数学文卷·2019届北京市人大附中高三第二次模拟考试
2019届北京市中国人民大学附属中学高三上学期第二次月考数学(理)试卷及解析
2019届中国人民大学附属中学高三上学期第二次月考数学(理)试卷★祝考试顺利★一、选择题(本大题共8小题)1.函数的值域为A. B. RC. D.【答案】B【解析】【分析】根据函数在定义域上是单调增函数,且满足,判断的值域为R.【详解】解:函数在定义域上是单调增函数,且满足,的值域为R.故选:B.2.若集合,,则是A. B.C. 或D.【答案】C【解析】【分析】化简A,B再根据并集的定义即可求出.【详解】解:由于,即,解得,,由,即,解得或,或,,或,故选:C.3.已知是定义在R上的偶函数且以2为周期,则“为上的增函数”是“为上的减函数”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【答案】C【解析】【分析】由题意,可由函数的性质得出在上是减函数,再由函数的周期性即可得出为上的减函数,由此证明充分性,再由为上的减函数结合周期性即可得出为上是减函数,再由函数是偶函数即可得出为上的增函数,由此证明必要性,即可得出正确选项【详解】解:是定义在R上的偶函数,若为上的增函数,则为上是减函数,又是定义在R上的以2为周期的函数,且与相差两个周期,两区间上的单调性一致,所以可以得出为上的减函数,故充分性成立.若为上的减函数,同样由函数周期性可得出为上是减函数,再由函数是偶函数可得出为上的增函数,故必要性成立.综上,“为上的增函数”是“为上的减函数”的充要条件.故选:C.4.设函数一定正确的是()A. B.C. D.【答案】D【解析】对于A选项函数的极大值不一定是函数的最大值,所以错;对于B中的是。
数学理卷·2019届北京市人大附中高三第二次模拟考试
2018届高三第二次模拟考试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·菏泽期末]已知,则复数的共轭复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·武邑中学]设为锐角,,,若与共线,则角()A.15°B.30°C.45°D.60°3.[2018·吕梁期末]函数在单调递增,且关于对称,若,则的的取值范围是()A.B.C.D.4.[2018·渭南质检]如图,执行所示的算法框图,则输出的值是()A.B.C.D.5.[2018·吉林实验中学]函数的部分图像如下图,且,则图中的值为()A.1 B.C.2 D.或26.[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步,50步B.20步,60步C.30步,70步D.40步,80步7.[2018·常德期末]一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的体积为()A.B. C.D.8.[2018·濮阳一模]设点是表示的区域内任一点,点是区域关于直线的对称区域内的任一点,则的最大值为()A. B.C.D.9.[2018·赣州模拟]如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为()A.海里B.海里C.海里D.40海里10.[2018·衡水金卷]若函数图像上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()A.0 B.2 C.4 D.611.[2018·渭南质检]已知,分别为双曲线:的左、右焦点,过的直线与双曲线的左右两支分别交于,两点,若,则双曲线的离心率为()A.B.C.D.12.[2018·江西联考]已知函数函数,其中,若函数恰有4个零点,则实数b的取值范围是()A.B.C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·淮安一模]已知集合,,则________.14.[2018·孝感八校]将函数的图像向右平移个单位长度,得到函数的图像,若最小正周期为,则__________.15.[2018·华大联盟]已知圆,点的坐标为,其中,若过点有且只有一条直线被圆截得的弦长为,则直线的一般式方程是____________________.16.[2018·吉林实验中学]在四面体中,底面,,,为棱的中点,点在上且满足,若四面体的外接球的表面积为,则________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.[2018·晋城一模]已知数列中,,其前项和为,满足.(1)求的通项公式;(2)记,求数列的前项和,并证明.18.[2018·江西联考]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,.某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.[2018·郴州期末]已知三棱锥中,垂直平分,垂足为,是面积为的等边三角形,,,平面,垂足为,为线段的中点.(1)证明:平面;(2)求与平面所成的角的正弦值.20.[2018·乌鲁木齐一模]已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,为椭圆上一点,为坐标原点,且满足,其中,求的取值范围.21.[2018·郴州一中]设函数.(1)当时,求的极值;(2)当时,证明:.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.[2018·武邑中学]选修4-4:坐标系与参数方程已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)设为曲线上任意一点,求的取值范围.23.[2018·佛山质检]已知函数,.(1)若,求的取值范围;(2)若,对,都有不等式恒成立,求的取值范围.理科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】由题意,,对应点为,在第四象限,故选D.2.【答案】B【解析】由题意,,又为锐角,∴.故选B.3.【答案】D【解析】函数图像是由图像向左平移2个单位后得到,故关于轴对称,且在上递减.故等价于,解得.4.【答案】D【解析】按照图示得到循环一次如下:,;,;,;,;,;,;,;,;,.不满足条件,得到输出结果为:4.故答案为:D.5.【答案】B【解析】由题意可得,,又,∴,又,∴或,,由周期,得,∴,故选:B.6.【答案】B【解析】设圆池的半径为步,则方田的边长为步,由题意,得,解得或(舍),所以圆池的直径为20步,方田的边长为60步,故选B.7.【答案】D【解析】几何体为如图,所以外接球的半径R满足,,体积为,选D.8.【答案】D【解析】如图画出可行域,根据点的对称性可知,点与点关于直线的对称点间的距离最大,最大距离就是点到直线距离的2倍,联立,解得:,点到直线的距离,那么,故选D.9.【答案】A【解析】在中,,,所以,由正弦定理可得:,解得,在中,,所以,在中,由余弦定理可得:,解得.10.【答案】A【解析】当时,,故函数在区间,上递减,在上递增,故在处取得极小值.根据孪生点对的性质可知,要恰好有两个孪生点对,则需当时,函数图像与的图像有两个交点,即,.11.【答案】A【解析】∵,不妨令,,,∵,∴,又由双曲线的定义得:,,∴,∴.∴,∴.在中,,又,∴,∴,∴双曲线的离心率.故选:A.12.【答案】B【解析】由题可知,故,∵函数恰有4个零点,∴方程有4个不同的实数根,即函数与函数的图象恰有4个不同的交点.又,在坐标系内画出函数函数的图象,其中点,的坐标分别为,.由图象可得,当时,函数与函数的图象恰有4个不同的交点,故实数b的取值范围是.选B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】【解析】,所以.14.【答案】【解析】,向右平移个单位后得到函数,函数的最小正周期是,那么,故填:.15.【答案】【解析】整理可得圆,由弦长知,圆心到直线的距离为,即点到直线的距离恒为5,故这样的直线是圆:的切线,若点在圆外,这样的直线必有两条,由直线的唯一性知,点在圆上,于是,解之得或,又,故,则点坐标为,于是直线的斜率,而,故直线的方程为,即.故答案为:.16.【答案】2【解析】,,设的外心为,则在上,设,则,即,解得,四面体的外接球的半径,,解得,则.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.【答案】(1)(2),见解析【解析】(1)解:由,得,后式减去前式,得,得.···········3分因为,可得,所以,即数列是首项为1,公比为2的等比数列,所以.·········6分(2)证明:因为,···········7分所以,···········8分所以,···········10分因为,所以.···········12分18.【答案】(1)见解析;(2),50万元.【解析】(1)由题意可知X的可能取值为.······1分由统计数据可知:,.···········4分所以的分布列为:∴.·······6分(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为,三辆车中至多有一辆事故车的概率为:.···········9分②设为该销售商购进并销售一辆二手车的利润,则的可能取值为-4000,8000.所以的分布列为:···········11分∴所以.所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望为万元.···········12分19.【答案】(1)见解析(2)【解析】(1)证明:∵垂直平分,垂足为,∴.∵,∴是等边三角形.又是等边三角形.∴是中点,,.···········3分∵,,平面,∴平面.···········5分(2)解:由(1)知,平面平面.因为平面与平面的交线为.∵平面.∴.又等边面积为,∴又,∴是中点.如图建立空间直角坐标系,,,,,···········7分所以,···········8分,,设平面的法向量为,则,取,则,.即平面的一个法向量为.·········11分所以与平面所成角的正弦值为.···········12分20.【答案】(1);(2).【解析】(1)依题意,有,···········3分∴椭圆方程.···········4分(2)由题意可知该直线存在斜率,设其方程为,由得,···········5分∴,得,···········6分设,,,则,由得,···········7分代入椭圆方程得,···········8分由得,···········9分∴,···········10分令,则,∴.···········12分21.【答案】(1)当,取得极小值;当时,取得极大值;(2)见解析.【解析】(1)当时,,,···········1分当时,,在上单调递减;···········2分当时,,在上单调递增;···········3分当时,,在上单调递减.·········4分所以,当,取得极小值;当时,取得极大值.···········5分(2)证明:当时,,,所以不等式可变为.要证明上述不等式成立,即证明.设,则,令,得,···········7分在上,,是减函数;在上,,是增函数.所以.···········9分令,则,在上,,是增函数;在上,,是减函数,所以,所以,即,即,由此可知.···········12分(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1),;(2).【解析】(1)由,得,故直线的普通方程为,···········2分由,得,所以,即,故曲线的普通方程为;···········5分(2)据题意设点,则,···········8分所以的取值范围是.···········10分23.【答案】(1);(2).【解析】(1),···········1分若,则,得,即时恒成立,···········2分若,则,得,即,···········3分若,则,得,即不等式无解,···········4分综上所述,的取值范围是.···········5分(2)由题意知,要使得不等式恒成立,只需,当时,,,······7分因为,所以当时,,·····9分即,解得,结合,所以的取值范围是.·····10分。
人大附中2019-2020年高三第二次教学质量检测理科数学
人大附中2019-2020年高三年级教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)注意事项1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草纸上答题元效.第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为( )A .3B .2C .1D .02.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为( )A .-1B .-3C .3或-3D .33.已知x ,y R ∈,且0x y >>,则( ) A.110x y -> B.sin sin 0x y -> C.11()()022x y -< D.ln ln 0x y +>4.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是5.o o o o sin 20cos10cos160sin10- =( )A. B. C.12- D.126.在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )C.-D.-7.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.1308.C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( ) A.1b =r B.a b ⊥r r C.1a b ⋅=r r D.()4C a b +⊥B u u u r r r 9.圆2228130xy x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( ) A.43- B.34- D.210.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .1311.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1012.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12D .1第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.函数sin y x x =的图像可由函数sin y x x =的图像至少向 右平移_______个单位长度得到.14.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x = 在点(1,3)-处的切线方程是_______.15.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
2019年最新北京市高考数学二模试卷(文科)及答案解析
北京市高考数学二模试卷(文科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.若集合A={﹣2,﹣1,0,1,2},B={x||x|≤1},则A∩B=()A.{﹣1,0,1} B.{0,1} C.{x|﹣1≤x≤1} D.{x|0≤x≤1}2.下列函数中,在(0,+∞)上为减函数的是()A.y=B.y= C.y=log0.5x D.y=e x3.过圆C:x2+(y﹣1)2=4的圆心,且与直线l:3x+2y+1=0垂直的直线方程是()A.2x﹣3y+3=0 B.2x﹣3y﹣3=0 C.2x+3y+3=0 D.2x+3y﹣3=04.执行如图所示的程序框图,输出的S值为()A.3 B.4 C.5 D.65.如图,在正方形ABCD中,AD=4,E为DC上一点,且=3,则•()A.20 B.16 C.15 D.126.设a∈R,“cos2α=0”是“sinα=cosα”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=()x﹣1.则不等式f(x)﹣x2≥0的解集是()A.[0,1] B.[﹣1,1] C.[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)8.小王的手机使用的是每月300M流量套餐,如图记录了小王在4月1日至4月10日这十天的流量使用情况,下列叙述中正确的是()A.1日﹣10日这10天的平均流量小于9.0M/日B.11日﹣30日这20天,如果每天的平均流量不超过11M,这个月总流量就不会超过套餐流量C.从1日﹣10日这10天的流量中任选连续3天的流量,则3日,4日,5日这三天的流量的方差最大D.从1日﹣10日这10天中的流量中任选连续3天的流量,则8日,9日,10日这三天的流量的方差最小二、填空题(本大题共6小题,每小题5分,共30分)9.复数的虚部为______.10.在△ABC中,已知AB=2,BC=5,cosB=,则△ABC的面积是______.11.若x,y满足,则z=2x+y的最大值为______.12.已知抛物线C:y2=2px(p>0)的准线方程为x=﹣2,则抛物线C的方程为______;若某双曲线的一个焦点与抛物线C的焦点重合,且渐近线方程为y=±x,则此双曲线的方程为______.13.某几何体的三视图如图所示,则该几何体的表面积是______.14.为了促进公民通过“走步”健身,中国平安公司推出的“平安好医生”软件,最近开展了“步步夺金”活动.活动规则:①使用平安好医生APP计步器,每天走路前1000步奖励0.3元红包,之后每2000步奖励0.1元红包,每天最高奖励不超过3元红包.②活动期间,连续3天领钱成功,从第4天起走路奖金翻1倍(乘以2),每天最高奖励不超过6元红包.某人连续使用此软件五天,并且每天领钱成功.这五天他走的步数统计如下:三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示.(Ⅰ)写出函数f(x)的最小正周期T及ω、φ的值;(Ⅱ)求函数f(x)在区间[﹣,]上的最大值与最小值.16.在等比数列{a n}中,a1=1,a4=8(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第6项和第8项,求|b1|+|b2|+|b3|+…+|b n|(n ∈N*).17.2015年秋季开始,本市初一学生开始进行开放性科学实践活动,学生可以在全市范围内进行自主选课类型活动,选课数目、选课课程不限.为了了解学生的选课情况,某区有关部门随机抽取本区600名初一学生,统计了他们对于五类课程的选课情况,用“+”表示选,“﹣”表示不选.结果如表所示:(2)估计学生在五项课程中,选了三项课程的概率;(3)如果这个区的某学生已经选了课程二,那么其余四项课程中他选择哪一项的可能性最大?18.如图,P是菱形ABCD所在平面外一点,∠BAD=60°,△PCD是等边三角形,AB=2,PA=2,M是PC的中点,点G为线段DM上一点(端点除外),平面APG与BD交于点H.(Ⅰ)求证:PA∥GH;(Ⅱ)求证:平面PAC⊥平面BDM;(Ⅲ)求几何体M﹣BDC的体积.19.已知函数f(x)=ax3﹣3x2+1(a>0),g(x)=lnx(Ⅰ)求函数f(x)的极值;(Ⅱ)用max{m,n}表示m,n中的最大值.设函数h(x)=max{f(x),g(x)}(x>0),讨论h(x)零点的个数.20.已知椭圆M:+=1(a>b>0)的焦距为2,点D(0,)在椭圆M上,过原点O作直线交椭圆M于A、B两点,且点A不是椭圆M的顶点,过点A作x轴的垂线,垂足为H,点C是线段AH的中点,直线BC交椭圆M于点P,连接AP.(Ⅰ)求椭圆M的方程及离心率;(Ⅱ)求证:AB⊥AP;(Ⅲ)设△ABC的面积与△APC的面积之比为q,求q的取值范围.参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.若集合A={﹣2,﹣1,0,1,2},B={x||x|≤1},则A∩B=()A.{﹣1,0,1} B.{0,1} C.{x|﹣1≤x≤1} D.{x|0≤x≤1}【考点】交集及其运算.【分析】根据集合交集的概念求解即可.【解答】解:∵B={x||x|≤1}={x|﹣1≤x≤1},∵A={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1},故选A.2.下列函数中,在(0,+∞)上为减函数的是()A.y=B.y=C.y=log0.5x D.y=e x【考点】函数单调性的判断与证明.【分析】根据基本初等函数的性质判断选项中函数的单调性即可.【解答】解:对于A,y=是定义域[0,+∞)上的增函数,不满足题意;对于B,y=在(﹣∞,1)和(1,+∞)上是单调减函数,不满足题意;对于C,y=log0.5x在(0,+∞)是单调减函数,满足题意;对于D,y=e x在(﹣∞,+∞)是单调增函数,不满足题意.故选:C.3.过圆C:x2+(y﹣1)2=4的圆心,且与直线l:3x+2y+1=0垂直的直线方程是()A.2x﹣3y+3=0 B.2x﹣3y﹣3=0 C.2x+3y+3=0 D.2x+3y﹣3=0【考点】直线的一般式方程与直线的垂直关系;圆的标准方程.【分析】算出直线3x+2y+1=0的斜率k=﹣,结合题意可得所求垂线的斜率为k'=.求出已知圆的圆心C的坐标,利用直线方程的点斜式列式,化简即可得到经过已知圆心与直线3x+2y+1=0垂直的方程.【解答】解:圆x2+(y﹣1)2=4,∴圆心的坐标为C(0,1),∵直线3x+2y+1=0的斜率k=﹣,∴与直线3x+2y+1=0垂直的直线的斜率为k'=.因此,经过圆心C且与直线3x+2y+1=0垂直的直线方程是y﹣1=x,整理得2x﹣3y+3=0.故选:A.4.执行如图所示的程序框图,输出的S值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】首先分析程序框图,循环体为“当型“循环结构,按照循环结构进行运算,求出满足题意时的S.【解答】解:模拟执行程序,可得S=0,i=1满足条件i<4,执行循环体,S=2,i=2满足条件i<4,执行循环体,S=6,i=3满足条件i<4,执行循环体,S=14,i=4不满足条件i<4,S=4,输出S的值为4.故选:B.5.如图,在正方形ABCD中,AD=4,E为DC上一点,且=3,则•()A.20 B.16 C.15 D.12【考点】平面向量数量积的运算.【分析】由题意把用表示,代入•,展开后由向量的数量积运算得答案.【解答】解:∵ABCD为边长是4正方形,∴,∵=3,∴,∴,则•==.故选:D.6.设a∈R,“cos2α=0”是“sinα=cosα”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由cos2α=cos2α﹣sin2α,即可判断出.【解答】解:由cos2α=cos2α﹣sin2α=(cosα﹣sinα)(cosα+sinα)=0,即cosα﹣sinα=0或c osα+sinα=0,即cosα=sinα或cosα=﹣sinα,∴“cos2α=0”是“sinα=cosα”的必要不充分条件,故选:B.7.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=()x﹣1.则不等式f(x)﹣x2≥0的解集是()A.[0,1] B.[﹣1,1] C.[1,+∞)D.(﹣∞,﹣1]∪[1,+∞)【考点】函数奇偶性的性质.【分析】设g(x)=f(x)﹣x2,由题意可得g(x)是定义在R上的偶函数,求出x≥0,不等式f(x)﹣x2≥0等价于()x﹣1≥x2,可得0≤x≤1,即可解不等式.【解答】解:设g(x)=f(x)﹣x2,∵f(x)是定义在R上的偶函数,∴g(x)是定义在R上的偶函数,∴x≥0,不等式f(x)﹣x2≥0等价于()x﹣1≥x2,∴0≤x≤1∴不等式f(x)﹣x2≥0的解集为[﹣1,1].故选:B.8.小王的手机使用的是每月300M流量套餐,如图记录了小王在4月1日至4月10日这十天的流量使用情况,下列叙述中正确的是()A.1日﹣10日这10天的平均流量小于9.0M/日B.11日﹣30日这20天,如果每天的平均流量不超过11M,这个月总流量就不会超过套餐流量C.从1日﹣10日这10天的流量中任选连续3天的流量,则3日,4日,5日这三天的流量的方差最大D.从1日﹣10日这10天中的流量中任选连续3天的流量,则8日,9日,10日这三天的流量的方差最小【考点】频率分布折线图、密度曲线.【分析】求出平均数判断A,求出估计的总流量判断B,通过图象判断C、D.【解答】解:对应A:(6.2+12.4+14+11.6+4.8+6.2+5.5+9.5+10+11.2)=9.14,故A错误;对于B:11×20+91.4=311.4>300,这个月总流量就超过套餐流量,故B错误;对于C、D,结合图象C正确,D错误;故选:C.二、填空题(本大题共6小题,每小题5分,共30分)9.复数的虚部为 1 .【考点】复数代数形式的乘除运算.【分析】对所给的复数分子和分母同乘以1+i,再由i 的幂运算性质进行化简即可.【解答】解:∵==i,∴它的虚部是1,故答案为:1.10.在△ABC中,已知AB=2,BC=5,cosB=,则△ABC的面积是3.【考点】正弦定理.【分析】根据同角的三角公式求得sinB,再由三角形面积公式可求得结果.【解答】解:cosB=,sinB==,△ABC的面积S=AB•BC•sinB=×2×5×=3.故答案为:3.11.若x,y满足,则z=2x+y的最大值为7 .【考点】简单线性规划.【分析】画出平面区域,利用目标函数的几何意义求z的最大值.【解答】解:不等式组表示的平面区域如图:当直线y=﹣2x+z经过C时z最大,并且C(2,3),所以z的最大值为2×2+3=7;故答案为:712.已知抛物线C:y2=2px(p>0)的准线方程为x=﹣2,则抛物线C的方程为y2=8x ;若某双曲线的一个焦点与抛物线C的焦点重合,且渐近线方程为y=±x,则此双曲线的方程为=1 .【考点】抛物线的简单性质.【分析】利用抛物线C:y2=2px(p>0)的准线方程为x=﹣2,求出p,可得抛物线的方程,确定抛物线的性质,利用双曲线的性质,即可得出结论.【解答】解:∵抛物线C:y2=2px(p>0)的准线方程为x=﹣2,∴p=4,∴抛物线C的方程为y2=8x;抛物线的焦点坐标为(2,0),∴c=2,∵渐近线方程为y=±x,∴=,∴a=1,b=,∴双曲线的方程为=1.故答案为:y2=8x;=1.13.某几何体的三视图如图所示,则该几何体的表面积是.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是放倒一个直三棱柱,由三视图求出几三棱柱底面边长、高,由三棱柱的结构特征和面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是一个直三棱柱、底面在左右,由侧视图知,底面是一个等腰直角三角形,两条直角边分别是2,则斜边是2,由正视图知,三棱柱的高是3,∴该几何体的表面积S==,故答案为:.14.为了促进公民通过“走步”健身,中国平安公司推出的“平安好医生”软件,最近开展了“步步夺金”活动.活动规则:①使用平安好医生APP计步器,每天走路前1000步奖励0.3元红包,之后每2000步奖励0.1元红包,每天最高奖励不超过3元红包.②活动期间,连续3天领钱成功,从第4天起走路奖金翻1倍(乘以2),每天最高奖励不超过6元红包.某人连续使用此软件五天,并且每天领钱成功.这五天他走的步数统计如下:为 1.0 元,为8.0 元.【考点】等比数列的前n项和.【分析】根据题意得到第1、2、3天的奖励红包都是0.3+×0.1;第4、5天的奖励红包都是2(0.3+×0.1).【解答】解:因为每2000步奖励0.1元红包,所以依(x﹣1000)是2000的整数倍,依题意得:第1天红包奖励:0.3+×0.1=0.9(元).第2天红包奖励:0.3+×0.1=1.0(元).第3天红包奖励:0.3+×0.1=1.1(元).第4天红包奖励:2×(0.3+×0.1)=2.4(元).第5天红包奖励:2×(0.3+×0.1)=2.6(元).所以这5天的红包奖励为:0.9+1.0+1.1+2.4+2.6=8.0(元).故答案是:1.1;8.0.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)15.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示.(Ⅰ)写出函数f(x)的最小正周期T及ω、φ的值;(Ⅱ)求函数f(x)在区间[﹣,]上的最大值与最小值.【考点】正弦函数的图象.【分析】(I)由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(II)由以上可得,f(x)=sin(2x+),再利用正弦函数的定义域和值域,求得函数的最值.【解答】解:(I)根据函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象,可得=﹣,求得ω=2,∴最小正周期T==π.再根据五点法作图可得2•+φ=π,求得φ=.(II)由以上可得,f(x)=sin(2x+),在区间[﹣,]上,2x+∈[﹣,],sin(2x+)∈[﹣,1],当2x+=﹣时,即x=﹣,函数f(x)取得最小值为﹣.当2x+=时,即x=,函数f(x)取得最大值为1.16.在等比数列{a n}中,a1=1,a4=8(I)求数列{a n}的通项公式;(Ⅱ)若a3,a5分别为等差数列{b n}的第6项和第8项,求|b1|+|b2|+|b3|+…+|b n|(n ∈N*).【考点】等比数列的前n项和.【分析】(Ⅰ)设等比数列的公比为q.由a1=1,a4=8,求出q=2,问题得以解决;(II)先等差数列{b n}的通项公式b n=b1+(n﹣1)d=﹣26+6(n﹣1)=6n﹣32,可得当n≤5时b n≤0且当n≥6时b n≥0.因此分两种情况讨论,并利用等差数列的求和公式加以计算,可得|b1|+|b2|+…+|b n|的表达式.【解答】解:(I)设等比数列的公比为q.由a1=1,a4=8所以a4=a1q3=8所以q=2所以等比数列{a n}的通项公式a n=2n﹣1,n∈N*.(II)因为a3,a5分别为等差数列{b n}的第6项和第8项,所以b6=a3=4,b8=a5=16,设等差数列{b n}的公差为d解得,b1=﹣26,d=6,所以等差数列{b n}的通项公式b n=b1+(n﹣1)d=﹣26+6(n﹣1)=6n﹣32因为当6n﹣32≤0时,n≤5.(1)当n≤5时,可得|b1|+|b2|+|b3|+…+|b n|=﹣(b1+b2+…+b n)=﹣3n2+29,(2)当n≥6时,|b1|+|b2|+|b3|+…+|b n|=﹣(b1+b2+…+b5)+b6+b7+…+b n=70+(3n2﹣29n+70)=3n2﹣29n+140;综上所述:|b1|+|b2|+|b3|+…+|b n|=17.2015年秋季开始,本市初一学生开始进行开放性科学实践活动,学生可以在全市范围内进行自主选课类型活动,选课数目、选课课程不限.为了了解学生的选课情况,某区有关部门随机抽取本区600名初一学生,统计了他们对于五类课程的选课情况,用“+”表示选,“﹣”表示不选.结果如表所示:(2)估计学生在五项课程中,选了三项课程的概率;(3)如果这个区的某学生已经选了课程二,那么其余四项课程中他选择哪一项的可能性最大?【考点】古典概型及其概率计算公式.【分析】(1)根据图表求得既选课程三,又选了课程四的人数,与总人数的比值;(2)观察图表查出选3项课程的总人数,与600的比值;(3)分别求得选课程一、三和四的概率,进行比较,选出最大的概率.【解答】解:(1)学生既选了课程三,又选了课程四的概率为:=,(2)学生在五项课程中,选了三项课程的概率为:=,(3)某学生已经选了课程二,再选课程一的概率为:=;再选课程三的概率为:=;再选课程四的概率为:=;所以,某学生已经选了课程二,那么该学生选择课程四的可能性最大.18.如图,P是菱形ABCD所在平面外一点,∠BAD=60°,△PCD是等边三角形,AB=2,PA=2,M是PC的中点,点G为线段DM上一点(端点除外),平面APG与BD交于点H.(Ⅰ)求证:PA∥GH;(Ⅱ)求证:平面PAC⊥平面BDM;(Ⅲ)求几何体M﹣BDC的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(I)连接MO,则MO∥PA,于是PA∥平面BDM,根据面面平行的性质得出PA∥GH;(II)计算DO,MO,DM,根据勾股定理的逆定理得出DO⊥MO,又DO⊥AC,得出DO⊥平面PAC,于是平面PAC⊥平面BDM;(III)由勾股定理的逆定理得出PA⊥PC,于是MO⊥PC,利用平面PAC⊥平面BDM的性质得出CM⊥平面BDM,于是V M﹣BDC=V C﹣BDM=【解答】(I)证明:连接MO.∵四边形ABCD是菱形,∴O为AC的中点,∵点M为PC的中点,∴MO∥PA.又MO⊂平面BDM,PA⊄平面BDM,∴PA∥平面BDM.又∵平面APG∩平面平面BDM=GH,PA⊂平面APG,∴PA∥GH.(II)证明:∵△PCD是边长为2的等边三角形,M是PC的中点.∴DM=.∵四边形ABCD是菱形,AB=2,∠BAD=60°,∴△ABD是边长为2的等边三角形,∴DO=BD=1,又MO==,∴DO2+MO2=DM2,∴BD⊥MO.∵菱形ABCD中,BD⊥AC,又MO⊂平面PAC,AC⊂平面PAC,MO∩AC=O,∴BD⊥平面PAC.又BD⊂平面BDM,∴平面PAC⊥平面BDM.(III)解:∵四边形ABCD是菱形,∠BAD=60°,AB=2,∴AC=2AO=2.在△PAC中,∵PA=2,AC=2,PC=2,∴PA2+PC2=AC2,∴PA⊥PC,∵MO∥PA,∴PC⊥MO,又平面PAC⊥平面BDM,平面PAC∩平面BDM=MO,PC⊂平面PAC,∴PC⊥平面BDM.∴V M﹣BDC=V C﹣BDM====.19.已知函数f(x)=ax3﹣3x2+1(a>0),g(x)=lnx(Ⅰ)求函数f(x)的极值;(Ⅱ)用max{m,n}表示m,n中的最大值.设函数h(x)=max{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(I )令f′(x )=0求出f (x )的极值点,得出f (x )的单调性与单调区间,从而得出f (x )的极值;(II )对x 和a 的范围进行讨论得出f (x ),g (x )在(0,+∞)上的单调性,利用单调性及最值判断f (x ),g (x )的零点个数,从而得出h (x )的零点个数. 【解答】解:( I )f′(x )=3ax 2﹣6x=3x (ax ﹣2). 令f′(x )=0,得x 1=0,x 2=. ∵a >0,x 1<x 2,f′(x )及f (x )符号变化如下, ,) (,∴f (x )的极大值为f (0)=1,极小值为f ()=﹣+1=﹣+1.( II )令g (x )=lnx=0,得x=1.当0<x <1时,g (x )<0;x=1时,g (x )=0;当x >1时,g (x )>0. (1)当x >1时,g (x )>0,g (x )在(1,+∞)上无零点. 所以h (x )=max{f (x ),g (x )}在(1,+∞)上无零点. (2)当x=1时,g (1)=0, 所以1为g (x )的一个零点. f (1)=a ﹣2,①当a=2时,1是f (x )的一个零点.所以当a=2时,h (x )=max{f (x ),g (x )}有一个零点. ②当0<a <2时,h (x )=max{f (x ),g (x )}有一个零点. ③当a >2时,h (x )=max{f (x ),g (x )}无零点.(3)当0<x <1时,g (x )<0,g (x )在(0,1)上无零点.所以h (x )=max{f (x ),g (x )}在(0,1)上的零点个数就是f (x )在(0,1)上的零点个数.当a >0时,由( I )可知f (x )在(0,)上为减函数,在(,+∞)上为增函数,且f (0)=1,f (1)=a ﹣2,f ()=﹣+1=.①当,即0<a<2时,f(x)在(0,1)上为减函数,且f(1)=a﹣2<0,f(0)=1>0.所以f(x)在(0,1)上有1个零点,即h(x)有1个零点.②当,即a=2时,f(x)在(0,1)上为减函数,且f(1)=a﹣2=0,所以f(x)在(0,1)上无零点,即h(x)无零点.③当,即a>2时,f(x)在(0,)上为减函数,在(,1)上为增函数,f()=﹣+1=>0,所以f(x)在(0,1)上无零点.即h(x)无零点.综上,当0<a<2时,h(x)有2个零点,当a=2时,h(x)有1个零点,当a>2时,h(x)无零点.20.已知椭圆M:+=1(a>b>0)的焦距为2,点D(0,)在椭圆M上,过原点O作直线交椭圆M于A、B两点,且点A不是椭圆M的顶点,过点A作x轴的垂线,垂足为H,点C是线段AH的中点,直线BC交椭圆M于点P,连接AP.(Ⅰ)求椭圆M的方程及离心率;(Ⅱ)求证:AB⊥AP;(Ⅲ)设△ABC的面积与△APC的面积之比为q,求q的取值范围.【考点】椭圆的简单性质.【分析】(I)由题意知c=1,b=,求得a=2,进而得到椭圆方程和离心率;(II)设A(x0,y0),P(x1,y1),则B(﹣x0,﹣y0),C(x0,),将A,P代入椭圆方程.两式相减,由点B,C,P三点共线,可得直线PB,BC的斜率相等,化简整理求得k AB•k PA=﹣1,即可得证;或求得k PA•k PB=﹣,再由两直线垂直的条件:斜率之积为﹣1,即可得证.(III)方法一、设k AB=k,由(II)知k AP=﹣,k BP=,联立直线AP,BP方程解得x1,将k=代入得x1,q===3+(﹣1),运用y0的范围,即可得到所求范围;方法二、设k AB=k,由(II)知k AP=﹣,k BP=,联立直线AP,BP方程解得x1,将=k代入x1,可得q===3+,由k的范围,即可得到所求范围.【解答】解:(I)由题意知c=1,b=,则a2=b2+c2=4,所以椭圆M的方程为+=1,椭圆M的离心率为e==;(II)证明:设A(x0,y0),P(x1,y1),则B(﹣x0,﹣y0),C(x0,),由点A,P在椭圆上,所以+=1①,+=1②点A不是椭圆M的顶点,②﹣①可得=﹣,法一:又k PB=,k BC==,且点B,C,P三点共线,所以=,即=,所以k AB•k PA=•=•==•(﹣)=﹣1.即AB⊥AP.法二:由已知AB,AP的斜率都存在,k PA•k PB=•==﹣,又k PB=k BC=,可得k PA=﹣,则k AB•k PA=•(﹣)=﹣1,即AB⊥AP.(III)法一:设k AB=k,由(II)知k AP=﹣,k BP=,联立直线AP与BP方程,解得x1=,将k=代入得x1==.q=====3+(﹣1),因为y02∈(0,3),所以q∈(3,+∞).法二:设k AB=k,由(II)知k AP=﹣,k BP=,联立直线AP与BP方程:,解得x1===x0(1+),q====3+,因为k2∈(0,+∞),所以q∈(3,+∞).。
2019年北京市中国人民大学附属中学高三下实验班模拟训练卷文科数学试题(3.25)
2019年北京市中国人民大学附属中学高三下实验班模拟训练卷文科数学试题2019.3.25注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}xy y A 2==,,则=⋂B AA .B .C .D . 2.已知数列{}n a 为等差数列,且π21371=++a a a ,则=7tan aA .BC .D .3.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾五步,股十二步,问勾中容方几何? ”其意思为:“已知直角三角形两直角边长分别为5步和12步,问一边在勾上的内接正方形边长为多少步? ”现向此三角形内投一粒豆子,则豆子落在这个内接正方形内的概率是( ) A .90289 B .120289 C. 180289 D .2402894.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,则目标函数y x z 23+-=的最小值为A .B .C .D . 5.林管部门在每年3月12日植树节前,为保证树苗的质量,都会在植树节前对树苗进行检测,现从甲乙两种树苗中抽测了10株树苗的高度,其茎叶图如图.根据茎叶图, 下列描述正确的是A .甲树苗的平均高度大于乙树苗的平均 甲 乙⎭⎬⎫⎩⎨⎧>-+=011x x x B 1,1(-)),(10),(∞+111,∞⋃+∞(-,-)()8624高度,且甲种树苗比乙种树长的整齐. 9 1 0 4 0 B .甲树苗的平均高度大于乙树苗的平均 9 5 3 1 0 2 6 7 高度,但乙种树苗比甲种树长的整齐. 1 2 3 7 3 0C .乙树苗的平均高度大于甲树苗的平均 4 4 6 6 7 高度,且乙种树苗比甲种树长的整齐.D .乙树苗的平均高度大于甲树苗的平均高度,但甲种树苗比乙种树长的整齐.5. 在正方体1111D C B A ABCD -中,O 是正方形1111D C B A 的中心,则异面直线1AD 与BO 所成角为A. 90B. 60C. 45D. 30 6. 如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F , 一条渐近线方程为x y 2=, 那么经过双曲线焦点且垂直于x 轴的弦的长度为A.34B. 32C. 2D. 17. 若某几何体的三视图如下所示,其中正视图与侧视图都是边长为2的正方形,则该几何体的体积是A.38B.332C.2D.258.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.甲、乙、丙、丁、戊、己、庚、辛、壬、葵等十个符号叫天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支.如:公元1984年农历为甲子年、公元1985年农历为乙丑年,公元1986年农历为丙寅年.则公元2047年农历为( )A .乙丑年B .丙寅年 C.丁卯年 D .戊辰年第Ⅱ卷二、填空题:本大题共6小题,每小题5分.主视图侧视图俯视图9.函数)18(log )(3+=xx f 的值域为 .10.设实数y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00821223y x y x y x ,则y x z 43+=的最大值为 .11.写出下列命题中所有真命题的序号 .①两个随机变量线性相关性越强,相关系数r 越接近1;②回归直线一定经过样本点的中心),(y x ;③线性回归方程102.0ˆ+=x y,则当样本数据中10=x 时,必有相应的12=y ;④回归分析中,相关指数2R 的值越大说明残差平方和越小. 12.数列}{n a 中,211=a ,)(0))(1(*11N n na a a na n n n n n ∈=-+⋅+++,设数列}2{+n a n 的前n 项和为n S ,则=n S .13.当前的计算机系统多数使用的是二进制系统,数据在计算机中主要以补码的形式存储.计算机中的进制则是一个非常微小的开关,用“开“来表示1,“关“来表示O.则将十进制下的数168转成二进制下的数是 .14.已知函数()f x 为定义城为R 的偶函数,且满足13-22f x f x +=⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,当[]10x ∈-,时 ()f x x =-.若函数()()412x F x f x x+=+-在区间[]9,10-上的所有零点之和为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.15.在ABC ∆中,三个内角C B A ,,所对的边分别为c b a ,,,满足0cos cos )2(=+-C b B a c . (Ⅰ) 求角B 的大小;(Ⅱ) 若72,12==⋅b ,求a ,c 的值.(其中c a <)16.数列{}n a 的前n 项和为n S , 且21=a , n n S a =+1(+∈N n ). (Ⅰ) 证明:数列{}n S 为等比数列,并求n S ; (Ⅱ) 若n n a b 2lg =, 求数列{}n b 的前n 项和n T .17.矩形ABCD 中,22==AD AB ,P 为线段DC 中点,将ADP ∆沿AP 折起,使得平面⊥ADP平面ABCP .(Ⅰ)求证:BP AD ; (Ⅱ)求点P 到平面ADB 的距离.18.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(Ⅰ)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(Ⅱ) 若将用电量在区间[50,150)内的用户记为A 类用户,标记为低用电家庭,用电量在区间[250,350)内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?ABCP D PDA BC附表及公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.19.已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,且过点⎛ ⎝⎭. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点()2,0M 的直线交椭圆C 于,A B 两点,P 为椭圆C 上一点,O 为坐标原点,且满足OA OB tOP +=,其中2t ⎫∈⎪⎪⎝⎭,求AB 的取值范围.20.设函数f (x )=e x x 2-k (2x+ln x )(k 为常数,e =2.71828…是自然对数的底数).(Ⅰ)当0≤k 时,求函数f (x )的单调区间;(Ⅱ)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.2019年北京市中国人民大学附属中学高三下实验班模拟训练卷文科数学参考答案及评分标准一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共6小题,每小题5分.9. ),0(+∞ 10. 18 11. (2)(4) 12.)2)(1(4)3(+++n n n n 13. 1010100014. 5三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.(1)3π=B ; (2)6,4==b a .16.(1)nn S 2=; (2)2lg 2⋅n ..17.(Ⅰ)因为2,2,2===AB BP AP ,有222AB BP AP =+,所以AP BP ⊥由已知平面⊥ADP 平面ABCP ,平面⋂ADP 平面AP ABCP =,所以⊥BP 平面ADP ⊂AD 平面ADP ,所以AD BP ⊥(Ⅱ)(法一)由第一问AD BP ⊥,已知AD DP ⊥,P BP DP =⋂,所以⊥AD 平面DBP所以平面⊥ADB 平面DBP ,因为平面⋂ADB 平面BD DBP =,在平面DBP 内做BD PH ⊥于H ,则⊥PH 平面ADB ,在BPD Rt ∆中,解得36=PH ,所以P 到平面ADB 的距离为36. (法二)由已知平面⊥ADP 平面ABCP ,平面⋂ADP 平面AP ABCP =,过D 做⊥DO AP 于O ,所以⊥DO 平面ABP ,三棱锥ABP 的高为22,23,1==∆∆ADB ABP S S ,由于ABP D ADB P V V --=,解得36=h ,所以P 到平面ADB 的距离为36. 18.解:(1)1(0.0060.00360.002450x =-++20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3,所以平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯186=.(2)①B 类用户共9人,打分超过85分的有6人,所以打分超过85分的概率为6293=.②2224(6963)1212915k ⨯⨯-⨯=⨯⨯⨯ 1.6 3.841=<,所以没有95%的把握认为“满意度与用电量高低有关”.19.解:(Ⅰ)∴椭圆方程2212x y +=.(Ⅱ)由题意可知该直线存在斜率,设其方程为()2y k x =-,()2222128820k x k x k +-+-=,∴()28120k ∆=->,得212k <, 设()11,A x y ,()22,B x y ,(),P x y由OA OB tOP +=代入椭圆方程得2221612k t k =+,2t <<得21142k <<,∴212AB k ==+,令2112u k =+,则12,23u ⎛⎫∈⎪⎝⎭,∴0,3AB ⎛⎫= ⎪ ⎪⎝⎭.21. 解: (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x )=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞).因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,得x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增.故f (x )在(0,2)内不存在两个极值点.当k >1时,当x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减;x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。
2019年中国人民大学附属中学高三下实验班模拟训练卷文科数学试题
2019年北京市中国人民大学附属中学高三下实验班模拟训练卷文科数学试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑.答案写在答题纸上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题(本大题共9小题,共45.0分)1.已知集合,,则A. B.C. D.【答案】B【解析】解:,,,.故选:B.求出集合A,再求解不等式化简集合B,然后由交集运算性质得答案.本题考查了交集及其运算,考查了不等式的解法,是基础题.2.已知数列为等差数列,且,则A. B. C. D.【答案】A【解析】解:数列为等差数列,,,即.则.故选:A.由,利用等差数列的性质可得:,再利用三角函数求值即可得出.本题考查了等差数列的性质、三角函数求值,考查了推理能力与计算能力,属于较易题.3.《九章算术》是我国古代数学名著,也是古代东方数学的代表作书中有如下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内接正方形边长为多少步?”现若向此三角形内投豆子,则落在其内接正方形内的概率是A. B. C. D.【答案】C【解析】解:由题意,直角三角形两直角边长分别为5步和12步,面积为30,设内接正方形边长为x,则,解得,所以正方形的面积为,向此三角形内投豆子,则落在其内接正方形内的概率是,故选:C.利用直角三角形三边与内切圆半径的关系求出内接正方形边长,然后分别求出三角形和正方形的面积,根据几何概型的概率公式即可求出所求本题考查直角三角形内切圆的有关知识,以及几何概型的概率公式,属于中档题.4.设x,y满足约束条件,则目标函数的最小值为A. 4B.C.D.【答案】C【解析】解:画出约束条件表示的平面区域,如图所示由得,平移直线,由图象可知当直线经过点A时,直线的截距最小,此时z最小;由,解得,此时,的最小值为.故选:C.画出约束条件表示的平面区域,结合图形找出最优解,从而求出目标函数的最小值.本题考查了简单的线性规划的应用问题,是基础题.5.为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度单位长度:,其茎叶图如图所示,则下列描述正确的是A. 甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B. 甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C. 乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D. 乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐【答案】D【解析】解:由茎叶图中的数据,我们可得甲、乙两种树苗抽取的样本高度分别为:甲:19,20,21,23,25,29,31,32,33,37乙:10,10,14,26,27,30,44,46,46,47由已知易得:甲乙甲乙故:乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐.故选:D.本题考查的知识点是茎叶图,由已知的茎叶图,我们易分析出甲、乙两种树苗抽取的样本高度,进而求出两组数据的平均数及方差,然后根据平均数的大小判断哪种树苗的平均高度高,根据方差判断哪种树苗长的整齐.茎叶图是新课标下的新增知识,且难度不大,常作为文科考查内容,10高考应该会有有关内容数据的离散程度与茎叶图形状的关系具体如下:茎叶图中各组数据的越往中间集中,表示数据离散度越小,其标准差越小;茎叶图中各组数据的越往两边离散,表示数据离散度越大,其标准差越大.6.在正方体中,O是正方的中心,则异面直线与BO所成角为A. B. C.D.【答案】D【解析】解:在正方体中,O是正方的中心,,是异面直线与BO所成角或所成角的补角,设正方体中棱长为2,则,,,.异面直线与BO所成角为.故选:D.推导出,从而是异面直线与BO所成角或所成角的补角,由此能求出异面直线与BO所成角.本题考查异面直线所成角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.7.如果双曲线的两个焦点分别为、,一条渐近线方程为,那么经过双曲线焦点且垂直于x轴的弦的长度为A. B. C. 2 D. 1【答案】A【解析】解:如果双曲线的两个焦点分别为、,一条渐近线方程为,,解得,.所以经过双曲线焦点且垂直于x轴的弦的长度为:故选:A.依题意可求得c,根据和渐线方程,联立求得a和b,进而根据通径求得答案.本题主要考查了双曲线的简单性质双曲线的性质和公式较多,且复杂平时应加强记忆和训练.8.若某几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正方形,则该几何体的体积是A. B. C. 2 D.【答案】A【解析】解:几何体为不规则放置的四棱锥,是正方体的一部分,如图:也可以看作是棱柱去掉两个三棱锥的几何体,几何体的体积:.故选:A.作出几何体的直观图,将四棱锥分解成棱柱与两个小三棱锥计算体积.本题考查了棱锥的结构特征,三视图与体积计算,属于中档题.9.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法干支是天干和地支的总称,把千支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”,甲、乙、丙、丁、戊、己、庚、辛、壬、癸等十个符号叫天干;子、丑、寅、卯、辰、已、午、未、申、酉戌、亥等十二个符号叫地支如:公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年则公元2047年农历为A. 乙丑年B. 丙寅年C. 丁卯年D. 戊辰年【答案】C【解析】解:从1986开始算起,公元2047年为第61个数,天干表10个为一个周期,地支表12个数为一个周期,则公元2047年对应的天干为卯,地支为卯,故应为丁卯年,故选:C.由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以1986年的天干和地支分别为首项,到公元2047年经过了61年,即可求出答案本题考查了等差数列在实际生活中的应用,及推理与证明,属于中档题.二、填空题(本大题共6小题,共30.0分)10.函数的值域为______.【答案】【解析】解:;;;的值域为.故答案为:.根据即可得出,从而可求出,即得出的值域.考查函数值域的概念及求法,指数函数的值域,对数函数的单调性.11.设实数x,y满足约束条件,则的最大值为______.【答案】18示的平面区域,让如图:作直线,然后把直线L向可行域平移,结合图形可知,平移到点A时z最大由可得,此时.故答案为:18.先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数的最大值.本题主要考查了线性规划的简单应用,解题的关键是:明确目标函数的几何意义.12.写出下列命题中所有真命题的序号______.两个随机变量线性相关性越强,相关系数r越接近1;回归直线一定经过样本点的中心;线性回归方程,则当样本数据中时,必有相应的;回归分析中,相关指数的值越大说明残差平方和越小.【答案】【解析】解:对于,两个随机变量线性相关性越强,则相关系数r的绝对值越接近1,错误;对于,回归直线一定经过样本点的中心,正确;对于,线性回归方程,当样本数据中时,则,样本数据时,预测,错误;对于,回归分析中,相关指数的值越大,说明残差平方和越小,正确.综上,正确的命题是.故答案为:.根据题意,对选项中的命题进行分析,判断正误即可.本题考查了统计知识的应用问题,是基础题.13.数列中,,,设数列的前n项和为,则______.【答案】【解析】解:,,,数列是等差数列,首项为2,公差为1.,,,数列的前n项和为.,,可得:,利用等差数列的通项公式可得,可得,利用裂项求和即可得出.本题考查了数列递推关系、等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.14.当前的计算机系统多数使用的是二进制系统,数据在计算机中主要以补码的形式存储,计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示则将十进制下的数168转成二进制的数是______.【答案】10101000【解析】解:;.故答案为:.用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,再将依次所得的余数倒序排列即可.本题考查了十进制与二进制的转化问题,熟练掌握“除k取余法”是解题的关键,属于基础题.15.已知函数为定义域为R的偶函数,且满足,当时若函数在区间上的所有零点之和为______.【答案】5【解析】解:是偶函数,,的周期为,作出的函数图象如图所示:由图象可知的图象关于点对称.令可得,令,显然的函数图象关于点对称.作出在上的函数图象如图所示:由图象可知与在上有5个交点,根据对称性可知在上也有5个交点,在上的所有零点之和为.故答案为:5.作出与的函数图象,根据图象的对称性得出结论.本题考查了函数图象变换与函数零点个数判断,属于中档题.三、解答题(本大题共6小题,共72.0分)16.在,三个内角A,B,C所对的边分别为a,b,c,满足.Ⅰ求角B的大小;Ⅱ若,,求a,c的值其中【答案】解:Ⅰ已知等式,利用正弦定理化简得:,整理得:,即,,,则;由,得:,又由知,,由余弦定理得:,将及代入得:,,,由知a、c是一元二次方程的两个根,解此方程,并由得:,.【解析】Ⅰ已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出B的度数;根据平面向量数量积的运算法则计算得到一个等式,记作,把B的度数代入求出ac的值,记作,然后利用余弦定理表示出,把b,ac及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由可知a与c为一个一元二次方程的两个解,求出方程的解,根据c大于a,可得出a与c的值.此题考查了余弦定理,平面向量的数量积运算,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键同时注意完全平方公式的灵活运用.17.数列的前n项和为,且,Ⅰ证明:数列为等比数列,并求;Ⅱ若,求数列的前n项和.【答案】解:Ⅰ证明:,,,即为,可得数列为首项为2,公比为2的等比数列,则;Ⅱ,即,,,则前n项和.【解析】Ⅰ运用数列的递推式:,结合等比数列的定义和通项公式,即可得到所求;Ⅱ由对数的运算性质和等差数列的求和公式,计算可得所求和.本题考查数列的递推式的运用,考查等比数列的定义和通项公式和等差数列的求和公式,考查化简整理的运算能力,属于中档题.18.矩形ABCD中,,P为线段DC中点,将沿AP折起,使得平面平面ABCP.Ⅰ求证:;Ⅱ求点P到平面ADB的距离.【答案】证明:Ⅰ,则有,,满足,,平面平面ABCP,平面平面.平面ADP,平面ADP,.解:Ⅱ以P为原点,PA、PB为x轴,y轴正方向,建立空间直角坐标系,0,,0,,,0,,则0,,,0,,设平面ABD的法向量y,,则,取,得1,,点P到平面ADB的距离.【解析】Ⅰ推导出,从而平面ADP,由此能证明.Ⅱ以P为原点,PA、PB为x轴,y轴正方向,建立空间直角坐标系,利用向量法能求出点P到平面ADB的距离.本题考查线线垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图1.求频率分布直方图中x的值并估计这50户用户的平均用电量;若将用电量在区间内的用户记为A类用户,标记为低用电家庭,用电量在区间内的用户记为B类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图如图2:从B类用户中任意抽取1户,求其打分超过85分的概率;若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?附表及公式:,.【答案】解:,按用电量从低到高的六组用户数分别为6,9,15,11,6,3,所以平均用电量为.类用户共9人,打分超过分的有6人,所以打分超过分的概率为.,所以没有的把握认为“满意度与用电量高低有关”.【解析】根据各组矩形面积和即累积频率和为1,可得x值,进而利用加权平均数公式,可估计这50户用户的平均用电量;计算B类用户数,及打分超过分的户数,进而可得其打分超过85分的概率;根据已知得到列联表,由独立性检验计算公式计算的值,结合独立性检验的意义可得答案;独立性检验,就是要把采集样本的数据,利用公式计算的值,比较与临界值的大小关系,来判定事件A与B是否无关的问题具体步骤:采集样本数据由计算的值统计推断,当时,有的把握说事件A与B有关;当时,有的把握说事件A与B有关;当时,认为事件A与B是无关的.20.已知椭圆C:的焦距为2,且过点Ⅰ求椭圆C的方程;Ⅱ过点的直线交椭圆C于A,B两点,P为椭圆C上一点,O为坐标原点,且满足,其中,求的取值范围.【答案】解:Ⅰ依题意,有,解得,,椭圆方程,Ⅱ由题意可知该直线存在斜率,设其方程为,由得,,得,设,,,,,由得,代入椭圆方程得,由得,,令,则,,令,其对称轴为,在单调递增,,故的取值范围为【解析】Ⅰ依题意,有,解得即可,由此可求椭圆C的方程;Ⅱ设直线AB的方程与椭圆方程联立,利用韦达定理及弦长公式以及向量的坐标运算,即可求得结论.本题主要考查椭圆的标准方程和简单性质,求圆的标准方程得方法,直线和椭圆的位置关系,两个向量的数量积的运算,属于难题.21.设函数为常数,是自然对数的底数.Ⅰ当时,求函数的单调区间;Ⅱ若函数在内存在两个极值点,求k的取值范围.【答案】解:Ⅰ的定义域为,,当时,,,令,则,当时,,单调递减;当时,,单调递增,的单调递减区间为,单调递增区间为.Ⅱ由Ⅰ知,时,函数在内单调递减,故在内不存在极值点;当时,设函数,.,当时,当时,,单调递增,故在内不存在两个极值点;当时,得时,,函数单调递减,时,,函数单调递增,函数的最小值为函数在内存在两个极值点当且仅当解得:综上所述,函数在内存在两个极值点时,k的取值范围为【解析】Ⅰ求出导函数,根据导函数的正负性,求出函数的单调区间;Ⅱ函数在内存在两个极值点,等价于它的导函数在内有两个不同的零点.本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想是一道导数的综合应用题属于中档题.。
北京市人大附中2019届高考数学模拟预测考试一+Word版含解析
北京市人大附中2019届高考数学模拟预测考试一数学试题(文)一、选择题共8小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.若集合,,则()A. B.C. D.【答案】D【解析】【分析】直接利用集合并集的定义求解.【详解】因为,,所以.故答案为:B【点睛】本题主要考查集合的运算,意在考查学生对该知识的掌握水平和分析推理能力. 2.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.【答案】A【解析】,所以复数对应的点为,故选A.3.若向量,,则()A. B. C. 3 D.【答案】D【解析】【分析】先求出的坐标,再求模长即可.【详解】则=故选:D.【点睛】本题考查空间向量的坐标运算,模长公式,熟记加减运算性质,准确计算是关键,是基础题.4.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随意投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.【答案】C【解析】【分析】求出直角三角形内切圆半径,计算内切圆和三角形的面积,从而利用几何概型概率公式得出结论.【详解】直角三角形的斜边长为,设内切圆的半径为,则,解得,内切圆的面积为,豆子落在其内切圆外部的概率是,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.5.若函数与的对称轴完全相同,则函数在哪个区间上单调递增()A. B. C. D.【答案】A【解析】【分析】求出函数g(x)的对称轴,然后求出ω的值,利用三角函数的单调性进行求解即可.【详解】由2x kπ得x,即函数f(x)的对称轴为x,由ωx kπ得x,则ω=2,即f(x)=2sin(2x),由2kπ2x2kπ,k∈Z,得kπx≤kπ,k∈Z,∵x∈[0,π],∴当k=0时,x,即0≤x,则函数f(x)在[0,π]上的递增区间是[0,],故选:A.【点睛】本题主要考查三角函数单调区间的求解,根据函数的对称性求、求出对称轴和ω是解决本题的关键.6.若函数的最小值为,则实数的取值范围为()A. 或;B. 或;C. 或;D. 或;【答案】D【解析】【分析】先确定单调递减,则转化为在的最小值大于等于f(2)即可.【详解】由题函数单调递减,所以在;则在的最小值大于等于f(2)=1;令t= ,则t≥2在恒成立,即-2≥0恒成立,令g(x)=-2,其对称轴x=,∴或综上解得或故选:D.【点睛】本题考查函数的单调性,二次函数根的分布问题,熟练运用函数单调性,灵活转化为函数-2≥0恒成立是本题关键,是难题.7.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A. B. C. D.【答案】C【解析】【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【详解】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为1,面积为4﹣2故飞镖落在阴影区域的概率为1.故选:C.【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;关键是得到两个正方形的边长.8.已知直线y=2b与双曲线的斜率为正的渐近线交于点A,曲线的左、右焦点分别为,若则双曲线的离心率为()A. 4或B.C. 2D. 4【答案】D【解析】【分析】由题意表示出点的坐标,又得到关于离心率的方程即可求出结果【详解】由渐近线方程与直线求出点A的坐标为,过A点作轴于点B,则由已知可得当时,则故舍去,综上故选D【点睛】本题考查了求双曲线的离心率问题,在求解过程中一定依据题目已知条件,将其转化为关于离心率的方程,继而求出结果,本题属于中档题二、填空题共6小题。
北京市人大附中2019届高考数学(文)模拟预测卷二
11.
3 tan10。 sin10 。
1 =-4。(用数字作答)
12.已知数列 { an} 中,对 n N ,有 an an 1 an 2 C ,其中 C 为常数,若 a5=2, a7=-3,a9 4 ,
∵ sin A 0 ,∴ B 60 .
(2)∵ S ABC
1 ac sin B
3,
2
∴ ac 4 ,
0—9 之间整数值的随
机数,并用 0,1,2,3,4,5,6 表示没有强浓雾,用 7,8,9 表示有强浓雾,再以每 3 个随
机数作为一组,代表三天的天气情况,产生了如下 20 组随机数:
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
(1)求角 B 的大小;
(2)若 ABC 的面积为 3 , b 2 ,求 ABC 的周长.
解:( 1)∵ (2a c)(a2 b2 c2) 2abc cosC ,
∴ (2a c) a2 c2 b2 b cosC , 2ac
∴ (2 a c)cos B b cosC ,
由正弦定理,得 2sin Acos B sin C cos B sin B cosC , ∴ 2sin A cos B sin( B C ) sin A ,
A. 1,2
B. 0,1,2
C. 0,1,2,3
D. 1,2,3
2. 若 sin cos A.第一象限角
0 , tan sin
0 ,则角
B.第二象限角
北京市中国人民大学附属中学2019届高三上学期月考(二)数学理试卷+Word版含解析
北京市中国人民大学附属中学2019届高三上学期理科月考(二)数学试题(解析版)一、选择题(本大题共8小题)1.函数的值域为A. B.RC. D.【答案】B【解析】【分析】根据函数在定义域上是单调增函数,且满足,判断的值域为R.【详解】解:函数在定义域上是单调增函数,且满足,的值域为R.故选:B.【点睛】本题考查了基本初等函数的单调性与值域应用问题,是基础题.2.若集合,,则是A. B.C. 或D.【答案】C【解析】【分析】化简A,B再根据并集的定义即可求出.【详解】解:由于,即,解得,,由,即,解得或,或,,或,故选:C.【点睛】本题考查集合的并集的运算,解题时要认真审题,熟练掌握并集的概念和运算法则.3.已知是定义在R上的偶函数且以2为周期,则“为上的增函数”是“为上的减函数”的A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件【答案】C【解析】【分析】由题意,可由函数的性质得出在上是减函数,再由函数的周期性即可得出为上的减函数,由此证明充分性,再由为上的减函数结合周期性即可得出为上是减函数,再由函数是偶函数即可得出为上的增函数,由此证明必要性,即可得出正确选项【详解】解:是定义在R上的偶函数,若为上的增函数,则为上是减函数,又是定义在R上的以2为周期的函数,且与相差两个周期,两区间上的单调性一致,所以可以得出为上的减函数,故充分性成立.若为上的减函数,同样由函数周期性可得出为上是减函数,再由函数是偶函数可得出为上的增函数,故必要性成立.综上,“为上的增函数”是“为上的减函数”的充要条件.故选:C.【点睛】本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由哪个条件到哪个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.4.设函数一定正确的是()A. B.C. D.【答案】D【解析】对于A选项函数的极大值不一定是函数的最大值,所以错;对于B中的是将的图像关于Y轴对称,所以是其极大值点;对于C中的是将的图像关X轴对称,所以才是其极小值点;而对于D中的是将的图像关原点对称,故是其极小值点,故正确.【考点定位】本题主要考查学生对于函数极值与最值关系及函数图像的变换,牢记几种常见变换.属于难度较大的题目.5.设集合,或. 若,则正实数的取值范围是A. B. C. D.【答案】B【解析】作出不等式或表示的区域,可知要想满足,须满足x<0时,,所以6.设,,均为实数,且,,,则()A. B. C. D.【答案】A【解析】【分析】由题意将,,分别看做是两个函数图象交点的横坐标,故画出函数的图象,利用数形结合进行判断即可.【详解】由题意得,,,分别是函数与图象的交点横坐标.在同一坐标系内作出函数的图象,如图所示,由图可得.故选A.【点睛】本题考查函数图象的应用,即结合函数的图象比较大小,解题的关键是根据题意得到,,的几何意义,然后利用数形结合求解,体现了函数图象在解题中的应用.7.若是的最小值,则的取值范围为().A. [-1,2]B. [-1,0]C. [1,2]D.【答案】D【解析】由于当时,在时取得最小值,由题意当时,应该是递减的,则,此时最小值为,因此,解得,选D.8.据统计某超市两种蔬菜连续天价格分别为和,令,若中元素个数大于,则称蔬菜在这天的价格低于蔬菜的价格,记作:,现有三种蔬菜,下列说法正确的是A. 若,,则B. 若,同时不成立,则不成立C. ,可同时不成立D. ,可同时成立【答案】C【解析】特例法:例如蔬菜连续天价格为,蔬菜连续天价格分别为时,,同时不成立,故选C.点睛:本题主要考查了“新定义”问题,属于中档题.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.在该题中,可以采取特例法,直接根据定义得到结果.二、填空题(本大题共6小题)9.定积分______.【答案】【解析】【分析】直接利用牛顿莱布尼兹公式计算定积分即可.【详解】解:由定积分公式可得,故答案为:.【点睛】本题考查定积分的计算,解决本题的关键在于寻找被积函数的原函数,属于基础题.10.若,,,则a,b,c按从大到小的顺序排列依次为______.【答案】【解析】【分析】可看出,从而比较出a,b,c的大小.【详解】解:,,;.故答案为:.【点睛】本题考查指数函数和对数函数的单调性,根据单调性比较数的大小的方法.11.在平面直角坐标系中,若曲线(为常数)过点,且该曲线在点处的切线与直线平行,则.【答案】【解析】曲线过点,则①,又,所以②,由①②解得所以.【考点】导数与切线斜率.【此处有视频,请去附件查看】12.某食品的保鲜时间(单位:时间)与储存温度(单位:℃)满足函数关系,(为自然对数的底数,,为常数).若食品在℃的保险时间设计小时,在℃的保险时间是小时,该食品在℃的保鲜时间是__________小时.【答案】【解析】分析:利用该食品在℃的保险时间设计小时,在℃的保险时间是小时,可得,解得,进而可得结果.详解:∵某食品的保鲜时间(单位:时间)与储存温度(单位:℃)满足函数关系(,是常数).该食品在℃的保险时间设计小时,在℃的保险时间是小时,∴,解得,∴,∴该食品在℃的保鲜时间.故答案为.点睛:本题主要考查指数函数模型解决实际问题,属于中档题.解答本题的关键是利用待定系数法求得,从而使问题得以解决.13.若不等式对于一切恒成立,则实数a的取值范围为______.【答案】【解析】【分析】分离参数a,得,只需求在的最小值【详解】解:,,在的最小值为,实数a的取值范围为.故答案为.【点睛】此题考查求参数范围,一般用分离参数法,进而求函数的值域.14.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=,现有如下命题:①对于任意不相等的实数x,x2,都有m>0;1②对于任意的a及任意不相等的实数x,x2,都有n>0;1③对于任意的a,存在不相等的实数x,x2,使得m=n;1④对于任意的a,存在不相等的实数x,x2,使得m=-n.1其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为f '(x)=2x ln2>0恒成立,故①正确对于②,取a=-8,即g'(x)=2x-8,当x1,x2<4时n<0,②错误对于③,令f '(x)=g'(x),即2x ln2=2x+a记h(x)=2x ln2-2x,则h'(x)=2x(ln2)2-2存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.因此,对任意的a,m=n不一定成立.③错误对于④,由f '(x)=-g'(x),即2x ln2=-2x-a令h(x)=2x ln2+2x,则h'(x)=2x(ln2)2+2>0恒成立,即h(x)是单调递增函数,当x→+∞时,h(x)→+∞当x→-∞时,h(x)→-∞因此对任意的a,存在y=a与函数h(x)有交点.④正确考点:本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【此处有视频,请去附件查看】三、解答题(本大题共2小题,共30.0分)15.已知函数.当时,求曲线在处的切线方程;讨论函数的单调性;当时,求函数在区间的最小值.【答案】(1);(2)详见解析;(3)详见解析.【解析】【分析】当时,,求其导函数,得到,又,可得曲线在处的切线方程为;求出原函数的导函数,分,,三类求函数的单调区间;由知,当时,的减区间为,增区间为,然后分,,三类求函数的最小值.【详解】解:当时,,.,又,曲线在处的切线方程为;.当时,,在上为增函数;当时,在上有,当上,有,的减区间为,增区间为;当时,在上有,当上,有,的减区间为,增区间为;由知,当时,的减区间为,增区间为,若,即时,在单调递增,;若,即,在上单调递减,在上单调递增,;若,即时,在单调递减,.综上,.【点睛】本题考查利用导数求过曲线上某点处的切线方程,考查利用导数研究函数的单调性及最值,体现了分类讨论的数学思想方法,是中档题.16.若函数在定义域内存在实数x,满足,则称为“局部奇函数”.已知函数,试判断是否为“局部奇函数”?并说明理由;设是定义在上的“局部奇函数”,求实数m的取值范围;若为定义域R上的“局部奇函数”,求实数m的取值范围.【答案】(1)是“局部奇函数”;(2);(3).【解析】【分析】运用两角和与差的正弦公式,化简,再由由局部奇函数的定义,即可判断;根据局部奇函数的定义,可得方程在上有解,运用换元法,令,则,求出右边的值域即可;根据“局部奇函数”的定义可知,有解即可设,则,即有方程等价为在时有解,设,由对称轴和区间的关系,列出不等式,解出即可.【详解】解:由于,,则,由于,则,当时,成立,由局部奇函数的定义,可知该函数为“局部奇函数”;根据局部奇函数的定义,时,可化为,因为的定义域为,所以方程在上有解,令,则,设,则,当时,,故在上为减函数,当时,,故在上为增函数,所以时,所以,即.根据“局部奇函数”的定义可知,函数有解即可,即,,即有解即可.设,则,方程等价为在时有解,设,对称轴,若,则,即,,此时,若,要使在时有解,则,即,解得,综上得,【点睛】本题考查新定义的理解和运用,考查方程有解的条件及二次函数的图象和性质的运用,以及指数函数的图象和性质的运用,考查运算能力,属于中档题和易错题.。
2019年高三第二次模拟考试数学理试题 含答案
2019年高三第二次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共1 50分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2.第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第1I卷j_}=I O.5毫米的黑色墨水签字笔在答题卡上作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收同.第Ⅰ卷一、选择题:本大题共1 O小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(其中i为虚数单位),则复数z在坐标平面内对应的点在A.第一象限B.第二象限C.第三象限D.第四象限2.已知,则a,b ,c的大小关系是A.c<a<b B.c<b<a C.a<b<c D.b<a<c3.将函数图像上所有的点向左平行移动个单位长度,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A.B.c.D.4.“m<0”是“函数存在零点"的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件5.若空间几何体的三视图如图所示,则该几何体体积为A.B.C.D.86.下列四个判断:①某校高三(1)班和高三(2)班的人数分别是m,n,某次测试教学平均分别是a,b,则这两个班的数学平均分别为;②从总体抽取的样本(1,2,5),(2,3,1),(3,3,6),(4,3,9),(5,4,4),则回归直线必过点(3,3,6);③已知服从正态分布N (1,22),且=0.3,则其中正确的个数有A.0个B.1个C.2个D.3个7.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有A.18种B.36种C.48种D.60种8.已知点M(a,b)(a>0,b>0)是圆C:x2+y2=1内任意一点,点P(x,y)是圆上任意一点,则实数ax+by一1A .一定是负数B .一定等于0C .一定是正数D .可能为正数也可能为负数9.等差数列的前n 项和为,公差为d ,已知,则下列结论正确的是A .B .C .D .10.如图,在等腰梯形ABCD 中,AB//CD ,且AB=2CD ,设∠DAB=,∈(0,),以A ,B 为焦点且过点D 的双曲线的离心率为e 1,以C ,D 为焦点且过点A 的椭圆的离心率为e 2,设的大致图像是第Ⅱ卷注意事项:第Ⅱ卷须用黑色墨水签字笔在答题卡上书写作答,若在试题上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分.11.曲线与坐标轴所围成押科形面积是 .12.已知集合}032|{},22,2|{22≤-+=≤≤-+==x x x B x x x y y A ,在集合A 中任意取一个元素a ,则a ∈B 的概率是 .13.执行如图所示的程序框图,若输入a 的值为2,则输出的p 值是 .14.观察下面两个推理过程及结论:(1)若锐角A ,B ,C 满足A+B+C=,以角A ,B ,C 分别为内角构造一个三角形,依据正弦定理和余弦定理可得到等式:A CBC B A cos sin sin 2sin sin sin 222-+= (2)若锐角A ,B ,C 满足A+B+C=,则=,以角分别为内角构造一个三角形,依据正弦定理和余弦定理可以得到的等式:2s i 2c o 2c o s 22c o s 2c o s 2c o s 222A C B C B A -+= 则:若锐角A ,B ,C 满足A+B+C=,类比上面推理方法,可以得到一个等式是 .三、选做题:请考生在下列两题中任选一题作答,若两题都做,则按做的第一题评阅计分,本题共5分。
2019届高三下学期高三第二次模拟联考数学(理)试题—含答案
2019届高三下学期高三第二次模拟联考数学(理)试题—含答案2019学年度第二学期高三第二次模拟联考数学(理科)试卷年级班级姓名学号注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3.请将答案写在答题卡各题目的答题区域内,超出答题区域书写的答案无效。
4.作图题可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破弄皱,不准使用涂改液、修正带。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知,则()A.{1,2}B.{1,2,3}C.{0,1,2}D.{1,2,3,4,}2.设复数满足,则复数所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.如下图的茎叶图为某次10名学生100米跑步的成绩(s),由茎叶图可知这次成绩的平均数,中位数,众数分别为()A.51.95260B.525460C.51.95360D.5253624.已知随机变量服从正态分布,且,,等于()A.0.2B.C.D.5.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.4B.2C.3D.56.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A.B.C.D.7.若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图象大致是()ABCD8.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.设x,y满足约束条件,则的最大值为A.B.C.-3D.310.将函数的图象,向右平移个单位长度,再把纵坐标伸长到原来的2倍,得到函数,则下列说法正确的是()A.函数的最小正周期为B.是函数的一条对称轴C.函数在区间上单调递增D.函数在区间上的最小值为11.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A.B.C.D.12.已知定义在R上的函数f(x)满足f(x-1)=f(x+1),且当x∈[-1,1]时,,则()A.B.C.D.第Ⅱ卷二.填空题:本大题共4小题,每小题5分。
2019届北京市人大附中高三高考信息卷(二)理科数学试卷(word版)
北京市人大附中2019届高考信息卷(二)理科数学试题一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.则下列结论中正确的是A. B.C. D.【答案】C2.,则是“的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A3.A. B.C. D.【答案】D4.12个,其中整点是指横、纵坐标都是整数的点,A. B. C. D.【答案】C5.”.已中的三个元素组成的所有数列中”的个数为A. B. C. D.【答案】B6.,则复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C7.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A层班级,生物在B层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有A. 8种B. 10种C. 12种D. 14种【答案】B8.,且函数A. B. C. D.【答案】A二、填空题、共6小题,每小题5分,共30分。
9.能够说明”______.【答案】010.______.11.甲乙两地相距汽车从甲地匀速行驶到乙地,已知汽车每.小时运输成本为,当汽车的行驶速度为______km/h时,全程运输成本最小.【答案】(1). (2). 10012.在平面直角坐标系中,角与角,,则13.已知某三棱锥的三视图如图所示,则该三棱锥的底面和三个侧面中,直角三角形的个数是______.14.如图,.将三角形ADE,设在翻折过程中,有下列三个命题:③存在某个位置,所成的角为其中正确的命题是______.(写出所有..正确命题的序号)【答案】①②三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
15.【答案】【解析】【分析】(Ⅱ)由余弦定理得,然后求解三角形的面积.【详解】,.(Ⅱ)由余弦定理【点睛】本题考查正弦定理以及余弦定理的应用,考查三角形的解法,考查计算能力.16.,写出(Ⅱ)证明:数列中存在值为的项;互质,则数列中必有无穷多项为【答案】;(Ⅱ)详见解析;(Ⅲ)详见解析.【解析】【分析】(I.(II)利.(III)首先利用反证.【详解】解:(I)由,以及,可知,,(II),.(III)中没有“1”项,由(II),于是,由,则或,因此的因数.“1”.1,0”的无限循环,故有无穷多项为1;1,0”的无限循环,有无穷多项为1;必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.【点睛】本小题主要考查递推数列,考查合情推理,考查与数列有关的证明,考查分析问题与解决问题的能力,综合性很强,属于难题.17.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除颜色外均相同.(Ⅰ)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(Ⅱ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记得到红球的次数为,求的分布列;(Ⅲ)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取100次,得到几次红球的概率最大?只需写出结论.【答案】(Ⅰ(Ⅱ) 见解析(Ⅲ)75【解析】【分析】(Ⅰ)直接利用公式求得结果即可;(Ⅲ)因为随机摸一次摸到红球的概率为100次,得到75次概率最大.【详解】解:(Ⅰ)设“一次从纸箱中摸出两个小球,恰好摸出2个红球”事件A.(Ⅱ)可能取0,1,2,3,4.所以的分布列为(Ⅲ)75.【点睛】本题考查了离散随机变量分布列,熟悉二项分布是解题的关键,属于中档题.18.为偶函数时,求函数【答案】【解析】【分析】再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,的取值范围.【详解】..当x.有极小值有极大值有且只有两个公共点”.求导,得,.当x.时,直线与曲线,.或时,函数上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.19.中,(Ⅱ)(Ⅲ)300?如果不存在,说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)1.【解析】【分析】(1)方法一:取为轴,轴,轴,建立空间直角坐标系,求出平面的法向量为.(2).(3)建立空间直角坐标系,利用坐标法即可得到结果.【详解】方法一:(1),,,方法二:令,得,于是 ,(2,,四边形,所以,所以方法二:令,得,(3或(舍),所以点存在,即【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20.【答案】(1(2)证明见解析;(3)答案见解析. 【解析】【分析】(1(2(3为定值【详解】(1(2)由题知,时直线方程为(3时,,,因为.所以,即【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。
北京市中国人民大学附属中学2019届高三(实验班)11月阶段性摸底检测数学(理)试题(扫描版)
3
1
sin2x - cos2x
2
2
2
1
sin 2x -
2
6
2 f x 的最小正周期 T =
2
x
(2)
3
4
2
-
2x
3
2
5
-
2x -
6
63
1
1
f x min
-1 -
2
2
此时 2x - - ,解得 x -
62
3
f x max 1
3
3
22 4
此时 2x -
,解得 x
。
63
4
1
16. (1)解: f x
1
2
3
参考答案: 1-8 DCBAC ADD
9. 2 10. D 6
D2
D5
D4
D1
25 D 3 11.
5
12.
3 1, 2 13. 2 ,1 14. 19 1
1- cos 2x -
1 - cos2x
15. 解: (1) f x
-
3
2
2
cos 2x - - cos2x 3 2
1 cos2x
2
3 sin 2x - cos2x
5
【考点】导数的应用;运算求解能力
【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符
号,来判断函数的单调区间.在对函数划分单调区间时,除必须确定使导数等于
0 的点外,还要注意定义区间内的
间断点.
19 , (1) 解: a1 -3 , an 2an-1 2n 3,n 2 , n 2 时, a2 2a1 22 3 2 - 3 7 1 , n 3 时,
2019届北京市人大附中高三高考信息卷(二)文科数学试卷(PDF版)
【分析】
(1)对需求量 n 进行分类, 时,进货有剩余,利润
;
时,进货能全部出清,
利润
.
(2)根据不同的需求量,求出各自的利润,再求平均数.由利润不少于
元,求得需求量的范围,结合
频数可求概率.
【详解】(1)当日需求量
时,利润
;
当日需求量
时,利润
.
所以当天的利润 关于当天需求量 的函数解析式为
(2)①假设水果店在这 天内每天购进 斤草莓,则: 日需求量为 斤时,利润 ;日需求量为 斤时,利润 ; 日需求量为 斤时,利润 ;日需求量不小于 时,利润 . 故这 天 日利润(单位:元)的平均数为:
,解得
(元).
②利润不低于 元时,当日需求量当且仅当不少于 斤.以频率预估概率,
得当天的利润不少于 元的概率为
.
【点睛】本题主要考查概率统计的应用,分段函数的融入,丰富了考查的内容,仔 细审题,就能轻松解决.
5页
18.已知椭圆
的离心率为 ,M 是椭圆 C 的上顶点, ,F2 是椭圆 C 的焦点,
的周长是 6. (Ⅰ)求椭圆 C 的标准方程; (Ⅱ)过动点 P(1,t)作直线交椭圆 C 于 A,B 两点,且|PA|=|PB|,过 P 作直线 l,使 l 与直线 AB 垂直, 证明:直线 l 恒过定点,并求此定点的坐标.
7页
设零点为 x0,则
,且
.
当 x∈(0,x0)时,h(x)<0;当 x∈(x0,+∞),h(x)>0. 所以,函数 h(x)在(0,x0)递减,在(x0,+∞)递增,
,由
,得 lnx0=-x0,
所以
,由于
,h(x0)>2.
从而 h(x)>2,即 ex-lnx>2,也就是 et-lnt>2,|et-lnt|>2,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人大附中2018届高三第二次模拟考试卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·菏泽期末]已知,则复数的共轭复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·武邑中学]设为锐角,,,若与共线,则角()A.15°B.30°C.45°D.60°3.[2018·丹东期末]下列函数为奇函数的是()A.B.C.D.4.[2018·渭南质检]如图,执行所示的算法框图,则输出的值是()A.B.C.D.5.[2018·吉林实验中学]函数的部分图像如下图,且,则图中的值为()A.1 B.C.2 D.或26.[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步,50步B.20步,60步C.30步,70步D.40步,80步7.[2018·育才中学]如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.4 B.8 C.D.8.[2018·嵊州期末]若实数,满足约束条件,则的取值范围是()A.B.C.D.9.[2018·天津期末]在中,内角,,的对边分别为,,,已知,且,,则等于()A.B.C.2 D.10.[2018·衡水金卷]若函数图像上存在两个点,关于原点对称,则对称点为函数的“孪生点对”,且点对与可看作同一个“孪生点对”.若函数恰好有两个“孪生点对”,则实数的值为()A.0 B.2 C.4 D.611.[2018·乌鲁木齐一模]已知抛物线的焦点为,直线交抛物线于两点,且为的中点,则的值为()A.3 B.2或4 C.4 D.212.[2018·江西联考]已知函数函数,其中,若函数恰有4个零点,则实数b的取值范围是()A.B.C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·淮安一模]已知集合,,则________.14.[2018·孝感八校]将函数的图像向右平移个单位长度,得到函数的图像,若最小正周期为,则__________.15.[2018·淮南一模]过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是________.16.[2018·乐山期末]如图,在三棱锥中,、、分别为、、中点,且,,则异面直线与所成的角的大小为_________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.[2018·达州期末]已知是数列的前项和,,.(1)证明:当时,;(2)若等比数列的前两项分別为,求的前项和.18.[2018·濮阳一模]进入12月以业,在华北地区连续出现两次重污染天气的严峻形势下,我省坚持保民生,保蓝天,各地严格落实机动车限行等一系列“管控令”.某市交通管理部门为了了解市民对“单双号限行”的态度,随机采访了200名市民,将他们的意见和是否拥有私家车的情况进行了统计,得到如下的列联表:(1)根据上面的列联表判断能否在犯错误的概率不超过的前提下认为“对限行的态度与是否拥有私家车有关”;(2)为了了解限行之后是否对交通拥堵、环境染污起到改善作用,从上述调查的不赞同限行的人员中按是否拥有私家车分层抽样抽取6人,再从这6人中随机抽出3名进行电话回访,求3人中至少有1人没有私家车的概率.附:,其中.19.[2018·菏泽期末]如图所示,在四棱锥中,,都是等边三角形,平面平面,且,.(1)求证:平面平面;(2)是上一点,当平面时,三棱锥的体积.20.[2018·乌鲁木齐一模]已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,为椭圆上一点,为坐标原点,且满足,其中,求的取值范围.21.[2018·陕西一模]已知函数,.(1)求函数的图像在处的切线方程;(2)证明:;(3)若不等式对任意的均成立,求实数的取值范围.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.[2018·武邑中学]选修4-4:坐标系与参数方程已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)设为曲线上任意一点,求的取值范围.23.[2018·佛山质检]已知函数,.(1)若,求的取值范围;(2)若,对,都有不等式恒成立,求的取值范围.文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】由题意,,对应点为,在第四象限,故选D.2.【答案】B【解析】由题意,,又为锐角,∴.故选B.3.【答案】D【解析】和非奇非偶函数,是偶函数,是奇函数,故选D.4.【答案】D【解析】按照图示得到循环一次如下:,;,;,;,;,;,;,;,;,.不满足条件,得到输出结果为:4.故答案为:D.5.【答案】B【解析】由题意可得,,又,∴,又,∴或,,由周期,得,∴,故选:B.6.【答案】B【解析】设圆池的半径为步,则方田的边长为步,由题意,得,解得或(舍),所以圆池的直径为20步,方田的边长为60步,故选B.7.【答案】D【解析】如图所示,在棱长为2的正方体中,题中三视图所对应的几何体为四棱锥,该几何体的体积为:.本题选择D选项.8.【答案】D【解析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选D.9.【答案】C【解析】∵,且,,∴由正弦定理可得:,由于,可得:,∴由余弦定理,可得:,可得:,∴解得:,或(舍去).故选:C.10.【答案】A【解析】当时,,故函数在区间,上递减,在上递增,故在处取得极小值.根据孪生点对的性质可知,要恰好有两个孪生点对,则需当时,函数图像与的图像有两个交点,即,.11.【答案】B【解析】设,,,两式相减得,,为的中点,,,代入,解得或4,故选B.12.【答案】B【解析】由题可知,故,∵函数恰有4个零点,∴方程有4个不同的实数根,即函数与函数的图象恰有4个不同的交点.又,在坐标系内画出函数函数的图象,其中点,的坐标分别为,.由图象可得,当时,函数与函数的图象恰有4个不同的交点,故实数b的取值范围是.选B.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】【解析】,所以.14.【答案】【解析】,向右平移个单位后得到函数,函数的最小正周期是,那么,故填:.15.【答案】【解析】设,得,即,所以点的运动轨迹是直线,所以,则.16.【答案】【解析】由三角形中位线的性质可知:,,则或其补角即为所求,由几何关系有:,由余弦定理可得:,则,据此有:异面直线与所成的角的大小为.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:60分,每个试题12分.17.【答案】(1)见解析.(2).【解析】(1)证明:当时,···········3分,···········5分.···········6分(2)解:由(1)知,,···········7分,···········8分等比数列的公比,···········9分又,···········10分.···········12分18.【答案】(1)在犯错误概率不超过的前提下,不能认为“对限行的态度与是否拥有私家车”有关;(2)0.8.【解析】(1).···········4分所以在犯错误概率不超过的前提下,不能认为“对限行的态度与是否拥有私家车”有关. (6)分(2)设从没有私家车的人中抽取人,从有私家车的人中抽取人,由分层抽样的定义可知,解得,···········7分在抽取的6人中,没有私家车的2人记为,有私家车的4人记为,,,,则所有的基本事件如下:,,,,,,,,,,,,,,,,,,,共20种.···········9分其中至少有1人没有私家车的情况有16种.···········11分记事件为“至少有1人没有私家车”,则.···········12分19.【答案】(1)证明见解析;(2)6.【解析】(1)因为,,,所以,所以,,又因为是等边三角形,所以,所以,·······2分因为平面平面,平面平面,所以平面,···········4分因为平面,所以平面.···········6分(2)过点作交于,过点作交于,因为,平面,平面,所以平面,同理可得平面,所以平面平面,···········7分因为平面,所以平面.因为,所以,在直角三角形中,,,所以,所以,···········9分在平面内过作于,因为平面,平面,所以,因为,所以平面,所以是点到平面的距离,···········10分过点作于,则,由,得,所以,因为,所以.······12分20.【答案】(1);(2).【解析】(1)依题意,有,···········3分∴椭圆方程.···········4分(2)由题意可知该直线存在斜率,设其方程为,由得,···········5分∴,得,···········6分设,,,则,由得,···········7分代入椭圆方程得,···········8分由得,···········9分∴,···········10分令,则,∴.···········12分21.【答案】(1);(2)见解析;(3).【解析】(1)∵,∴.···········1分又由,···········2分得所求切线:,即所求切线为.···········4分(2)设,则,令,得,···········5分得下表:∴,即.···········8分(3),,.(i)当时,;···········9分(ii)当时,,不满足不等式;···········10分(iii)当时,设,,令,得下表:∴,即不满足等式.综上,.···········12分(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1),;(2).【解析】(1)由,得,故直线的普通方程为,···········2分由,得,所以,即,故曲线的普通方程为;···········5分(2)据题意设点,则,···········8分所以的取值范围是.···········10分23.【答案】(1);(2).【解析】(1),···········1分若,则,得,即时恒成立,···········2分若,则,得,即,···········3分若,则,得,即不等式无解,···········4分综上所述,的取值范围是.···········5分(2)由题意知,要使得不等式恒成立,只需,当时,,,······7分因为,所以当时,,·····9分即,解得,结合,所以的取值范围是.·····10分。