得的方程为.(2)当不为轴时,设:,、.联立与的方程可得,结合韦达定理和平面向量数量积的坐标运算可得.当为轴时,也满足上述结论.则存在使得所以,,.因为为定值,所以,解得.此时定值为.当为轴时,,..综上,存在使得为定值.例6.【2019届四川省成都市第七中学三诊】设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,的最大值为1.(1)求椭圆的方程;(2)设直线与椭圆交于两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.【答案】(1) ;(2)见解析.设,则,∵,∴当,即点为椭圆长轴端点时,有最大值1,即,解得,故所求的椭圆方程为.(2)由得消去x整理得,显然.设,,则,即当.∴直线与轴交于定点.例7.【2019届山东省威海市二模】已知椭圆:的左右焦点分别为,且离心率为,点为椭圆上一动点,面积的最大值为.(1)求椭圆的标准方程;(2)设分别为椭圆的左右顶点,过点作轴的垂线,为上异于点的一点,以为直径作圆.若过点的直线(异于轴)与圆相切于点,且与直线相交于点,试判断是否为定值,并说明理由.【答案】(1)(2)3【解析】分析:(1)根据题意得关于a,b,c的方程组,解之即得椭圆的方程.(2)先求出点,所以,设点,则,圆的半径为则直线的方程为的方程设为,则化简得由,得所以点,所以点在椭圆上,∴,即.例8.【2019届河北省武邑中学一模】已知椭圆经过点,且两个焦点的坐标依次为和.(1)求椭圆的标准方程;’(2)设是椭圆上的两个动点,为坐标原点,直线的斜率为,直线的斜率为,若,证明:直线与以原点为圆心的定圆相切,并写出此定圆的标准方程.【答案】(1);(2)见解析.详解:(1)由椭圆定义得,即,又,所以,得椭圆的标准方程为(2)设直线的方程为,,,直线的方程与椭圆方程联立,消去得,当判别式时,得,所以直线与一个定圆相切,定圆的标准方程为.例9.【2019届上海市徐汇区二模】如图,是椭圆长轴的两个端点,是椭圆上与均不重合的相异两点,设直线的斜率分别是.(1)求的值;(2)若直线过点,求证:;(3)设直线与轴的交点为(为常数且),试探究直线与直线的交点是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.【答案】(1)(2)见解析(3)落在定直线上(3)同(2)法,由点的纵坐标,求出直线的方程,联立两直线方程,求出其交点的横坐标与点的坐标无关,从而可判断交点落在定直线上,从而问题可得解.试题解析:(1)设,由于,所以,因为在椭圆上,于是,即,所以.(2)设直线,,由得,于是,.(3)由于直线与轴的交点为,于是,联立直线与椭圆的方程,可得,于是因为直线,直线,于是,所以,即直线与直线的交点落在定直线上.例10.【2019届山东省潍坊市二模】已知平面上动点P 到点)F的距离与到直线x =P 的轨迹为曲线E . (1)求曲线E 的方程;(2)设(),M m n 是曲线E 上的动点,直线l 的方程为1mx ny +=. ①设直线l 与圆221x y +=交于不同两点C , D ,求CD 的取值范围;②求与动直线l 恒相切的定椭圆E '的方程;并探究:若(),M m n 是曲线Γ: ()2210Ax By A B +=⋅≠上的动点,是否存在直线l : 1mx ny +=恒相切的定曲线'Γ?若存在,直接写出曲线'Γ的方程;若不存在,说明理由.【答案】(1)2214x y +=;(2)见解析【解析】分析:(1)设设(),P x y ,根据动点P到点)F的距离与到直线3x =2,()2210x y A B A B+=⋅≠. 详解:(1)设(),P x y=. 整理,得2214x y +=,所以曲线E 的方程为2214x y +=. (2)①圆心()0,0到直线l 的距离d =∵直线于圆有两个不同交点C , D x/k..w ∴222141CD m n ⎛⎫=-⎪+⎝⎭又∵()22104m n n +=≠ ∴22244134CD m ⎛⎫=-⎪+⎝⎭②当0m =, 1n =时,直线l 的方程为1y =;当2m =, 0n =时,直线l 的方程为12x =,根据椭圆对称性,猜想'E 的方程为2241x y +=.下证:直线()10mx ny n +=≠与2241x y +=相切,其中2214m n +=,即2244m n +=. 由2241{ 1x y mx y n+=-=消去y 得: ()22224210m n x mx n +-+-=,即224210x mx n -+-=.∴()()222241614440m n m n ∆=--=+-=恒成立,从而直线1mx ny +=与椭圆'E : 2241x y +=恒相切.若点(),M m n 是曲线Γ: ()2210Ax By A B +=⋅≠上的动点,则直线l : 1mx ny +=与定曲线'Γ:()2210x y A B A B+=⋅≠恒相切. 【精选精练】1.【2019届宁夏银川市第二中学二模】设动圆P(圆心为P)经过定点(0,2),被x 轴截得的弦长为4,P 的轨迹为曲线C (1) 求C 的方程(2) 设不经过坐标原点O 的直线l 与C 交于A 、B 两点,O 在以线段AB 为直径的圆上,求证:直线l 经过定点,并求出定点坐标. 【答案】(1);(2)【解析】分析:(1)由圆的几何性质布列方程组,消去参数即可得到轨迹方程;(2)设不经过坐标原点O的直线的方程为,,则:,解得:,利用根与系数的关系表示垂直关系可得,从而得到直线l经过定点.详解:(1)设动圆P圆心为,半径为,被x轴截得的弦为依题意的:化简整理得:,,或(舍去)所以直线l经过定点2.【2019届辽宁省部分重点中学协作体模拟】已知是椭圆上的一点,是该椭圆的左右焦点,且.(1)求椭圆的方程;(2)设点是椭圆上与坐标原点不共线的两点,直线的斜率分别为,且.试探究是否为定值,若是,求出定值,若不是,说明理由.【答案】(1) 椭圆;(2)见解析.【解析】分析:(1)由,可得,根据椭圆定义,可得,从而所以所以,因此,椭圆 .(用待定系数法,列方程组求解同样给分)(2)设直线,,由消去y得因为,所以即,解得所以,点睛:本题主要考查待定待定系数法求抛物线及椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.【2019届吉林省梅河口市第五中学二模】已知椭圆:的左、右焦点分别为,右顶点为,且过点,圆是以线段为直径的圆,经过点且倾斜角为的直线与圆相切. (1)求椭圆及圆的方程;(2)是否存在直线,使得直线与圆相切,与椭圆交于两点,且满足?若存在,请求出直线的方程,若不存在,请说明理由.【答案】(1)椭圆的方程为,圆的方程为;(2)不存在由题可知,解得,所以椭圆的方程为,圆的方程为.(2)假设存在直线满足题意.由,可得,故.(ⅰ)当直线的斜率不存在时,此时的方程为.因为直线与圆相切,所以,整理得①由消去y整理得,设,则,,因为,所以,则,即,所以,所以,整理得②由①②得,此时方程无解.故直线不存在.由(i)(ii)可知不存在直线满足题意.4.【2019届河北省武邑中学四模】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.(1)求的标准方程;(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.【答案】(1);(2)或(2)依题意可知的方程为,假设存在符合题意的直线,设直线方程为,,联立方程组,得,由韦达定理得,则,联立方程组,得,由韦达定理得,所以,若,则,即,解得,所以存在符合题意的直线方程为或.点睛:求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆锥曲线的位置关系中的弦长、面积等问题,可以利用韦达定理把弦长、面积等表示为直线方程中某参数的函数关系式,进而把弦长、面积等问题归结为方程的解或函数的值域等问题.5.【2019届湖南省长沙市长郡中学模拟卷(二)】已知动点到定直线:的距离比到定点的距离大2.(1)求动点的轨迹的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与曲线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.【答案】(1)(2)化简得,所以轨迹的方程为.(2)假设存在满足条件的点(),直线:,有,设,,有,,,,,据题意,为定值,则,于是,则有解得,故当时,为定值,所以.6.【2019届浙江省杭州市学军中学模拟】是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)若点的横坐标为,直线与抛物线有两个不同的交点与圆有两个不同的交点,求当时,的最小值.【答案】(1) .(2) .【解析】分析:(1)设,先求得,再根据抛物线的定义求得p=1,即得抛物线的方程.(2)先求出,再利用换元和导数求其最小值.详解:(1)抛物线的焦点,设又∵到的距离∴∴令,则∴令,则∴时.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些知识的掌握能力和分析推理能力计算能力.(2)解答本题的关键有两点,其一是求出,这个计算量有点大.其二是换元得到新的函数.7.【2019届安徽省宿州市第三次检测】已知椭圆的中心为坐标原点,焦点在轴上,离心率,以椭圆的长轴和短轴为对角线的四边形的周长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若经过点的直线交椭圆于两点,是否存在直线,使得到直线的距离满足恒成立,若存在,请求出的值;若不存在,请说明理由.【答案】(Ⅰ);(Ⅱ)答案见解析.则存在直线,使得到直线的距离满足恒成立. 详解:(Ⅰ)设椭圆的标准方程为,∵,∴,又∵,∴,由,解得,,.所以椭圆的标准方程为.(Ⅱ)若直线的斜率不存在,则直线为任意直线都满足要求;,,.综上可知存在直线,使得到直线的距离满足恒成立.点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.8.【2019届安徽省示范高中(皖江八校)5月联考】如图已知抛物线的焦点为,圆,直线:与抛物线和圆从下至上顺次交于四点,,,.(1)若,求的值;(2)若直线于点,直线与抛物线交于点,,设,的中点分别为,求证:直线过定点. 【答案】(1);(2)得,,,,(Ⅱ) ∵,∴,用替换可得,∴∴的直线方程为,化简得,∴直线过定点.9.【2019届重庆市三诊】已知椭圆的离心率为,经过椭圆的右焦点的弦中最短弦长为2.(1)求椭圆的的方程;(2)已知椭圆的左顶点为为坐标原点,以为直径的圆上是否存在一条切线交椭圆于不同的两点,且直线与的斜率的乘积为?若存在,求切线的方程;若不存在,请说明理由.【答案】(1);(2).【解析】分析:第一问利用题中所给的椭圆的离心率,以及焦点弦中通径最短的结论,以及椭圆中三者之间的关系求得椭圆的方程;第二问先设出切线方程,利用圆心到直线的距离等于半径,得到系数之间的关系,与椭圆方程联立,根据题的条件,得到相应的等量关系式,最后求得结果即可.详解:(1)由题意有:;(2)设切线方程为,则有,③时,;④时,;所以直线为.10.【2019届天津市河北区二模】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥。
近年届高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题学案文北师大版(202
2019届高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题学案文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题学案文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题学案文北师大版的全部内容。
高考专题突破五高考中的圆锥曲线问题【考点自测】1.(2017·全国Ⅲ)已知双曲线C:错误!-错误!=1(a〉0,b>0)的一条渐近线方程为y=错误!x,且与椭圆错误!+错误!=1有公共焦点,则C的方程为( )A.错误!-错误!=1 B.错误!-错误!=1C。
错误!-错误!=1 D。
错误!-错误!=1答案B解析由y=错误!x,可得错误!=错误!.①由椭圆错误!+错误!=1的焦点为(3,0),(-3,0),可得a2+b2=9.②由①②可得a2=4,b2=5.所以C的方程为错误!-错误!=1.故选B。
2.(2017·全国Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A。
错误! B。
错误! C。
错误! D.错误!答案A解析 由题意知,以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =错误!=a ,解得a =错误!b , ∴错误!=错误!,∴e =ca=错误!=错误!=错误!=错误!。
【新】2019年高考数学大一轮复习热点聚焦与扩展专题50直线与圆锥曲线的位置关系
专题50 直线与圆锥曲线的位置关系【热点聚焦与扩展】纵观近几年的高考试题,高考对直线与圆锥曲线的位置关系的考查,一直是命题的热点,较多的考查直线与椭圆、抛物线的位置关系问题;有时,先求轨迹方程,再进一步研究直线与曲线的位置关系.命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明直线与椭圆、直线与抛物线位置关系问题的解法与技巧. (一)直线与椭圆位置关系1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点)2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定,下面以直线y kx m =+和椭圆:()222210x y a b a b+=>>为例(1)联立直线与椭圆方程:222222y kx m b x a y a b=+⎧⎨+=⎩(2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:()222222b x a kx m a b ++=,整理可得:()22222222220a kb x a kxm a m a b +++-=(3)通过计算判别式∆的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0∆>⇒方程有两个不同实根⇒直线与椭圆相交 ② 0∆=⇒方程有两个相同实根⇒直线与椭圆相切 ③ 0∆<⇒方程没有实根⇒直线与椭圆相离3、若直线上的某点位于椭圆内部,则该直线一定与椭圆相交 (二)直线与抛物线位置关系:相交,相切,相离1、位置关系的判定:以直线y kx m =+和抛物线:()220y px p =>为例联立方程:()2222y kx m kx m px y px=+⎧⇒+=⎨=⎩,整理后可得:()222220k x km p x m +-+=(1)当0k =时,此时方程为关于x 的一次方程,所以有一个实根.此时直线为水平线,与抛物线相交(2)当0k ≠时,则方程为关于x 的二次方程,可通过判别式进行判定 ① 0∆>⇒方程有两个不同实根⇒直线与抛物线相交 ② 0∆=⇒方程有两个相同实根⇒直线与抛物线相切 ③ 0∆<⇒方程没有实根⇒直线与抛物线相离 2、焦点弦问题:设抛物线方程:22y px =, 过焦点的直线:2p l y k x ⎛⎫=-⎪⎝⎭(斜率存在且0k ≠),对应倾斜角为θ,与抛物线交于()()1122,,,A x y B x y联立方程:2222222y px p k x px p y k x ⎧=⎪⎛⎫⇒-=⎨⎛⎫ ⎪=-⎝⎭ ⎪⎪⎝⎭⎩,整理可得: ()22222204k p k x k p p x -++=(1)2124p x x ⋅= 212y y p =-(2)2212222222121k p p k p p AB x x p p p k k k ++⎛⎫=++=+==+ ⎪⎝⎭22221cos 22121tan sin sin p p p θθθθ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭ (3)()221112sin sin 2222sin 2sin AOBO l p p p Sd AB OF AB θθθθ-=⋅⋅=⋅⋅⋅=⋅⋅⋅= (三)直线与双曲线位置关系1、直线与双曲线位置关系,相交,相切,相离2、直线与双曲线位置关系的判定:与椭圆相同,可通过方程根的个数进行判定以直线y kx m =+和椭圆:()222210x y a b a b-=>>为例:(1)联立直线与双曲线方程:222222y kx mb x a y a b =+⎧⎨-=⎩,消元代入后可得: ()()22222222220ba k x a kxm a m ab ---+=(2)与椭圆不同,在椭圆中,因为2220a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为222b a k -,有可能为零.所以要分情况进行讨论 当2220bb a k k a-=⇒=±且0m ≠时,方程变为一次方程,有一个根.此时直线与双曲线相交,只有一个公共点 当2220b bb a k k a a ->⇒-<<时,常数项为()22220a m a b -+<,所以0∆>恒成立,此时直线与双曲线相交 当2220b b a k k a -<⇒>或bk a<-时,直线与双曲线的公共点个数需要用∆判断: ① 0∆>⇒方程有两个不同实根⇒直线与双曲线相交 ② 0∆=⇒方程有两个相同实根⇒直线与双曲线相切 ③ 0∆<⇒方程没有实根⇒直线与双曲线相离注:对于直线与双曲线的位置关系,不能简单的凭公共点的个数来判定位置.尤其是直线与双曲线有一个公共点时,如果是通过一次方程解出,则为相交;如果是通过二次方程解出相同的根,则为相切(3)直线与双曲线交点的位置判定:因为双曲线上的点横坐标的范围为(][),,a a -∞-+∞,所以通过横坐标的符号即可判断交点位于哪一支上:当x a ≥时,点位于双曲线的右支;当x a ≤时,点位于双曲线的左支.对于方程:()()22222222220ba k x a kxm a m ab ---+=,设两个根为12,x x① 当2220b b b a k k a a ->⇒-<<时,则2222122220a m a b x x b a k+=-<-,所以12,x x 异号,即交点分别位于双曲线的左,右支② 当2220b b a k k a -<⇒>或b k a <-,且0∆>时,2222122220a m a b x x b a k+=->-,所以12,x x同号,即交点位于同一支上(4)直线与双曲线位置关系的几何解释:通过(2)可发现直线与双曲线的位置关系与直线的斜率相关,其分界点ba±刚好与双曲线的渐近线斜率相同.所以可通过数形结合得到位置关系的判定 ① bk a=±且0m ≠时,此时直线与渐近线平行,可视为渐近线进行平移,则在平移过程中与双曲线的一支相交的同时,也在远离双曲线的另一支,所以只有一个交点 ② b bk a a-<<时,直线的斜率介于两条渐近线斜率之中,通过图像可得无论如何平移直线,直线均与双曲线有两个交点,且两个交点分别位于双曲线的左,右支上. ③ 2220b b a k k a -<⇒>或bk a<-时,此时直线比渐近线“更陡”,通过平移观察可得:直线不一定与双曲线有公共点(与∆的符号对应),可能相离,相切,相交,如果相交则交点位于双曲线同一支上.(四)圆锥曲线问题的解决思路与常用公式: 1、直线与圆锥曲线问题的特点:(1)题目贯穿一至两个核心变量(其余变量均为配角,早晚利用条件消掉),(2)条件与直线和曲线的交点相关,所以可设()()1122,,,A x y B x y ,至于,A B 坐标是否需要解出,则看题目中的条件,以及坐标的形式是否复杂(3)通过联立方程消元,可得到关于x (或y )的二次方程,如果所求的问题与两根的和或乘积有关,则可利用韦达定理进行整体代入,从而不需求出1212,,,x x y y (所谓“设而不求”) (4)有些题目会涉及到几何条件向解析语言的转换,注重数形几何,注重整体代入.则可简化运算的过程这几点归纳起来就是“以一个(或两个)核心变量为中心,以交点()()1122,,,A x y B x y 为两个基本点,坚持韦达定理四个基本公式(12121212,,,x x x x y y y y ++,坚持数形结合,坚持整体代入.直至解决解析几何问题“2、韦达定理:是用二次方程的系数运算来表示两个根的和与乘积,在解析几何中得到广泛使用的原因主要有两个:一是联立方程消元后的二次方程通常含有参数,进而导致直接利用求根公式计算出来的实根形式非常复杂,难以参与后面的运算;二是解析几何的一些问题或是步骤经常与两个根的和与差产生联系.进而在思路上就想利用韦达定理,绕开繁杂的求根结果,通过整体代入的方式得到答案.所以说,解析几何中韦达定理的应用本质上是整体代入的思想,并不是每一道解析题必备的良方.如果二次方程的根易于表示(优先求点,以应对更复杂的运算),或者所求的问题与两根和,乘积无关,则韦达定理毫无用武之地. 3、直线方程的形式:直线的方程可设为两种形式:(1)斜截式:y kx m =+,此直线不能表示竖直线.联立方程如果消去y 则此形式比较好用,且斜率在直线方程中能够体现,在用斜截式解决问题时要注意检验斜率不存在的直线是否符合条件(2)x my b =+,此直线不能表示水平线,但可以表示斜率不存在的直线.经常在联立方程后消去x 时使用,多用于抛物线22y px =(消元后的二次方程形式简单).此直线不能直接体现斜率,当0m ≠时,斜率1k m=4、弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y y =-(1)证明:因为()()1122,,,A x y B x y 在直线l 上,所以1122y kx my kx m =+⎧⎨=+⎩AB ∴=,代入1122y kx m y kx m=+⎧⎨=+⎩可得:AB ==12x ==-同理可证得12AB y =-(2)弦长公式的适用范围为直线上的任意两点,但如果,A B 为直线与曲线的交点(即AB 为曲线上的弦),则12x x -(或12yy -)可进行变形:12x x -==.5、点差法:这是处理圆锥曲线问题的一种特殊方法,适用于所有圆锥曲线.不妨以椭圆方程()222210x y a b a b +=>>为例,设直线y kx m =+与椭圆交于()()1122,,,A x y B x y 两点,则该两点满足椭圆方程,有:22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 考虑两个方程左右分别作差,并利用平方差公式进行分解,则可得到两个量之间的联系:()()2222121222110x x y y a b -+-= ① ()()()()1212121222110x x x x y y y y a b⇒-++-+= ()()()()121212122211022x x y y x x y y a b ++⇒-+-= ② 由等式可知:其中直线AB 的斜率1212y y k x x -=-,AB 中点的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,这些要素均在②式中有所体现.所以通过“点差法”可得到关于直线AB 的斜率与AB 中点的联系,从而能够处理涉及到弦与中点问题时.同时由①可得在涉及,A B 坐标的平方差问题中也可使用点差法【经典例题】例1.【2018年天津卷理】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A.221412x y -= B. 221124x y -= C. 22139x y -= D. 22193x y -= 【答案】C不妨设: 22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为: 0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==, 双曲线的离心率:2c e a ====,据此可得: 23a =,则双曲线的方程为22139x y -=. 本题选择C 选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可. 例2.【2018年新课标I 卷理】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=( )A. 5B. 6C. 7D. 8 【答案】D与抛物线方程联立,消元整理得:,解得,又, 所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M 、N 的坐标,应用韦达定理得到结果.例3.过点()2,0M -的直线m 与椭圆2212x y +=交于12,P P 两点,线段12PP的中点为P ,设直线m 的斜率为()110k k ≠,直线OP 的斜率为2k ,则12k k 的值为( ) A. 2 B. 2- C. 12 D. 12- 【答案】D思路二:线段12PP 为椭圆的弦,且问题围绕着弦中点P 展开,在圆锥曲线中处理弦中点问题可用“点差法”,设()()111222,,,P x y P x y ,则有221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差,可得:()()()()()()2222121212121212110022x x y y x x x x y y y y -+-=⇒-++-+=,发现等式中出现与中点和12PP 斜率相关的要素,其中1212,22x x y y P ++⎛⎫⎪⎝⎭,所以12212y y k x x +=+,且12112y y k x x -=-,所以等式化为()()()()12121212102y y y y x x x x -++=-+即12102k k +=,所以1212k k =-答案:D点睛:两类问题适用于点差法,都是围绕着点差后式子出现平方差的特点.(1)涉及弦中点的问题,此时点差之后利用平方差进行因式分解可得到中点坐标与直线斜率的联系(2)涉及到运用两点对应坐标平方差的条件,也可使用点差法例4.【2018年北京卷文】已知直线l 过点(1,0)且垂直于ε,若l 被抛物线截得的线段长为4,则抛物线的焦点坐标为_________. 【答案】焦点坐标为.例5. 【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5与对应相减得,当且仅当时取最大值. 例6.【2018年浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.【答案】(Ⅰ)见解析(Ⅱ)【解析】分析: (Ⅰ)设P,A,B的纵坐标为,根据中点坐标公式得PA,PB的中点坐标,代入抛物线方程,可得,即得结论,(Ⅱ)由(Ⅰ)可得△PAB面积为,利用根与系数的关系可表示为的函数,根据半椭圆范围以及二次函数性质确定面积取值范围.详解:(Ⅰ)设,,.因为,的中点在抛物线上,所以,为方程即的两个不同的实数根.因为,所以.因此,面积的取值范围是.例7.【2018年天津卷理】设椭圆22221x x a b+= (a>b>0)的左焦点为F ,上顶点为B. 已知椭圆A 的坐标为(),0b,且FB AB ⋅=. (I )求椭圆的方程;(II )设直线l : (0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q.若sin 4AQ AOQ PQ=∠ (O 为原点) ,求k 的值. 【答案】(Ⅰ) 22194x y +=;(Ⅱ) 12或1128.【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由题意可得5y 1=9y 2.由方程组22{ 194y kx x y =+=,,可得1y =由方程组{ 20y kx x y =+-=,,可得221ky k =+.据此得到关于k 的方程,解方程可得k 的值为12或1128.详解:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由a 2=b 2+c 2,可得2a=3b .由已知可得, FB a =,AB =,由FB AB ⋅=,可得ab=6,从而a=3,b=2.所以,椭圆的方程为22194x y +=. (Ⅱ)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由5y 1=9y 2,可得5(k+1)=两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为12或1128.例8.【2018年北京卷理】已知抛物线C :=2px 经过点(1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围; (Ⅱ)设O 为原点,,,求证:为定值.【答案】(1) 取值范围是(-∞,-3)∪(-3,0)∪(0,1) (2)证明过程见解析【解析】分析:(1)先确定p,再设直线方程,与抛物线联立,根据判别式大于零解得直线l 的斜率的取值范围,最后根据PA ,PB 与y 轴相交,舍去k=3,(2)先设A (x 1,y 1),B (x 2,y 2),与抛物线联立,根据韦达定理可得,.再由,得,.利用直线PA,又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.直线PA的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.例9. 已知抛物线2:4C y x =的焦点为F .(1)若斜率为1-的直线l 过点F 与抛物线C 交于,A B 两点,求AF BF +的值;(2)过点(),0(0)M m m >作直线l 与抛物线C 交于,A B 两点,且0FA FB ⋅<,求m 的取值范围.【答案】(1)8;(2) (3-+.()21212160,4,4t m y y t y y m ∆=+>+==-.∵()()11221,,1,FA x y FB x y =-=-, ∴()()()2221212121212121111164FA FB x x x x y y y y y y y y ⋅=-+++=+-++ ()()22121212*********y y y y y y y y ⎡⎤=+-+-+⎣⎦. 又∵0FA FB ⋅<,∴226140m m t -+-<恒成立,∴22614m m t -+<恒成立.∵240t >,∴只需2610m m -+<即可,解得33m -<<+∴所求m 的取值范围为(3-+.例10.【2018届四川省成都市第七中学模拟一】已知圆,点圆上一动点,,点在直线上,且,记点的轨迹为曲线. (1)求曲线的方程;(2)已知,过点作直线与曲线交于不同两点,线段的中垂线为,线段的中点为点,记与轴的交点为,求的取值范围.【答案】(1)(2)详解:(1).(2)由题意可知直线的斜率存在,设:.联立直线与椭圆,消去得.,又,解得,,所以所以,即.所以.【精选精练】1.【2018届峨眉山市第七教育发展联盟高考适应性考试】已知双曲线C的一条渐近线为y x =,且与椭圆21123y x +=2有公共焦点,则C 的方程为( ) A.22154y x -= B. 22-145x y = C. 22154x y -= D. 22145y x -= 【答案】A【解析】分析:通过椭圆的焦点,可以求出双曲线的3c =,根据双曲线的渐近线可以得到2a b =,再由双曲线中,,a b c 的等量关系可以通过方程组求出,,a b c 的值。