Bi_2O_3_TiO_2复合纳米颗粒的可见光光催化性能_英文_杨娟

合集下载

Bi2O3-TiO2复合光催化剂的制备及研究

Bi2O3-TiO2复合光催化剂的制备及研究

Bi2O3-TiO2复合光催化剂的制备及研究徐平;蒙元兰;庄海敏;邢焰【摘要】采用高温固相反应法,以TiO2、Bi2O3固体粉末为原料,制备不同比例、不同煅烧温度的Bi2O3-TiO2复合光催化剂.同时,对制备的复合催化剂进行X-射线衍射(XRD)分析.分析发现,掺杂比列及煅烧温度对复合催化剂的晶体结构存在一定的影响.结果显示,TiO2与Bi2O3存在一定的耦合,在煅烧温度为500℃,Bi2O3掺杂量为1.5%时制备的Bi2O3-TiO2催化剂以是锐钛矿相为主,催化剂晶粒尺寸最小,通过对罗丹明B的降解实验发现,该条件下制备的复合催化剂,具有较高的可见光催化活性.【期刊名称】《黔南民族师范学院学报》【年(卷),期】2015(035)004【总页数】5页(P117-120,124)【关键词】高温固相法;掺杂;复合催化剂;可见光【作者】徐平;蒙元兰;庄海敏;邢焰【作者单位】黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000【正文语种】中文【中图分类】O643.36Key words: high temperature solid phase reaction method; doping; comp osite photocatalyst; visible light纳米TiO2作为一种半导体材料,因其成本低,稳定性能好、对人体无害并具有较强的光催化特性而被广泛研究。

但由于其禁带宽度较宽(Eg=3.2eV),对太阳能的利用率很低。

因此,缩短其禁带宽度,[1](P161-164)抑制光生电子与空穴的复合是提高TiO2对太阳能利用率的技术关键。

[2](P2492-2504)研究表明,通过对半导体材料TiO2进行有机染料敏化、表面沉积金属或金属氧化物、半导体复研究表明,催化剂的制备方法、掺杂量及焙烧温度,对催化剂的晶体结构及催化活性都具有一定的影响。

Nd掺杂Bi2O3—TiO2纳米复合材料的制备、表征与模拟太阳光催化活性

Nd掺杂Bi2O3—TiO2纳米复合材料的制备、表征与模拟太阳光催化活性

Nd掺杂Bi2O3—TiO2纳米复合材料的制备、表征与模拟太阳光催化活性采用溶胶-凝胶法制备了Nd掺杂Bi2O3-TiO2纳米复合材料,利用X射线衍射(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见漫反射吸收光谱(UV-vis DRS)等分析测试手段对样品的微观结构和吸光性能等进行了表征,并以甲基橙溶液的降解作为探针反应,考察了样品的模拟太阳光催化性能。

结果表明:所有S-X样品均呈锐钛矿结构;Nd以氧化物的形式附着在Bi2O3-TiO2纳米复合材料表面;Nd具有敏化Bi2O3-TiO2纳米复合材料的作用;S-0.250样品的光催化活性最好,当其用量为2.5g/L时,25mg/L的甲基橙溶液在模拟太阳光下照射5h后,脱色率可达到99.3%。

标签:Bi2O3-TiO2纳米复合材料;Nd掺杂;模拟太阳光;光催化活性;甲基橙引言据国家环保部统计,我国每年排放的污水总量至今仍有2500余万吨,如何经济、高效地处理这些污水也成了科研工作者们亟待解决的问题[1]。

目前,常用的污水处理方法包括过滤法、吸附法、浮上法、超临界水氧化法、光催化降解法、混凝法、电化学法、活性污泥法、生物膜法等[2-5]。

其中,高效、节能且不产生二次污染的光催化降解技术尤受重视。

TiO2是公认的理想催化剂,但也存在光能利用率低和自由基产率小的致命弱点[6-7]。

为了克服上述不足,国内外学者们提出了Bi2O3复合改性TiO2的思路。

Yang等采用溶胶与水热相结合的方法合成了不同铋钛质量比的Bi2O3-TiO2纳米复合颗粒[8]。

其中,铋钛质量比为0.020的样品活性最高,在可见光照射下,7h降解约69%的4-氯酚溶液(13mg/L)。

刘元德等则以CATB为增溶剂,采用溶胶-凝胶法制备了不同铋钛原子比的Bi2O3/TiO2纳米复合材料[9]。

研究发现,铋钛原子比为0.0175的样品活性最好,在可见光照射下,5h降解约71%的甲基橙溶液(25mg/L)。

水热法合成在可见光照射下具有高催化活性的纳米TiO_2催化剂_英文_

水热法合成在可见光照射下具有高催化活性的纳米TiO_2催化剂_英文_

A rticle ID :0253-9837(2004)12-0925-03C ommu nication :925~927Received date :2004-08-23. First author :TANG Peisong,male,born in 1975,PhD student.Correspondin g author :HONG Zhanglian.Tel/Fax:(0571)87951234;E -mail:hong zhanglian@.Fou ndation item :Supported by the Education Department of Zhejiang Province (20030625),SRF for ROCS,SEM (2003-14)and the Na -tional Natural Science Foundation of China (50272059).Preparation of Nanosized TiO 2Catalyst with High Photocatalytic Activity under Visible Light Irradiation by Hydrothermal MethodTANG Peisong,HONG Zhanglian,ZHOU Shifeng,FAN Xianping,WANG Minquan(Dep ar tment of Mater ials Science and Engineer ing ,Zhej iang U niver sity ,H angz hou 310027,China)Key words:nanosize,titania,photocatalysis,hydro thermal method,visible light C LC number:O643 Document code :AT he semiconductor T iO 2is the most important photocatalyst for the degradation of pollutants.Anatase T iO 2has a large band gap of 3 2eV that re -quires powerful UV light to initiate the photocataly tic reactions.Many modification methods such as metal ion doping,composite semiconductors and metal layer modification have been used to extend the light ab -sorption of the catalyst to the v isible lig ht region buthave little effect [1~4].Surface sensitization withdyes [5]is not practical in application as most dyes sel-fdegrade easily.Therefore,the preparation of TiO 2w ith good w avelength response in the visible light re -g ion and high photocatalytic activity for pollutant degradation using natural sunlight is an important g oal in TiO 2photocatalysis.In this paper,the nanosized T iO 2catalyst with high photocatalytic activity under visible light irradia -tion was prepared by the hy drothermal method [6]w ith acetone as the solvent.A high pressure reactor (WH F -0 25L,Weihai Reactor Ltd.,China )and analytical reagent grade tetrabutyl titanate,acetone and alcohol were used.The hydrothermal reaction w as carried out at 240 for 6h at a heating rate of about 2 /min.The T iO 2pow ders were taken out from the cooled reactor and w ashed 4times w ith alco -hol,and dried at 50 for 24h in a vacuum dryer.T he dried powders were calcined at 180,250and 365 for 2h,respectively,and samples TiO 2-1,T iO 2-2and T iO 2-3were obtained.T he TiO 2samples were characterized by XRD,T EM and UV -Vis spectroscopy on an XD -98X -ray diffractometer,a JEM -200CX electron microscopeand a Lambda 20U V -Vis spectrometer,respectively.Diffuse reflectance spectra (DRS)were measured by PELA -1020w ith an integrating sphere accessory in a Lambda 900U V -Vis spectrometer.The photo -catalytic experiments w ere carried out in a sel-f assem -bled instrument w ith a metal halog en lamp (HQI -BT ,400W/D,OSRAM ,German)as the irradiation source.In a 50ml g lass cup,20mg TiO 2and 10ml methyl orange solution (20mg/L)w ere mixed and dispersed by ultrasonic treatm ent for 5m in follow ed by 30m in irradiation w ith a JB450filter (Shanghai Optical Glass Corp.,China)that transmits visible lig ht of w avelength above 450nm.UV -Vis spectra of the upper transparent solution w ere measured after centrifugation.The photocatalytic efficiency w as ca-lculated using the absorption intensity of the standard methyl orange solution at 464nm.Our test revealed that the adsorption amount of methyl orange on the surface of TiO 2-3in darkness w as about 2%,w hich is within the measurement error of the degradation ef -ficiency and would not affect the result of the pho -catalytic efficiency.The removal rate of COD Cr was determined w ith potassium dichromate. The physico -chemical properties and photo -catalytic efficiencies of different T iO 2samples are list -ed in Table 1.It can be seen that TiO 2-1and TiO 2-2show ed high photocatalytic efficiencies of about 99%and 90%,respectively,under visible light illumina -tion ( 450nm),w hile T iO 2-3and P25gave very low degradation rate.The reduction of the COD Cr value for TiO 2-1was above 90%,w hich was m uch higher than that for commercial P25.All the pre -第25卷第12期催 化 学 报2004年12月Vol.25No.12Chinese Jour nal of CatalysisDecember 2004pared TiO 2sam ples could deg rade methyl orange com -pletely under direct visible light irradiation w ithin 10min.Even T iO 2-3w ith a low deg radation rate undervisible light could fully deg rade methyl orange,andits photocatalytic efficiency w as hig her than that of P25.T able 1 Physico -chemical properties and photocatalytic efficiencies for methyl orange degradation of different TiO 2s amplesCatalyst T reatment condition Crystal type Average grain size (nm)M ass loss at 120~500 (%)Reflection ratio at 500nm (%)Degradati on rate(%)T i O 2-1180 ,2h pure anatase 10 3.6521.399 1T i O 2-2250 ,2h pure anatase 10 2.3739.690 3T i O 2-3365 ,2hpure anatase 110.3290.416 2P25*80%anatase+20%rutile300.6094.38 3*Commerical pow der,Degussa Ltd.Fig 1 DRS spectra of d ifferent TiO 2samples (1)T iO 2-1,(2)TiO 2-2,(3)T iO 2-3,(4)P25As show n in Table 1,all the prepared TiO 2sam -ples had sim ilar crystal phase and average grain size,but their mass loss at 120~500 w as different.T here ex isted difference in DRS behaviors of different T iO 2samples.The reflection ratios of TiO 2-1,T iO 2-2,T iO 2-3and P25at 500nm w ere 21 3%,39 6%,90 4%and 94 3%,respectively.Fig 1show s the DRS spectra of different T iO 2samples.In the v isible light reg ion,T iO 2-1and TiO 2-2had similar DRS spectra w ith a low reflection ratio.How ever,both T iO 2-3and P25showed a high reflection ratio.In g eneral,the sum of transmittance,reflectance and absorbance is about 100%[7]when light irradiates a solid surface.The transmittance could be neglected in the T iO 2samples,which had a thickness of about 4mm for the DRS measurements.Therefore,a hig h reflectance in the DRS spectra meant a low ab -sorbance for the TiO 2catalyst.The results imply that the v isible light absorption of TiO 2-1and TiO 2-2w as higher than that of either TiO 2-3or P25.It is inter -esting that w ith the decrease in mass loss at 120~500,the absorbility and the photocatalytic degradationefficiency of T iO 2decreased.Fig 2 TG -DT A cu rves of TiO 2-1Generally,the crystal structure and grain size are the tw o key factors affecting TiO 2photocatalytic activity.Nevertheless,the difference in photocatalyt -ic efficiency of TiO 2-1,TiO 2-2and T iO 2-3under vis -ible light cannot be explained by either the crystal type or grain size.Fig 2show s TG -DTA curves of TiO 2-1.The mass loss at 120~500 on the TG curve corresponded to the exotherm ic peaks at 185,276and 377 on the DTA curve.The mass loss and ex othermic peaks were likely the result of the desorp -tion and oxidation of adsorbed organic materials on the TiO 2surface [8].Thus,we suggest that the high degradation efficiency should orig inate from the ad -sorbed organic materials.The function,kind and amount of these organic materials are still not clear at present,but they are very im portant and need to be clarified.One possibility is that they have a similar role to surface sensitization dyes w hich have high ab -926催 化 学 报第25卷sorption for visible lig ht.The high absorption under v isible lig ht irradiation,which is in good agreement w ith the high visible lig ht degradation efficiency,may be due to an appropriate amount of adsorbed or -g anic materials for both T iO 2-1and T iO 2-2.As for T iO 2-3,most of the surface organic residues desorbed after treatment at high tem perature,thus the ab -sorbance for visible light absorption and the degrada -tion efficiency under visible light dropped to a low v alue comparable to that of P25.T he adsorbed organ -ic materials are thermally stable under 250 heat treatm ent (TiO 2-2)w hile most of the dyes are easilydecomposed and have no surface sensitization effect after such a hig h temperature treatment process. In summary,nanosized TiO 2catalyst with ad -sorbed organic material residues on its surface synthe -sized by the acetone hydrothermal method showed high photocatalytic efficiency and good thermal stabi-lity under visible light irradiation.This nanosized T iO 2pow der is a prom ising photocatalyst for use un -der sunlight irradiation.References1 L insebig ler A L,Lu G Q ,Y ates T Jr.Chem Rev ,1995,95(3):7352 Asahi R,M orikawa T ,Ohw aki T ,Aoki K,T aga Y.Sci -ence ,2001,293(5528):2693 K han S U M ,A-l Shahr y M ,Ingler W B Jr.Science ,2002,297(27):22434 Z hao W,M a W H,Chen Ch Ch,Zhao J C.J A m Chem Soc ,2004,126(15):47825 R amakrishna G ,Ghosh H N.J Phy Chem B ,2001,105(29):70006 Wu M M ,L ong J B,Huang A H ,Luo Y J,Feng S H,Xu R R.L angmuir ,1999,15(26):88227 F ang R Ch.Spectrosco py of Solids (In Chinese).Hefei:Press U niv Sci T echnol China,2001.1-58 Deng X Y ,Cui Z L,Du F L ,Peng Ch.Wuj i Cailiao X ue -bao (Chin J I norg M ater ),2001,16(6):1089水热法合成在可见光照射下具有高催化活性的纳米TiO 2催化剂唐培松, 洪樟连*, 周时凤, 樊先平, 王民权(浙江大学材料与科学工程系,浙江杭州310027)摘要:以丙酮为溶剂,采用水热法在240 合成了表面吸附有机物的纳米T iO 2粉体光催化剂,并采用XR D,T EM ,U V -V is 和DRS 等技术对催化剂进行了表征.结果表明,合成的纳米T iO 2催化剂在可见光激发下具有良好的光催化降解甲基橙的性能和较好的热稳定性.经180,250和365 热处理后,催化剂的晶型和尺寸没有变化,但催化剂表面吸附的有机物发生了明显变化.催化剂表面吸附的有机物、可见光波段的光响应性能和可见光下催化降解甲基橙的效率之间存在良好的关联性,催化剂表面吸附适量的有机物可提高纳米T iO 2催化剂在可见光波段的光响应性能,从而提高其在可见光照射下催化降解甲基橙的性能.关键词:纳米,二氧化钛,光催化,水热法,可见光(Ed YHM)927第12期唐培松等:水热法合成在可见光照射下具有高催化活性的纳米T iO 2催化剂。

纳米TiO2光催化

纳米TiO2光催化
凝胶法制备的纳米TiO2具有粒径小,分布窄,晶型为锐钛矿 型,纯度高,热稳定性好,产率较高等优点,是一种非常具 有发展潜力的合成方法。是有可能应用于工业生产的合成纳 米材料的方法。
纳米TiO2的应用
环保方面的应用
A .无机污染物的光催化氧化还原
光催化能够解决Cr6+、Hg2+、Pd2+等重金属离子的污染 光催化还可分解转化其它无机污染物,如CN-、NO2-、H2S、SO2、NOx等
金红石 型TiO2
锐钛矿 型TiO2
改进后的方法(前躯体:TiOCl2不加碱性沉淀剂 )
加热干燥 白色晶型沉淀 TiOCl2 水溶液 加热干燥 白色晶型沉淀 锐钛矿型纳 米TiO2粉体 金红石型纳 米TiO2粉体
溶胶-凝胶法(Sol-Gel) (前驱体(TNB))
钛酸丁酯 加入总醇量 2/3的醇 缓慢滴加 1/3醇+水
纳米TiO2光催化剂
资科1201 11 蒋鹏
纳米TiO2光催化剂简介※
纳米TiO2光催化剂的特点
纳米TiO2光催化剂的制备※
纳米TiO2光催化剂的应用
总结
纳米TiO2光催化剂简介 什么是多相光催化剂?
多相光催化是指在有光参与的情况下,发生在催化剂及表面吸附物(如H2O, O2分子和被分解物等)多相之间的一种光化学反应。 光催化反应是光和物质之间相互作用的多种方式之一,是光反应和催化反应 的融合,是光和催化剂同时作用下所进行的化学反应。 纳米TiO2是一种新型的无机金属氧化物材料,它是一种N型半导体材料,由 于具有较大的比表面积和合适的禁带宽度,因此具有光催化氧化降解一些化合物 的能力,纳米TiO2具有优异的光催化活性,并且价格便宜,无毒无害等优点因此 被广泛的应用。

纳米TiO_2膜的制备及其光催化性能

纳米TiO_2膜的制备及其光催化性能

纳米TiO_2膜的制备及其光催化性能
艾智慧;杨鹏;陆晓华
【期刊名称】《环境科学与技术》
【年(卷),期】2004(27)B08
【摘要】采用溶胶凝胶法(Sol Gel)制备了负载型纳米TiO2膜,分别考察了原料配比、pH值、煅烧温度对薄膜性质的影响,并利用XRD对其结构进行了表征,同时,用负载型TiO2膜对活性艳红X 3B(X 3B)模拟染料废水进行了微波辅助光催化脱色的研究。

结果表明,改变原料配比及pH值可以制备出不同粒径的纳米TiO2膜,在450℃煅烧时TiO2呈锐态矿结构,在650℃以上出现锐态矿与金红石混晶结构,750℃时完全转变为金红石结构。

所制得的纳米TiO2薄膜对X 3B具有较好的光催化活性。

【总页数】3页(P4-6)
【关键词】TiO2薄膜;活性艳红X-3B;微波辅助光催化
【作者】艾智慧;杨鹏;陆晓华
【作者单位】华中科技大学环境科学研究所
【正文语种】中文
【中图分类】X703.01
【相关文献】
1.纳米TiO_2/丝素复合膜的制备及其光催化性能 [J], 夏友谊
2.TiO_2/GO/PAN纳米纤维膜的制备及光催化性能 [J], 王成;蒋叶群;姚理荣
3.玻璃负载纳米TiO_2/SiO_2膜的制备和光催化性能 [J], 李建生;刘炳光;王少杰;董学通
4.超声辅助介孔纳米TiO_2光催化剂制备与光催化性能 [J], 杨在志;傅小明;许新宇;朱良怀;周炎;张臻
5.载体SiO_2上纳米TiO_2膜的制备及光催化性能 [J], 颜秀茹;郭伟巍;宋宽秀;霍明亮;王建萍
因版权原因,仅展示原文概要,查看原文内容请购买。

北大考研-化学与分子工程学院研究生导师简介-杨 娟

北大考研-化学与分子工程学院研究生导师简介-杨 娟

爱考机构中国高端考研第一品牌(保过保录限额)爱考机构-北大考研-化学与分子工程学院研究生导师简介-杨娟杨娟博士,副教授纳米材料与纳米结构,分子光谱学电话:(010)62755357(办公室)Email:yang_juan@学术简历:1997-2001北京大学技术物理系,获理学学士学位;2001-2006TexasA&MUniversity,DepartmentofChemistry,获哲学博士学位(Advisor:Dr.JaanLaane);2006-2007TexasA&MUniversity,DepartmentofChemistry,博士后研究员(Supervisor:Dr.JaanLaane);2007-2008PacificNorthwestNationalLaboratory,博士后研究员(Supervisor:Dr.AllaZelenyuk);2009-2010北京大学化学与分子工程学院,讲师;2010-北京大学化学与分子工程学院,副教授。

研究领域和兴趣:采用分子光谱学研究方法,包括吸收光谱、拉曼光谱和荧光光谱等,对单壁碳纳米管的结构和性质进行表征,并结合分子动力学等理论模拟计算,获得有关碳纳米管电子性质与能带结构的信息。

具体研究项目如下:1)离子液体分散的单壁碳纳米管的本征光谱研究;2)离子液体分散的单壁碳纳米管与共轭分子等相互作用的光谱研究;3)单壁碳纳米管与生物大分子相互作用的表面增强拉曼光谱研究。

代表性论文:1.J.Yang,M.Stewart,G.Maupin,D.HerlingandA.Zelenyuk,Chem.Eng.Sci.,64,1625(2009);2.A.Zelenyuk,J.Yang,C.Song,R.A.Zaveri,andD.Imre,J.Phys.Chem.A,112,669(2008);3.J.Yang,M.Wagner,ane,J.Phys.Chem.A,111,8429(2007);4.J.Yang,J.Choo,O.Kwon,ane,Spectrochim.ActaPartA,68,1170(2007);5.ane,J.Mol.Struct.,798,27(2006);6.J.Yang,M.Wagner,K.Okuyama,K.Morris,Z.Arp,J.Choo,N.Meinander,O.Kwon,ane,J.Chem. Phys.,125,034308(2006);7.J.Yang,M.Wagner,ane,J.Phys.Chem.A,110,9805(2006);8.J.Yang,K.Okuyama,K.Morris,ane,J.Phys.Chem.A,109,8290(2005);9.J.Yang,K.McCann,ane,J.Mol.Struct.,695-696,339(2004).。

可见光响应的BiVO4/TiO2纳米复合光催化剂

可见光响应的BiVO4/TiO2纳米复合光催化剂
收稿 日期 :20 —8O 。修 订 日期 :2 0—10 0 90一 1 0 91 —6
按摩尔 比 B : i V一1: 分别溶于 2 0mo ・ 叫硝酸 中, 1 . l L 混合 得黄色溶液 。用氨水将 溶液 的 p 值调 至 1 ,再加入 0 6g H O .
称 0 4g偏钛酸( Ti ) . H2 O3细粉 ,与 3 0mo ・ 0mL 1 l L
Na OH溶 液混合 , 10℃反应 3 ,自然冷却后制得 白色 于 8 4h 沉淀 物 , 过滤 , 1mo ・ _ 硫酸溶液和去离子水洗涤 至中 用 l L1
性 , 到 具 有 层 状 结 构 的 前 驱 体 钛 酸 盐 纳 米 线 ( 称 得 简
OLJ M 8 0型带有能 谱仪 的扫描 电子 显微镜 ;HI AC -S 5 0 T HI H80 型透射 电子显微 镜 ;G C Uv Vi c t n a
可见 吸 收 光谱 仪 。 12 BV 4TO 纳 米 复 合 材 料 的 制 备 . i O / iz
性不高 。 若将 BVO 与 Ti2复合 ,将 可能获得 较好 的可见 i 4 ( )
光催化材料。
1 2 2 BVO4Ti2 米复 合 物 的 制 备 . . i / o 纳
第一种纳米复合物 的制备 :首先 ,将硝酸铋 和偏钒酸 铵
本文使用具有层状结构的钛酸盐 纳米线 , 通过水热 法合 成 了两种新 型 的 BVO / O i 4Ti2纳 米 复合 物 ,并 对其 物 质 结 构、 形貌 以及光催 化性 能进行 了研究 。 果表 明,这两种 半 结
1 1 试 剂 与 仪 器 .
使用试 剂 有 :偏 钛 酸 ( P ,氢氧 化 钠 ( C ) AR) ,硝酸 铋 ( AR) 偏钒酸铵( ) 硝酸( . l ) 氨水 ( 8 ~ , AR , 2 0mo ・L , 2

纳米La2O3/TiO2复合薄膜的制备及光催化性能研究

纳米La2O3/TiO2复合薄膜的制备及光催化性能研究

2 - L 2 厂i 复合薄膜 的制备 . 3 aO3 O2 2 r
将 陶瓷基体分 别在 3 %的 H O 混合液和无水 乙醇 0 22 中超 声清洗 ,以去除表面 杂质 及氧化层 。 清 洗烘干后 ,使用 浸渍提拉 法制备 A 2 3 1 底膜,每 0
关键词 :溶胶一 凝胶法 ; aO 门i 纳米复合 薄膜; 1 3 L 2 3r O2 A2 0 底膜 ;光催 化性能 中图分类号 : O6 3 4 文 献标 识码 :A 文章编号: 10 .7 120 ) 刊.4 30 0 19 3 (0 7增 2 3— 4
2j h 92 ui i 和 H n a 以 TO2 电 s ma o dT M i 为
极成 功地 进行 了水 的光 电解 以来,有关 TO 半导体光 i2 催化 剂的研 究受到 了人们 的广泛 关注 。 i 2 TO 以其光化学 性质 稳定 、无毒 、价廉 ,具有广 谱 、环保等优 点,在 治 污 、净化空气 、自清 洁、杀 菌等方面得 到广泛应用 【 。 2 】 利用 TO 粉末对废水 中的有毒物 质进行处理 的研 究发 i2 现 , i2 TO 不仅 能把多种有机 污染物 降解 为无毒 的小分子 化合物【 ,而且能将溶液 中的重金属 离子还原 为无 毒的 l, o 金属…J 。但 TO 粉末光催 化剂存 在易失活 、易凝 聚 、 i2 难 以回收等 缺点 ,因此 ,高效 负载 型 TO 光催化 剂的 i2
分对薄膜 光催化活性 的影响具有现 实意义 。 本 实验 以 A 2 薄膜 作底膜 ,L 2 3 l O3 aO 作复合 相,采
A23 l 底膜对 L 2 3 i 2 O a0 / O 复合 薄膜 形貌的影响 ,利用亚 T 甲基 兰溶液 紫外光 降解 实验研 究 了 L 2 3 i 2复合 薄 a0 / O T

ZnTiO_3_TiO_2纳米复合材料的光催化性能

ZnTiO_3_TiO_2纳米复合材料的光催化性能
钛酸四丁酯( 上海科丰化学试剂有限公司) ,无水乙醇( 北京中联化工试剂厂) ,乙酸锌( 莱阳市双双 化工有限公司) ,亚甲基蓝( MB,北京化工厂) ,以上试剂均为分析纯。所用试剂均用去离子水配制。
2010-04-09 收稿,2010-06-18 修回 国家自然科学基金( 20963008) 、甘肃省自然科学基金( 0710RJZA119) 、甘肃省教育厅研究生导师基金( 0901-02) 资助项目 通讯联系人: 苏碧桃,教授; Tel: 0931-7975055; E-mail: subt0608@ sina. com; 研究方向: 纳米半导体材料与光催化
摘 要 通过溶胶-凝胶 ( Sol-Gel) 法制备了 ZnTiO3 -TiO2 纳米复合光催化剂,利用透射电子显微镜、X 射线衍 射、紫外-可见吸收光谱和 ζ 电位等测试技术对其形貌、晶体结构及其光谱响应特性进行了表征。以亚甲基蓝
( MB) 溶液的脱色降解为模型反应,考察了光源和焙烧温度对该纳米复合材料光催化性能的影响。结果表明,
2. 2 样品的 XRD 图 2 为不同温度焙烧 3 h 得到的样品的 XRD 图。分析该 XRD 中衍射峰可知,它们分别与金红石型
第1 期
苏碧桃等: ZnTiO3 -TiO2 纳米复合材料的光催化性能
35
TiO2 和钙钛矿型 ZnTiO3 的标准图( JCPDS Card No. 26-1500 和 JCPDS Card No. 21-1276) 一致,因此该样 品由金红石型 TiO2 和钙钛矿型 ZnTiO3 两相组成。该结果表明,利用 Sol-Gel 法,在不同温度下焙烧可以 得到不同结晶度的 ZnTiO3 -TiO2 复合材料。众所周知,普通的锐钛矿型 TiO2 要在较高的温度( 如 600 ℃ 以上) 才能转化为金红石型结构,而本实验中,却能在 400 ℃ 焙烧 3 h 即可实现金红石型 TiO2 的生成。 出现上述现象的原因可能是: 钙钛矿型的 ZnTiO3 与金红石型的 TiO2 有相似的密堆积结构,前者为立方 密堆积,后者为畸变的立方密堆积,而在这 2 种结构中,Ti—O 八面体均以棱相交堆积,且二者的 Ti—O 键长也相近。因此,体系中生成的 ZnTiO3 相,相当于引进了金红石 TiO2 晶种。在此基础上,金红石相 TiO2 的生成相对比较容易。即 ZnTiO3 相的存在,促进了金红石 TiO2 的生成[17]。

TiO_2基复合纳米材料的制备及其光催化性能研究

TiO_2基复合纳米材料的制备及其光催化性能研究

TiO_2基复合纳米材料的制备及其光催化性能研究面对日益严重的能源短缺问题和环境污染问题,寻找一种能够高效利用太阳能降解有机污染物的光催化剂成为当前研究的热点。

在众多光催化剂中,TiO<sub>2</sub>光催化材料表现出较高的催化活性,且其物理化学性质稳定、无毒副作用、费用低廉。

然而,传统的TiO<sub>2</sub>材料吸收光谱范围窄,禁带宽度较宽(3.2eV),只能被紫外光激发,对可见光的利用率较低。

因此,TiO<sub>2</sub>光催化材料的改性研究的重点在于拓宽其光响应范围,提高对可见光的吸收能力,使其充分利用太阳光。

基于此,本文将过度金属氧化物与TiO<sub>2</sub>复合,制备具有p-n结结构的复合纳米材料,并以典型有机污染物亚甲基蓝、邻氯苯酚以及可挥发性污染物(VOCs)的光催化降解实验考察各改性材料的光催化性能。

本文选取p型半导体NiO和Co<sub>3</sub>O<sub>4</sub>对TiO<sub>2</sub>进行改性,缩小TiO<sub>2</sub>的禁带宽度,提高对可见光的吸收能力,并通过构建p-n异质结形成半导体复合界面的内电场,抑制光生电子和空穴的复合,提高电子传输效率,从而提高纳米材料的光催化效率。

本文主要研究内容及结果如下:(1)水热法合成了NiO/TiO<sub>2</sub>复合纳米材料,通过TEM和HRTEM表征结果说明合成的NiO/TiO<sub>2</sub>光催化剂为平均直径180nm的棒状纳米材料,尺寸均匀且结构稳定,主要暴露晶面为锐钛矿型TiO<sub>2</sub>的101晶面和NiO的200晶面。

阵列型TiO2纳米管光催化降解VOCs性能

阵列型TiO2纳米管光催化降解VOCs性能

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第12期·3928·化 工 进 展阵列型TiO 2纳米管光催化降解VOCs 性能谷笛,朱凌岳,吴红军,王宝辉(东北石油大学化学化工学院,石油与天然气化工黑龙江省重点实验室,黑龙江 大庆 163318)摘要:通过二次阳极氧化电化学方法制备纳米孔/纳米管复合结构的阵列型TiO 2纳米管(2-step TiO 2 NTs ),实验证明这种结构的TiO 2 NTs 对大气中的挥发性有机化合物(volatile organic compounds ,VOCs )有着十分优异的降解效果。

本文通过气态甲醇的光催化降解来评估比较一次氧化生成的TiO 2纳米管(1-step TiO 2 NTs )和2-step TiO 2 NTs 的催化效果。

实验结果表明,二次阳极氧化电化学方法所生成的TiO 2 NTs 的纳米结构对光致电荷的产生有着十分重要的推动作用。

之所以2-step TiO 2 NTs 的纳米孔/纳米管复合结构能够显著提高VOCs 的降解效率,是由于这种特殊的结构能够更加有利于电子的传递,同时能够有效地抑制光生电子和空穴的复合。

最后,通过实验数据阐述了2-step TiO 2 NTs 光催化活性的增强机理,这种新结构显示出更小的带隙、更高效的光生电子/空穴分离效率和VOCs 降解性能。

关键词:TiO 2纳米管;纳米结构;催化作用;光化学;VOCs 降解中图分类号:O 644.1 文献标志码:A 文章编号:1000–6613(2016)12–3928–06 DOI :10.16085/j.issn.1000-6613.2016.12.028Tuned TiO 2 top-porous/bottom-tubular structure for enhanced VOCsphotocatalytic activityGU Di ,ZHU Lingyue ,WU Hongjun ,WANG Baohui(Provincial Key Laboratory of Oil & Gas Chemical Technology ,College of Chemistry & Chemical Engineering ,Northeast Petroleum University ,Daqing 163318,Heilongjiang ,China )Abstract :The top-porous/bottom-tubular TiO 2 nanotube arrays (TiO 2 NTs )were prepared via a facile two-step anodization method for efficient decomposition of VOCs (volatile organic compounds )in air. The gas phase photocatalytic activity of conventional 1-step TiO 2 NTs and top-porous/bottom-tubular TiO 2 NTs were estimated by decomposing of methanol vapor. The results show that ,a heterojunction structure formed in top-porous/bottom-tubular TiO 2 NTs composite plays an important role in the dynamics of photogenerated charges. The top-porous/bottom-tubular TiO 2 NTs combined structure significantly enhanced the photocatalytic activity of decomposition of VOCs ,which is due to the enhanced electrons transfer and the reduce of the recombination of photogenerated electrons and holes. The mechanism for the enhancement of the photocatalytic activity of top-porous/bottom-tubular TiO 2 NTs was discussed according to our experimental results.Key words :TiO 2 nanotube ;nanostructure ;catalysis ;photochemistry ;VOCs decomposition近年来,将光催化技术应用于挥发性有机化合物(volatile organic compounds ,VOCs )降解领域受到越来越多的关注,很多半导体材料都可以作为光催化剂[1-3],其中TiO 2被认为是最有发展前景的光催化剂,因为它具有独特的光致激发性质、较高的抗光腐蚀型和低成本等特点[4-6]。

TiO2纳米结构、复合及其光催化性能研究共3篇

TiO2纳米结构、复合及其光催化性能研究共3篇

TiO2纳米结构、复合及其光催化性能研究共3篇TiO2纳米结构、复合及其光催化性能研究1TiO2纳米结构、复合及其光催化性能研究随着环境污染日益严重,光催化技术逐渐成为一种重要的治理手段。

其中,TiO2因其良好的光催化性能,在光催化领域中得到了广泛应用。

近年来,随着纳米技术的发展,研究人员开始尝试制备TiO2纳米结构及其复合材料,以提高其光催化性能。

本文将就TiO2纳米结构、复合及其光催化性能进行探讨。

TiO2是一种广泛应用于光催化领域的半导体材料。

其中,纳米级TiO2颗粒具有更高的比表面积和更好的光催化性能。

通过控制TiO2颗粒的形貌和尺寸,可以进一步提高其光催化性能。

目前,制备TiO2纳米颗粒的方法主要有溶胶-凝胶法、水热法、气-液界面法等。

其中,溶胶-凝胶法是最常用的制备方法之一。

通过将钛酸四丁酯、乙醇等原料混合后,进行溶胶-凝胶、干燥、煅烧等步骤,即可制备纳米级TiO2颗粒。

研究表明,通过控制煅烧温度和时间,可以控制TiO2颗粒的尺寸和形貌。

例如,较高温度和较长时间会导致颗粒尺寸增大,形貌由球形转变为椭球形或纺锤形等。

除了纳米颗粒外,掺杂和复合是另一种提高TiO2光催化性能的有效手段。

掺杂主要是通过将其他元素掺入TiO2晶格中,以改变其电子结构,提高光催化性能。

目前常用的掺杂元素包括银、氮、碳等。

复合则是将TiO2与其他材料复合,以提高其光催化稳定性和性能。

常用的复合材料包括金属氧化物、石墨烯、聚合物等。

对于掺杂TiO2,研究发现,掺杂银元素可以增加TiO2的光催化活性和稳定性。

由于银元素具有良好的表面等离子共振吸收效应,可促进TiO2的光吸收和电子传输。

同时,掺杂氮和碳元素可以缩小TiO2带隙,增强光吸收效果。

对于复合TiO2,研究发现,纳米级TiO2颗粒与金属氧化物复合,可以提高其光吸收和电子传输效果,从而提高光催化性能。

总体而言,制备TiO2纳米结构、掺杂和复合是提高TiO2光催化性能的有效手段。

纳米TiO2光催化材料的合成及应用研究进展

纳米TiO2光催化材料的合成及应用研究进展
T i O2 p h o t o c a t a l y s t a n d i t §a p p l i c a t i o n f o r wa s t e w a t e r t r e a t me n t a r e o l i s c u s s e d .F u t h e r mo r e , t h e p r o s p e c t i s
剂中的电子或 T i O : 纳米粒子表面吸附物质 , 使原本
不吸光物质被氧化活化 , 电子受体通过接受表面的 电子而被还原。该过程如下式和图 1 所表示。
T i O 2+ H 2 O _ + e 一+h h +O H一 HO ・ h + H2 O H O ・+H
e 一+O - - + 0 2 -・ O +H _ ÷ H0 2・ 2 HO 2・ O 2 + H2 0 2
p op r o s e d i n he t p a p e r.
Ke y wo r d s : n a n o—T i O2 ; p h o t o c a t a l y t i c; me c h a n i s m; w a s t e wa t e r t r e a t me n t ;a p p l i c a t i o n
Th e p r o g r e s s o f S y n t h e s i s a n d Ap p l i c a t i o n f o r T i O2 P h o t o c a t a l y s i s Ma t e r i a l
Y A NG Y a o—b i n, CU I Y u e , Z H A NG F e n g—M e i
表 了T i O : 光电极和铂 电极 组成 的光 电化学体 系在 紫外光 的照射下分解水成氢和氧的论文和 1 9 7 6年

高比表面积TiO_2纳米颗粒的制备及光催化性能研究

高比表面积TiO_2纳米颗粒的制备及光催化性能研究

高 比表 面 积 T O2 米 颗 粒 的 制 备 及 光 催 化 . 研 究 i 纳 性能
张 昌远 黄 祥 平 万 兰 芳 王 昭 赵 雯 雯
刘 亚 威 毛 峰 刘 栓 黄 应 平
(. 峡 大 学 理 学 院 , 北 宜 昌 1三 湖 4 3 0 ; . 峡 大 学 艾 伦 ・ 克 德 尔 米 德 再 生 能 源研 究 所 , 北 宜 昌 4 022 三 麦 湖 4 30 ) 4 0 2
第 3 3卷 第 3期 21 0 1年 6月
三峡大学学报 ( 自然 科 学 版 )
J o i a Th e r e i. Na u a ce c s fCh n r e Go g s Un v ( t r lS i n e )
VO. O 1 33 N .3
J n 2 1 u.O1
中 图 分 类 号 : 1 . 1 1 O 4 . 2 文 献 标 识 码 : 文 章 编 号 :6 29 8 2 l ) 30 0 —4 06 4 4 : 6 3 3 1 A 1 7 —4 X(0 10 — 1 90
S nt e i f Na m e e i e o2wih La g r a e Ar a a d y h ss o no t r S z d Ti t r e Su f c ‘ n e
a tvii son d g a a i n o c i te e r d to f RhB S 95 i a t r1 i nde ii e lg . fe m n u 8O r v sbl i ht Ke wo ds tt ni m i i e; s cfc s f c r a; a t s p t c t l s s y r ia u d ox d pe ii ur a e a e na a e; ho o a a y i

SiO2改性纳米TiO_2及可见光催化性能研究

SiO2改性纳米TiO_2及可见光催化性能研究
( 2.太和医院, 湖北 十堰 442000)
海南 海口 570228)
摘 要: 以四氯化钛等为原料, 采用溶胶- 凝胶法制备纳米 TiO2, 制品为锐钛矿相和金红石相的混 合物, 随着热处理温度的升高, 其中的锐钛矿相的比例逐渐降低, 金红石相比例逐渐上升; 又以 Na2SiO3 为原料, 对 TiO2 进行表面改性, 制得 TiO2/SiO2 复合材料。研究发现, 原位改性后的 TiO2 在 可见光下光催化甲醛可以发生聚合反应。 关键词: 纳米 TiO2; 溶胶- 凝胶; 改性; 光催化
在强烈搅拌的条件下, 将一定量的四氯化钛 缓慢 滴入பைடு நூலகம்50ml 乙醇中 , 之后, 将氨 水混和液按 一 定速度滴入上述溶液中, 继续搅拌并升温至 90℃, 滴加浓度为 2mol/L 的 KOH 溶液, 调节溶液的 pH 值为 9。匀速加入 22ml 浓度为 35.5g/L 的硅酸钠, 同时滴加一定浓度的盐酸, 保持 pH 值恒定。滴加 结束后继续搅拌 5h, 用去离子水洗涤至 pH 值中 性, 然后用无水乙醇洗涤 2 次, 最 后在 110℃下烘 干, 在马弗炉中 500℃煅烧 2h, 得到样品。
第3期 2008 年 6 月
纳米科技 Nanoscience & Nanotechnology
No.3 June 2008
际的应用。为了提高二氧化钛对太阳光的利用率, 研究人员进行了许多尝试, 如采用染料敏化、贵金 属和非金属掺杂[4][5], 或采用溶胶- 凝胶法进行半导 体- 半导体耦合等, 但是, 这些方法又都存在性能 不稳定、成本高等缺陷。而以适当比例混合锐钛型 和 金 红 石 型 有 利 于 提 高 光 催 化 活 性[6]。
1.4 光催化实验
首先配制 1500ppm 标准甲醛溶液。取上述制 备 的 纳 米 TiO2 粉 末 和 用 两 种 方 法 改 性 后 的 纳 米 TiO2, 每一 种样品均取 0.2g、0.4g、0.8g, 溶于 100ml 的去离子水中, 编号为样品 1、2、3, 搅拌均匀。取 样品 1、2、3 各 20ml 置于烧杯中, 分别 滴入 80ml 的 1500ppm 标准甲醛溶液, 太阳光下反应 4h。光 催化后对样品进行红外光谱分析。

Bi_2O_3纳米纤维的制备_表征及光催化性能

Bi_2O_3纳米纤维的制备_表征及光催化性能

Bi 2O 3纳米纤维的制备、表征及光催化性能*李跃军1, 曹铁平1, 张 健2(1.白城师范学院化学系,吉林白城 137000;2.北京科技大学材料科学与工程学院,北京 100083)摘要:采用溶胶-凝胶过程和静电纺丝技术相结合的方法,以聚丙烯腈(PAN )和硝酸铋为前驱物,制备了PAN/Bi(NO 3)3复合纤维,该复合纤维经高温煅烧得到了Bi 2O 3纳米纤维.利用X 射线衍射、扫描电子显微镜、红外光谱、紫外可见漫反射光谱等测试技术对样品的结构与性能进行了表征.结果表明,Bi 2O 3纳米纤维为规则的一维结构,直径分布均匀,具有较强的紫外光吸收性能.以罗丹明B 为模拟污染物,考察了Bi 2O 3纳米纤维的光催化性能.实验结果表明,煅烧温度为500e 时,光催化活性最佳,T OC 去除率为48.7%.关键词:Bi 2O 3纳米纤维;静电纺丝;光催化降解中图分类号:O 614.53+2;T B 383 文献标识码:A 文章编号:1000-5854(2011)06-0598-04Synthesis Characterization and Photocatalysis of the Bi 2O 3NanofibersLI Yuejun 1, CAO Tieping 1, ZHANG Jian 2(1.Department of Chemistry,Baicheng Normal College,Jilin Bai cheng 137000,C hi na;2.School of M aterials S cience an d Engineering,Beijing University of Science and T echnol ogy,Beiji ng 100083,China)Abstract:Bi 2O 3nanofibers were prepared via so-l g el process combined w ith electrospinning,a precursor m ix -ture of polyacry lonitrile (PAN)/bismuth nitrate,follow ed by calcination treatment of the electrospun PAN/Bi(NO 3)3composite fibers.T he Bi 2O 3nanofibers w ere characterized with X -ray diffraction,scanning electron microscopy,FT -IR spectra and U V -vis diffusereflectance spectroscopy,respectively.The results show that Bi 2O 3nanofibers have one dimensional structure w ith uniformly distributed diameter and strong UV absorption proper -ties.Photocatalytic ex periments indicate that the obtained Bi 2O 3nanofibers are highly active for photodegradation of organic pollutants rhodamine B.The photocatalytic activity of Bi 2O 3is the greatest w hen the calcining temper -ature is 500e and TOC removal rate is 48.7%.Key words :Bi 2O 3nanofibers;electrospinning ;photocatalytic deg radation近年来,利用半导体材料光催化降解有害污染物已成为热门的研究课题之一[1-3].常见的单一化合物光催化剂多为金属氧化物或硫化物,目前研究较多的金属氧化物TiO 2,因其具有较高活性和稳定性而倍受人们关注,由于其带隙较宽(3.2eV)只能吸收波长[387nm 的紫外光,因此研制新型光催化剂或改善催化效率仍是重要研究课题.半导体Bi 2O 3的带隙能为2.8eV,其吸收波长较大,可能具有较好的光催化活性[4-5].Bi 2O 3又是一种先进的功能材料,是最重要的铋化合物之一,优良的介电性、高的氧流动性、大的能量间隙、高的折射率、显著的光电导性和光致发光性,已被广泛应用于电子陶瓷材料、电解质材料、光电材料、高温超导材料、铁电材料、核反应堆燃料和催化剂等方面[6].Bi 2O 3的制备方法较多,如高温煅烧法、金属铋高温氧化法、熔体雾化燃烧法以及化学沉淀法等.目前对于纳米Bi 2O 3的研制多是围绕在粉体颗粒上[7].而对于一维纳米尺度的Bi 2O 3纤维的制备还鲜有报道,且对纳米纤维在光催化应用方面的研究尚处于摸索阶段[8-9].本文中,笔者采用溶胶-凝胶过程和静电纺丝技术相*收稿日期:2010-11-16;修回日期:2011-05-20基金项目:国家自然科学基金(50572014);教育部/新世纪优秀人才支持计划0(NCET -05-0322)作者简介:李跃军(1964-),男,吉林长春人,副教授,硕士,主要从事无机材料的研究.第35卷/第6期/2011年11月河北师范大学学报/自然科学版/J OU RNAL OF HEB EI NO RMAL UNIV ER SITY /Natu ral Scien ce Edition /Vol.35N o.6N ov.2011结合的方法,成功制备了Bi 2O 3纳米纤维,并进行了结构表征和光催化降解反应.研究发现,Bi 2O 3纳米纤维具有良好的光催化性能,其催化活性与煅烧温度有关.1 实验部分1.1 仪器和药品H itachi S -570扫描电子显微镜(SEM,日本日立公司);Rigaku D/m ax 2500V PC X 射线衍射仪(XRD,日本理学株式会社,日本理学公司);JEM-2010透射电镜(ZEOL,日本电子光学公司);Cary500紫外-可见-近红外光谱仪(UV -VIS -NIR,美国Varian 公司);岛津T OC -5000A 总有机碳分析仪(日本Shimadzu 公司);静电纺丝装置(自制,见图1).聚丙烯腈(PAN,平均分子量为90000,分析纯,北京益利精细化学品有限公司);硝酸铋(Bi(NO 3)3,分析纯,上海昆行化工科技有限公司);N,N -二甲基甲酰胺(DMF,分析纯,国药集团化学试剂有限公司).图1 静电纺丝装置1.2 前驱体溶液的制备取1g PAN 加入到9.5mL DMF 中,室温下搅拌2h,配成10%(质量分数,下同)的溶液;然后再将1g Bi(NO 3)3加入到20mL 10%PAN 溶液中,室温下搅拌4h,即制成Bi 2O 3的前驱体纺丝溶液.1.3 Bi 2O 3纳米纤维的制备将配制好的前驱体溶液置于20mL 注射器中,采用铜丝作阳极,铝箔作阴极和收集板,固定阳极和阴极之间的距离为10cm ,在10kV 电压下静电纺丝,制得PAN/Bi(NO 3)3复合纤维.将其置于马弗炉中加热,升温速率控制在30e /h,当温度上升到500,600,700e 时分别恒温10h,取样表征.1.4 Bi 2O 3纳米纤维的光催化反应将0.1g 催化剂放入新配制的罗丹明B(RB)(Q 0=20mg/L)水溶液中(反应液体积约为100mL)形成悬浮液,室温下搅拌30min,使催化剂在反应液中分散均匀.光催化反应装置为自制,使用50W 高压汞灯为光源(其主要发射线为313.2nm).然后,将开启后光强度稳定的光源插入到以上悬浮体系中,反应过程中剧烈搅拌,反应体系的温度保持在(20?2)e ,反应装置的外管与空气相通.反应中,每间隔一定时间取样,并离心分离,采用Cary500紫外-可见-近红外光谱仪检测浓度变化,采用TOC -5000A 分析仪测定溶液的TOC 值.2 结果与讨论2.1 纤维的形貌图2是PAN/Bi(NO 3)3复合纤维及其不同温度煅烧所得产物的SEM 照片.由图2a 可见,未经煅烧的PAN/Bi(NO 3)3复合纤维表面平滑,直径分布均匀,约为200~300nm.经不同的温度煅烧后,随着高分子PAN 发生分解,复合纤维的形貌并没有发生明显变化,仍然保持着纤维形貌,但是复合纤维的直径减小,表面变得粗糙.经500e 煅烧后,纤维的直径降至100~150nm(图2b);煅烧温度升高至600e ,纤维的直径有所增加,约为130~180nm (图2c);继续升高温度至700e ,纤维的直径增至150~200nm,形成链状Bi 2O 3纳米粒子(图2d).这是由于Bi 2O 3纳米纤维是由小Bi 2O 3晶粒构成的,在烧结过程中,小晶粒之间不断地融合长大,完成晶体生长过程,原来的纳米纤维就因这种小晶粒的长大而逐渐变粗,并出现分离的趋势,由此而形成链状的Bi 2O 3纳米纤维[10-11].#599#a.PAN/Bi(NO 3)3;b.500e ;c.600e ;d.700e .图2 PAN/Bi(NO 3)3复合纤维及其不同温度锻烧产物的SEM 照片静电纺丝法制备的Bi 2O 3纳米纤维,是以PAN 高分子纤维做模板,当聚合物高分子框架被去除后,剩在框架上的是Bi 2O 3小晶粒,它们随烧结温度的升高,不断地融合、结晶并生长,实际上就是一个晶体生长的过程,随着温度的升高,构成纳米纤维的晶粒尺寸也不断地变大;而复合纤维由于聚合物网络模板的烧掉,本身融合、结晶生长,纤维必然要发生收缩.2.2红外光谱分析a.PAN/Bi(NO 3)3;b.500e ;c.600e ;d.700e . 图3 样品的红外光谱PAN/Bi(NO 3)3复合纤维及其不同温度煅烧所得产物的红外光谱见图3.由图3a 可见,1000~1800cm -1处的振动峰为PAN 的C )H ,C N 及Bi(NO 3)3的NO 3-振动引起的.3400cm -1处有1个强的吸收峰,对应于吸附H 2O 中的羟基振动.谱线b~d 分别是在500,600,700e 下煅烧10h 后所得Bi 2O 3纳米纤维的红外谱图.与谱线a 对比发现,3400cm -1处的强吸收峰消失,同时位于1000~1800cm -1的吸收峰也基本上消失,说明经500e煅烧10h 后PAN 已完全分解.进一步比较发现,在400~575cm -1处出现了新的吸收峰,这些吸收峰归属于B -Bi 2O 3中BiO 6八面体的Bi )O 键振动,表明B -Bi 2O 3纳米纤维的形成.此外,对比不同温度煅烧的纳米纤维谱发现,600,700e 下煅烧所得的纳米纤维在595cm-1处还有1个新的吸收峰,经过与文献对比,该吸收峰可归属于A -Bi 2O 3中BiO 6多面体Bi )O 键振动,该结果说明随着煅烧温度的增加,会有部分A -Bi 2O 3生成.2.3 XRD 分析PAN/Bi(NO 3)3复合纤维及其不同温度煅烧所得产物的XRD 见图4.由图4a 可见,在2H =22b 附近有1个宽峰,归属于PAN 的结晶峰.500e 煅烧后,衍射峰可以用B -Bi 2O 3(JCPDS 76-147)进行标定,它们分别位于27.66b (201),29.96b (211),31.11b (002),32.75b (220),45.88b (222),47.03b (400),53.42b (203),55.39b (421),57.36b (402),73.77b (423),74.76b (224),75.74b (601).由此可以判断所得到的样品为B -Bi 2O 3纳米纤维.而经过600,700e 煅烧后,图4b,c 的衍射峰变得越来越尖锐,峰强也有所增大,说明B -Bi 2O 3的结晶性越来越好.此外,由于B -Bi 2O 3向A -Bi 2O 3的晶型转化较少,A -Bi 2O 3峰值不明显.2.4 紫外可见漫反射吸收光谱图5是PAN/Bi(NO 3)3复合纤维及其不同温度煅烧所得产物的紫外可见漫反射吸收光谱.Bi 2O 3纳米纤维的吸收峰出现在300nm 附近,带边约为470nm.同时又发现不同温度煅烧的产物光谱的吸收带边有差别,随着温度的增加,吸收边红移.对于一个间接带隙半导体颗粒而言,其吸收系数和带隙能之间遵循下列关系:(A h T )1/2=A (h T -E g ).(1)其中:h T 是光子能量;E g 是半导体材料的表观光学带隙能;A 是半导体的特征常数.从式(1)可以看出,#600#(A h T )1/2与h T 之间符合线性关系,将这个线性关系外推到(A h T )1/2=0,可以测得500,600,700e 下Bi 2O 3纳米纤维的E g 的值分别为2.55,2.88,2.97eV.目前已有文献报道A -Bi 2O 3的E g 值为2.85eV,而B -Bi 2O 3为2.58eV.红外光谱分析结果已经证实,500e 煅烧的产物为纯B 相,600,700e 煅烧的产物为B 和A 相的混相.因此,笔者认为Bi 2O 3纳米纤维吸光性能的改变是由其表面形貌和晶相结构的变化引起的.a.PAN/Bi(NO 3)3;b.500e ;c.600e ;d.700e .图4 样品的XRD 谱 a.500e ;b.600e ; c.700e .图5 样品的紫外漫反射吸收光谱2.5 Bi 2O 3纳米纤维的光催化性能Bi 2O 3的光催化性质与材料的形貌、颗粒尺寸和晶体结构密切相关,其降解曲线见图6.本实验以500e 煅烧所得的Bi 2O 3纳米纤维为光催化剂,50W 高压汞灯照射120min,RB 在553nm 处的吸收几乎完全消失,说明RB 在120min 内几乎完全降解(图6a).为进一步证明RB 浓度的降低并非催化剂表面吸附所致,对不同温度煅烧得到的催化剂做了吸附测试,结果发现在没有光照的情况下,样品吸附RB 的量很少,因此RB 的脱色来源于光催化剂的催化降解而非表面吸附.虽然吸光度可表示RB 的降解,但是,RB 不能完全降解为CO 2和H 2O,在光催化降解过程中会产生中间产物.为了更有效地表示RB 及其中间产物的降解,笔者又进行了色度及T OC 去除率的测定.结果表明,随着煅烧温度的增加,催化剂的光催化活性降低,500e 煅烧得到的Bi 2O 3纳米纤维光催化活性最高(图6b),脱色率为95.1%.矿化实验结果发现,TOC 随着光照时间的增加而减小,这说明在光照射下当有Bi 2O 3纳米纤维存在时,有机物的氧化并不是一个简单的脱色过程,而是RB 分子中的C 原子转化成CO 2的过程,120min 内降解RB 的TOC 去除率为48.7%(图6c).a.500e 锻烧样品的紫外光谱;b.不同光照时间对RB 的降解曲线;c.不同光照时间对去除率TOC 的影响曲线.图6 样品的光催化降解3 结 论采用溶胶-凝胶过程与静电纺丝技术相结合的方法,制备了具有一维结构的新型Bi 2O 3纳米纤维光催化材料.光催化实验表明,该类材料具有良好的光催化活性.煅烧温度对Bi 2O 3纳米纤维的光催化活性有很大影响,随着煅烧温度的升高,Bi 2O 3纳米纤维的比表面积降低,同时Bi 2O 3也会由四方相转化为单斜相,降低了光催化活性.研究表明,最佳煅烧温度为500e ,光催化活性最佳,TOC 去除率达47.8%.(下转第639页)行政办公中心和公园文体生活区已基本形成,东部工业区也已基本形成.这表明延吉市城市内部空间结构出现了明显的变化,从1999年开始已经出现的隐约功能分区,到2009年城市功能分区的确立,表明城市功能格局分化较为明显,城市功能分区也已逐步确立.总之,通过对1999,2009年延吉市城市内部空间结构的ESDA分析,可以看出该方法是研究城市空间结构的可靠分析工具,它可用来分析城市空间结构的空间分布状况,探索分析城市空间结构的整体与局部的集聚区、热点地区等.这为城市规划的分析研究工作提供了非常有用的工具,也为城市规划方案的设计提供了直观的空间分析工具.参考文献:[1]马晓冬.基于ESDA的城市化空间格局与过程比较研究[M].南京:东南大学出版社,2007.[2]周春山.城市空间结构与形态[M].北京:科学出版社,2007.[3]王法辉(美),滕骏华.基于G IS的数量方法与应用[M].北京:商务印书馆,2009.[4]徐建华.现代地理学中的数学方法[M].2版.北京:高等教育出版社,2002.[5]许学强.城市地理学[M].北京:高等教育出版社,1997.[6]周一星.城市地理学[M].北京:商务印书馆,1995.(责任编辑柴键)(上接第601页)参考文献:[1]刘祥英,邬腊梅,柏连阳.半导体光催化的特点及提高催化效率的途径[J].辽宁大学学报,2010,37(1):71-75.[2]李翠霞,杨志忠,顾玉芬,等.复合催化剂F e/ZnO-T iO2的制备及其光催化活性[J].兰州理工大学学报,2008,34(5):28-31.[3]M AEDA K,T AKA TA T,HARA M,et al.GaN B ZnO So lid Solution as a Photocatalyst for V isible Light Driven Overall WaterSplitt ing[J].Am Chem Soc,2005,127:8286-8287.[4]陈华军,尹国杰,吴春来.纳米Bi2O3/T iO2复合光催化剂的制备及性能研究[J].环境工程学报,2008,2(11):1516-1518.[5]ZHA NG L S,WA NG W Z,YA NG J,et al.Sonochemical Synthesi s of Nanocr yst Allite Bi2O3as a V isible L ight Driv en Photo-catalyst[J].A ppl Catal A:G en,2006,308:105-110.[6]DRACHE M,RO U SSEL P,WIG NACOU RT J P.Structures and O xide Mobility in B-i Ln-O M aterials:Heritag e o f Bi2O3[J].Chem Rev,2007,107:80-96.[7]沈能斌,龚竹青,李景升,等.纳米三氧化二铋粉体的制备研究[J].无机盐工业,2006,38(6):33-35.[8]L IU Z,SU N D D,GU O P,et al.A n Efficient Bicompo nent T iO2/SnO2N anofiber Photocatalyst Fabricated by Electr ospinningwith a Side-by-side Dual Spinneret M ethod[J].N ano Lett,2007,7:1081-1085.[9]张立眉,高建峰,张立.微波辐射Bi2O3/沸石-H2O2体系降解废水中的硝基苯[J].环境工程学,2010,4(2):365-371.[10]V ISWAN AT HA M UR THI P,BHAT T ARA I N,K IM H Y,et al.Vanadium Pento xide N anofibers by Electrospinning[J].Scr ipta M ater,2003,49:577-581.[11]M A EN SIRI S,N U ANSI NG W.T her moelectric Ox ide NaCo2O4N anofibers Fabr icated by Electrospinning[J].M ater ChemPhys,2006,99:104-108.(责任编辑邱丽)。

纳米TiO2的光催化性能及其在有机污染物降解中的应用

纳米TiO2的光催化性能及其在有机污染物降解中的应用

纳米TiO2具有光催化性能,利用太阳光能将有机污染物矿化为CO2和H2O......纳米TiO2的光催化性能及其在有机污染物降解中的应用魏刚黄海燕熊蓉春北京化工大学 (100029)摘要纳米TiO2具有光催化性能,利用太阳光能将有机污染物矿化为CO2和H2O。

从TiO2的光催化降解机理入手,详细讨论了影响纳米TiO2光催化性能的因素及提高光催化性能的方法,列举了纳米TiO2在有机污染物光催化降解中的应用,提出了目前尚且存在的一些问题及其解决的途径。

关键词TiO2光催化有机污染物降解1前言随着石油工业的发展,以石油裂解产物为原料进行合成的有机产品越来越多,不可避免地带来环境污染问题。

随着对环境认识的不断深入和水处理技术不断提高,利用半导体光催化作用降解和消除有害有机物,就引起人们极大的关注,这种方法具有高效、节能、不存在二次污染等特点,显示出良好的应用前景。

其中,纳米TiO2尤为引人注目。

纳米TiO2在光照射下产生强烈的氧化能力,可把水和空气中的许多难分解有毒有机污染物氧化分解为二氧化碳、水等无机物,其优点是:反应条件温和,能耗低,在紫外光或太阳光照射下即可发生光催化反应;反应速度快,废水停留时间仅需要几分钟到几小时;降解没有选择性;无二次污染;应用范围广。

2机理TiO2属于N型半导体材料,具有能带结构,一般由填满电子的低能价带和空白的高能导带构成,价带和导带间存在禁带。

TiO2的禁带宽度为3.2eV,当它吸收波长小于或等于387.5nm的光子后,价带上的电子(e-)被激发跃迁至导带,形成带负电的高活性电子e cb-。

同时,在价带上产生带正电的空穴(h vb+),在电场作用下,电子与空穴分离并迁移到粒子表面。

光生空穴有很强的捕获电子能力,具有强氧化性,可将吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基。

其反应机理可用下式表示:TiO2+H2O→e-+h+H++H2O→·OH+H+H++OH-→·OHO2+e-→·O2-·O2-+H+→HO2·2HO2·→O2+H2O2H2O2+O2-→·OH+OH-+O2·OH自由基的氧化能力很强,能将大多数有机污染物及部分无机污染物氧化降解为CO2,H2O等无害物质,且·OH对反应物无选择性,在光催化氧化中起着决定性作用。

纳米TiO2光催化材料简介及光催化机理毕业设计

纳米TiO2光催化材料简介及光催化机理毕业设计

纳米TiO2光催化材料简介及光催化机理毕业设计目录摘要 ................................................... 错误!未定义书签。

Abstract ............................................... 错误!未定义书签。

1.文献综述 (1)1.1 纳米TiO光催化材料简介及光催化机理 (1)2光催化材料简介 (1)1.1.1 纳米TiO21.1.2 TiO光催化的基本原理 (1)21.2 提高光催化性能的改性方法及原理 (3)1.2.1 过渡金属元素掺杂 (3)1.2.2 稀土元素掺杂 (4)1.2.3 非金属元素掺杂 (4)制备方法 (5)1.3 掺杂TiO21.3.1 共沉淀法 (5)1.3.2 浸渍法 (6)1.3.3 W/O型微乳液法 (6)1.3.4 固相反应法 (6)1.3.5 溶胶凝胶法溶胶一凝胶法 (7)1.4 金属离子掺杂改性TiO的原理及影响因素 (7)2的光催化机理 (8)1.4.1 金属离子掺杂 TiO21.4.2 金属离子掺杂改性TiO光催化性能的影响因素 (9)21.5 TiO2光催化技术在环境净化方面的应用 (11)1.5.1 水环境有机污染物的去除 (11)1.5.2 空气净化 (12)1.5.3 高效杀菌 (12)1.6 本课题研究的意义及内容 (12)1.6.1本课题研究的意义 (12)1.6.2本课题研究的内容 (13)2 实验方法 (15)2.1 设计及实验流程图 (15)2.2 仪器与试剂 (16)2.2.1 实验仪器 (16)2.2.2 分析测量仪器 (16)2.2.3 化学试剂和原材料 (16)2.2.4 初始化学试剂的配制 (17)2.3 凝胶的制备及条件的选择 (18)2.3.1 TiO凝胶的制备 (18)2凝胶的制备 (19)2.3.2 M/TiO22.4 粉末的制备 (19)2.5 粉末的光催化降解实验方法 (19)2.6 粉末的表征 (20)3.实验结果及讨论 (21)3.1 焙烧温度的影响及优选 (21)3.2 不同金属掺杂的影响及优选 (21)3.3 掺杂量的影响及优选 (22)3.4 不同反应pH的影响及优选 (23)3.5 表征数据的处理及分析 (23)3.5.1 (23)3.5.2 (23)3.5.3 (23)4 结论 (24)5 谢辞 (27)6 参考文献 (26)7.附录 (28)1.文献综述1.1 纳米TiO2光催化材料简介及光催化机理1.1.1 纳米TiO2光催化材料简介自从1972年日本Fujisima和Honda报道了TiO2电极上电解水现象后,半导体光催化引起了国际化学、物理学和材料学等领域科学家的广泛关注。

仿生钛化法制备TiO_(2)-Cu-AC复合光催化剂

仿生钛化法制备TiO_(2)-Cu-AC复合光催化剂

仿生钛化法制备TiO_(2)-Cu-AC复合光催化剂
王晓娟;刘彩;刘芳;黄方
【期刊名称】《实验室研究与探索》
【年(卷),期】2022(41)2
【摘要】以海藻为碳源,采用KOH研磨-熔融活化法制备了比表面积2190
m^(2)/g的海藻基活性炭(AC),并利用仿生钛化的方法实现TiO_(2)纳米粒子在AC 表面原位生长。

进一步复合铜离子获得TiO_(2)-Cu-AC复合光催化剂,用于可见光照射条件下的污染物催化降解。

表征结果显示,复合材料中AC、Cu^(2+)与
TiO_(2)紧密结合在一起,可见光区吸收较纯TiO_(2)明显增强,禁带宽度降低到2.38 eV,电子-空穴的复合得到了有效抑制。

与纯TiO_(2)纳米颗粒相比,TiO_(2)-Cu-AC 在可见光照射下降解污染物模型分子罗丹明B的一级反应速率常数是其12.6
倍,90 min降解率接近100%。

【总页数】5页(P36-40)
【作者】王晓娟;刘彩;刘芳;黄方
【作者单位】中国石油大学(华东)化学工程学院
【正文语种】中文
【中图分类】TQ174
【相关文献】
1.ZnO/TiO_(2)纳米复合光催化剂的简易制备及其光催化性能研究
2.g-C_(3)N_(4)掺杂TiO_(2)/活性炭复合光催化剂的制备及其光催化性能
3.TiO_(2)/Na_(3)NiF_(6)
复合光催化剂的制备及光催化性能4.CDs/TiO_(2)复合光催化剂的制备及其在可见光下催化降解双酚A试验研究5.g-C_(3)N_(4)/TiO_(2)复合光催化剂的制备及其光催化性能
因版权原因,仅展示原文概要,查看原文内容请购买。

Bi掺杂的TiO2纳米颗粒的制备以及它的可见光催化性能毕业论文外文文献翻译免费范文精选

Bi掺杂的TiO2纳米颗粒的制备以及它的可见光催化性能毕业论文外文文献翻译免费范文精选

毕业设计(论文)外文文献翻译文献、资料中文题目: Bi掺杂的TiO2纳米颗粒的制备以及它的可见光催化性能文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14Preparation of Bi-doped TiO2 nanoparticles and their visible lightphotocatalytic performanceHaiyan Lia,b, Jinfeng Liua, Junjie Qiana, Qiuye Lia, Jianjun Yanga,*Bi掺杂的TiO2纳米颗粒的制备以及它的可见光催化性能摘要:采用钛酸纳米管最为Ti的前驱体通过水热生长法合成了Bi掺杂的TiO2光催化剂。

样品通过X-射线衍射仪、透射电子显微镜、紫外-可见漫反射光谱和X-射线光电子能谱仪进行材料的表征来确定材料的形貌以及组成。

甲基橙(MO)被选为模式污染物来在可见光下评价Bi掺杂的TiO2纳米颗粒的光催化性能。

我们发现Bi离子没有进入到TiO2的晶格中,反而以BiOCl的形式存在。

获得的BiOCl-TiO2复合纳米材料在可见光下对甲基橙显示出很好的光催化活性。

样品中Bi/Ti比率为1%和水热处理的温度为130℃时,合成的材料的光催化活性是最高的。

此外,本文还讨论了BiOCl-TiO2复合纳米材料的光催化降解的机理以及增加光催化活性的原因。

合成的材料在降解4-氯酚的时候也显示出很高的光催化活性。

1. 介绍二氧化钛(TiO2)是一种很有前途的光催化剂,因为它生物化学稳定性强、耐光腐蚀和耐化学腐蚀、无毒并且价格低廉,在空气净化、水体净化和光催化分解水方面的应用已经被广泛的研究。

虽然TiO2光催化氧化降解有机污染物确实显示出很高的活性,但是有两个主要原因限制了它的实际应用:一是它对太阳光的利用率低下(只能利用紫外光区域的光),二是TiO2的光生电子和空穴的复合效率高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2010-10-08。

收修改稿日期:2010-11-25。

国家自然科学基金(No.51074067),河南省教育厅自然科学基金(No.2010B150009)资助项目。

*通讯联系人。

E -mail :yangjuan0302@Bi 2O 3/TiO 2复合纳米颗粒的可见光光催化性能杨娟*李建通缪娟(河南理工大学理化学院,焦作454003)摘要:采用溶胶与水热相结合的方法合成了具有可见光光催化活性的复合纳米颗粒Bi 2O 3/TiO 2,并对其进行了X 射线衍射、透射电镜、X 射线光电子能谱、紫外-可见漫反射谱、红外光谱、低温N 2吸附脱附及电子顺磁共振分析。

结果表明,复合少量的氧化铋可显著抑制TiO 2由锐钛矿到金红石的相转移过程,并将光吸收范围扩展到可见光区。

可见光照射下(λ>420nm),利用电子顺磁共振技术检测到明显的羟基自由基(·OH)信号。

铋的最佳掺杂量为Bi/Ti 质量比2.0%,适量铋的掺入能显著改善锐钛矿TiO 2的结晶度,抑制光生电子-空穴对的复合,提高光催化量子效率。

通过可见光照射下,4-氯酚的降解实验测试Bi 2O 3/TiO 2复合纳米颗粒的可见光光催化活性。

同时,利用气-质联用仪对4-氯酚降解过程的中间产物进行了测定,并提出可见光照射下的Bi 2O 3光敏化机理。

关键词:氧化铋;TiO 2;可见光;光催化;4-氯酚中图分类号:O643.3;O614.41文献标识码:A文章编号:1001-4861(2011)03-0547-09Visible Light Photocatalytic Performance of Bi 2O 3/TiO 2Nanocomposite ParticlesYANG Juan *LI Jian -TongMIAO Juan(Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454003,China )Abstract:Visible -light photoactive Bi 2O 3/TiO 2catalysts were prepared by sol -hydrothermal process.The as -prepared samples were characterized by XRD,TEM,XPS,UV -Vis diffuse reflectance spectroscopy (UV -Vis DRS),FTIR,N 2adsorption -desorption and pounding with low amounts of Bi 2O 3could effectively inhibit the phase transformation from anatase to rutile.UV -Vis DRS showed an extension of light absorption into the visible region.ESR results indicated that the active species (·OH)was generated with visible illumination (λ>420nm).It was found that the optimal dosage of bismuth was 2.0wt%.Proper amount of bismuth species compounded on the TiO 2surface could improve the anatase crystallinity,which could inhibit the recombination between photoelectrons and holes,leading to enhanced photocatalytic quantum efficiency.Meanwhile,the enhanced visible -light activity was tested by the photocatalytic degradation of 4-chlorophenol (4-CP).Furthermore,the generated intermediates were identified using gas chromatograph -mass spectrometer and Bi 2O 3-photosensitization mechanism under visible light illumination was proposed.Key words:bismuth oxide;TiO 2;visible light;photocatalysis;4-chlorophenolPowdered titania have been proven to be excellent photocatalytic materials for degradation of organic pollutants under UV irradiation [1-2].However,the wide band gap of TiO 2(anatase of 3.2eV,rutile of 3.0eV)limits the absorption wavelength to less than 387nm,which is only 3%~5%of the sunlight energy.Therefore,the development of visible -light photocatalysts is indispensable to be able to utilize the major portion of第27卷第3期2011年3月Vol .27No .3547-555无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第27卷无机化学学报the solar spectrum and to realize indoor application of photocatalysts.Thus far,a lot of efforts have been devoted to modify the photocatalyst[3-5].Among the studies,an important strategy to extent the light absorption property of TiO2is the formation of heterojunction between TiO2and a sensitizer semiconductor with a narrow bandgap[6-8].In the heterojunction structure,the sensitizer is excited by visible light irradiation,and some of the photogenerated electrons and holes will then be transferred to TiO2.Bi2O3,with a direct band gap2.8eV,thus will be able to absorb some portion of visible light(λ<440nm)and decompose the organic pollutants[9-10].But alone,its photocatalytic activity is very low,owing to the high electron-hole recombination rate in Bi2O3[11].On the other hand,Bi2O3can act as an effective photosensitizer and form the coupled semiconductor with TiO2.Rengaraj and Li[12]reported that Bi3+-TiO2could improve the photocatalytic reduction of nitrate in aqueous solution under UV illumination. Jing et al.[13]demonstrated that Bi2O3-compounded TiO2 could improve the photocatalytic decomposition of dyes pollutant rhodamine B(RhB).Bian et al.[14]synthesized active Bi2O3/TiO2visible photocatalyst with ordered mesoporous structure and highly crystallized anatase by evaporation-induced self-assembly method.However,to the best of our knowledge,there has been no reports of systematic studies on effects of the bismuth content on the TiO2phase transformation and the photoinduced charge properties by ESR technique,together with their relationships with the enhanced photocatalytic activity and degradation approach of4-CP under visible-light irradiation.In the present work,we prepared Bi2O3/TiO2photo-catalysts by sol-hydrothermal method with different contents of bismuth.The prepared materials were characterized by XRD,TEM,XPS,UV-Vis DRS,FTIR and ESR spectroscopy.The enhanced photocatalytic activity was tested in the degradation of4-CP under visible illumination,which was chosen as probe molecule,due to its environmental importance as priority toxic pollutant[15].The promoting mechanism on the activity from the high anatase crystallinity,the optical response extent,the increasing surface OH group density and the effective photosensitizating effect of Bi2O3were examined.Meanwhile,by the examination of the intermediates with GC-MS,the photocatalytic mechanism and the possible approach of visible-light degradation for4-CP were also discussed.1Experimental1.1Reagents and materialsTitanium tetra-n-butoxide(Ti(O-Bu)4)and bismuth nitrate with analytical grade were obtained from Aldrich Chemical Co.Glycolic acid,succinic acid,fumaric acid,malic acid,1,1,1,3,3,3-hexamethyldisilazane, Chlorotrimethylsilane and anhydrous pyridine were purchased from J&K chemical Ltd.4-CP,hydroquinone and all other chemicals were of analytical grade used without further purification.1.2Photocatalysts preparationThe Bi2O3/TiO2samples with different percentages of bismuth(0.5%,1%,2%,4%and5%,(w/w))were prepared by sol-hydrothermal method,using Bi(NO3)3 and Ti(O-Bu)4as precursors.In a typical process,10 mL of Ti(O-Bu)4was dissolved in10mL of ethanol by stirring vigorously to produce Ti(O-Bu)4-C2H5OH solution.Meanwhile,10mL of water,2mL of16mol·L-1HNO3and the desired amount of Bi(NO3)3were added to another40mL of C2H5OH to form an ethanol-nitric acid-water solution.Consequently,the Ti(O-Bu)4-C2H5OH solution was slowly added dropwise to the latter solution under vigorous stirring to carry out a hydrolysis.The obtained semitransparent sol was transferred to a100mL Teflon autoclave and kept at 140℃under authigenic pressure for6h for hydrothermal treatment.Then,the autoclave was cooled to room temperature and the precipitates obtained were separated by centrifugation,washed thoroughly with deionized water and ethanol,dried at90℃overnight, and calcined in air at500℃for2h.A TiO2sample was also prepared by the same procedure except without the addition of the bismuth precursor.1.3Photocatalyst characterizationThe crystallographic properties were investigated by a Philips X′Pert PRO X-ray diffractometer using548第3期杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能Cu Kαradiation(λ=0.15418nm),in which an accele-rating voltage of40kV and an emission current of30 mA over the2θrange of10°~90°.The settings for XRD examination were as follows:divergence slit,1mm; graphite monochromator;anti-scatter slit,2mm; receiving slit,0.15mm;scintillator detector.The particle size was estimated using the Scherrer equation. The morphologies were observed by a transmission electron microscopy(TEM,JEOL JEM-2010).N2 adsorption-desorption isotherms were collected at77K by using Micromeritics ASAP2020Surface Area& Pore Size Analyzer.IR spectrum was recorded as KBr pellets on Bruker Fourier transform infrared(FTIR) spectrometer.The ultraviolet-visible diffuse reflectance spectra(UV-Vis DRS)of the samples in the wavelength range250~750nm were recorded using a spectrophoto-meter(Hitachi U-3010),with BaSO4as a reference. Surface electronic states were analyzed by X-ray photoelectron spectroscopy(XPS,Axis Ultra,Kratos analytical Ltd.)with Al KαX-ray source.All binding energies were calibrated by using the contaminant carbon(C1s284.6eV)as a reference.The electron spin resonance(ESR)signals of radicals trapped by3,4-Dihydro-2,2-dimethyl-2H-pyrrole1-oxide(DMPO,CAS No:[3317-61-1])were detected at ambient temperature on a Bruker(E500)spectrometer.The irradiation source was the same as used in the degradation of4-CP. The settings for the ESR spectrometer were as follows: center field,3480G;sweep width,100G;microwave frequency,9.64GHz;modulation frequency,100kHz; power,10.05mW.1.4Photocatalytic reactionThe photocatalytic degradation of4-CP was carried out at25℃in an75mL self-designed glass photochemical reactor containing0.050g of catalyst and50mL of1.0×10-4mol·L-14-CP aqueous solution. Prior to photoreaction,the suspension was magnetically stirred in dark for30min to establish an adsorption/ desorption equilibrium.The suspension was vertically irradiated from the top by a300W Xenon lamp (Changtuo Instrumental Corporation of Beijing)at constant stirring speed.All the UV lights with wavelength shorter than420nm were removed by a glass filter(JB-420).At the given time intervals,the analytical samples were taken from the suspension and immediately centrifuged at4000r·min-1for10min, then filtrate through a0.22μm Millipore filter to remove particles.The filtrate was analyzed by HPLC for the degree of4-CP degradation.The concentrations of4-CP were measured by HPLC using an Agilent1200HPLC with a diode-array detector(G1315C)and a1200series binary pump.An Intersil ODS-3C-18,5μm4.6×250mm column was used.Substances were routinely quantified from their absorbance at280nm.The eluent was60%aqueous methanol and40%phosphate buffer solution(0.1%,V/ V).GC-MS data were obtained on an Agilent6890gas chromatograph using a25m0.20mm×0.33μm DB-5 column,coupled with an Aglient5985mass spectro-meter.The temperature program was as follows:at50℃,hold time=6.5min;from50to200℃,rate=10℃·min-1.The injector port was set for split operation at 250℃.The samples after irradiation were filtered,and the filtrate was then concentrated by a rotary evaporator and freeze-dried overnight.The residue was finally redissolved in0.1mL anhydrous pyridine,followed by the addition of0.1mL hexamethyldisilazane and0.05 mL of chlorotrimethylsilane[16].The silylated sample was further analyzed by GC-MS.Total organic carbon was measured by a Tekmar Dohrmann Apollo9000TOC analyzer.The concentra-tion of the chloride ions produced was determined using a chloride ion selective electrode.The K2HPO4was used for the buffer solution and to adjust the ionic strength.2Results and discussion2.1XRD,TEM and XPS characterizationXRD peaks at2θ=25.28°and2θ=27.40°are often taken as the characteristic peaks of anatase(101)and rutile(110)crystal phase,respectively.Fig.1shows the XRD patterns of pure TiO2and modified samples with different bismuth contents.The percentage of anatase in the samples can be estimated from the respective integrated XRD peak intensities using the quality factor ratio of anatase to rutile(1.265),and the crystal sizes549第27卷无机化学学报can also be calculated using the Scherrer equation [17].From Fig.1,it can be seen that pure TiO 2have significant diffraction peaks representing the character -istic of anatase phase around 2θof 25.2°,37.9°,47.8°,53.8°,55.0°,62.1°,62.7°,68.8°,70.3°and 75.1°,respectively.However,about 19.6%of rutile was also detected,implying that there is some phase transforma -tion in the present experimental pared with pure TiO 2,the modified TiO 2with 0.5%or 1.0%bismuth exhibits lower rutile characteristic peak.These two samples contained about 12.4%and 5.5%rutile phase.When the bismuth content increases to 2.0%,or more than 2.0%,no rutile phase is detected in the bismuth -compounded TiO 2samples.These results demonstrate that the surface -modification with Bi can inhibit effectively the phase transformation from anatase to rutile,which is favorable to the improvement of the anatase crystallinity.The high crystallization degree of anatase facilitates the rapid transfer of photoelectrons from bulk to the surface,which could effectively inhibit the recombination between photoele -ctrons and holes,leading to enhanced photocatalytic quantum efficiency [18].However,the crystallization degree and sizes of Bi 2O 3/TiO 2decrease slightly with the increase of bismuth contents,as mainly evidencedby the intensity and the full width at the half maximum (FWHM)value of their characteristic XRD peaks.The reason may be that the presence of bismuth disturbs the crystallization process during calcination [19].TEM images of TiO 2nanoparticles uncompounded (A)and compounded with 2.0%Bi (B)are shown in Fig.2.The dispersion of TiO 2nanoparticles is markedly improved by compounding Bi.It can be also seen that the both samples display similar spherical form,with the particle size of 20~25nm and 10~15nm,respecti -vely,demonstrating that compounding Bi can inhibit the growth of TiO 2nanoparticles.Additionally,indivi -dual particles sizes in Fig.2are comparable with those obtained by the Scherrer equation (Table 1),which demonstrates the particles are mainly mono -disperse and non -agglomerate.The XPS spectrum of 2.0%Bi -modified TiO 2and the high -resolution XPS spectrum of Bi4f are shown in Fig.3.The peaks centered at 158.6and 163.9eV could be assigned to Bi4f 7/2and Bi4f 5/2region [20].The presence of Bi 2O 3exerts no significant influence on the XPS spectra in either the Ti2p or O1s orbitals.Moreover,the XRD peaks of Bi -compounded TiO 2do not shift much compared with bare TiO 2.These results demonstrateFig.1XRD patterns of the pure TiO 2and Bi -modifiedTiO 2calcined at 773KNote:0.5%,1.0%,2.0%,4.0%and 5.0%represent the weight percentage of Bi -compounded TiO 2,respectively.Table 1Crystallite size,anatase phase composition and apparent rate constants of the as prepared TiO 2samplesSamplePure TiO 20.5% 1.0% 2.0% 4.0% 5.0%Crystallite size,D /nm Anatase (101)22171412109Rutile (110)231815———Anatase phase composition /%80.487.694.5100100100Apparent rate constant,K app /min -10.00010.0090.00170.00310.00280.0026Regression relative coefficient,R 20.9840.9900.9860.9920.9840.986Fig.2TEM images of TiO 2(A)and 2.0%Bi -compoundedTiO 2(B)powder550第3期that the Bi2O3is present m ainly as a separate phase, which is ascribed to the larger size of Bi atom(103pm) than that of Ti atom(61pm)[12].2.2Optical absorption properties ofphotocatalystsThe surface hydroxyl groups on titania have been recognized to play an important role on the photocatalytic reaction.Fig.4shows the FTIR spectra of different TiO2samples diluted and pressed in KBr dics. The strong and broad IR band of curve a and b between 400~850cm-1correspond to the Ti-O stretching vibration modes in crystal TiO2[21].With the increase in bismuth content,the additional peak around489cm-1 appears due to the vibrations from Bi-O bonds[22],as displayed in curve c,d,e and f.The IR peak at1630 cm-1is ascribed to the bending vibration of O-H bonds of adsorbed water strongly bound to the catalyst surface[23-24].The broad absorption peaks near3400cm-1are attributed to the stretching mode of O-H bond, which is related to water molecules and crystal surface hydrogen bonding.Obviously,as the bismuth content of modified TiO2samples increases,the amount of surface hydroxyl gradually increases.The larger surface hydroxyl group density will lead to the enhancement of the photocatalytic activity.Because the larger surface hydroxyl group can interact with photogenerated holes, giving better charge transfer and inhibiting the recombination of electron-hole pairs.As shown in Fig.5,the UV-Vis DRS spectra demonstrate that the pure TiO2displays no significant absorbance in the visible region due to the big energy gap(3.2eV).With the introduction of Bi ions,the absorption edge shifts towards longer wavelengths(400~ 600nm).The absorbance of Bi2O3/TiO2has similar intensity with the Bi content from0.5%~2.0%.Mean-while,further increase of the Bi content is bene-ficial to the light absorbance.The absorbance of Bi2O3/TiO2 increases with Bi content,suggesting that the spectral response in the visible region mainly results from Bi2O3 photosensitization[9].Briefly,the Bi2O3photo sensitizer with narrow energy gap(2.8eV)could be easily activated by visible lights and induce photoelec-trons and holes.The photo-holes in bismuth oxide could easily transfer from the valence band(VB)of Bi2O3to the neighboring VB of TiO2[25].Thus,the Bi2O3-TiO2 heterojunctions formed in the composite TiO2could effectively inhibit the recombination between photoele-ctrons and holes,leading to the strong response in visible area.Inset:the high-resolution XPS spectrum of Bi4f Fig.3XPS spectrum of2.0%Bi-compounded TiO2(a)Pure TiO2,(b)0.5%Bi-TiO2,(c)1.0%Bi-TiO2,(d)2.0%Bi-TiO2,(e)4.0%Bi-TiO2,(f)5.0%Bi-TiO2,respectively Fig.4FTIR spectra of the prepared photocatalysts Fig.5UV-Vis DRS spectra of the pure TiO2and Bi-modified TiO2calcined at773K杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能551第27卷无机化学学报2.3ESR signal analysis of DMPO-·OHSpin-trapping ESR technique was employed to identify the possible short-lived reactive oxygen species involved in the photocatalytic systems.For this study, all the ESR spectra were recorded by the same irradiation as used in the photocatalytic degradation using DMPO as the radical trapping agent,and the ESR signals at different irradiation time are shown in Fig.6.It can be seen from Fig.6,no ESR signals are observed when the photocatalysis is performed in the dark in the presence of catalyst and DMPO.Under visible light illumination,it is evident that in the pure TiO2system,no signal(1∶2∶2∶1signals)of the DMPO-·OH radical adducts is observed during the degradation process(Fig.6A).Whereas,the generation of·OH species is confirmed by ESR technique when irradiated with visible light for the2.0%Bi-TiO2system(Fig. 6B)[26].The results may reveal why 2.0%Bi-TiO2 exhibits much higher activity than bare TiO2.Moreover, the intensity of the peaks further increases with the increase of irradiation time and reaches stable state in 15min,therefore the intensity of DMPO-·OH adduct peak produced in20min irradiation is similar to that in 15min irradiation.Fig.6DMPO spin-trapping ESR spectra of(A)pure TiO2and(B)2.0%Bi modified-TiO2aqueous solutions2.4Photocatalytic degradation of4-chlorophenolIn order to evaluate the photocatalytic activity of the prepared catalysts and find out the optimum content of Bi species,a set of experiments for4-CP degradation under visible-light irradiation was carried out in and the results are shown in Fig.7A.The pure TiO2is rather inefficient since it could not be activated by visible lights due to a big energy band gap(3.2eV). Modification of TiO2with Bi2O3results in abrupt increase of the photocatalytic activity owing to the Bi2O3-photosensitization.It is found that pseudo-first-order kinetics is obeyed for the photocatalytic degradation of4-CP.Therefore,the apparent first order kinetic Eq.(1)is used to fit the experimental data in Fig. 7A.lnCC=k app t(1) Where k app is the apparent rate constant,C is the concentration of4-CP remaining in the solution at irradiation time of t,and C0is the initial concentrationFig.7(A)Photocatalytic kinetics of4-CP degradation for pure TiO2and Bi-modified TiO2;(B)Variations in ln(C0/C)as a function of irradiation time and linear fits of pure TiO2and Bi-compounded TiO 2552第3期at t=0.The variation in ln(C0/C)as a function of irradia-tion time are given in Fig.7B.The calculated data are given in Table1.The results of Fig.7B and Table1show that the effectiveness of the catalyst is strongly dependent on the amount of dopant ions.The4-CP degradation efficiency after7h follows the order:2.0%Bi-TiO2> 4.0%Bi-TiO2>5.0%Bi-TiO2>1.0%Bi-TiO2>0.5%Bi-TiO2.The experimental results are also related to BET specific surface area of Bi-modified TiO2.For instance, the BET specific surface area of2.0%Bi-TiO2is130 m2·g-1,which is much higher than33m2·g-1of bare TiO2.The larger specific surface area provides larger contact area and will lead to higher photo-degradation efficiency.Among the Bi-compounded TiO2,2.0%(wt) Bi-TiO2catalyst exhibits the highest activity under visible illumination.However,very high Bi content(> 2.0%)is harmful for the photocatalytic activity because of the agglomeration of the Bi2O3particles.The high Bi contents facilitates charge transport and reduces charge recombination,the large nanoparticles may act as the centers of electron-hole recombination and reduce quantum efficiency[27].2.5Mineralization and dechlorinationFrom an application perspective,analysis of degradation products is useful to estimate the efficiency of the photocatalytic technique,and it also may help reveal details of the chemical process taking place during the degradation and mineralization.To identify the intermediates of4-CP degradation,GC-MS analysis was used.The unfunctionalized degradation mixture is not suitable for GC-MS analysis,so the mixtures were silylated with TMS groups.The GC-MS results demonstrate the hydroxylated intermediates,such as catechol,hydroquinone,4-chlorocatechol and4-chlororesorcinol,were firstly generated during the photodegradation of4-CP.The primary products mainly involves the addition of HO·to aromatic ring and substitution of chlorine by HO·.Subsequently,under the effect of HO·radicals,the hydroxylated intermedia-tes were further oxidated and resulted in the formation of a series of low molecular weight carboxylic acids through the cleavage of benzene rings,which were also analyzed by GC-MS.The aliphatic intermediates are mainly dicarboxylic acids and substitutional dicarboxylic acids,such as oxalic acid,glycolic acid, malonic acid,maleic acid,succinic acid,fumaric acid, tartronic acid,malic acid and tartaric acid.In most instances,these structural assignments were confirmed with samples of authentic material that was processed in the same way that showing the same chromatographic and MS behavior.However,other reasonable pathways also maybe exist to get to these compounds.Meanwhile,during the photocatalytic degradation of4-CP,the attack of HO·to4-CP may replace chlor-ine atoms and produced organic dicarboxylic acids before complete mineralization.To examine the extent of mineralization of4-CP under visible light illumination,both removal yield of TOC and the quantity of inorganic chloride ions released were determined.Temporal changes of TOC and variations in the concentration of Cl-are shown in Fig.8.The initial4-CP contains13.9mg·L-1of TOC.After the adsorption of4-CP on the2.0%Bi-TiO2surface,the TOC values in the supernatants drop to12.6mg·L-1.The rate of TOC reduction is remarkably slower than that of4-CP.About 62%of TOC still remains after13h irradiation when the release of Cl-occurrs to a greater extent during the degradation of4-CP.The maximum extent of dechlorination is ca.76%(1.52×10-4mol·L-1),which is close to the theoretical quantity of about1.60×10-4mol·L-1(the quantity of4-CP degradation).It can be concl-uded from this result that dechlorination of4-CP is completed but about half of4-CP is mineralized intoFig.8Change in4-CP concentration and TOC and theformation of Cl-during the degradation of4-CP(2×10-4mol·L-1)in the presence of2.0%Bi-TiO2杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能553第27卷无机化学学报CO2and H2O.2.6Cyclic experimentsBased on the above results,one could conclude that2.0%Bi modified-TiO2exhibit the highest activity under visible irradiation.Besides the high activity,the 2.0%Bi-TiO2also displays strong durability.As shown in Fig.9,only3%decrease in activity is observed even after being used repetitively for8times,which demonstrates that this catalyst is quite stable during liquid-phase photocatalytic degradation.2.7Proposed mechanism and possibledegradation pathwayIn the absence of Bi2O3,the titania cannot be directly excited by visible light.Modification of TiO2 with Bi2O3could prevent phase transition from anatase to rutile and lead to the strong spectral response in visible region,as indicated in Fig.1and Fig.5.The abrupt increase of the photocatalytic activity of4-CP degradation ascribes the Bi2O3-photosensitization. Briefly,the Bi2O3photosensitizer with narrow energy gap(2.8eV)could be easily activated by visible light and induce photoelectrons and holes.In the absence of TiO2,these electrons and holes might recombine rapidly,leading to the quenching of spectral response.In Bi2O3/TiO2system,the heterojunctions formed in the composite catalyst would promote the photo-generated holes in bismuth oxide to be transferred to the upper lying valence bands of titania,because the valence band of Bi2O3is lower than that of titania(as shown in Fig.10).The process is thermodynamically feasible[28].Therefore,the recombination between photo-electrons and holes could be effectively inhibited and much more holes are captured to generate hydroxyl radicals and/or further induce photocatalytic reactions. Accordingly,the distinct difference of ESR signals observed between the2.0%Bi-modified TiO2and pure TiO2dispersions is understandable.As a result,the photocatalytic activity of Bi2O3/TiO2composite photoca-talyst enhances a lot compared to the pure TiO2.Based on the identification of intermediate products,the degradative process of4-CP firstly undergoes the hydroxylation or dechlorination reaction induced by active hydroxyl radicals.After that,these hydroxylated intermediates are oxidated and a series of dicarboxylic acids or substitutional dicarboxylic acids are generated.3ConclusionsBi2O3/TiO2composite photocatalyst was synthesiz-ed by the sol-hydrothermal method and characterized by XRD,TEM,XPS,FTIR,UV-Vis DRS and ESR techniques.The promoted activity of such Bi2O3/TiO2 mainly derives from the high anatase crystallinity,the optical response extent and the strong photosensitizing effect of Bi2O3.The enhanced photocatalytic activity of the material was evaluated on the visible light photodegradation of4-CP.TOC analysis shows that the mineralization of4-CP over Bi2O3/TiO2photocatalyst is feasible.The analyses of degradation intermediates by GC-MS and the ESR signals reveal the possible pathways during the4-CP photodegradation.Acknowledgements:We are grateful to key Lab for Special Functional Materials,Ministry of Education,Henan University for the XPS and TEM measurement.Reaction condition:50.0mL solution of1.0×10-4mol·L-14-CP,1g·L-1catalyst,visible light illuminationFig.9Recycling tests of the2.0%Bi-TiO2photocatalystFig.10Bi2O3-photosensitizating mechanism of2.0%Bi-TiO2under visible light irradiation554第3期References:[1]Hoffmann M R,Martin S T,Choi W,et al.Chem.Rev.,1995,95:69-96[2]Fujishima A,Rao T N,Tryk D A.J.Photochem.Photobiol.C:Rev.,2000,1:1-21[3]ZHANG Xia(张霞),MENG Hao(孟皓),CAO Xiang-Hui(曹向会).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(11):1947-1952[4]REN Ling(任凌),YANG Fa-Da(杨发达),ZHANG Yuan-Ming(张渊明),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2008,24(4):541-546[5]Kisch H,Sakthivel S,Janczarek M,et al.J.Phys.Chem.C,2007,111:11445-11449[6]Paola A D,Palmisano L,Venezia A M,et al.J.Phys.Chem.B,1999,103:8236-8244[7]Zhang H,Ouyang S,Li Z,et al.J.Phys.Chem.Solids,2006,67:2501-2505[8]Liu H,Yang W,Ma Y,et al.Appl.Catal.A,2006,299:218-223[9]Bessekhouad Y,Robert D,Weber J.Catal.Today,2005,101:315-321[10]Zhang L S,Wang W Z,Yang J,et al.Appl.Catal.A,2006,308:105-110[11]Fox M A,Dulay M T.Chem.Rev.,1993,93:341-357[12]Rengaraj S,Li X Z.Chemosphere,2007,66:930-938[13]Wang J,Jing L Q,Xue L P,et al.J.Hazard.Mater.,2008,160:208-212[14]Bian Z F,Zhu J,Wang S H,et al.J.Phys.Chem.C,2008,112:6258-6262[15]Marc P T,Verónica G M,Miguel A B,et al.Appl.Catal.B,2004,47:219-256[16]YANG Juan(杨娟),DAI Jun(戴俊),MIAO Juan(缪娟),et al.Acta Chim.Sinica(Huaxue Xuebao),2009,67(17):1973-1980[17]Dohnal V,Fenclova D.J.Chem.Eng.Data,1995,40:478-483[18]Zhang Q H,Gao L,Guo J K.Appl.Catal.B,2000,26:207-216[19]Zhang J,Li M J,Feng Z C,et al.J.Phys.Chem.B,2006,110:927-935[20]Schuhl Y,Baussart H,Delobel R,et al.J.Chem.Soc.FaradayTrans.,1983,79:2055-2061[21]Lin Y H,Wang D J,Zhao Q D,et al.J.Phys.Chem.B,2004,108:3202-3206[22]Dimitrov V,Dimitriev Y,Montenero A.J.Non-Cryst.Solids,1994,180:51-54[23]Jing L Q,Fu H G,Wang B Q,et al.Appl.Catal.B,2006,62:282-291[24]Zhang M H,Shi L Y,Yuan S,et al.J.Colloid Interf.Sci.,2009,330:113-118[25]Gujar T P,Shinde V R,Lokhande C D.Mater.Res.Bull.,2006,41:1558-1564[26]Zhao J,Wu T,Wu K,et al.Environ.Sci.Technol.,1998,32:2394-2400[27]Xin J H,Zhang S M,Qi G D.React.Kinet.Catal.Lett.,2005,86:291-298[28]Ao Y H,Xu J J,Fu D G,et al.Sep.Purif.Technol.,2008,61:436-441杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能555。

相关文档
最新文档